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Abstract. Recent work has shown that diverse teams can outperform a uniform
team made of copies of the best agent. However, there are fundamental questions
that were never asked before. When should we use diverse or uniform teams?
How does the performance change as the action space or the teams get larger?
Hence, we present a new model of diversity, where we prove that the performance
of a diverse team improves as the size of the action space increases. Moreover, we
show that the performance converges exponentially fast to the optimal one as we
increase the number of agents. We present synthetic experiments that give further
insights: even though a diverse team outperforms a uniform team when the size
of the action space increases, the uniform team will eventually again play better
than the diverse team for a large enough action space. We verify our predictions
in a system of Go playing agents, where a diverse team improves in performance
as the board size increases, and eventually overcomes a uniform team.1
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1 Introduction

Team formation is crucial when deploying a multi-agent system [16, 7, 12, 15]. Many
researchers emphasize the importance of diversity when forming teams [11, 10, 8, 14].
However, there are many important questions about diversity that were not asked before,
and are not explored in such models. LiCalzi and Surucu (2012) [11] and Hong and Page
(2004) [8] propose models where the agents know the utility of the solutions, and the
team converges to the best solution found by one of its members. In complex problems
the utility of solutions would not be available, and agents would have to resort to other
methods, such as voting, to take a common decision. Lamberson and Page (2012) [10]
study diversity in the context of forecasts, where the solutions are represented by real
numbers and the team takes the average of the opinion of its members. Domains where
the possible solutions are discrete, however, are not captured by such a model.

1 This paper is the full version of our AAAI’2014 paper “Give a Hard Problem to a Diverse
Team: Exploring Large Action Spaces”, containing: (i) The full proof of all theorems; (ii)
Additional details about the experiments and the experimental analysis; (iii) Extended related
work section and discussions.
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Marcolino, Jiang, and Tambe (2013) [14] study teams of agents that vote in discrete
solution spaces. They show that a diverse team of weaker agents can overcome a uni-
form team made of copies of the best agent. However, this does not always occur, and
they do not present ways to know when we should use diverse teams. Moreover, they
lack a formal study of how the performance of diverse teams change as the number of
agents and/or actions increases.

In this paper we shed new light on this problem, by presenting a new, more gen-
eral model of diversity for teams of voting agents. Our model captures, better than the
previous ones, the notion of a diverse team as a team of agents that tend to not agree
on the same actions, and allows us to make new predictions. Our main insight is based
on the notion of spreading tail (ST) and non-spreading tail (NST) agents. As we will
show, a team of ST agents has a diverse behavior, i.e., they tend to not agree on the
same actions. Hence, we can model a diverse team as a team of ST agents, and show
that the performance improves as the size of the action space gets larger. We also prove
upper and lower bounds on how fast different teams converge. The improvement can
be large enough to overcome a uniform team of NST agents, even if individually the
ST agents are weaker. As it is generally hard to find good solutions for problems with
a large number of actions, it is important to know which teams to use in order to tackle
such problems. Moreover, we show that the performance of a diverse team converges
to the optimal one exponentially fast as the team grows. Our synthetic experiments pro-
vide even further insights about our model: even though the diverse team overcomes
the uniform team in a large action space, the uniform team eventually will again play
better than the diverse team as the action space keeps increasing if the best agent does
not behave exactly like an NST agent.

Finally, we test our predictions by studying a system of voting agents, in the Go
domain. We show that a uniform team made of copies of the best agent plays better in
smaller boards, but is overcome by a diverse team as the board gets larger. We analyze
the agents and verify that weak agents have a behavior closer to ST agents, while the
best agent is closer to an NST agent. Therefore, we show that our predictions are verified
in a real system, and can effectively be used while forming a multi-agent team.

2 Related Work

This paper is mainly related to team formation, but we also find related work in social
choice and machine learning. We start by focusing on team formation research. Such
study goes beyond computer science, and several works can be found in the economics
literature. Hong and Page (2004) [8] is an impactful work showing the importance of
diversity when forming (human) teams. Even though recently some of the mathematical
arguments were put into question [19], it remains as a mile-stone on the study of the im-
portance of diversity, as many researchers were influenced by their work. For example,
LiCalzi and Surucu (2012) [11] present another model, that focuses on the importance
of diversity when teams solve problems in large action spaces. However, both Hong
and Page (2004) [8] and LiCalzi and Surucu (2012) [11] assume that the agents are
able to know the utility of the solutions, and hence the team can pick the best solution
found by one of its members. Therefore, their models do not apply for a team of vot-
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ing agents. Lamberson and Page (2012) [10] study diversity in the context of forecasts.
They assume that solutions are represented by real numbers, and a team converges to
the average of the opinion of its members. Hence, they do not capture domains with
discrete solutions, and the model also does not cover teams of voting agents.

In the multi-agent system literature, team formation is classically seen as selecting
the team with maximum expected utility for a task, based on a model of the capabilities
of each agent [16, 7]. However, in many domains we do not have such a model. The
study of “ad-hoc” teamwork deals with multi-agent teams with absence of information
[2, 1]. They focus, however, on how a new agent must decide its behavior in order to
cooperate with agents of unknown types, not on picking the best team.

Recently, Marcolino, Jiang, and Tambe (2013) [14] showed the importance of di-
versity when forming teams of voting agents. They show that it is possible for a diverse
team of weaker agents to overcome a uniform team of copies of the best agent, if the
weaker agents are able to play better than the best agent at some world states. This is
only a necessary condition, however, so it still does not provide ways to know when di-
verse or uniform teams should be used. Jiang et al. [9] propose a novel model to study
diverse teams, where the agents’ votes are modeled as two samples from distributions:
one that fixes the algorithm (or the biases) of the agent, and a second that models the
actual voting process. Moreover, they experimentally study the performance of different
voting rules in the Computer Go domain. However, the effects of changing the action
space size are not studied, neither theoretically nor experimentally.

Concerning social choice, this paper is related to the view of voting as a way to
discover an optimal choice (or ranking). Classical models study this view of voting
for teams of identical agents [13, 5]. However, more recent works are also consider-
ing agents with different probability distribution functions. Caragiannis, Procaccia, and
Shah (2013) [3] study which voting rules converge to the true ranking as the number
of agents goes to infinity. In Soufiani, Parkes and Xia (2012) [18] the problem of in-
ferring the true ranking is studied, assuming agents with different pdfs, but drawn from
the same family. However, even though recent works on social choice are not assuming
identical agents, they still do not provide a way to find the best teams of voting agents.

More related works can be found in machine learning. Ensemble systems are very
common in machine learning, where a strong classifier is built by combining multiple
weak classifiers, for example by voting [17]. Diversity is known to be important when
forming an ensemble, and some systems try to minimize the correlation between the
classifiers [4]. Still, an important problem is how to form the ensemble system, i.e.,
how to pick the classifiers that lead to the best predictions [6]. Our model, based on the
notion of spreading tail and non-spreading tail agents, allows us to make predictions
about teams as the action space and/or number of agents changes, and also compare
the rate of change of the performance of different teams. To the best of our knowledge,
there is no model similar to ours in the machine learning literature.

3 Model for Analysis of Diversity in Teams

Consider a problem defined by choosing an action a from a set of possible actions A.
Each a has an utility U(a), and our goal is to maximize the utility. We always list the
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actions in order from best to worst, therefore U(aj) > U(aj+1) ∀j (a0 is the best
action). In some tasks (like in Section 4), a series of actions are chosen across different
states, but here we focus on the decision process in a given state.

Consider a set of agents, voting to decide over actions. The agents do not know
the utility of the actions, and vote for the action they believe to be the best according
to their own decision procedure, characterized by a probability distribution (pdf). We
write as pi,j the probability of agent i voting for action aj . We denote by pi,j(m), when
we explicitly talk about pi,j for an action space of size m. If the pdf of one agent is
identical to the pdf of another agent, they will be referred to as copies of the same
agent. The action that wins by plurality voting is taken by the team. Ties are broken
randomly, except when we explicitly talk about a tie breaking rule. Let Dm be the set
of suboptimal actions (aj , j 6= 0) assigned with a nonzero probability in the pdf of an
agent i, and dm = |Dm|. We assume that there is a bound in the ratio of the suboptimal
action with highest probability and the one with lowest nonzero probability, i.e., let
pi,min = minj∈Dm pi,j and pi,max = maxj∈Dm pi,j ; there is a constant α such that
pi,max ≤ αpi,min ∀ agents i.

We define strength as the expected utility of an agent and/or a team. The probability
of a team playing the best action will be called pbest. We first consider a setting where
U(a0) � U(aj)∀j 6= 0, hence we can use pbest as our measure of performance. We
will later consider more general settings, where the first r actions have a high utility.

We define team formation as selecting from the space of all agents a limited number
of agents that has the maximum strength by voting together to decide on actions. We
study the effect of increasing the size m of the set of possible actions on the team
formation problem. Intuitively, the change in team performance as m increases will be
affected by how the pdf of the individual agents i change when m gets higher. As we
increase m, dm can increase or not change. Hence, we classify the agents as spreading
tail (ST) agents or non-spreading tail agents (NST).

We define ST agents as agents whose dm is non-decreasing on m and dm → ∞ as
m → ∞. We consider that there is a constant ε > 0, such that for all ST agents i, ∀m,
pi,0 ≥ ε. We assume that pi,0 does not change with m, although later we discuss what
happens when pi,0 changes.

We define NST agents as agents whose pdf does not change as the number of actions
m increases. Hence, let mi0 be the minimum number of actions necessary to define the
pdf of an NST agent i. We have that ∀m,m′ ≥ mi0, ∀j ≤ mi0 pi,j(m) = pi,j(m

′),
∀j > mi0 pi,j(m) = 0.

We first give an intuitive description of the concept of diversity, then define formally
diverse teams. By diversity, we mean agents that tend to disagree. In Marcolino, Jiang,
and Tambe (2013) [14], a diverse team is defined as a set of agents with different pdfs.
Hence, they disagree because of having different probabilities of playing certain actions.
Here, we generalize their definition to capture cases where agents disagree on actions,
regardless of whether their pdfs are the same or not. Formally, we define a diverse
team to be one consisting of a set of ST agents (either different ST agents or copies of
the same ST agent). In our theoretical development we will show that this definition
captures the notion of diversity: a team of ST agents will tend to not agree on the same
suboptimal actions. We call uniform team as the team composed by copies of an NST
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agent. This is an idealization to perform our initial analysis. We will later discuss more
complex domains, where the agents of the uniform team also behave like ST agents.

We start with an example, to give an intuition about our model. Consider the agents
in Table 1(a), where we show the pdf of the agents, and pbest of the uniform team (three
copies of agent 1) and the diverse team (one copy of each agent). We assume agent
1 is an NST agent, while agent 2 and 3 are ST agents. In this situation the uniform
team plays better than the diverse team. Now let’s add one more action to the problem.
Because agent 2 and 3 are ST agents, the probability mass on action 2 scatters to the
newly added action (Table 1(b)). Hence, while before the ST agents would always agree
on the same suboptimal action if they both did not vote for the optimal action, now they
might vote for different suboptimal actions, creating a tie between each suboptimal
action and the optimal one. Because ties are broken randomly, when this happens there
will be a 1/3 chance that the tie will be broken in favor of the optimal action. Hence,
pbest increases when the probability of the ST agents agreeing on the same suboptimal
actions decreases, and the diverse team now plays better than the uniform team, even
though individually agents 2 and 3 are weaker than agent 1.

Table 1: Performance of diverse team increases when the number of actions increases.
(a) With 2 actions, uniform team
plays better than diverse team.

Agents Action 1 Action 2
Agent 1 0.6 0.4
Agent 2 0.55 0.45
Agent 3 0.55 0.45

Uniform pbest: 0.648
Diverse pbest: 0.599

(b) When we add one more action, diverse
team plays better than uniform team.

Agents Action 1 Action 2 Action 3
Agent 1 0.6 0.4 0
Agent 2 0.55 0.25 0.2
Agent 3 0.55 0.15 0.3

Uniform pbest: 0.648
Diverse pbest: 0.657

We now present our theoretical work. First we show that the performance of a di-
verse team converges when m→∞, to a value that is higher than the performance for
any other m.

Theorem 1. pbest(m) of a diverse team of n agents converges to a certain value p̃best
as m→∞. Furthermore, p̃best ≥ pbest(m), ∀m.

Proof. Let pi,min = minj∈Dm pi,j , pi,max = maxj∈Dm pi,j and T be the set of agents
in the team. By our assumptions, there is a constant α such that pi,max ≤ αpi,min for
all agents i. Then, we have that 1 ≥ 1 − pi,0 =

∑
j∈Dm

pi,j ≥ dmpi,min. Therefore,
pi,min ≤ 1

dm
→ 0 as dm tends to∞ with m. Similarly, αpi,min → 0 as dm → ∞. As

pi,j ≤ αpi,min we have that ∀j pi,j → 0 as dm → ∞. We show that this implies that
whenm→∞, weak agents never agree on the same suboptimal action. Let i1 and i2 be
two arbitrary agents. Without loss of generality, assume i2’s dm (d(i2)m ) is greater than or
equal i1’s dm (d(i1)m ). The probability (σi1,i2 ) of i1 and i2 agreeing on the same subopti-
mal action is upper bounded by σi1,i2 =

∑
aj∈A\a0 pi1,jpi2,j ≤ d

(i2)
m pi1,maxpi2,max ≤
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d
(i2)
m αpi2,minpi1,max ≤ αpi1,max (as d(i2)m pi2,min ≤ 1). We have that αpi1,max → 0 as
pi1,max → 0, because α is a constant. Hence the probability of any two agents agreeing

on a suboptimal action is
∑

i1∈T
∑

i2∈T,i2 6=i1
σi1,i2

2 ≤ n(n−1)
2 maxi1,i2 σi1,i2 → 0, as n

is a constant.
Hence, when m → ∞, the diverse team only chooses a suboptimal action if all

agents vote for a different suboptimal action or in a tie between the optimal action and
suboptimal actions (because ties are broken randomly). Therefore, pbest converges to:

p̃best = 1−
n∏
i=1

(1− pi,0)−
n∑
i=1

(pi,0

n∏
j=1,j 6=i

(1− pj,0))
n− 1

n
, (1)

that is, the total probability minus the cases where the best action is not chosen: the
second term covers the case where all agents vote for a suboptimal action and the third
term covers the case where one agent votes for the optimal action and all other agents
vote for suboptimal actions.

Whenm is finite, the agents might choose a suboptimal action by agreeing over that
suboptimal action. Therefore, we have that pbest(m) ≤ p̃best ∀m. �

Let puniformbest (m) be pbest of the uniform team, with m actions. A uniform team
is not affected by increasing m, as the pdf of an NST agent will not change. Hence,
puniformbest (m) is the same, ∀m. If p̃best is high enough so that p̃best ≥ puniformbest (m),
the diverse team will overcome the uniform team, whenm→∞. Therefore, the diverse
team will be better than the uniform team when m is large enough.

In practice, a uniform team made of copies of the best agent might not behave
exactly like a team of NST agents, as the best agent could also increase its dm asm gets
larger. We discuss this situation in Section 4. In order to perform that study, we derive
in the following corollary how fast pbest converges to p̃best, as a function of dm.

Corollary 1. pbest(m) of a diverse team increases to p̃best in the order of O
(

1
dmin
m

)
and Ω

(
1

dmax
m

)
, where dmaxm is the highest and dminm the lowest dm of the team.

Proof. We assume here the notation that was used in the previous proof. First we show
a lowerbound on pbest(m). We have that pbest(m) = 1−ψ1, where ψ1 is the probability
of the team picking a suboptimal action. ψ1 = ψ2 + ψ3, where ψ2 is the probability of
no agent agreeing and the team picks a suboptimal action and ψ3 is the probability of at
least two agents agreeing and the team picks a suboptimal action. Hence, pbest(m) =
1 − ψ2 − ψ3 = p̃best − ψ3 ≥ p̃best − ψ4, where ψ4 is the probability of at least
two agents agreeing. Let σmax = maxi1,i2 σi1,i2 , and i∗1 and i∗2 are the agents whose
σi∗1 ,i∗2 = σmax. We have that:

pbest(m) ≥ p̃best − n(n−1)
2 σmax ≥ p̃best − n(n−1)

2 d
(i∗2)
m pi∗1 ,maxpi∗2 ,max

≥ p̃best − n(n−1)
2 d

(i∗2)
m αpi∗1 ,minαpi∗2 ,min ≥ p̃best −

n(n−1)
2 α2 1

d
(i∗1)
m

,

where the last inequality holds since pi,min ≤ 1
dm

. Hence, pbest(m) ≥ p̃best−n(n−1)2 α2 1
dmin
m
 

p̃best − pbest(m) ≤ O
(

1
dmin
m

)
.
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Now we show an upper bound: pbest(m) = p̃best − ψ3 ≤ p̃best − ψ5, where ψ5

is the probability of at least two agents agreeing and no agents vote for the optimal
action. Let σmin = mini1,i2 σi1,i2 ; i∗1 and i∗2 are the agents whose σi∗1 ,i∗2 = σmin;

and pmax,0 = maxi∈T pi,0. Without loss of generality, we assume that d(i
∗
2)

m ≥ d
(i∗1)
m .

Therefore:

pbest(m) ≤ p̃best − n(n−1)
2 σmin(1− pmax,0)n−2

≤ p̃best − n(n−1)
2 d

(i∗1)
m pi∗1 ,minpi∗2 ,min(1− pmax,0)

n−2

≤ p̃best − n(n−1)
2 d

(i∗1)
m

pi∗1 ,maxpi∗2 ,max

α2 (1− pmax,0)n−2

≤ p̃best − n(n−1)
2 α−2 1

d
i∗2
m

(1− pmax,0)n−2

≤ p̃best − n(n−1)
2 α−2 1

dmax
m

(1− pmax,0)n−2

 p̃best − pbest(m) ≥ Ω
(

1

dmaxm

)
.�

Hence, agents that change their dm faster will converge faster to p̃best. This is an
important result when we consider later more complex scenarios where the dm of the
agents of the uniform team also change.

Note that p̃best depends on the number of agents n (Equation 1). Now we show that
the diverse team tends to always play the optimal action, as n→∞.

Theorem 2. p̃best converges to 1, as n→∞. Furthermore, 1− p̃best converges expo-
nentially to 0, that is, ∃ constant c, such that 1− p̃best ≤ c(1− ε

2 )
n, ∀n ≥ 2

ε . However,
the performance of the uniform team improves as n → ∞ only if ps,0 = maxj ps,j ,
where s is the best agent.

Proof. By the previous proof, we know that when m → ∞ the diverse team plays the
optimal action with probability given by p̃best. We show that 1 − p̃best → 0 exponen-
tially as n → ∞ (this naturally induces p̃best → 1). We first compute an upper bound
for
∑n
i=1(pi,0

∏n
j=1,j 6=i(1− pj,0)):

∑n
i=1 pi,0

∏n
j=1,j 6=i(1− pj,0) ≤

∑n
i=1 pi,0(1− pmin,0)n−1 ≤ npmax,0(1− pmin,0)n−1

≤ n(1− ε)n−1 for pmax,0 = max
i
pi,0, pmin,0 = min

j
pj,0

Since
∏n
i=1(1−pi,0) ≤ (1−ε)n, thus we have that 1−p̃best ≤ (1−ε)n+n(1−ε)n−1.

So we only need to prove that there exists a constant c such that (1−ε)n+n(1−ε)n−1 ≤
c(1− ε

2 )
n, as follows:

(1−ε)n+1+(n+1)(1−ε)n
(1−ε)n+n(1−ε)n−1 = (1− ε) 1−ε+n+1

1−ε+n = 1− ε+ 1−ε
1−ε+n

≤ 1− 1
2ε, if n ≥ 2

ε (by setting 1−ε
1−ε+n ≤

ε
2 ).

Hence, ∃c, such that (1− ε)n + n(1− ε)n−1 ≤ c(1− ε
2 )
n when n ≥ 2

ε . Therefore,
the performance converges exponentially.
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For the uniform team, the probability of playing the action that has the highest
probability in the pdf of the best agent converges to 1 as n → ∞ [13]. Therefore, the
performance only increases as n → ∞ if the optimal action is the one that has the
highest probability. �

Now we show that we can achieve further improvement in a diverse team by break-
ing ties in favor of the strongest agent.

Theorem 3. When m→∞, breaking ties in favor of the strongest agent is the optimal
tie-breaking rule for a diverse team.

Proof. Let s be one of the agents. If we break ties in favor of s, the probability of voting
for the optimal choice will be given by:

p̃best = 1−
n∏
i=1

(1− pi,0)− (1− ps,0)(
n∑

i=1,i6=s

pi,0

n∏
j=1,j 6=i,j 6=s

(1− pj,0)) (2)

It is clear that Equation 2 is maximized by choosing agent s with the highest ps,0.
However, we still have to show that it is better to break ties in favor of the strongest
agent than breaking ties randomly. That is, we have to show that Equation 2 is always
higher than Equation 1.

Equation 2 differs from Equation 1 only on the last term. Therefore, we have to
show that the last term of Equation 2 is smaller than the last term of Equation 1. Let’s
begin by rewriting the last term of Equation 1 as:
n−1
n

∑n
i=1 pi,0

∏n
j=1,j 6=i(1− pj,0) =

n−1
n (1− ps,0)

∑n
i=1,i6=s pi,0

∏n
j=1,j 6=i,j 6=s(1− pj,0) +

n−1
n ps,0

∏n
j=1,j 6=s(1− pj,0)

This implies that:
n−1
n

∑n
i=1 pi,0

∏n
j=1,j 6=i(1− pj,0) ≥

n−1
n (1− ps,0)

∑n
i=1,i6=s pi,0

∏n
j=1,j 6=i,j 6=s(1− pj,0).

We know that:

(1− ps,0)
∑n
i=1,i6=s pi,0

∏n
j=1,j 6=i,j 6=s(1− pj,0) =

n−1
n (1− ps,0)

∑n
i=1,i6=s pi,0

∏n
j=1,j 6=i,j 6=s(1− pj,0)+

1
n (1− ps,0)

∑n
i=1,i6=s pi,0

∏n
j=1,j 6=i,j 6=s(1− pj,0)

Therefore, for the last term of Equation 2 to be smaller than the last term of Equation
1 we have to show that:

n−1
n ps,0

∏n
j=1,j 6=s(1− pj,0) ≥

1
n (1− ps,0)

∑n
i=1,i6=s pi,0

∏n
j=1,j 6=s,j 6=i(1− pj,0)

It follows that the previous equation will be true if:

ps,0 ≥ (1− ps,0)
∑n

i=1,i 6=s pi,0
∏n

j=1,j 6=i,j 6=s(1−pj,0)
(n−1)

∏n
j=1,j 6=s(1−pj,0)

ps,0 ≥ (1− ps,0) 1
n−1

∑n
i=1,i6=s

pi,0
(1−pi,0)

ps,0
(1−ps,0) ≥

∑n
i=1,i 6=s

pi,0
(1−pi,0)

n−1
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As s is the strongest agent the previous inequality is always true. This is because
ps,0

1−ps,0 =

∑n
i=1,i 6=s

ps,0
(1−ps,0)

n−1 and ps,0
1−ps,0 ≥

pi,0
(1−pi,0)∀i 6= s. Therefore, it is always better

to break ties in favor of the strongest agent than breaking ties randomly. �

Next we show that with one additional assumption, not only the diverse team con-
verges to p̃best, but also pbest monotonically increases with m. Our additional assump-
tion is that higher utility actions have higher probabilities, i.e., if U(aj) ≥ U(aj′), then
pi,j ≥ pi,j′ .

Theorem 4. The performance of a diverse team monotonically increases with m, if
U(aj) ≥ U(aj′) implies that pi,j ≥ pi,j′ .

Proof. Let an event be one voting iteration, where each agent from a set votes for an
action. We denote by P (V) the probability of occurrence of any event in V (hence,
P (V) =

∑
v∈V p(v)). We call it a winning event if in the event the action chosen

by plurality is the best action a0 (including ties). We assume that for all agents i, if
U(aj) ≥ U(aj′), then pi,j ≥ pi,j′ .

We show by mathematical induction that we can divide the probability of multiple
suboptimal actions into a new action and pbest(m+1) ≥ pbest(m). Let λ be the number
of actions whose probability is being divided. The base case holds trivially when λ = 0.
That is, there is a new action, but all agents have a 0 probability of voting for that
new action. In this case we have that pbest does not change, therefore pbest(m + 1) ≥
pbest(m).

Now assume that we divided the probability of λ actions and it is true that pbest(m+
1) ≥ pbest(m). We show that it is also true for λ+1. Hence, let’s pick one more action
to divide the probability. Without loss of generality, assume it is action adm , for agent
c, and its probability is being divided into action adm+1. Therefore, p′c,dm = pc,dm − β
and p′c,dm+1 = pc,dm+1 + β, for 0 ≤ β ≤ pc,dm . Let pafterbest (m+ 1) be the probability
of voting for the best action after this new division, and pbeforebest (m+ 1) the probability
before this new division. We show that pafterbest (m+ 1) ≥ pbeforebest (m+ 1).

Let Γ be the set of all events where all agents voted, except for agent c (the order
does not matter, so we can consider agent c is the last one to post its vote). If γ ∈ Γ will
be a winning event no matter if agent c votes for adm or adm+1, then changing agent
c’s pdf will not affect the probability of these winning events. Hence, let Γ′ ⊂ Γ be the
set of all events that will become a winning event depending if agent c does not vote
for adm or adm+1. Given that γ ∈ Γ′ already happened, the probability of winning or
losing is equal to the probability of agent c not voting for adm or adm+1.

Now let’s divide Γ′ in two exclusive subsets: Γdm+1 ⊂ Γ′, where for each γ ∈
Γdm+1 action adm+1 is in tie with action a0, so if agent c does not vote for adm+1,
γ will be a winning event; Γdm ⊂ Γ′, where for each γ ∈ Γdm action adm is in tie
with action a0, so if agent c does not votes for adm , γ will be a winning event. We do
not consider events where both adm+1 and adm are in tie with a0, as in that case the
probability of a winning event does not change (it is given by 1 − p′c,dm − p

′
c,dm+1 =

1− pc,dm − pc,dm+1).
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Note that for each γ ∈ Γdm+1, the probability of a winning event equals 1 −
p′c,dm+1. Therefore, after changing the pdf of agent c, for each γ ∈ Γdm+1, the proba-
bility of a wining event decreases by β. Similarly, for each γ ∈ Γdm , the probability of
a winning event equals 1− p′c,dm . Therefore, after changing the pdf of agent c, for each
γ ∈ Γdm , the probability of a winning event increases by β.

Therefore, pafterbest (m+ 1) ≥ pbeforebest (m+ 1) if and only if P (Γdm) ≥ P (Γdm+1).
Note that ∀γ ∈ Γdm+1 there are more agents that voted for adm+1 than for adm . Also,
∀γ ∈ Γdm there are more agents that voted for adm than for adm+1. If, for all agents
i, pi,dm ≥ pi,dm+1, we have that P (Γdm) ≥ P (Γdm+1). Therefore, pafterbest (m + 1) ≥
pbeforebest (m+1), so we still have that pbest(m+1) ≥ pbest(m). Also note that in order for
the next step of the induction to still be valid, so that we can still divide the probability
of one more action, it is necessary that p′c,dm ≥ p

′
c,dm+1. �

In the previous theorems we focused on the probability of playing the best action,
assuming that U(a0) � U(aj) ∀j 6= 0. We show now that the theorems still hold in
more general domains where r actions (Ar ⊂ A) have a significant high utility, i.e.,
U(aj1)� U(aj2) ∀j1 < r, j2 ≥ r. Hence, we now focus on the probability of playing
any action in Ar. We assume that our assumptions are also generalized, i.e., pi,j > ε
∀j < r, and the number dm of suboptimal actions (aj , j ≥ r) in the Dm set increases
with m for ST agents.

Theorem 5. The previous theorems generalize to settings where U(aj1) � U(aj2)
∀j1 < r, j2 ≥ r.

Proof Sketch We give here a proof sketch. We just have to generate new pdfs p′i,j ,
such that p′i0 =

∑r−1
j=0 pi,j , and p′i,b = pi,b+r−1,∀b 6= 0. We can then reapply the proofs

of the previous theorems, but replacing pi,j by p′i,j . Note that this does not guarantee
that all agents will tend to agree on the same action in Ar; but the team will still tend to
pick any action in Ar, since the agents are more likely to agree on actions in Ar than
on actions in A \Ar. �

Now we discuss a different generalization: what happens when pi,0 decreases as
m increases (∀ agents i). If pi,0 → p̃i,0 as m → ∞, the performance in the limit for a
diverse team will be p̃best evaluated at p̃i,0. Moreover, even if pi,0 → 0, our conclusions
about relative team performance are not affected as long as we are comparing two ST
teams that have similar pi,0: the same argument as in Corollary 1 implies that the team
with faster growing dm will perform better.

4 Experimental Analysis

4.1 Synthetic Experiments

We present synthetic experiments, in order to better understand what happens in real
systems. We generate agents by randomly creating pdfs and calculate the probability
of playing the best action (pbest) of the generated teams. We use a uniform distribution
to generate all random numbers. When creating a pdf, we rescale the values assigned
randomly, so that the overall sum of the pdf is equal to 1.
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Fig. 1: Comparing diverse and uniform when uniform also increases dm.

As we said earlier, uniform teams composed by NST agents is an idealization. In
more complex domains, the best agent will not behave exactly like an NST agent; the
number of suboptimal actions with a non-zero probability (dm) will also increase as the
action space gets larger. We perform synthetic experiments to study this situation. We
consider that the best agent is still closer to an NST agent, therefore it increases its dm
at a slower rate than the agents of the diverse team.

In our first experiment, we use teams of 4 agents. For each agent of the diverse team,
pi,0 is chosen randomly between 0.6 and 0.7. The remaining is distributed randomly
from 10% to 20% of the next best actions (the number of actions that will receive a
positive probability is also decided randomly). For the uniform team, we make copies
of the best agent (with highest pi,0) of the diverse team, but distribute the remaining
probability randomly from 1% to 3% of the next best actions.

We can see the average result for 200 random teams in Figure 1, where in Figure
1(a) we show the difference between the performance in the limit (p̃best) and the actual
pbest(m) for the diverse and the uniform teams; in Figure 1(b) we show the average
pbest(m) of the teams. As can be seen, when the best agents increase their dm at a
slower rate than the agents of the diverse team, the uniform teams converge slower
to p̃best. Even though they play better than the diverse teams for a small m, they are
surpassed by the diverse teams as m increases. However, because p̃best of the uniform
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Fig. 2: pbest of a diverse
team as the number of
agents increases.

teams is actually higher than the one of the diverse teams,
eventually the performance of the uniform teams get closer
to the performance of the diverse teams, and will be better
than the one of the diverse teams again for a large enough
m.

This situation is expected according to Theorem 1. If
the dm of the best agent also increases as m gets larger,
the uniform team will actually behave like a diverse team
and also converge to p̃best. p̃

uniform
best ≥ p̃diversebest , as the

best agent has a higher probability of playing the optimal
action. Hence, in the limit the uniform team will play bet-
ter than the diverse team. However, as we saw in Corollary
1, the speed of convergence is in the order of 1/dm. There-
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fore, the diverse team will converge faster, and can overcome the uniform team for
moderately large m.

As Theorem 2 only holds when m → ∞, we also explore the effect of increasing
the number of agents for a large m. The p̃best of a team of agents is shown as the
dashed line in Figure 2. We are plotting for agents that have a probability of playing the
best action of only 0.1, but as we can see the probability quickly grows as the number of
agents increases. We also calculate pbest for random teams from 2 to 6 agents (shown as
the continuous line), when there are 300 available actions. Each agent has a probability
of playing the best action of 0.1, and the remaining probability is randomly distributed
over the 10% next best actions. As can be seen, the teams have a close performance to
the expected. We only show up to 6 agents because it is too computationally expensive
to calculate the pdfs of larger teams.

4.2 Computer Go

We present now results in a real system. We use in our experiments 4 different Go soft-
ware: Fuego 1.1, GnuGo 3.8, Pachi 9.01, MoGo 4, and two (weaker) variants of Fuego
(Fuego∆ and FuegoΘ), in a total of 6 different, publicly available, agents. Fuego is con-
sidered the strongest agent among all of them. Fuego is an implementation of the UCT
Monte Carlo Go algorithm, therefore it uses heuristics to simulate games in order to
evaluate board configurations. Fuego uses mainly 5 heuristics during these simulations,
and they are executed in a hierarchical order. The original Fuego agent follows the order
<Atari Capture, Atari Defend, Lowlib, Pattern> (the heuristic called Nakade is not en-
abled by default). Our variation called Fuego∆ follows the order <Atari Defend, Atari
Capture, Pattern, Nakade, Lowlib>, while FuegoΘ follows the order <Atari Defend,
Nakade, Pattern, Atari Capture, Lowlib>. Also, Fuego∆ and FuegoΘ have half of the
memory available when compared with the original Fuego.

All our results are obtained by playing either 1000 games (to evaluate individ-
ual agents) or 2000 games (to evaluate teams), in a HP dl165 with dual dodeca core,
2.33GHz processors and 48GB of RAM. We compare results obtained by playing against
a fixed opponent. Therefore, we evaluate systems playing as white, against the original
Fuego playing as black. We removed all databases and specific board size knowledge
of the agents, including the opponent. We call Diverse as the team composed of all 6
agents, and Uniform as the team composed of 6 copies of Fuego. Each agent is initial-
ized with a different random seed, therefore they will not vote for the same action all
the time in a given world state, due to the characteristics of the search algorithms. In all
the graphs we present in this section, the error bars show the confidence interval, with
99% of confidence (p = 0.01).

We evaluate the performance of the teams over 7 different board sizes. We changed
the time settings of individual agents as we increased the board size, in order to keep
their strength as constant as possible. The average winning rates of the team members
is shown in Table 2, while Table 3 show the winning rates of the individual agents. 2

2 In our first experiment, Diverse improved from 56.1% on 9x9 to 85.9% on 19x19. We noted,
however, that some of the diverse agents were getting stronger in relation to the opponent as
the board size increased. Hence, by changing the time setting to keep the strength constant, we
are actually making our claims harder to show, not easier.
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Table 2: Average winning rates of the team members across different board sizes. Note
that these are not the winning rates of the teams.

Team 9x9 11x11 13x13 15x15 17x17 19x19 21x21
Diverse 32.2% 30.8% 29.6% 29.4% 31.5% 31.9% 30.3%
Uniform 48.1% 48.6% 46.1% 48.0% 49.3% 46.9% 46.6%

Table 3: Winning rates of each one of the agents across different board sizes.
Agent 9x9 11x11 13x13 15x15 17x17 19x19 21x21
Fuego 48.1% 48.6% 46.1% 48.0% 49.3% 46.9% 46.6%
GnuGo 1.1% 1.1% 1.9% 1.9% 4.5% 6.8% 6.1%
Pachi 25.7% 22.9% 25.8% 26.9% 23.5% 20.8% 11.0%
MoGo 27.6% 26.4% 22.7% 22.0% 27.1% 30.1% 27.1%

Fuego∆ 45.7% 45.8% 42.2% 40.4% 43.0% 44.5% 47.4%
FuegoΘ 45.5% 40.2% 39.2% 37.6% 41.8% 42.3% 43.6%

We can see our results in Figure 4 (a). Diverse improves from 58.1% on 9x9 to
72.1% on 21x21, an increase in winning rate that is statistically significant with p <
2.2 × 10−16. This result is expected according to Theorem 1. Uniform changes from
61.0% to 65.8%, a statistically significant improvement with p = 0.0018. As we saw
before, an increase in the performance of Uniform can also be expected, as the best
agent might not be a perfect NST agent. A linear regression of the results of both teams
gives a slope of 0.010 for the diverse team (adjusted R2: 0.808, p = 0.0036) and 0.005
for the uniform team (adjusted R2: 0.5695, p = 0.0305). Therefore, the diverse team
improves its winning rate faster than the uniform team. To check if this is a signifi-
cant difference, we evaluate the interaction term in a linear regression with multiple
variables. We find that the influence of board size is higher on Diverse than on Uni-
form with p = 0.0797 (estimated coefficient of “size of the board × group type”:
−10.321, adjusted R2: 0.7437). Moreover, on the 9x9 board Diverse is worse than Uni-
form (p = 0.0663), while on the 21x21 board Diverse is better with high statistical
significance (p = 1.941 × 10−5). We also analyze the performance of the teams sub-
tracted by the average strength of their members (Figure 4 (b)), in order to calculate
the increase in winning rate achieved by “teamwork” and compensate fluctuations on
the winning rate of the agents as we change the board size. Again, the diverse team
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Fig. 3: Winning rates for 4
and 6 agents teams.

improves faster than the uniform team. A linear regres-
sion results in a slope of 0.0104 for Diverse (adjusted
R2: 0.5549, p = 0.0546) and 0.0043 for Uniform (ad-
justed R2: 0.1283, p = 0.258).

We also evaluate the performance of teams of 4
agents (Diverse 4 and Uniform 4). For Diverse 4, we
removed Fuego∆ and FuegoΘ from the Diverse team.
As can be seen in Figure 3, the impact of adding more
agents is higher for the diverse team in a larger board
size (21x21). In the 9x9 board, the difference between
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Fig. 4: Winning rate in the real Computer Go system.

Diverse 4 and Diverse 6 is only 4.4%; while in 21x21 it is 14%. Moreover, we can see
a higher impact of adding agents for the diverse team, than for the uniform team. These
results would be expected according to Theorem 2.

As can be seen, the predictions of our theory holds: the diverse team improves
significantly as we increase the action space. The improvement is enough to make it
change from playing worse than the uniform team on 9x9 to playing better than the
uniform team with statistical significance on the 21x21 board. Furthermore, we show a
higher impact of adding more agents when the size of the board is larger.

4.3 Analysis

To test the assumptions of our model, we estimate a pdf for each one of the agents. For
each board size, and for each one of 1000 games from our experiments, we randomly
choose a board state between the first and the last movement. We make Fuego evaluate
the chosen board, but with a time limit 50x higher than the default one. Therefore, we
use this much stronger version of Fuego to approximate the true ranking of all actions.
For each board size, we run all agents in each board sample and check in which position
of the approximated true ranking they play. This allow us to build a histogram for each
agent and board size combination. Some examples can be seen in Figure 5. We can see
that a strong agent, like Fuego, has most of its probability mass on the higher ranked
actions, while weaker agents, like GnuGo, has the mass of its pdf distributed over a
larger set of actions, creating a larger tail. Moreover, the probability mass of GnuGo is
spread over a larger number of actions when we increase the size of the board.

We study how the pdfs of the agents change as we increase the action space. Our
hypothesis is that weaker agents will have a behavior closer to ST agents, while stronger
agents to NST agents. In Figure 6 (a) we show how many actions receive a probability
higher than 0. As can be seen, Fuego does not behave exactly like an NST agent. How-
ever, it does have a slower growth rate than the other agents. A linear regression gives
the following slopes: 13.08, 19.82, 19.05, 15.82, 15.69, 16.03 for Fuego, Gnugo, Pachi,
Mogo, Fuego∆ and FuegoΘ, respectively (R2: 0.95, 0.98, 0.94, 0.98, 0.98, 0.98, re-
spectively). It is clear, therefore, that the probability mass of weak agents is distributed
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into bigger sets of actions as we increase the action space, and even though the strongest
agent does not behave in the idealized way it does have a slower growth rate.

We also verify how the probability of playing the best action changes for each one
of the agents as the number of actions increases. Figure 6 (b) shows that even though
all agents experience a decrease in pi,0, it does not decrease much. From 9x9, all the
way to 21x21, we measure the following decrease: 20%, 23%, 39%, 26%, 28%, 22%,
for Fuego, Gnugo, Pachi, Mogo, Fuego∆ and FuegoΘ, respectively. Hence, on average,
they decreased about 25% from 9x9 to 21x21. Even though our assumption about pi,0
does not hold perfectly, the predictions of our model are still verified. Therefore, the
amount of decrease experienced is not enough to avoid that the diverse team increases
in performance as the action space grows.
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Fig. 6: Verifying the assumptions in the real system.

5 Conclusion and Discussions

Diversity is an important point to consider when forming teams. In this paper we present
a new model that captures better than previous ones the intuitive notion of diverse agents
as agents that tend to disagree. This model allows us to make new predictions. We show
that the performance of diverse teams increases as the size of the action space gets
larger. Uniform teams may also increase in performance, but at a slower pace than
diverse teams. Therefore, even though a diverse team may start playing worse than
a uniform team, it can eventually outperform the uniform team as the action space
increases. Besides, we show that in large action spaces the performance of a diverse
team converges exponentially fast to the optimal one as the number of agents increases.

We start our model with the notion of spreading tail (ST) and non-spreading tail
(NST) agents. ST agents are agents that have a non-zero probability over a larger set of
actions as the action space increases, while NST agents always have a constant number
of actions with non-zero probability. We define a diverse team as a team of ST agents,
and a uniform team as a team of NST agents. Therefore, our focus changes from model-
ing diverse teams as teams with different agents (as in models such as Marcolino, Jiang
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and Tambe (2013) [14]), to focusing on diverse teams as teams where the agents tend to
disagree. This change allows us to make new predictions that were not possible before.

Note that our model does not say that an NST agent will never vote for a new action.
We define the pdfs of the agents by the rankings of the actions. Hence, when the number
of actions increases from a certain number x0 to a new number x1, a new action a∗may
be the action with highest utility. Therefore, an agent will have the same probability of
voting for a∗ that it had for voting for the previously best action when the number of
actions was only x0. A uniform team made of copies of the best agent also does not
mean that the agents always vote for the same actions. The vote of each agent is a
sample from a pdf, so copies of a single agent may or may not vote for the same action.
In fact, we observe an increase in performance by voting among multiple copies of a
single agent, both theoretically and experimentally.

The division of agents into two types (ST and NST) is, however, only an idealization,
that allows us to isolate and study in detail the effect of diversity. A very strong agent
will normally have most of its probability mass on the actions with the highest utility, so
in the extreme its pdf would never change by adding new actions. In reality, however,
it may also consider a larger set of actions as the action space grows. Therefore, we
relax our model, and introduce the hypothesis that the best agent spreads the tail of
its pdf at a slower pace than weaker agents. We show that because of this effect, a
diverse team increases in performance faster than uniform teams, and we illustrate this
phenomenon with synthetic experiments. Hence, even in a relaxed model where both
diverse and uniform teams are composed of ST agents, a diverse team still outperforms
a uniform team as the action space grows. The effect, however, is transient, as a uniform
team may still have a higher convergence point than a diverse team, so in extreme large
action spaces it would again outperform the diverse team. If the agents have the same
probability of playing the best action, however, then it is clear that in the limit the
diverse team will always be better than the uniform team.

Our model needs one strong assumption: that the probability of the individual agents
voting for the best action does not change as the action space increases. This assumption
allows our analysis to be cleaner, although it may not hold perfectly in a real system. In
fact, in our Computer Go experiments we did observe a decrease in the probability of
the agents voting for the best action. However, even though the assumption did not hold
perfectly, the predictions of our theory holds: a diverse team significantly increased in
performance as the action space got larger. Clearly, a decrease in the probability of the
individual agents voting for the best action will decrease the performance of a team,
while the effects studied in this paper will increase the performance. Therefore, as long
as the decrease is not large enough to counter-balance the effect under study, we are still
going to observe an increase in performance as the action space gets larger. Moreover,
as we discuss in our generalizations, the argument that teams that spread the tail faster
converge faster is still valid when the assumption does not hold; hence if the agents are
equally strong (i.e., the individual agents have the same probability of voting for the
best action) the team with faster growing tail will always perform better.

As mentioned, we verified our theory in a real system of Computer Go playing
agents. Not only a real diverse team of agents effectively increased in performance as
the board size increased, but we also verified that the strongest agent indeed spreads the
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tail of its pdf at a slower rate than other weaker agents. We also verified that both diverse
and uniform teams increase in performance, but the diverse team increased two times
faster. This is explained by the relaxed version of our model, when we predict diverse
teams to converge faster than uniform teams, as illustrated by our synthetic experiments.
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