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Abstract

Mendelian randomization studies use genotypes as instrumental variables to test

for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage

residual inclusion (TSRI) estimators have been used when researchers are willing to

make parametric assumptions. However, researchers are currently reporting uncor-

rected or heteroskedasticity robust standard errors (SEs) for these estimates.

We compare several different forms of the SE for linear and logistic TSRI esti-

mates in simulations and in real data examples. Amongst others we consider SEs

modified from the approach of Newey (1987), Terza (2016), and bootstrapping.

In our simulations Newey, Terza, bootstrap, and corrected two-stage least squares

(in the linear case) standard errors gave the best results in terms of coverage and

type I error. In the real data examples the Newey SEs were 0.5% and 2% larger

than the unadjusted standard errors for the linear and logistic TSRI estimators

respectively.

We show that TSRI estimators with modified SEs have correct type I error under

the null. Researchers should report TSRI estimates with modified SEs instead of

reporting unadjusted or heteroskedasticity robust SEs.

Keywords: Causal inference, instrumental variables, Mendelian randomization, two-stage

predictor substitution estimators, two-stage residual inclusion estimators.
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Introduction

Mendelian randomization studies aim to use genotypes as instrumental variables to test

and estimate the causal effect of modifiable exposures on disease related outcomes. [1–4]

A variety of instrumental variable estimators have been described and evaluated for use

with data in a single study. [5–12] A class of semiparametric estimators known as structural

mean models have been found to be most robust to distributional assumptions for binary

outcomes but can have problems with identification. [7,13–16] Therefore, researchers may

wish to fit models which make more distributional assumptions.

One frequently used instrumental variable estimator is two-stage least squares (TSLS).

This is a series of two linear models and is most commonly applied when both the exposure

and outcome variables are continuous. The first stage is a linear regression of the exposure

on the instrumental variables. The second stage is a linear regression of the outcome

on the predicted values of the exposure from the first stage. TSLS is consistent for

the causal effect when all relationships are linear and there are no interactions between

the instrument and unmeasured confounders and between the exposure and unmeasured

confounders. Palmer et al. (2008) investigated two instrumental variable estimators of the

causal odds ratio for a binary outcome the “standard” and “adjusted” logistic instrumental

variable estimators. [17] The standard logistic instrumental variable estimator replaced the

linear regression in the second stage of TSLS with a logistic regression. Such estimators

have been referred to as “two-stage predictor substitution” (TSPS) estimators which are

written as follows, [18]

Stage 1: X = α0 + α1Z + ε1, ε1 ∼ N(0, σ2
1) (1)

Stage 2: h(E[Y ]) = β0 + β1X̂ (2)

where X represents the exposure variable, Y the outcome variable, Z the instrumental

variable, h() the link function for the appropriate generalised linear model, [19] and ε1 the

stage 1 residuals with variance σ2
1.
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The adjusted logistic instrumental variable estimator included the first stage residuals

alongside the predicted values of the exposure in the second stage logistic regression. [17]

In the econometrics literature it is more common to fit the second stage of such estima-

tors using the original values of the exposure. [18,9] When the residuals are included as an

additive covariate these estimators have been referred to as “two-stage residual inclusion”

(TSRI) estimators. [18,20,21] If a function of the residuals is included in the second stage

model these estimators have been referred to as control function estimators. [22] There-

fore, the second stage of TSRI estimators considered in this paper can be written as

follows,

Stage 2: h(E[Y ]) = β0 + β1X + β2ε̂1. (3)

In this paper we use ‘linear/logistic TSRI estimator’ to refer to the estimator using lin-

ear/logistic regression at the second stage (with a linear first stage).

A recent review of Mendelian randomization studies showed that TSRI estimators are

commonly used but are typically being reported with unadjusted or heteroskedasticity

robust standard errors. [23–34]. One indication that this may not be appropriate is that

when TSLS is estimated by fitting the two stages sequentially the standard errors of the

second stage parameter estimates are not correct (Web Appendix 1, Web Figures 1–3). [35]

Interestingly, for the linear TSRI estimator the standard error of the coefficient on the first

stage residuals is correct. [36] For a binary outcome Newey (1987) developed a correction

to the standard errors of the second stage intercept and causal effect of the Probit TSRI

estimator. [37] More recently Terza (2016) has suggested an alternative correction. [38] The

aim of this paper is to investigate these corrections adapted to the linear and logistic

TSRI estimators.

This paper proceeds by describing the Probit TSRI estimator and Newey’s correction for

its standard errors. We then perform two simulation studies using binary and continuous

outcomes to investigate the performance of the corrected standard errors. We then apply

these corrections to a real data example investigating the causal effect of body-mass index

(BMI) on systolic blood pressure (SBP) and on a binary diabetes status indicator.
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Methods

Background to TSRI estimators

Two reviews of TSRI estimators and their application have been given. [18,22] The rationale

for TSRI estimators is that the first-stage residuals capture some of the variability in the

confounders. Therefore, the first stage residuals can be used to correct for confounding

between the exposure and the outcome, known as endogeneity in econometrics. [39–43] It

is well known that the linear TSRI estimator produces an estimate of the causal effect

equivalent to that from TSLS. [36,44] Hausman (1978) showed that the test of the coefficient

of the first stage residuals is a test for the presence of unmeasured confounding. [45–47]

That it is necessary to correct the standard errors of the second stage estimate of the

causal effect of TSRI estimators has been referred to as the problem of using “generated

regressors” in the second stage model. [36,48,49]

For binary outcomes the use of Probit TSRI estimator has been discussed. [36,50–52] There

are several estimation methods available including maximum likelihood and sequential

two-stage methods. For two-stage estimation a correction to the second stage standard

errors was proposed by Newey (1987) which is implemented in the ivprobit and ivtobit

Stata (College Station, Texas) commands. [37,53]

It is also important to distinguish between different causal effects. We refer to a con-

ditional causal effect as the value of the causal effect conditioning on the unmeasured

confounding and to a marginal effect as the causal effect averaged over some proportion

of the unmeasured confounding. The maximum likelihood Probit TSRI estimator esti-

mates the conditional effect, whereas the two-stage Probit and logistic TSRI estimators

estimate marginal effects. [53,17,12,18,21]
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Probit TSRI estimator and Newey standard errors

Two-stage estimation of the Probit TSRI estimator follows Equations 1 and 3, where

the inverse Normal cumulative distribution function is used as the link function. If there

are measured confounders, as with TSLS, these can be included as covariates in both

stages of estimation. Letting β̂ =
[
β̂1

β̂0

]
denote the vector of estimates of the causal

effect and intercept yielded by the Probit TSRI estimator, and defining the matrix D̂ as[
α̂1 0
α̂0 1

]
, [37,53]

β̂ = (D̂′Ω̂−1D̂)−1D̂′Ω̂−1γ̂. (4)

The variance of the Probit TSRI estimator is as follows, where γ̂, Ω̂ and its components

are defined below, [37]

var(β̂) = (D̂′Ω̂−1D̂)−1 (5)

where Ω̂ = J−11 + Σ2. (6)

To obtain D̂, γ̂, and Ω̂ we use the following algorithm as described by Newey (1987). [37]

1. Perform the first stage linear regression of X on Z to compile D̂ and ε̂1.

2. Perform a Probit regression of Y on Z and ε̂1, from which;

(i) γ̂ is the coefficients of Z and the estimated intercept.

(ii) J−11 is the variance-covariance matrix of these coefficients.

(iii) denote λ̂ as the coefficient on ε̂1.

3. Fit the second stage of the Probit TSRI estimator by a Probit regression of Y on

X and ε̂1.

(i) The coefficient on X is β̂1, the estimate of the causal effect of interest.

4. Generate a new variable equal to X(λ̂− β̂1).

(i) Perform a linear regression of this new variable on Z (also including a con-

stant).
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(ii) The covariance matrix from this model is the estimate of the second term in

the expression for Ω̂, i.e. Σ2.

(iii) Add this covariance matrix to J−11 giving Ω̂.

5. Calculate β̂ and var(β̂). The standard errors of β̂ are simply the square root of the

diagonal of var(β̂).

The rationale for this approach is that we obtain a standard error for our TSRI estimate

which incorporates both the variability explained in the estimate by the instrumental

variable Z and the predicted first stage residuals ε̂1.

To apply these standard errors to other TSRI estimators we propose to replace the Probit

regressions in steps 2 and 3 with the second stage models used by the specific TSRI

estimator. Example Stata and R code is given in Web Appendix 2. [54,55]

Terza (2016) details an alternative algorithm for obtaining the standard error of TSRI

estimators and provides example Stata code. [38] We provide equivalent R code in Web

Appendix 2. Terza (2016) uses heteroskedasticity robust standard errors in both stages

of the algorithm, which we refer to as Terza SE 1. We additionally investigate using

non-robust standard errors , which we refer to as Terza SE 2. [38] By following the code

in Web Appendix 2 we can see that the Terza corrected variance covariance matrix is

the unadjusted TSRI covariance matrix plus some function of the first stage covariance

matrix.

We also investigate two types of non-parametric bootstrap standard errors. The first only

bootstraps the second stage, which we refer to as BS 1, whereas the second bootstraps both

the first and second stages, which we refer to as BS 2. BS 2 is implented in the ivprobit

and ivtobit Stata commands. And for our binary outcome models we additionally

investigate the Probit TSRI estimator, whose estimates we convert to the odds ratio

scale by dividing the estimate on the linear predictor scale by 0.6071 and taking the

exponential. [10] These Probit estimates use Newey standard errors.

For all estimators we calculate asymptotic normal 95% confidence interval (CI) limits as:
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estimate± 1.96× standard error.

Simulations

Logistic model simulations

Data were simulated using the basic model proposed in Palmer et al. (2008) but modifying

the parameter values. [17] Specifically the data generation model was as follows where index

i represents an observation and logit(pi) = log(pi/(1− pi)).

gi ∼ Binomial(2, 0.3)

ui ∼ N(0, 1) – representing the unmeasured confounding,

xi ∼ α0 + α1gi + α2ui + ε1i, ε1i ∼ N(0, 1)

logit(pi) = β0 + β1xi + β2ui

yi ∼ Binomial(1, pi)

α0 = 0, α1 = 1, α2 = {0, 2, 4, 6, 8}, β0 = log(0.05/0.95), β1 = 1, β2 = [0, 3] (7)

Data were simulated for sample sizes of 1 000 and 5 000 and each scenario of values of α2

and β2, representing the effects of the unobserved confounding, was repeated 500 times.

A number of different estimators were fitted to the data; the direct logistic regression of

Y on X, the logistic TSPS, the logistic TSRI with unadjusted, robust, Newey, Terza 1

and 2, TSPS, and BS 1 and 2 standard errors. We also investigated the logistic structural

mean model (LSMM) estimated via the generalized method of moments (GMM) [56] and

the rescaled Probit estimator with Newey standard errors.

In these simulations, with sample size 1 000 for the first stage model, the average F

statistics were 422, 85, 25, 12, and 7 and the average R2 statistics were 0.30, 0.08, 0.02,

0.01, and 0.007 when α2 was equal to 0, 2, 4, 6, and 8 respectively. With a sample size of

5 000 the average F statistics increased to 2104, 421, 125, 57, and 33 and the average R2
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statistics were the approximately the same.

Type I error was assessed by generating the data with β1 set to 0, i.e. which corresponds

to the null hypothesis of no causal effect, and counting the percentage of simulations for

which the particular estimator gave a p-value less than 0.05. Coverage was defined as a

95% confidence interval including the value of either the conditional or marginal value of

β1. Marginal values of β1 for the estimators were obtained using the adjustments detailed

in the Appendix of Palmer et al. [17] (and Web Appendix 3, Web Figure 4). Simulations

were performed in Stata (version 14.1). [54]

Linear model simulations

For a continuous outcome the simulations were modified as follows.

yi ∼ β0 + β1xi + β2ui + ε2i, ε2i ∼ N(0, 1)

α0 = 0, α1 = 1, α2 = {0, 2, 4, 6, 8}, β0 = 0, β1 = 1, β2 = [0, 3] (8)

For a linear second stage model the conditional and marginal parameter values are the

same. Type I error was assessed by setting β1 to 0. A number of linear estimators

were fitted to the data; the direct linear regression of Y on X, TSLS with adjusted

and unadjusted (i.e. TSPS) standard errors, the linear TSRI estimator with unadjusted,

robust, Newey, Terza 1 and 2, TSLS, and BS 1 and 2 standard errors.

Results

Logistic model simulations

Figure 1 and Web Figure 5 show that with respect to the conditional parameter (β1 = 1)

all estimators have low coverage at some point in the simulations. This is mainly because

of the bias in the parameter estimates. The conditional coverage of several estimators
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that we didn’t expect to perform well because their standard errors do not account for

the uncertainty in both stages of estimation (TSRI with unadjusted, robust, and BS 1

standard errors) was around the 95% level for some larger values of α2. This occurred

because their standard errors increased in proportion with their bias. The conditional

coverage of TSRI using the Newey, Terza 1 and 2, and BS 2 standard errors was the

closest to 95% for the greatest proportion of simulated scenarios.

Figure 2 and Web Figure 6 show the coverage with respect to the marginal parameter

values estimated by the TSRI estimator (the true marginal values are given in Figure

2 of Palmer et al. [2008] and Web Appendix 3). [17] The logistic TSPS estimator with

unadjusted and robust SEs had coverage values well below the target value of 95%. The

coverage of the logistic TSRI estimator with unadjusted, robust, and BS 1 standard

errors was lower than the expected 95%. The coverage of the logistic TSRI estimator

with TSPS standard errors was also too low and decreased as the confounding increased.

However, the coverage of the logistic TSRI estimator using Newey, Terza 1 and 2,and

BS 2 standard errors, and the coverage of LSMM were approximately correct with values

around 95%.

Figure 3 and Web Figure 7 show that the type I error of the logistic TSRI estimator with

unadjusted, robust, and BS 1 standard errors was too high with values greater than the

nominal level of 5%. Type I error was also too high for the logistic TSRI estimator with

TSPS standard errors when there was confounding. . For the LSMM estimates the type

I error was approximately correct with values around 5%. The logistic TSPS estimator

also had approximately correct type I error with unadjusted and robust standard errors

with values around 5%. This is because under the null there isn’t substantial bias in the

logistic TSPS estimates. The logistic TSRI estimator using Newey, Terza 1 and 2, and

BS 2 standard errors had approximately correct type I error with values around 5%.

Similar trends can be seen in the results for the simulations using a sample size of 5 000

in Web Figures 8, 9, and 10.

Web Figures 2–3 show that the correction to the logistic TSRI standard error has largest
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effect when the absolute value of the correlation between the confounders of the exposure

and outcome is greater than about 0.5, or more generally when the effect of the confounder

is stronger. The effect of the correction is also more pronounced when the outcome has a

higher prevalence (up to 50% beyond which the effect decreases).

Linear model simulations

The results in Figure 4 and Web Figure 11 show that the direct regression of Y and X

has poor coverage when there is confounding. This is because of the bias in the point es-

timate. The TSRI estimator with unadjusted standard errors had poor coverage because

the standard error does not account the uncertainty from the first stage estimation. TSRI

using BS 1 and robust standard errors also showed poor coverage for the same reason.

Usually we want the standard errors for the TSRI estimate to be larger than the unad-

justed standard error, but robust standard errors are often smaller. All other estimators

demonstrated coverage values around 95%. The coverage values for TSRI using the two

Terza standard errors were slightly above 95%. The coverage of TSRI using Newey and

TSLS standard errors fell below 95% as the amount of confounding increased. TSRI using

BS 2 standard errors had the coverage values consistently closest to 95% over the range

of the simulated scenarios.

The type I error results in Figure 5 and Web Figure 12 essentially show the same pattern

as for the coverage results. The type I error of TSRI using unadjusted and BS 1 standard

errors is inflated, whereas it is approximately correct for the other TSRI standard errors.

Again the type I error of the TSLS and Newey standard errors is inflated as the confound-

ing increases. The type I error of the two Newey standard errors is slightly below 5% and

the results for BS 2 are the closest to 5% over the range of the simulations.

Similar trends can also be seen in Web Figures 13, 14.

Web Figure 1 shows that the correction to the TSRI standard errors has the largest effect

when the absolute value of the correlation between the confounders of the exposure and

outcome residuals is greater than about 0.5, or more generally when the confounding is
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stronger.

Example: causal effect of BMI on SBP and diabetes

Data were taken on 17 057 participants from 6 prospective cohorts of European ancestry

that had been genotyped with the Human CVD BeadArray (Illumina), also termed the

“IBC” or “CardioChip” array. [57] The 6 cohorts are Atherosclerosis Risk in Communities

(ARIC), [58] the Cardiovascular Health Study (CHS), [59] Coronary Artery Risk Develop-

ment in Young Adults (CARDIA), [60] the Framingham Heart Study (FHS), [61] Multina-

tional Etoricoxib and Diclofenac Arthritis Long-term (MEDAL), [62] and the Multi-Ethnic

Study of Atherosclerosis (MESA). [63]

Individuals had complete data on variables for body mass index (BMI), systolic blood

pressure (SBP), and diabetes. An externally weighted allele score was constructed out of

the genetic variants for BMI. Details of the genetic variants and the construction of the

allele scores have been previously reported. [64] In the first example we estimate the causal

effect of BMI on SBP using linear IV estimators. In the second example we estimate

the causal odds ratio for diabetes for a unit increase in BMI using binary outcome IV

estimators . Analysis was performed using Stata (version 13.1). [54]

The prevalence of the diabetes outcome was 13.7%. Table 1 shows the estimated causal

odds ratios for diabetes for a one unit increase in BMI. The direct estimate of the odds

ratio was 1.14 (95% CI 1.13, 1.15). In the first stage of TSPS and TSRI estimation the

instrument gave a first stage F-statistic of 119, greater than the usual cut-off for a weak

instrument of 10, but a low R2 of 0.7%. The logistic TSPS estimate was larger at 1.32

(95% CI 1.19, 1.48) and also excluded a null effect. The logistic TSRI gave the same

point estimate of the causal odds ratio. For the TSRI estimator the unadjusted standard

error was 0.058 whereas the Newey standard error was 2% larger at 0.059. The two Terza

standard errors were 0.057 and 0.059 respectively. For logistic TSRI the BS 1 standard

error was the same as the robust standard error, whereas the BS 2 standard error at 0.061
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was larger than the Newey and Terza 2 standard errors. For the logistic TSRI with the

Newey standard error the z-statistic was 4.71 whereas the Probit TSRI gave a slightly

larger z-statistic of 4.74. The logistic SMM gave a larger point estimate of the causal

odds ratio of 1.39 (95% CI 1.19, 1.59) and also a larger standard error as shown by the

smaller z-statistic and wider CI. We conclude that the observational estimate of the causal

odds ratio has been attenuated by unmeasured confounding and that these data support

a causal effect of BMI on the risk of diabetes.

Table 2 shows the estimates of the effect of a 1 unit increase in BMI on SBP. The direct

estimate of this association was 0.76mmHg (95% CI 0.70, 0.82). Using the same first

stage as the logistic TSPS and TSRI estimators, TSLS gave an estimate for a 1 unit

increase of BMI of 0.36mmHg (95% CI -0.37, 1.10) with a standard error of 0.374. The

linear TSRI gave the same point estimate with a smaller unadjusted standard error of

0.372. The Newey standard error of 0.374 was equal to the TSLS standard error, and

the two Terza standard errors were slightly smaller at 0.370 and 0.372. In this example

the BS 2 standard error was the largest at 0.384. The Newey correction increased the

standard error by 0.5%. We conclude that the observational association is likely to be

partly explained by unmeasured confounding and that the data do not support a causal

effect of BMI on SBP.

In this example, the standard errors which don’t take into account the uncertainty from

both stages of estimation (unadjusted, robust, and BS 1) are only slightly smaller than

those that do (TSLS, Newey, Terza 1 and 2, BS 2, LSMM, and Probit) because of the

combination of low first stage R2 and large sample size.

Discussion

In this paper, we have adapted corrections to the standard errors of TSRI estimators,

developed by Newey (1987) and Terza (2016), to the linear and logistic TSRI estima-

tors. [37,38] The results of our simulations show that Newey, Terza, BS 2, and corrected
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TSLS (for the linear case) standard errors have the best properties in terms of coverage

and type I error.

The methods were illustrated in real data examples investigating the effect of BMI on SBP

and diabetes risk respectively. In the examples the Newey standard errors were 0.5% and

2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators

respectively. In the supplementary material we show that the corrections to the TSRI

standard errors have most effect when the unmeasured confounding is greater and when

the outcome prevalence is higher (up to 50%, beyond which the effect decreases). In the

binary outcome example the Probit TSRI estimator gave a slightly larger z-statistic than

the logistic TSRI estimator. The standard error of the logistic TSRI estimator could be

scaled to give the same z-statistic. We do not prefer this approach because using the

scaled standard error in Equation 4 would not give the same value as sequential two-step

estimation.

Further work could investigate the application of Newey and Terza standard errors to

TSRI estimators using other generalised linear models at the second stage. For example,

Terza et al. (2008) used a parametric Weibull model and an ordered logistic regression

model in the second stage. [18] And Tchetgen Tchetgen et al. (2015) discussed TSRI esti-

mators for survival models using an Aalen additive hazard model at the second stage. [65].

Our work has applicability beyond Mendelian randomization studies because TSRI esti-

mators have been used in other areas, for example, using randomized treatment status

in a clinical trial as an instrumental variable to correct for non-compliance and in health

economics. [66,18,22]

Newey’s correction to the standard errors of the two-step Probit TSRI estimator relates to

Murphy-Topel standard errors in econometrics which can be used for TSPS estimates. [67]

Murphy-Topel standard errors have been implemented in Stata . [68–71] It has been argued

that researchers may want to fit the logistic TSPS estimator because it is consistent for the

effect averaged over the population, [72,73] whereas it is less clear what effect is identified

by the TSRI estimator. [74] Also TSPS estimators have correct type I error under the

14



null. [17,72,75] However, since we have shown that using Newey, Terza, and BS 2 standard

errors for TSRI estimators also gives correct type I error under the null we argue that

TSRI estimators are attractive to researchers using non-collapsible models at the second

stage. There is also scope to use TSRI estimates, with corrected standard errors, as part

of the algorithms in the recently proposed MR-Egger and median estimators, which are

robust to different proportions of invalid instruments. [76,77]

In conclusion, we recommend that researchers fitting TSRI estimators should not report

unadjusted or heteroskedasticity robust standard errors but should report standard errors

using the Newey or Terza corrections or from bootstrapping including both stages of

estimation.
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Tables

Table 1: Estimates of the causal odds ratios for diabetes for a one unit increase in
body mass index across 6 cohorts ARIC, CHS, CARDIA, FHS, MEDAL, and MESA
(All N=17 057).

Estimator SE (log OR scale) z OR 95% CI

Direct logistic 0.004 29.6 1.14 1.13, 1.15
Logistic TSPS (Stage 1: F=119, R2=0.007) 0.056 4.96 1.32 1.19, 1.48
Logistic TSRI (unadjusted SE) 0.058 4.79 1.32 1.18, 1.48
Logistic TSRI (robust SE) 0.057 4.86 1.32 1.18, 1.47
Logistic TSRI (TSPS unadjusted SE) 0.056 4.96 1.32 1.18, 1.47
Logistic TSRI (BS 1) 0.057 4.80 1.32 1.18, 1.48
Logistic TSRI (BS 2) 0.061 4.50 1.32 1.17, 1.49
Logistic TSRI (Newey SE) 0.059 4.71 1.32 1.17, 1.48
Logistic TSRI (Terza SE 1) 0.057 4.83 1.32 1.18, 1.47
Logistic TSRI (Terza SE 2) 0.059 4.77 1.32 1.18, 1.48
Logistic SMM 0.101 3.26 1.39 1.19, 1.59
Probit TSRI (on OR scale) 0.090 4.74 1.28 1.15, 1.42

SEs given on log odds ratio scale. Bootstrapping using 500 replications (BS: boot-
strap, CI: confidence interval, IV: instrumental variable, OR: odds ratio, SE: stan-
dard error, SMM: structural mean model, TSPS: two-stage predictor substitution,
TSRI: two-stage residual inclusion).

Table 2: Estimates of the causal effect of a one unit increase in body mass index on
systolic blood pressure (mmHg) across 6 cohorts ARIC, CHS, CARDIA, FHS, MEDAL,
and MESA (All N=17 057).

Estimator SE Estimate 95% CI

Direct linear 0.031 0.76 0.70, 0.82
TSLS (Stage 1: F=119, R2=0.007) 0.374 0.36 -0.37, 1.10
TSPS (unadjusted SE) 0.378 0.36 -0.38, 1.11
Linear TSRI (unadjusted SE) 0.372 0.36 -0.37, 1.09
Linear TSRI (robust SE) 0.370 0.36 -0.36, 1.09
Linear TSRI (TSPS unadjusted SE) 0.378 0.36 -0.38, 1.11
Linear TSRI (BS 1 SE) 0.376 0.36 -0.37, 1.10
Linear TSRI (BS 2 SE) 0.384 0.36 -0.39, 1.12
Linear TSRI (Newey SE) 0.374 0.36 -0.37, 1.10
Linear TSRI (Terza SE 1) 0.370 0.36 -0.36, 1.09
Linear TSRI (Terza SE 2) 0.372 0.36 -0.37, 1.09

Bootstrapping using 500 replications (BS: bootstrap, CI: confidence interval, SE:
standard error, TSLS: two-stage least squares, TSRI: two-stage residual inclusion).
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Figure legends

Figure 1: Coverage of the logistic TSRI estimators for N = 1 000 with respect to the
conditional parameter, β1 = 1. The labels in the legend refer to the type of SE. BS
2: bootstrapping both stages; Newey, Terza 1, and Terza 2 SEs explained in main text;
TSRI: two-stage residual inclusion. The panels correspond to α2 being set to the following
values A:0, B:2, C:4, D:6, and E:8.

Figure 2: Coverage of the logistic TSRI estimators for N = 1 000 with respect to the
marginal parameter. The labels in the legend refer to the type of SE. BS 2: bootstrapping
both stages; Newey, Terza 1, and Terza 2 SEs explained in main text; SE: standard error;
TSRI: two-stage residual inclusion. The panels correspond to α2 being set to the following
values A:0, B:2, C:4, D:6, and E:8.

Figure 3: Type I error of the logistic TSRI estimators for N = 1 000. The labels in
the legend refer to the type of SE. BS 2: bootstrapping both stages; Newey, Terza 1,
and Terza 2 SEs explained in main text; SE: standard error; TSRI: two-stage residual
inclusion. The panels correspond to α2 being set to the following values A:0, B:2, C:4,
D:6, and E:8.

Figure 4: Coverage of the linear TSRI estimators for N = 1 000. The labels in the legend
refer to the type of SE. BS 2: bootstrapping both stages; SE: standard error; TSLS:
two-stage least squares; Newey, Terza 1 and 2, SEs explained in main text. The panels
correspond to α2 being set to the following values A:0, B:2, C:4, D:6, and E:8.

Figure 5: Type I error of the linear TSRI estimators for N = 1 000. The labels in the
legend refer to the type of SE. BS 2: bootstrapping both stages; SE: standard error; TSLS:
two-stage least squares; Newey, Terza 1 and 2, SEs explained in main text. The panels
correspond to α2 being set to the following values A:0, B:2, C:4, D:6, and E:8.
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Web Appendix 1: The difference between unadjusted and cor-
rected standard errors for TSRI estimators

Linear estimators

We consider the case of two-stage least squares. The true underlying model for the data
is,

gi ∼ Binomial(2, pg)

xi = α0 + α1gi + ε1i,

yi = β0 + β1xi + ε2i,

(
ε1
ε2

)
∼ MVN

(
0,

[
1 ρ
ρ 1

])
(A9)

However, the models fitted in TSLS estimation are,

xi = α0 + α1gi + ε3i (A10)

yi = β0 + β1x̂i + ε4i (A11)

After the fitting the second stage manually the variance of our vector of causal effect
estimates β̂ is given below, where X̂ denotes a matrix made up of the predicted values of
X and a column of 1s for the intercept, N the number of observations and k the number
of covariates,

var(β̂) = s2(X̂ ′X̂)−1 (A12)

where s2 =

∑N
i=1 (Y − X̂β̂)2

(N − k)
. (A13)

This gives us incorrect standard errors on our causal effects because s2 is in terms of X̂
whereas our causal model is in terms of X. Hence the corrected variance of β̂ is given
by,

s2 =

∑N
i=1 (Y −Xβ̂)2

N
. (A14)

By comparing the numerators of the two terms for s2 it is apparent that the corrected
standard errors will be similar to the uncorrected standard errors when X̂ are close to
their observed values X.

We simulated data based on Equation A9 using pg = 0.3, α0 = 0, α1 = 1, β0 = 0, and
β1 = 1. Figure 1a shows that the corrected (TSLS) standard errors are larger than TSPS
unadjusted standard errors for ρ < −0.5 and that the corrected standards are always
larger than TSRI unadjusted standard errors, this second curve being symmetrical about
ρ = 0 and only starts to reach ratios above 1.1 for |ρ| > 0.5.

Figure 1b shows that in the simulations in the main text the corrected standard errors were
always less than the TSPS unadjusted standard errors. For α2 = 0, i.e. no unmeasured
confounding in the first stage model, the corrected standard errors were the same as the
TSRI unadjusted standard errors, for all other values of α2 the corrected standard errors
were up to 3.5 times larger.
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Web Figure 1: Ratio of TSLS SEs to unadjusted TSPS and TSRI SEs (SE: standard error;
TSLS: two-stage least squares; TSPS: two-stage predictor substitution; TSRI: two-stage
residual inclusion).
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Logistic estimators

For the theoretical example for the logistic estimators we use the following model,

gi ∼ Binomial(2, pg)

xi = α0 + α1gi + ε1i,

log

(
pi

1− pi

)
= β0 + β1xi + ε2i,

yi ∼ Bernoulli(pi).

(
ε1
ε2

)
∼ MVN

(
0,

[
1 ρ
ρ 1

])
(A15)

For logistic regression the variance of the parameter estimates is given by the following;
where X is the design matrix of covariates including a vector of 1s for the intercept, IN
is an N by N identity matrix, p̂ is a vector of predicted probabilities of the outcome
from the model, ◦ denotes element-wise multiplication, and diag() extracts the diagonal
elements of a matrix,

var(β̂) = (X ′V X)−1 (A16)

V = IN ◦ diag(p̂(1− p̂)′). (A17)

Hence, the variance of the estimates is affected by the values of the covariates in the
model and also by the predicted probabilites of the outcome. The variance is maximised
for predicted probabilities at 50%. Hence, it might be reasonable to expect the differ-
ence between the unadjusted and corrected TSRI standard errors to be greatest when the
standard errors are greatest (i.e. for prevalences around 50%) and also when the unmea-
sured confounding is stronger (since this would mean there is more uncertainty around
the predicted values of the first stage residuals).

This can be seen in Figure 2 which shows results for data simulated under the model in
Equation A15 setting pg = 0.3, α0 = 0, α1 = 1, and β1 = 1. The value of β0 was set
from -5 to 3 to change the prevalence of the outcome from around 0.7% up to around
95%. In general the unadjusted standard errors are closer to the Newey standard errors
when the prevalence is further away from 50%. The TSRI unadjusted standard errors are
closer to the Newey standard errors than the TSPS unadjusted standard errors. The ratio
of the Newey standard errors to the TSRI unadjusted standard errors is approximately
symmetric about ρ = 0 whereas the ratio of the Newey standard errors to the unadjusted
TSPS standard errors is constant or reaches a minimum for ρ < −0.5 and then increases
as ρ increases.

Figure 3 shows the ratio of the Newey standard errors to the unadjusted TSPS and TSRI
standard errors in the simulations in the main text with N=1 000. For α2 = 0 all three
standard errors are approximately equal. For the other values of α2 the Newey standard
errors larger than both the unadjusted standard errors. The unadjusted TSRI standard
errors are closer to Newey standard errors than the TSPS unadjusted standard errors.
Plots using Terza 1 and 2 standard errors were very similar.
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Web Appendix 2: Example Stata and R code implementing Newey
and Terza standard errors for two-stage residual inclusion esti-
mators

Newey standard errors: Stata code

In this code we assume that the exposure, outcome, and instrumental variables are named
x, y, and g respectively.

The code starts by fitting the first stage model to generate variables containing the pre-
dicted values (xb) and residuals (res). We then create a matrix in Stata’s Mata environ-
ment called DPi.

* first stage

regress x g

capture noisily drop xb

predict double xb, xb

capture noisily drop res

predict double res, res

* DPi matrix

mata DPi = I(2)

mata b1 = st_matrix("e(b)")

mata DPi[,1] = b1’

Linear TSRI estimator

For the linear TSRI estimator the code proceeds following the steps described for the
Probit TSRI estimator in the Methods section replacing the Probit regressions in steps 2
and 3 with linear regressions.

* 2. regress to solve (2)

cap noi regress y g res

mata gamma = st_matrix("e(b)")[(1,3)]

mata lambdahat = st_matrix("e(b)")[2]

mata J1inv = st_matrix("e(V)")[(1,3),(1,3)]

* 3. Evaluate linear TSRI estimator

regress y x res

mata cfivb = st_matrix("e(b)")

mata cfivV = st_matrix("e(V)")

mata betahat = st_matrix("e(b)")[1]

putmata x=x, replace

mata y2new = x:*(lambdahat - betahat)

drop y2new

getmata y2new, double replace

* 4. y2*(lambda - beta) is regressed on z - the cov matrix is added to J1inv

regress y2new g

mata S2 = st_matrix("e(V)")

mata Omega = J1inv :+ S2

* evaluating equations 4 and 5 yields psihat and var(psihat)

mata finalv = invsym(DPi’ * invsym(Omega) * DPi)
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mata finalv

mata neweyse = sqrt(diagonal(finalv)[1])

mata printf("Newey SE= %9.0g", neweyse)

mata neweylow = cfivb[1] - invnormal(.975)*sqrt(finalv[1,1])

mata neweyupp = cfivb[1] + invnormal(.975)*sqrt(finalv[1,1])

mata printf("95 percent CI using Newey SE: (%9.0g , %9.0g)", neweylow, neweyupp)

mata finalb = finalv * DPi’ * invsym(Omega) * gamma’

mata finalb

Logistic TSRI

The code for the logistic TSRI is identical to that for the linear TSRI except that the
linear regressions in steps 2 and 3 are replaced by logistic regressions as follows.

* 2. logit to solve (2)

logit y g res, nolog

* 3. Evaluate logistic TSRI

logit y x res, nolog

Poisson TSRI

The code for the Poisson TSRI is identical to that for the linear TSRI except that the
linear regressions in steps 2 and 3 are replaced by Poisson regressions as follows.

* 2. poisson to solve (2)

poisson y g res, nolog

* 3. Evaluate Poisson TSRI

poisson y x res, nolog

Gamma TSRI

The code for the Gamma TSRI is identical to that for the linear TSRI except that the
linear regressions in steps 2 and 3 are replaced by Gamma regressions with log links as
follows.

* 2. gamma regression to solve (2)

glm y g res, fam(gamma) link(log)

* 3. Evaluate Gamma TSRI

glm y x res, fam(gamma) link(log)

Newey standard errors: R code

In this code we assume that the exposure, outcome, and instrumental variables are in a
data-frame named data and are called x, y, and g respectively.

The code starts by attaching the data-frame into the workspace and fitting the first stage
model to generate variables containing the predicted values (xb) and residuals (res). We
then create the DPi matrix.
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attach(data)

first <- lm(x ~ g)

xb <- fitted.values(first)

res <- residuals(first)

# DPi matrix

DPi <- diag(2)

DPi[,1] <- rev(as.matrix(coef(first)))

Linear TSRI

For the linear TSRI the code proceeds following the steps described for the Probit TSRI
in the Methods section replacing the Probit regressions in steps 2 and 3 with linear
regressions.

# 2. regression to solve (2)

step2 <- lm(y ~ g + res)

gamma <- t(rev(coef(step2)[-3]))

lambdahat <- coef(step2)[3]

J1inv <- vcov(step2)[-3,-3]

J1inv <- J1inv[c(2,1),c(2,1)]

# 3. evaluate linear TSRI

second <- lm(y ~ x + res)

y2new <- x*(lambdahat - coef(second)[2])

# 4. y2new*(lambda - beta) is regressed on z

four <- lm(y2new ~ g)

S2 <- vcov(four)

S2 <- S2[c(2,1),c(2,1)]

Omega <- J1inv + S2

finalv <- solve(t(DPi) %*% solve(Omega) %*% DPi)

finalv

finalb <- finalv %*% t(DPi) %*% solve(Omega) %*% t(gamma)

finalb

Logistic TSRI

The code for the logistic TSRI is identical to that for the linear TSRI except that the
linear regressions in steps 2 and 3 are replaced by logistic regressions as follows.

# 2. logistic regression to solve (2)

step2 <- glm(y ~ g + res, family=binomial(logit))

# 3. evaluate logistic TSRI

second <- glm(y ~ x + res, family=binomial(logit))

Poisson TSRI

The code for the Poisson TSRI is identical to that for the linear TSRI except that the
linear regressions in steps 2 and 3 are replaced by Poisson regressions as follows.
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# 2. Poisson regression to solve (2)

step2 <- glm(y ~ g + res, family=poisson(log))

# 3. evaluate Poisson TSRI

second <- glm(y ~ x + res, family=poisson(log))

Gamma TSRI

The code for the Gamma TSRI is identical to that for the linear TSRI except that the
linear regressions in steps 2 and 3 are replaced by Gamma regressions as follows. Also in
R we must replace the zero values in y with a small value (e.g. 0.0001) since all values
must be greater than zero.

# 2. Gamma regression to solve (2)

y[y==0] <- 1E-4

step2 <- glm(y ~ g + res, family=Gamma(log), control=list(maxit=1000))

# 3. evaluate Gamma TSRI

second <- glm(y ~ x + res, family=Gamma(log), control=list(maxit=1000))

Terza standard errors: Stata code

Terza (2016) provides Stata code for his method of estimating the standard error for TSRI
estimators. [38] When fitting these models we recommend centering the covariates about
their means in both stages of estimation.

Terza standard errors: R code

This code uses the linear TSRI estimator (calculating the standard error for the other
estimators proceeds similar but changes the second stage model).

# first stage

first <- lm(x ~ g)

expWalpha <- fitted.values(first) # xb

res <- residuals(first) # xuhat

alpha <- coef(first)

covalpha <- vcov(first)

# TSRI

second <- lm(y ~ x + res)

expXbeta <- fitted.values(second)

beta <- coef(second)

covbeta <- vcov(second)

bxu <- beta[3]

W <- cbind(1, g)

X <- cbind(1, x, res)

Xbeta <- X %*% beta

# Compute the asymptotic covariance matrix of

# the 2SRI estimate of beta.

A9



paJ <- -bxu * expXbeta * expWalpha * W

pbJ <- expXbeta * X

Bba <- t(pbJ) %*% paJ

Bbb <- t(pbJ) %*% pbJ

d22 <- solve(Bbb) %*% Bba %*% covalpha %*% t(Bba) %*% solve(Bbb) + covbeta

# Terza standard errors

ses <- sqrt(diag(d22))

# t-statistics

tstats <- beta / ses

# pvalues

pvalues <- 2 * pnorm(-1*abs(tstats))

# estimates with 95% CI limits

cbind(beta, beta - 1.96*ses, beta + 1.96*ses)

# alternative terza standard errors using robust first and second stage SEs

library(sandwich)

covalpha2 <- vcovHC(first, type="HC1")

covbeta2 <- vcovHC(second, type="HC1")

d222 <- solve(Bbb) %*% Bba %*% covalpha2 %*% t(Bba) %*% solve(Bbb) + covbeta2

ses2 <- sqrt(diag(d222))

cbind(beta, beta - 1.96*ses2, beta + 1.96*ses2)
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Web Appendix 3: Marginal parameter values for the logistic
TSPS and TSRI estimators

Using the notation in Equation 7 and as per the appendix of Palmer et al. (2008) we define
the marginal parameter value (β1m) estimated by the logistic TSPS and TSRI estimators,
and the direct logistic regression below. [17]

β1m = β1
1√

1 + c2V
, where c =

16
√

3

15π
. (A18)

Where σ2
1 denotes the variance of the residuals in the first stage regression, for the logistic

TSPS estimator V is given by,

V = (β1α2 + β2)
2 + β2

1σ
2
1. (A19)

For the logistic TSRI estimator V is given by,

V = (β1α2 + β2)
2 + β2

1σ
2
1 −

(α2(β1α2 + β2) + β1σ
2
1)2

α2
2 + σ2

1

. (A20)

For the direct logistic regression of Y on X we need, where pg is the minor allele frequency
of the genetic variant used as the single instrumental variable and β1c is the value of the
conditional effect for the other two estimators (i.e. set as 1 in these simulations),

Vg = 2pg(1− pg) (A21)

β1 = β1c +
α2β2

α2
1Vg + α2

2 + σ2
1

(A22)

V = (α1β1c)
2Vg + (β1cα2 + β2)

2 + β2
1cσ

2
1 −

(α2
1β1cVg + α2(β1cα2 + β2) + β1cσ

2
1)2

α2
1Vg + α2

2 + σ2
1

. (A23)

The values of β1m and β1c for the three estimators are shown in Figure 4. The marginal
TSRI estimate is much closer to the conditional value of 1 than the marginal TSPS
estimate.

A11



0
1

2
0

1
2

0 1 2 3 0 1 2 3

α2=0 α2=2 α2=4

α2=6 α2=8

Direct (C) Direct (M) TSPS (M) TSRI (M)

β 1

b2

Web Figure 4: Values of the marginal (M) and conditional (C) parameters of the direct
logistic regression of Y on X, logistic two-stage predictor substitution (TSPS), and logistic
two-stage residual inclusion (TSRI) estimators used in the simulations.

A12



Web Appendix 4: Additional simulation results
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Web Figure 5: Coverage of the logistic estimators for N = 1 000 with respect to the conditional parameter, β1 = 1 (BS: bootstrap; LSMM:
logistic structural mean model; GMM: generalized method of moments; SE: standard error; TSPS: two-stage predictor substitution; TSRI:
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Web Figure 6: Coverage of the logistic estimators for N = 1 000 with respect to the marginal parameter estimated by the TSRI estimator

(BS: bootstrap; LSMM: logistic structural mean model; GMM: generalized method of moments; SE: standard error; TSPS: two-stage predictor

substitution; TSRI: two-stage residual inclusion). The panels correspond to α2 being set to the following values A:0, B:2, C:4, D:6, and E:8.
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Web Figure 7: Type I error of the logistic estimators for N = 1 000 (BS: bootstrap; LSMM: logistic structural mean model; GMM:
generalized method of moments; SE: standard error; TSPS: two-stage predictor substitution; TSRI: two-stage residual inclusion). The
panels correspond to α2 being set to the following values A:0, B:2, C:4, D:6, and E:8.
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Web Figure 8: Coverage of the logistic estimators for N = 5 000 with respect to the
conditional parameter, β1 = 1 (BS: bootstrap; LSMM: logistic structural mean model;
GMM: generalized method of moments; SE: standard error; TSPS: two-stage predictor
substitution; TSRI: two-stage residual inclusion).
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Web Figure 9: Coverage of the logistic estimators for N = 5 000 with respect to the
marginal parameter estimated by the TSRI estimator (BS: bootstrap; LSMM: logistic
structural mean model; GMM: generalized method of moments; SE: standard error; TSPS:
two-stage predictor substitution; TSRI: two-stage residual inclusion).
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Web Figure 10: Type I error of the logistic estimators for N = 5 000 (BS: bootstrap;
LSMM: logistic structural mean model; GMM: generalized method of moments; SE: stan-
dard error; TSPS: two-stage predictor substitution; TSRI: two-stage residual inclusion).
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Web Figure 11: Coverage of the linear estimators for N = 1 000 (BS: bootstrap; SE:
standard error; TSLS: two-stage least squares; TSRI: two-stage residual inclusion). The
panels correspond to α2 being set to the following values A:0, B:2, C:4, D:6, and E:8.
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Web Figure 12: Type I error of the linear estimators for N = 1 000 (BS: bootstrap; SE:
standard error; TSLS: two-stage least squares; TSRI: two-stage residual inclusion). The
panels correspond to α2 being set to the following values A:0, B:2, C:4, D:6, and E:8.
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Web Figure 13: Coverage of the linear estimators for N = 5 000 (BS: bootstrap; SE:
standard error; TSLS: two-stage least squares; TSRI: two-stage residual inclusion).
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Web Figure 14: Type I error of the linear estimators for N = 5 000 (BS: bootstrap; SE:
standard error; TSLS: two-stage least squares; TSRI: two-stage residual inclusion).
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