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Abstract

Voting is applied to better estimate an optimal an-
swer to complex problems in many domains. We
recently presented a novel benefit of voting, that
has not been observed before: we can use the vot-
ing patterns to assess the performance of a team
and predict whether it will be successful or not in
problem-solving. Our prediction technique is com-
pletely domain independent, and it can be executed
at any time during problem solving. In this paper
we present a novel result about our technique: we
show that the prediction quality increases with the
size of the action space. We present a theoretical
explanation for such phenomenon, and experiments
in Computer Go with a variety of board sizes.

1 Introduction
Voting has been applied in many important domains, such as
machine learning [Polikar, 2012], crowdsourcing [Mao et al.,
2013; Bachrach et al., 2012], and even board games [Mar-
colino et al., 2014; Obata et al., 2011]. Voting provides the-
oretical guarantees, and it is an aggregation approach that is
very suited for wide applicability. However, a team of voting
agents will not always be successful in problem-solving. It is
very important, hence, to be able to assess quickly the perfor-
mance of teams, in order to be able to take actions to recover
the situation in time. Moreover, complex problems are gener-
ally characterized by a large action space, and hence methods
that work well in such situations are of particular interest.

Current works in the multi-agent system literature focus
on identifying faulty or erroneous behavior [Khalastchi et al.,
2014; Lindner and Agmon, 2014], or verifying correctness
[Doan et al., 2014]. Such approaches are able to identify if
a system is not correct, but provide no help if a correct sys-
tem of agents is failing to solve a complex problem. Other
works focus on team analysis. Raines et al. [2000] present a
method to automatically analyze the performance of a team.
The method, however, only works offline and needs domain
knowledge. Other methods for team analysis are heavily tai-
lored for robot-soccer [Ramos and Ayanegui, 2008].

Many works in robotics propose monitoring a team by
detecting differences in the internal state of the agents (or

disagreements), mostly caused by malfunction of the sen-
sors/actuators [Kalech and Kaminka, 2007; 2011]. In a sys-
tem of voting agents, however, disagreements are inherent
in the coordination process and do not necessarily mean that
an erroneous situation has occurred due to such malfunction.
Meanwhile, the works in social choice are mostly focused on
studying the guarantees of finding the optimal choice given a
noise model for the agents [Conitzer and Sandholm, 2005],
but provide no help in assessing the performance of a team.

We recently introduced a novel method to predict the fi-
nal performance (success or failure) of a team of voting
agents, without using any domain knowledge [Nagarajan et
al., 2015]. Our method can be applied in a great variety of
scenarios, and it can be quickly used online at any step of
problem-solving. This is fundamental in many applications.
For example, consider a problem being solved in a cluster of
computers. It is undesirable to allocate more resources than
necessary, but if we notice that a team is failing, we can in-
crease the allocation of resources. Or consider a team playing
together a game against an opponent (such as board games, or
poker). Different teams might play better against different op-
ponents. Hence, if we notice that a team is having issues, we
could dynamically change it. Under time constraints, how-
ever, such prediction must be executed quickly.

However, Nagarajan et al. [2015] only presented results
with a fixed action space. Hence, it was not clear how the pre-
diction quality would change for different problems. More-
over, Nagarajan et al. [2015] only considered a fixed thresh-
old for the classification, and the impact of using different
ones was never studied. Hence, in this paper we present:
(i) a novel theoretical study that shows that we can make
better predictions about the team performance in large ac-
tion spaces; (ii) extensive new experiments covering 4 dif-
ferent board sizes in Computer Go and 3 different teams; (iii)
new experimental evaluations using ROC curves that not only
show experimentally how the performance of our prediction
changes in larger action spaces, but also shows better (than
what was done in Nagarajan et al. [2015]) the difference in
prediction quality for diverse and uniform teams.

2 Related Work
Voting is a technique that can be applied in many differ-
ent domains, such as: crowdsourcing [Mao et al., 2013;
Bachrach et al., 2012], board games [Marcolino et al., 2013;



2014; Obata et al., 2011], machine learning [Polikar, 2012],
forecasting systems [Isa et al., 2010], etc. It is fundamental,
hence, to be able to assess the performance of a voting team.

Traditional methods of team assessment rely heavily on tai-
loring for specific domains. Raines et al. [2000] present a
method to build assistants for post-hoc, offline team analysis;
but domain knowledge is necessary for such assistants. Other
methods for team analysis are heavily tailored for robot-
soccer, such as Ramos and Ayanegui [2008], that present a
method to identify the tactical formation of soccer teams.

In the multi-agent systems community, we can see many
recent works that study how to identify agents that present
faulty behavior [Khalastchi et al., 2014; Lindner and Agmon,
2014]. Other works focus on verifying correct agent imple-
mentation [Doan et al., 2014] or monitoring the violation of
norms in an agent system [Bulling et al., 2013]. However, a
team can still have a poor performance and fail in solving a
problem, even when the individual agents are correctly im-
plemented and no agent presents faulty behavior.

Sometimes even correct agents might fail to solve a task,
especially embodied agents (robots) that could suffer sensing
or actuating problems. Kaminka and Tambe [1998] present
a method to detect clear failures in an agent team by social
comparison (i.e., each agent compares its state with its peers).
Such an approach is fundamentally different than our work,
as we are detecting a tendency towards failure for a team of
voting agents (caused, for example, by simple lack of ability,
or processing power, to solve the problem), not a clearly prob-
lematic situation that could be caused by imprecision/failure
of the sensors or actuators of an agent/robot. Later, Kalech
and Kaminka [2011] study the detection of failures by identi-
fying disagreement among the agents. In our case, however,
disagreements are inherent in the voting process. They are
easy to detect but they do not necessarily mean that a team
is immediately failing, or that an agent presents faulty behav-
ior/perception of the current state.

Finally, it has recently been shown that diverse teams of
voting agents are able to outperform uniform teams com-
posed of copies of the best agent [Marcolino et al., 2013;
2014; Jiang et al., 2014]. In Nagarajan et al. [2015] we pre-
sented an extra benefit of having diverse teams: we showed
that we can make better predictions of the final performance
for diverse teams than for uniform teams. In this paper we
study such claim more extensively in Computer Go experi-
ments than what was done before. Moreover, Marcolino et
al. [2014] showed that the performance of diverse teams in-
creases as the action space grows. Here we build on the model
of Marcolino et al. [2014] to show that the prediction quality
for such teams also increases with the action space.

3 Prediction Method
Before introducing our novel theoretical work, we start by
revisiting the prediction method proposed in Nagarajan et al.
[2015], in order for this paper to be fully comprehensible.

We consider scenarios where agents vote at every step (i.e.,
world state) of a complex problem, in order to take common
decisions at every step towards problem-solving. Formally,
let T be a set of agents ti, A be a set of actions aj and S be

a set of world states sk. The agents must vote for an action
at each world state, and the team takes the action decided by
the plurality voting rule, that picks the action that received
the highest number of votes (we assume ties are broken ran-
domly). The team obtains a final reward r upon completing
all world states. In this paper, we assume two possible final
rewards: “success” (1) or “failure” (0).

We define the prediction problem as follows: without us-
ing any knowledge of the domain, identify the final reward
that will be received by a team. This prediction must be exe-
cutable at any world state, allowing a system operator to take
remedial procedures in time.

We now explain our algorithm. The main idea is to learn
a prediction function, given the frequencies of agreements
of all possible agent subsets over the chosen actions. Let
P(T) = {T1,T2, . . .} be the power set of the set of agents,
ai be the action chosen in world state sj and Hj ⊆ T be the
subset of agents that agreed on ai in that world state.

Consider the feature vector ~x = (x1, x2, . . .) computed at
world state sj , where each dimension (feature) has a one-to-
one mapping with P(T). We define xi as the proportion of
times that the chosen action was agreed upon by the subset
of agents Ti. That is, xi =

∑|Sj|
k=1

I(Hk=Ti)
|Sj| , where I is the

indicator function and Sj ⊆ S is the set of world states from
s1 to the current world state sj .

Hence, given a set X̃ such that for each feature vector
~xt ∈ X̃ we have the associated reward rt, we can estimate
a function, f̂ , that returns an estimated reward between 0 and
1 given an input ~x. We classify estimated rewards above a
certain threshold as “success”, and below it as “failure”. In
order to learn the classification model, the features are com-
puted at the final world state.

We use classification by logistic regression, which models
f̂ as f̂(~x) = 1

1+e−(α+~βT~x)
, where α and ~β are parameters that

will be learned given X̃ and the associated rewards. While
training, we eliminate two of the features. The feature cor-
responding to the subset ∅ is dropped because an action is
chosen only if at least one of the agents voted for it. Also,
since the rest of the features sum up to 1, and are hence lin-
early dependent, we also drop the feature corresponding to all
agents agreeing on the chosen action.

We also study a variant of this prediction method, where we
use only information about the number of agents that agreed
upon the chosen action, but not which agents exactly were
involved in the agreement. For that variant, we consider a re-
duced feature vector ~y = (y1, y2, . . .), where we define yi to
be the proportion of times that the chosen action was agreed
upon by any subset of i agents:yi =

∑|Sj|
k=1

I(|Hk|=i)
|Sj| , where I

is the indicator function and Sj ⊆ S is the set of world states
from s1 to the current world state sj . We compare the two
approaches in Section 5.

4 Theory
4.1 Prediction Theory
We first present the main theoretical model of Nagarajan et
al. [2015], as we build over it to develop our new result in the
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Figure 1: Graphical model of the problem solving process
across a series of voting iterations.

next section. We consider agents voting across multiple world
states. We assume that all iterations equally influence the fi-
nal outcome, and that they are all independent. Let the final
reward of the team be defined by a random variable W , and
let the number of world states be S. We model the problem
solving process by the graphical model in Figure 1, where Hj

is the instance of a random variable that represents the subset
of agents that agreed on the chosen action at world state sj .

Of course a specific problem (for example, Go games
where the next state will depend on the action taken in the
current one) would call for more complex models to be com-
pletely represented. Our model is a simplification of the prob-
lem solving process, abstracting away the details of specific
problems for a greater generality.

For any subset H, let P (H) be the probability that the cho-
sen action was correct given the subset of agreeing agents.
P (H) depends on both the team and the world state. How-
ever, we marginalize the probabilities to produce a value that
is an average over all world states. We consider that, for a
team to be successful, there exists a unique δ such that:

S∏
j=1

P (Hj)


1/S

> δ (1)

We use the exponent 1/S in order to maintain a uniform
scale across all problems. Each problem may have a different
number of world states; and for one with many world states,
it is likely that the incurred product of probabilities is suffi-
ciently low to fail the above test, independent of the actual
subsets of agents that agreed upon the actions. However, the
final reward is not dependent on the number of world states.

We show, then, that we can use a linear classification model
(such as logistic regression) that is equivalent to Equation 1,
to predict the final reward of a team.

Theorem 1 Given the model in Equation 1, the final outcome
of a team can be predicted by a linear model.

Proof Getting the log in both sides of Equation 1, we have
S∑
j=1

1
S log(P (Hj)) > log(δ). The sum over the steps (world

states) of the problem-solving process can be transformed to
a sum over all possible subset of agents that can be encoun-
tered, P:

∑
H∈P

nH

S log(P (H)) > log(δ), where nH is the

number of times the subset of agreeing agents H was encoun-
tered during problem solving. Hence, nH

S is the frequency of
seeing the subset H, which we denote by fH.

Recall that T is the set of all agents. Hence, fT (which
is the frequency of all agents agreeing on the same action),
is equal to 1 −

∑
H∈P\{T} fH. Also, note that n∅ = 0,

since at least one agent must pick the chosen action. The
above equation can, hence, be rewritten as log(P (T)) +∑
H∈P\T

fH log
(
P (H)
P (T)

)
> log(δ). Hence, our final model

will be: ∑
H∈P\T

log

(
P (H)

P (T)

)
fH > log

(
δ

P (T)

)
(2)

Note that log( δ
P (T) ) and the “coefficients” log(P (H)

P (T) ) are
all constants with respect to a given team, as we have dis-
cussed earlier. Considering the set of all fH (for each possible
subset of agreeing agents H) to be the characteristic features
of a single problem, the coefficients can now be learned from
training data that contains many problems represented using
these features. Further, the outcome of a team can be esti-
mated through a linear model. �

4.2 Action Space Size
We present now our novel result concerning the quality of the
predictions over large action space sizes. In order to perform
such study, we assume the spreading tail (ST) agent model,
presented in Marcolino et al. [2014]. The basic assumption
is that the pdf of each member of the team has a non-zero
probability over an increasingly larger number of suboptimal
actions as the action space grows, while the probability of
voting for the optimal action remains unchanged. Let the size
of the action space |A| = %, and pi,j be the probability that
agent i votes for action with rank j. Marcolino et al. [2014]
shows that when % → ∞, the probability that a team of n ST
agents will play the optimal action converges to:

p̃best = 1−
n∏
i=1

(1−pi,0)−
n∑
i=1

(pi,0

n∏
j=1,j 6=i

(1−pj,0))
n− 1

n
, (3)

that is, the probability of two or more agents agreeing over
suboptimal actions converges to zero, and the agents can only
agree over the optimal choice (note that a suboptimal action
may still be taken when no agent agrees).

Before proceeding to our study, we are going to make a
few definitions and then two weak assumptions. We consider
now here any action space size. Let α be the probability of
a team taking the optimal action when all agents disagree.
Since we can only take the optimal action if one agent votes
for that action, α is a function of the probability of each agent
voting for the optimal action. That is, we may have situations
where all agents disagree and no agent voted for the optimal
action, or where all agents disagree, but there is one agent that
voted for the optimal action (and, hence, we may still take the
optimal action due to random tie braking).

Let β be the probability of a team taking the optimal action
when there is some agreement on the voting profile. β may
be different according to each voting profile, but we assume
that we always have that β < 1 if % < ∞, and β = 1 if



% → ∞, according to the ST agent model. That is, if two or
more agents agree, there is always some probability q > 0
that they are agreeing over a suboptimal action, and q → 0 as
%→∞.

We will make the following weak assumptions: (i) If there
is no agreement, the team is more likely to take a suboptimal
action than an optimal action. I.e., α < 1 − α; (ii) If there is
agreement, there is at least one voting profile where the team
is more likely to take an optimal action than a suboptimal
action. That is, there is at least one β such that β > 1− β.

Assumption (i) is weak, since α < 1/n (as we break ties
randomly and there may be cases where no agent votes for
the optimal action). Clearly 1/n < 1 − 1/n for n > 2.
Assumption (ii) is also weak, because if we are given a team
that is always more likely to take suboptimal actions than an
optimal action for any voting profile, then a trivial predictor
that always outputs “failure” would be optimal (and, hence,
we would not need a prediction at all).

Theorem 2 The quality of our prediction about the perfor-
mance of a set of ST agents T is the highest as %→∞.

Proof Let’s fix the problem to predicting performance at one
world state. Hence, as we consider a single decision, there
is a single Hi such that fHi = 1, and fHj = 0 ∀j 6= i. In
order to simplify the notation, we denote byH the subset Hi

corresponding to fHi = 1. We also consider the performance
of the team as “success” on that fixed world state if they take
the optimal action, and as “failure” otherwise.

Let a voting event be the process of querying the agents for
the vote, obtaining the voting profile and the corresponding
final decision. Hence, it has a unique correct label (“success”
or “failure”). A voting event ξ will be mapped to a point χ
in the feature space, according to the subset of agents that
agreed on the chosen action. Multiple voting events, how-
ever, will be mapped to the same point χ (as exactly the same
subset can agree in different situations). Hence, given a point
χ, there is a certain probability that the team was success-
ful, and a certain probability that the team failed. Therefore,
by assigning a label to that point, our predictor will also be
correct with a certain probability. With enough data, the pre-
dictor will output the most likely of the two events. That is,
if given a profile, the team has a probability p of taking the
optimal action, the probability of the prediction being correct
will be max(p, 1− p).

We first study the probability of making a correct predic-
tion across the whole feature space, for different action space
sizes, and after that we will focus on what happens with the
specific voting events as the action space changes.

Let us start by considering the case when % → ∞. By
Equation 3, we know that every time two or more agents
agree on the same action, that action will be the optimal one.
Note that this is a very clear division of the feature space, as
for every single point where |H| ≥ 2 the team will be suc-
cessful with probability 1. Therefore, on this subspace we
can make perfect predictions. The only points in the feature
space where a team may still take a suboptimal action are the
ones where a single agent agrees on the chosen action, i.e.,
|H| = 1. Hence, for such points we will make a correct pre-
diction with probability max(α, 1− α).

Let’s now consider cases with % < ∞. Let’s first consider
the subspace |H| ≥ 2. Before, our predictor was correct with
probability 1. Now, given a voting event where there is an
agreement, there will be a probability β < 1 of the team
taking the optimal action. Hence, the predictor will be correct
with probability max(β,1− β), but max(β, 1− β) < 1.

Let’s consider now the subspace |H| = 1. Here the qual-
ity of the prediction depends on α, which is a function of the
probability of each agent playing the best action. On the ST
agent model, however, the probability of one agent voting for
the best action is independent of % [Marcolino et al., 2014].
Hence, α does not depend on the action space size, and for
these cases the quality of our prediction will be the same as
before. Therefore, for all points in the feature space, the prob-
ability of making a correct prediction is either the same or
worse when % <∞ than when %→∞.

However, that does not complete the proof yet, because a
voting event ξ may map to a different point χ when the action
space changes. For instance, the number of agents that agree
over a suboptimal action may overpass the number of agents
that agree on the optimal action as the action spaces changes
from %→∞ to % <∞. Therefore, we need to show that our
prediction will be strictly better when % → ∞ irrespective
of such mapping. Hence, let us now study the voting events.
As the number of actions decrease, a certain voting event ξ
when % → ∞, will map to a voting event ξ′ when % < ∞.
Let χ and χ′ be the corresponding points in the feature space
for ξ and ξ′. Also, let H and H′ be the respective subset of
agreeing agents. Let’s consider now the four possible cases:

(i) |H| = |H′| = 1. For such events, the performance of
the predictor will remain the same, that is, for both cases we
will make a correct prediction with probability max(α, 1−α).
Note that this case will not happen for all events, as pi,0 6→ 0
when % → ∞, hence there will be at least one event where
|H| ≥ 2.

(ii) |H| ≥ 2, |H′| ≥ 2. For such events the performance of
the predictor will be higher when % → ∞, as we can make a
correct prediction for a point χ with probability 1, while for
a point χ′ with probability max(β, 1− β) < 1.

(iii) |H| ≥ 2, |H′| = 1. This case will not happen under
the ST agent model. If there was a certain subset H of agree-
ing agents when % → ∞, when we decrease the number of
actions the new subset of agreeing agents H′ will either have
the same size or will be larger. This follows from the fact
that we may have a larger subset agreeing over some subop-
timal action when the action space decreases, but the original
subset that voted for the optimal action will not change.

(iv) |H| = 1, |H′| ≥ 2. We know that in this case ξ′ is an
event where the team fails (otherwise the same subset would
also have agreed when %→∞). Hence, for 1−α > α (weak
assumption (i)), we make a correct prediction for such case
when %→∞. When % <∞, we make a correct prediction if
1 − β > β. β, however, depends on the voting profile of the
event ξ′. By weak assumption (ii), there will be at least one
event where the team is more likely to be correct than wrong
(that is, β > 1 − β). Hence, there will be at least one event
where our predictor changes from making a correct prediction
(when %→∞) to making an incorrect prediction.

Hence, for all voting events, the probability of making a



correct prediction will either be the same or worse when % <
∞ than when % → ∞, and there will be at least one voting
event where it will be worse, completing the proof. Hence,
% → ∞ is strictly the best case for our prediction. As we
assume that all world states are independent, if %→∞ is the
best case for a single world state, it will also be the best case
for a set of world states. �

5 Results
We test our prediction method in the Computer Go domain.
We use four different Go software: Fuego 1.1 [Enzenberger
et al., 2010], GnuGo 3.8 [Free Software Foundation, 2009],
Pachi 9.01 [Baudiš and Gailly, 2011], MoGo 4 [Gelly et
al., 2006], and two (weaker) variants of Fuego (Fuego∆ and
FuegoΘ), in a total of six different, publicly available, agents.
Fuego is the strongest agent among all of them [Marcolino et
al., 2013]. The description of Fuego∆ and FuegoΘ is avail-
able in Marcolino et al. [2014]. All the results we present here
are novel, and were not shown at Nagarajan et al. [2015].

We study three different teams: Diverse, composed of one
copy of each agent; Uniform, composed of six copies of the
original Fuego (initialized with different random seeds); In-
termediate, composed of six random parametrized versions of
Fuego (from Jiang et al. [2014]). In all teams, the agents vote
together, playing as white, in a series of Go games against
the original Fuego playing as black. We study four different
board sizes for diverse and uniform: 9x9, 13x13, 17x17 and
21x21. For intermediate, we study only 9x9, since the ran-
dom parametrizations of Fuego do not work on larger boards.
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Figure 2: Winning rates
of the three teams.

In order to evaluate our pre-
dictions, we use a dataset of
1000 games for each team and
board size combination (in a to-
tal of 9000 games). For all re-
sults, we used repeated random
sub-sampling validation. We
randomly assign 20% of the
games for the testing set (and
the rest for the training set),
keeping approximately the same
ratio as the original distribution. The whole process is re-
peated 100 times. Hence, in all graphs we show the average
results, and the error bars show the 99% confidence interval
(p = 0.01), according to a t-test. Moreover, when we say that
a certain result is significantly better than another, we mean
statistically significantly better, according to a t-test where
p < 0.01, unless we explicitly give a p value.

First, we show the winning rates of the teams in Figure 2, in
9x9 Go. Uniform is better than Diverse with statistical signif-
icance (p = 0.014), and both teams are clearly significantly
better than Intermediate (p < 2.2× 10−16).

In order to verify our online predictions, we used Fuego’s
evaluation, but we give it a time limit 50× longer. Since this
approximates a perfect evaluation of a board configuration,
we will refer to it as “Perfect”. We, then, use Perfect’s evalua-
tion of a given board state to estimate its probability of victory
(since the likelihood of victory changes dynamically during a
game), allowing a comparison with our approach. Consid-
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(d) Stage 20

Figure 3: ROC curves for the diverse (continuous line), inter-
mediate (dotted line), and uniform team (dashed line), over a
variety of board sizes.

ering that an evaluation above 0.5 is “success” and below is
“failure”, we compare our predictions with the ones given by
Perfect’s evaluation, at each turn of the games.

Since the games have different lengths, we divide all games
in 20 stages, and show the average evaluation of each stage.
Therefore, a stage is defined as a small set of turns (on av-
erage, 1.35 ± 0.32 turns in 9 × 9; 2.76 ± 0.53 in 13 × 13;
4.70±0.79 in 17×17; 7.85±0.87 in 21×21). For all games,
we also skip the first 4 moves, since our baseline (Perfect) re-
turns corrupted information in the beginning of the games.

We measure our results using receiver operating character-
istic (ROC) curves. ROC curves shows the true positive and
the false positive rates of a binary classifier at different thresh-
olds (that is, the value above which the output of our predic-
tion function f̂ will be considered “success”). We also study
the area under the ROC curve (AUC), as a way to synthesize
the quality information from the curve into a single number,
and compare the different situations. We start by showing the
ROC curves for all teams and board sizes in Figure 3.

In Figure 4 we can see the AUC results, with one graph
per team, in order to more clearly observe the effect of in-
creasing the size of the action space for each team (we do not
show intermediate here as it only works for 9x9 Go). For the
diverse team, we start observing the effect of increasing the
action space after stage 5, when the curves for 17 × 17 and
21 × 21 tend to dominate the other curves. In fact, the AUC
for 17× 17 is significantly better than smaller boards in 60%
of the stages, and in 80% of the stages after stage 5. More-
over, after stage 5 no smaller board is significantly better than
17 × 17. Concerning 21 × 21, we can see that from stage
14, its curve completely dominates all the other curves. In
all stages from 14 to 20 the result for 21× 21 is significantly
better than for all other smaller boards. Hence, we can note
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Figure 4: AUC for different teams and board sizes, by teams.

that the effect of increasing the action space seems to depend
on the stage of the game.

Concerning the uniform team, up to 17× 17 we cannot ob-
serve a positive impact of the action space size on the predic-
tion quality; but for 21 × 21 there is clearly an improvement
from the middle game when compared with smaller boards.
On all 8 stages from stage 13 to stage 20, the result for 21×21
is significantly better than for other board sizes. In terms of
percentage of stages where the result for 21 × 21 is signif-
icantly better than for 9 × 9, we find that it is 40% for the
uniform team, while it is 85% for the diverse team. Hence,
the impact of increasing the action space occurs for diverse
earlier in the game, and over a larger number of stages.

Now, in order to compare the performance for diverse and
uniform under different board sizes, we show the AUCs in
Figure 5 organized by the size of the board. It is interesting
to observe that the quality of the predictions for diverse is
better than for uniform, irrespective of the size of the action
space. Moreover, while for 9× 9 and 13× 13 the prediction
for diverse is only always significantly better than for uniform
after around stage 10, we can notice that for 17×17 and 21×
21, the prediction for diverse is always significantly better
than for uniform, irrespective of the stage (except for stage
1 in 17 × 17). In fact, we can also show that the difference
between the teams is greater on larger boards. In Figure 6 we
can see the difference between diverse and uniform, in terms
of area under the AUC graph, and also in terms of percentage
of stages where diverse is significantly better than uniform,
for 9×9 and 21×21. The difference between the areas in 9×9
and 21× 21 is statistically significant, with p = 0.0003337.

We also evaluate the accuracy (as it is more intuitively un-
derstandable) in the last stage, with a prediction threshold of
0.5. We obtain 71% for diverse in 9× 9, and 81% in 21× 21.
For uniform, we obtain 62% in 9× 9, and 75% in 21× 21.

We evaluate the reduced feature vector as well. The results
are similar to the ones using the full feature vector, but with
a much more scalable representation. In fact, in Figure 7 we
study the area under the AUC graphs of the full and reduced
representations. The reduced representation is actually sta-
tistically significantly better for all teams on the 9 × 9 and
13 × 13 boards. For diverse, however, the importance of the
full representation increases as the action space gets larger.
On 17× 17, the difference between the representations is not
statistically significant (p = 0.9156), while on 21×21 the full
representation is significantly better than the reduced one.
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Figure 5: AUC for different teams and board sizes, by board
sizes.

9x9 21x21
Board Size

A
re

a 
D

iff
er

en
ce

0.0

0.5

1.0

1.5

(a) By area

9x9 21x21
Board Size

%
 B

et
te

r

0.0

0.2

0.4

0.6

0.8

1.0

(b) By percentage of stages

Figure 6: Differences in prediction quality for the diverse and
uniform teams.
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Figure 7: Comparison of prediction quality with the full and
reduced representation.

6 Conclusion
We study the effect of increasing the action space size on the
team prediction technique shown in Nagarajan et al. [2015].
Our theory shows that the prediction quality increases in
larger action spaces, and the experimental results confirm
such phenomenon. Moreover, we present a detailed study on
the prediction quality for different kinds of teams, using ROC
curves to analyze different thresholds.
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