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Abstract. Design imposes a novel social choice problem: using a team of voting
agents, maximize the number of optimal solutions; allowing a user to then take
an aesthetical choice. In an open system of design agents, team formation is
fundamental. We present the first model of agent teams for design. For maximum
applicability, we envision agents that are queried for a single opinion, and multiple
solutions are obtained by multiple iterations. We show that diverse teams composed
of agents with different preferences maximize the number of optimal solutions,
while uniform teams composed of multiple copies of the best agent are in general
suboptimal. Our experiments study the model in bounded time; and we also study
a real system, where agents vote to design buildings.
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1 Introduction

Teams of voting agents are a powerful tool for finding the optimal solution in many
applications [16, 17, 19]. Voting is a popular approach since it is easily parallelizable, it
allows the re-use of existing agents, and there are theoretical guarantees for finding one
optimal choice [2]. For design problems, however, finding one optimal solution is not
enough. For example, it could be mathematically optimal under measurable metrics but
lack aesthetic qualities or social acceptance by the target public. Besides, the solution
could have a poor performance in some key objective of a multi-objective optimization
problem. Essentially, designers need to explore a large set of optimal alternatives, to pick
one solution not only according to her aesthetic taste (and/or the one of the target public),
but also according to preferences that may be unknown or not formalized [25, 7].

Hence, we actually need systems that find as many optimal solutions as possible,
allowing a human to explore such optimal alternatives to make a choice. Even if a user
does not want to consider too many solutions, they can be filtered and clustered [5],
and be presented in manageable ways [21], allowing her to easily make an informed
choice. Therefore, a system of voting agents that produces a unique optimal solution is
insufficient, and we propose the novel social choice problem of maximizing the number
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of optimal alternatives found by a voting system. As ranked voting may suffer from noisy
rankings when using existing agents [11], we study multiple plurality voting iterations,
allowing great applicability and re-use of existing agents.

Traditionally, social choice studies the optimality of voting rules, assuming a certain
noise models for the agents, and rankings composed of a linear order over alternatives [2,
1]. Hence, there is a single optimal choice, and a system is successful if it can return that
optimal choice with high probability. More recently, several works have been considering
cases where there is a partial order over alternatives [26, 20], or where the agents output
pairwise comparisons instead of rankings [4]. However, these works still focus on finding
an optimal alternative, or a fixed-sized set of optimal alternatives (where the size is known
beforehand). Therefore, they still provide no help in finding the maximum set of optimal
solutions. Moreover, they assume agents that are able to output comparisons among all
actions with fairly good precision, and the use of multiple voting iterations has never
been studied. When considering agents with different preferences, the field is focused on
verifying if voting rules satisfy a set of axioms that are considered to be important to
achieve fairness [18]. Meanwhile, the computational design literature has not yet found
the potential of teams of voting agents. They study traditional optimization techniques
[28], or swarms of agents that interact on the geometric space to emerge aesthetically
complex shapes [22, 23].

In this work we bring together the social choice and computational design fields. We
present a theoretical study of which kinds of teams are desirable for design problems,
and how their size may effect optimality. In doing so, we show many novel results for
the study of multi-agent systems. Instead of studying agents with different preferences
in order to verify fairness axioms, we show here that agents with different preferences
are actually fundamental when voting to find a “truth” (i.e., optimal decisions). On the
other hand, agents with the same set of preferences significantly harm the performance,
and in general the number of optimal solutions decreases as the size of the team grows.
Such results were never seen before in the social choice literature. Our theoretical
development draws a novel connection between social choice and number theory, instead
of the traditional connections with bayesian probability theory. This novel connection
allows us to show that the optimal diverse team size is constant with high probability,
and a prime number of optimal actions may impose problems. We also show that we can
maximize the number of optimal solutions with agents with different preferences as the
team size grows, as long as the team size grows carefully. Moreover, we simulate design
agents in synthetic experiments to further study our model, confirming the predictions
of our theory and providing realistic insights into what happens when systems run
with bounded computational time. Finally, we present experiments in a highly relevant
domain: architectural design, where we show teams of real design agents that vote to
choose the best qualifying and energy-efficient design solutions for buildings.

2 Related Work

Voting systems have been extensively used for many different applications [16, 17,
19]. Mostly because, under some assumptions, they provide optimality guarantees for
finding an optimal choice [2]. For many real problems, however, finding one optimal
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solution is not enough, and we actually want to find the maximum number of optimal
solutions. However, most of the social choice literature is about finding a correct ranking
in domains where there is a linear order over the alternatives, and hence a unique optimal
decision [2, 1]. Recent works, however, are considering more complex domains. Xia
and Conitzer (2011) [26] study the problem of finding k optimal solutions, where k is
known beforehand, by aggregating rankings from each agent. However, not only do they
need strong assumptions about the quality of the rankings of such agents, but they also
show that calculating the maximum likelihood estimation (MLE) from the rankings is
an NP-hard problem. Procaccia et al. (2012) [20] study a similar perspective, where the
objective is to find the top k options given rankings from each agent, where, again, k
is known in advance. However, in their case, they assume there still exists one unique
truly optimal choice, hidden among these top k alternatives. Elkind and Shah (2014) [4],
motivated by the crowdsourcing domain, study the case where instead of rankings, the
voters output pairwise comparisons among all actions, which may not follow transitivity.
However, their final objective is still to pick a single winner, not to maximize the set of
optimal solutions found by a voting system. Finally, outputting a full comparison among
all actions can be a burden for an agent [12]. Jiang et al. (2014) [11] show that actual
agents can have very noisy rankings, and therefore do not follow the assumptions of
previous works in social choice. Hence, as any agent is able to output at least one action
(i.e., a single vote), we study here systems where agents vote across multiple iterations.

Concerning distributed optimization, our work is related to the study of distributed
genetic algorithms [13]. Our experimental section relates to the “island model”, where
populations evolve concurrently. Normally, however, the populations interact by trans-
ferring offsprings, not by voting, and a theoretical study of voting teams which must
maximize the number of optimal solutions was never performed. Additionally, the use
of multiple classifiers has been a very successful technique in machine learning, in the
study of ensemble systems [19]. None of these works, however, explore the potential of
multiple agents in maximizing the set of optimal solutions for design problems.

In computational design, automated methods that can provide a high number of
optimal alternatives are highly desirable, as it is hard for the human designers to manually
find optimal solutions, and they need a large solution pool in order to pick one that fits
their aesthetic/subjective evaluation and/or to make a complex trade-off among different
objectives that cannot be formalized into a single function [6, 24]. One common method
for generating alternatives is to use genetic algorithms [27]. Other optimization methods
have also been explored [28]. Another line of work in computational design uses a swarm
of agents that move and interact in the geometric space, while depositing material, and
hence emerging complex geometrical shapes [22, 23]. Although such works are able
to design and create intricate geometries, they are not yet using these agent teams to
optimize the designs, let alone finding a maximum number of optimal solutions.

3 Design Domains

We consider in this work domains where the objective is to find the highest number
of optimal solutions. We show that design is one of such domains. One of the most
common computational design approaches is to use parametric designs [8, 5], where
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a human designer creates an initial design of a product using computer-aided design
tools. However, instead of manually deciding all aspects of the product, she leaves free
parameters, whose values can be modified to change the design of the product. It is up
to the designer to decide which parameters are going to be available, their valid types
and their valid range.
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Fig. 1: A parametric design of a building,
showing two parameters: X1 and Y 1.

This approach is used because design
is an inherently complex problem. Al-
though a human is able to test and evalu-
ate a few solutions looking for optimality,
the number of different possibilities that
she can manually create is highly limited,
especially under the (common) hard time-
constraints. In Figure 1, we show a simple
example in the context of architectural de-
sign, where the parameters X1 and Y 1
are being used to specify the position of
the lower left corner of the building relative to the site boundary.

The design of a product normally occurs over multiple phases, where increasing
levels of details are decided and optimized. Our work is focused on the initial design
phase, when multiple possible design alternatives are analyzed in order to choose one
for further study and optimization. This initial design phase is, however, very important
to the final performance of a product [21]. For example, in the context of architectural
design (as how we explore later in our experiments), it has been acknowledged that
it has a high impact on the overall building performance [3]. Design problems are in
general multi-objective, since a product normally must be optimized across different
objectives. For example, a product should have a low cost, but at the same time high
quality. Hence, there are a large number of optimal solutions, all tied in a Pareto frontier.
For the computational system, these optimal solutions are all equivalent. However, a
human may have unknown preferences, may dynamically decide to value some objective
over another when handling intricate trade-offs, and/or may choose the option that most
pleases her own aesthetic taste or the one of the target public/client.

Note that choosing a design according to aesthetics is an undefined problem, since
there are no formal definitions to compare among different options. Hence, the best
that a system can do is to provide a human with a large number of optimal solutions
(according to other measurable factors), allowing her to freely decide among equally
optimal solutions — but most probably with different aesthetic qualities. Therefore, it is
natural that in design problems we are going to have many possible solutions, and we
want to find as many optimal ones as possible. In fact, the exploration of a large space of
possible alternatives is essential in design, as recently shown by other researchers [25,
14, 7]. There are many benefits in discovering a large number of optimal solutions:

Knowledge “Does not Hurt”: We argue that having more optimal solutions to
choose from is not worse than having less. Although some works in psychology show
that humans may get frustrated in the face of too many options, especially under time
pressure [9, 10], we argue that if a designer has enough time or motivation to analyze
only x solutions, she can do so with a system that provides more than x optimal solutions
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by sampling the exact amount that she desires. However, she will never be able to do so
with a system that provides less than x optimal solutions. Note also that the works in
psychology [9, 10] were taken in the context of consumers deciding among products to
purchase, not in the context of design exploration. As mentioned before, in design the
necessity of large exploration spaces is recognized [25, 14, 7]. Moreover, as we discuss
in detail later, voting systems could be combined with another system that identify and
eliminate solutions that are similar by applying clustering and analysis techniques, and
that presents the optimal alternatives to a human in a manageable way [5, 21].

Knowledge Increases Confidence in Optimality: In general design problems, the
true Pareto frontier is unknown. Genetic algorithms are widely used in order to estimate it.
The only knowledge available for the system to evaluate the optimality is in comparison
with the other solutions that are also being evaluated during the optimization process [6].
Many apparently “optimal” solutions are actually discovered to be sub-optimal as we
find more solutions. Hence, finding a higher number of optimal solutions decreases the
risk of a designer picking a wrong choice that was initially outputted as “optimal” by a
system (for example, the single agents, as we will show later).

Knowledge Increases Aesthetic Qualities: If a human has a larger set of optimal
solutions to choose from, there is a greater likelihood that at least one of these solutions
is going to be of high aesthetic quality according to her preferences, or the ones of the
target public [7].

Knowledge Increases Diversity of Options: In general, when a system x has more
optimal solutions available than a system y, it does not necessarily imply that the
solutions in the system x are more similar, while the optimal solutions in y are more
different/diverse. In fact, all things equal (i.e., the algorithms are equally able to find
unique solutions), the greater the amount of optimal solutions, the higher the likelihood
that we have more diverse solutions available. Of course we could have some algorithm x
that produces many optimal solutions by creating small variations of one unique solution,
but here we do not consider these potentially misleading systems. Again, we assume that
such solutions could be identified and filtered by another system [5, 21].

4 Agent Teams for Design Problems

We consider here a team of agents that vote together at each decision point of the design
of a product. For the sake of clarity and precision, we present in this section an idealized
model. In Section 4.1 we generalize our model to more complex situations, and in
Section 5 we generalize further by performing synthetic experiments. Let Φ be a set of
agents φ, andΩ a set of world states ω. Each ω has an associated set of possible actions
Aω. For example, each world state may represent a parameter of a parametric design
problem, and each action may represent a possible value for such parameter. At each
world state, each agent φ outputs an action a, an optimal action according to the agent’s
imperfect evaluation – which may or may not be a truly optimal action. Hence, there
is a probability pj that the agent outputs a certain action aj . The teams take the action
decided by plurality voting (i.e, the team takes the decision voted by the largest number
of agents – we consider ties are broken uniformly at random).
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We assume first that the world states are independent, and by taking an optimal
action at all world states we find an optimal solution for the entire problem. That is, we
assume first that by taking locally optimal decisions at each design decision point, a
globally optimal solution is obtained. We generalize this assumption later, in Proposition
8 (in Section 4.1), where we consider design problems with correlated parameters.

In this paper our objective goes beyond finding one optimal solution, we want to
maximize the number of optimal solutions that we can find. For greater applicability, we
consider here agents that output a single action. Hence, we generate multiple solutions
by re-applying the voting procedure across all world states multiple times (which are
called voting iterations – one iteration goes across all world states, forming one solution).
Formally, let S be the set of (unique) optimal solutions that we find by re-applying the
voting procedure through z iterations. Our objective is to maximize |S|. We will show
that, under some conditions, we can achieve that when z →∞.

We consider that at each world state ω there is a subset Goodω ⊂ Aω of optimal
actions in ω. An optimal solution is going to be composed by assigning any a ∈ Goodω
in world state ω – for all world states. Conversely, we consider the complementary subset
Badω ⊂ Aω, such that Goodω ∪Badω = Aω,Goodω ∩Badω = ∅. We drop the
subscripts ω when it is clear that we are referring to a certain world state.

One fundamental problem is selecting which agents should form a team. By the
classical voting theories, one would expect the best teams to be uniform teams composed
of multiple copies of the best agent [2, 15]. Here we show, however, that for design
problems uniform teams need very strong assumptions to be optimal, and in most cases
they actually converge to always outputting a single solution – an undesirable outcome.
However, diverse teams are optimal as long as the team size grows carefully, as we
explain later in Theorem 1.

We call a team optimal when: (i) |S| →
∏
ω |Goodω| as z →∞, and (ii) all optimal

solutions are chosen by the team with the same probability 1/
∏
ω |Goodω|. Otherwise,

even though the team still produces all optimal solutions, it would tend to repeat already
generated solutions whose probability is higher. Since in practice there are time bounds,
such condition is fundamental to have as many optimal solutions as possible in limited
time. Also note that condition (ii) subsumes condition (i), but we keep both for clarity.

We first consider agents whose pdfs are independent and identically distributed. Let
pGoodj be the probability of voting for aj ∈ Good, and pBadk be the probability of voting
for ak ∈ Bad. Let n := |Φ| be the size of the team, and Nl be the number of agents
that vote for al in a certain voting iteration. If ∀aj ∈ Good, ak ∈ Bad, pGoodj > pBadk ,
the team is going to find one optimal solution with probability 1 as n→∞:

Observation 1 The probability of a team outputting one optimal solution goes to 1 as
n→∞, if pGoodj > pBadk , ∀aj ∈ Good, ak ∈ Bad.

Note that as the agents are independent and identically distributed, we can model the
process of pooling the opinions of n agents as a multinomial distribution with n trials
(and the probability of any class k of the multinomial corresponds to the probability pk
of voting for an action ak). Hence, for each action al, the expected number of votes is
given by E[Nl] = n × pl. Therefore, by the law of large numbers, if pGoodj > pBadk

∀aj ∈ Good, ak ∈ Bad, we have that Nj > Nk. Hence, the team will pick an action
aj ∈ Good, in all world states, if n is large enough (i.e., n→∞).
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However, with a team made of copies of the same agent, the system is likely to lose
the ability to generate new solutions as n increases. If, for each ω, we have an action
aωm such that pGoodm > pGoodj ∀aωm 6= aωj , the team converges to picking only action aωm.
Hence, |S| = 1, which is a very negative result for design problems. Therefore, contrary
to traditional social choice, here it is not the case that increasing the team size always
improves performance. We formalize this notion in Proposition 1 below, where we also
show the conditions for a uniform team to be optimal. Let pGood :=

∑
j p

Good
j be the

probability of picking any action in Good. We re-write the probability of an action
aGoodj as: pGoodj := pGood

|Good| + λj , where
∑
j λj := 0. Hence, some λj are positive, and

some are negative (unless they are all equal to 0). Let λ+ be the set of λj > 0. Let λHigh

be the maximum possible value for λj ∈ λ+, such that the relation pGoodj > pBadk ,
∀aj ∈ Good, ak ∈ Bad is preserved. We show that when z →∞, |S| is the highest as
maxλ+ → 0, and the lowest (i.e., one) as minλ+ → λHigh. Note that maxλ+ → 0
represents the situation where the probability is equally divided among all optimal
actions, and minλ+ → λHigh represents the case where one optimal action receives a
high probability in comparison with the other optimal actions.

Proposition 1. The maximum value for |S| is
∏
ω |Goodω|. When z, n → ∞, as

maxλ+ → 0, |S| →
∏
ω |Goodω|. Conversely, as minλ+ → λHigh, |S| → 1.

Proof. As maxλ+ → 0, λj → 0, ∀aj . Hence, E[Nj ] → n × pGood

|Good| , ∀aj ∈ Good.
Because ties are broken randomly, at each world state ω, each aj ∈ Goodω is selected
by the team with equal probability 1

|Goodω| . As E[Nj ] = E[Nk] ∀aj , ak ∈ Good, we
have that at each ω it is possible to choose |Goodω| different actions. Hence, there
are
∏
ω |Goodω| possible combinations of solutions. At each voting iteration, ties are

broken at each ω randomly, and one possible combination is generated. As z → ∞,
eventually we cover all possible combinations, and |S| →

∏
ω |Goodω|.

Conversely, as minλ+ → λHigh, E[Nj ] → n × pGoodj for one fixed aj such that
pGoodj > pGoodk ,∀aj 6= ak ∈ Good. Consequently, E[Nj ] > E[Nk], at each ω. Hence,
there is no tie in any world state, and the team picks a fixed aωj at each world state.
Therefore, even if z →∞, |S| → 1. Note that we do not say here that the same action
is picked across world states (as aωj may differ for each ω), but that the same optimal
solution is picked for all voting iterations. �

Therefore, uniform teams need a very strong assumption to satisfy condition (i): the
probability of voting for optimal actions must be uniformly distributed over all optimal
actions (i.e., maxλ+ → 0). If maxλ+ → 0, condition (ii) is also satisfied as n grows,
because of Observation 1 (i.e., the probability of outputting a suboptimal solution goes
to 0) and because of the fact that all actions are equally likely to be chosen; hence each
solution is chosen with equal probability 1/

∏
ω |Goodω|.

We show that, alternatively, we can use agents with different “preferences” (i.e.,
“diverse” agents), to maximize |S|. We consider here agents that have about the same
ability in problem-solving, but they prefer different optimal actions. As the agents have
similar ability, we consider here the probabilities to be the same across agents, except for
the actions in Good, as each agent φi has a subset Goodi ⊂ Good consisting of its
preferred actions (which are more likely to be chosen than other actions). We denote by
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pij the probability of agent φi voting for action aj . Hence, we define the pdf of the diverse
agents as: ∀aj ∈ Goodi, let pGoodi :=

∑
j pij , pij :=

pGoodi

|Goodi| ; ∀aj ∈ Good\Good
i,

pij :=
pGood−pGoodi

|Good\Goodi| ; and ∀ak /∈ Goodi, aj ∈ Goodi, pij > pik. Goodi ∩Goodl

(of agents φi and φl) is not necessarily ∅. The pdfs are strictly defined in this section for
the sake of clarity and precision, but in the next section and in our synthetic experiments
we generalize further. In Figure 2 we show an illustrative example.
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Fig. 2: Illustrative example of the probability distribution functions of two diverse agents.

Let’s consider we can draw diverse agents from a distribution F . Each agent φi has
r < |Good| actions in itsGoodi, and we assume that all actions inGood are equally
likely to be selected to form Goodi (since they are all equally optimal). Note that r
is the same for all agents (as, again, we assume they have the same pdfs, but different
preferences), and that we also cover the case where each agent prefers a single action
(which would be r := 1). We show that by drawing n agents from F , the team is optimal
for large n with probability 1, as long as n is a multiple of a divisor (> 1) of each
|Goodω|. We also show that the minimum necessary optimal team size is constant with
high probability as the number of world states grow. We start with the following:

Proposition 2. If a team of size n is optimal at a world state, then gcd(n, |Good|) > 1.
That is, n and |Good| are not co-prime.

Proof (by contradiction). By the optimality requirement (ii), each action must be in the
Goodi set of the same number of agents. Otherwise, if an action ai is preferred by a
larger number of agents than another action aj , the team would pick ai with a larger
probability than aj . Hence, we must have that:

n× r = k × |Good|, (1)

where k is a constant ∈ N>0. k represents the number of agents that have a given action
aj in its Goodi. Note that it must be the same for all optimal actions, and therefore
we have a single constant. If n and |Good| are co-prime, then it must be the case that
r is divisible by |Good|. However, this yields r ≥ |Good|, which contradicts our
assumption. Therefore, n and |Good| are not co-prime. �

We illustrate Equation 1 with an example in Figure 3. In the figure we show 6 agents
(n := 6), with 2 preferred actions each (r := 2). Note that each action is preferred by
4 agents, and hence we show a case where k := 4. As an example, we mark with a
dashed circle one of the actions, a2. In such case, the team will have an equal probability
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Fig. 3: Illustrative example of Equation 1. Each action is in the list of preferences of 4
agents (k := 4). As an example, we mark with a dashed circle one of the actions, a2.

of picking all optimal actions, and optimality condition (ii) would be satisfied if the
probability of picking suboptimal actions is 0. If, for example, we now change agent 5 to
prefer actions a2 and a3 (replacing action a1 by a2), then the team would be more likely
to pick action a2 by plurality voting than any other action, and it would be less likely
to pick action a1 than any other action. As the number of voting iterations is limited in
actual applications, this situation is not desirable.

Note that we could also have a case where one agent prefers a larger number of
actions than others. For example, we could change agent 5 to prefer actions a1, a2 and a3.
However, as the agent has a limited amount of probability distributed over the actions in
theGoodi set (i.e., pGoodi ), we have that necessarily the probability of the agent voting
for a1 and a3 would drop; hence, the team would pick a2 more often than the other
actions, and a1 and a3 less often than the other actions. This does not mean, however,
that there is a single optimal configuration for each number of optimal actions |Good|.
There are multiple possible solutions for Equation 1, but in any possible solution we will
find that the size of the team n and |Good| are not co-prime.

Proposition 2 is a necessary but not sufficient condition for optimality. If Equation 1
is satisfied, all optimal actions will be selected with the same probability, but it is still
necessary for the probability of picking suboptimal actions to go to 0 to fully satisfy
condition (ii). That will be the case if pGoodi = 1, or if n → ∞, since pGoodj > pBadk ,
∀aj ∈ Good, ak ∈ Bad. Note that Proposition 2 implies hard restrictions for world
states where |Good| is prime, or for teams with prime size n: if n is prime, |Good|
must be a multiple of n; and if |Good| is prime, n must be a multiple of |Good|.

Let’s analyze across a set of world statesΩ. For a team of fixed size n, Proposition 2
applies across all world states. Hence, the team size must be a multiple of a divisor (> 1)
of each |Goodω|. Note that the pdfs of the agents (and also r) may change according
to ω. Let D be a set containing one divisor of each world state (if two or more world
states have a common divisor x, it will be representable by only one x ∈D). Hence, ∀ω,
∃d ∈D, such that d

∣∣ |Goodω|; and ∀d ∈D, ∃Goodω , such that d
∣∣ |Goodω|. There

are multiple possibleD sets, from the superset of all possibilities D . Therefore, we can
now study the minimum size necessary for an optimal team. Applying Proposition 2
at each world state ω, we have that the minimum size necessary for an optimal team is
n = minD∈D

∏
d∈D d. Hence, our worst case is when each |Goodω| is a unique prime,

as the team will have to be a product of all (unique) optimal action space sizes:
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Proposition 3. In the worst case, the minimum team size is exponential in the size of
the world states |Ω|. In the best case, the minimum necessary team size is a constant
with |Ω|.

Proof. In the worst case, each added world state ω has a unique prime optimal action
space size. Hence, the minimum team size is at least the product of the first |Ω| primes,
which, by the prime number theorem, has growth rate exp((1 + o(1))|Ω| log |Ω|). In
the best case, each added Goodω has a common divisor with previous ones, and the
minimum necessary team size does not change. �

However, we show that the worst case happens with low probability, and the best
case with high probability. Let G be the maximum possible |Good|, and M := |Ω|.
Assume that each world state ωj will have a uniformly randomly drawn number of
optimal actions, denoted as mj , for all j = 1, . . . ,M (i.e., ∀ω ∈ Ω). We assume that G
is large enough, so that the probability that a given mj has factor p is 1/p.

Proposition 4. The probability that the minimum necessary team size grows exponen-
tially tends to 0, and the probability that it is constant tends to 1, as M →∞.

Proof. It is sufficient to show that the probability that m1, . . . ,mM−1 are all co-prime
with mM tends to 0 as M →∞. That is, we show that when adding a new world state
ωM , its |Goodω| will have a common factor with the size of the Good set of some
of the other world states with high probability. Given any prime p, the probability that
at least one of any independently randomly generated M − 1 numbers m1, ...,mM−1
has factor p is 1− (1− 1

p)
M−1, while the probability that one independently randomly

generated number mM has factor p is 1
p (for large enough G). Therefore, the probability

mM shares common factor p with at least one of m1, . . . ,mM−1 is
1−(1− 1

p )
M−1

p . The
probability that mM is co-prime with all m1, . . . ,mM−1 is:

∏
all primes p

[1−
1− (1− 1

p )
M−1

p
],

which, as M →∞, tends to: ∏
all primes p

(1− 1

p
) =

1

ζ(1)
= 0,

where ζ(s) is the Riemann zeta function. The last equality holds true since:

ζ(1) =
∏

all primes p

1

1− p−1
=

∞∑
i=1

1

i
→∞

(as shown by Euler). Hence, with high probability, when adding a new world state ω,
|Goodω| will share a common factor with a world state already inΩ. �

Finally, in the next theorem we show that a diverse team of agents is always optimal
as the team grows, as long as it grows carefully. That is, we show that for large diverse
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teams we will be able to satisfy the optimality conditions (i) and (ii), as long as the team
size is a multiple of a divisor of |Goodω|, ∀ω ∈ Ω. Again, we assume that G is large
enough, so that the probability that a given mj has factor p is 1/p.

Theorem 1. LetD ∈ D be a set containing one factor from eachGoodω . For arbitrary
n, the probability that we generate (by drawing from a distribution F) an optimal team
of size n converges to 0 as |Ω| → ∞. However, if n = c

∏
d∈D d, then the probability

that the team is optimal tends to 1 as c→∞.

Proof. For an arbitrary team size n, let P be the set of its prime factors. Given one
p ∈ P , the probability that p is not a factor of |Goodω| is 1− 1/p. The probability that
all p ∈ P are not factors is:

∏
p(1 − 1/p). As 0 <

∏
p(1 − 1/p) < 1, the probability

that at least one p ∈ P is a factor of |Goodω| is 1−
∏
p(1− 1/p) < 1. For |Ω| tests,

the probability that at least one p is a factor in all of them is:(
1−

∏
p

(1− 1/p)

)|Ω|
,

which tends to 0, as |Ω| → ∞. Hence, the probability that gcd(n, |Goodω|) = 1 for at
least one ω tends to 1, and the probability that the team can be optimal tends to 0.

However, if:

n = c
∏
d∈D

d,

then gcd(n, |Goodω|) 6= 1 ∀ω ∈ Ω, satisfying the necessary condition in Proposition
2 at all world states. Let nj be the number of agents φi that have aj in itsGoodi, and
P (nj = nk) be the probability that nj = nk (that is, the probability that the same
number of agents have aj and ak in theirGoodi). As each aj has equal probability of
being in aGoodi, for a large number of drawings from F (i.e., c→∞), we have that
P (nj = nk) → 1,∀aj , ak ∈ Goodω,∀ω, by the law of large numbers. Hence, each
optimal solution will be selected with the same probability. Moreover, as pGoodj > pBadk ,
∀aj ∈ Good, ak ∈ Bad, the probability of picking a suboptimal solution converges to
0 (as n → ∞ with c → ∞), and hence the probability of picking each of the optimal
solutions converges to 1/

∏
ω |Goodω| (satisfying optimality condition (ii)). �

If it is expensive to test values for n such that Theorem 1 is satisfied, we can choose
n = c

∏
ω |Goodω|, as it immediately implies the conditions of the theorem. Moreover,

if we know the size of all |Goodω|, we can check if n and |Goodω| are co-prime in
O(h) time (where h is the number of digits in the smaller number), using the Euclidean
algorithm. Hence, we can test all world states in O(|Ω|h) time.

4.1 Generalizations

In this section we present several generalizations from our initial idealized model, in
order to cover more realistic situations. We start by generalizing our theory to cases where
the agents do not have only a probability of pij :=

pGoodi

|Goodi| or pij :=
pGood−pGoodi

|Good\Goodi| to
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vote for actions in Good (depending if the action is in Goodi or not), but now can
have different probabilities distributed over the actions inGood. Hence, we now model
each agent as having a set ofGoodi sets, each with its own probability distributed over
the actions in the set. For this generalization, we still consider that the agents have the
same pdf, but different preferences. That is, the agents may have different actions at each
Goodi set, but their size and the number of sets is the same across agents.

Hence, we denote each Goodi set j as jGood
i. Each also has its own p

jGoodi

total probability, that will be equally distributed among all actions in jGood
i, in a

similar fashion as before. As mentioned, the content of each jGood
i set may differ

across agents, but we consider the p
jGoodi to be the same across agents. Note that the

case where each action has a different probability is defined as the situation where each
|jGoodi| := 1. Similarly as before, we consider that each agent φi has jr < |Good|
actions at each jGood

i, and all actions in Good are equally likely to be selected to
form each jGood

i. In Figure 4 we show an illustrative example of the pdf of two agents
with multiple jGoodi sets.
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ty 1Good1

a5 a7 a2

2Good1

a10

3Good1

a1 a6

Bad

a3 a4 a8 a9

Agent 1
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ty 1Good2

a10 a2 a1

2Good2

a6

3Good2

a7 a5

Bad

a3 a4 a8 a9

Agent 2

Fig. 4: Illustrative example of the probability distribution functions of two agents with
multiple jGoodi sets.

Proposition 5. Theorem 1 still applies under the more general model stated above. That
is, if n = c

∏
d∈D d, then the probability that the team is optimal tends to 1 as c→∞.

Proof. Similarly as before, for each jGood
i we must have that:

n× jr = jk × |Good|, (2)

so that for each jGood
i we have that jk agents have a given action a in its jGoodi.

As the total probability p
jGoodi of each set is the same across agents, we have that each

optimal action will be selected by the team with the same probability when Equation 2
is satisfied for all jGoodi. Hence, across world states, each optimal solution will also
have the same probability of being selected. Similarly as in Proposition 2, for Equation
2 to be satisfied, we must have that n and |Good| are not co-prime, and that will be true
when n = c

∏
d∈D d.

Let jnl be the number of agents φi that have al in its jGoodi, and P (jnl = jnm)
be the probability that jnl = jnm. Like before, as each al has equal probability of
being in a jGoodi, for a large number of drawings from F (i.e., c→∞), we have that
P (jnl = jnm)→ 1,∀al, am ∈ Goodω,∀ω, by the law of large numbers.
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Notice that this happens for all jGoodi sets. Hence, all optimal actions will be
selected with the same probability by the team. Like before, as pGoodl > pBadm , ∀al ∈
Good, am ∈ Bad, the probability of picking a suboptimal action converges to 0 (as
n→∞ with c→∞), and hence the probability of picking each of the optimal solutions
converges to 1/

∏
ω |Goodω| (satisfying optimality condition (ii)). �

Now we present our second generalization. We show that Theorem 1 still applies
for agents φi with different probabilities over optimal actions pGoodi . We consider here
a more general definition of optimal team: the difference between the probabilities of
picking each optimal solution and 1/

∏
ω |Goodω| must be as small as possible.

Hence, let pΦj be the probability of team Φ picking optimal action aj , the optimal
team is such that ϑ :=

∑
aj
|pΦj − 1/|Goodω||, ∀aj ∈ Goodω is minimized (∀ω ∈ Ω).

We focus here in a single world state ω, as by minimizing ϑ in each world state we are
also making the difference between the probability of picking each optimal solution
and 1/

∏
ω |Goodω| as small as possible. Hence, the original definition in the previous

section is the case where ϑ := 0.

Proposition 6. Theorem 1 still applies when |pGoodi − pGoodj | ≤ ε, ∀φi, φj , for small
enough ε > 0.

Proof. Let Φ be an optimal team, where pGoodi is the same for all agents φi. Hence,
the probability of all actions in Good being selected by the team is the same. I.e.,
pΦk = pΦl ,∀ak, al ∈ Good, and ϑ := 0. Let ∆ :=

∑
ak∈Good

∑
al∈Good |p

Φ
k − pΦl | be

the difference between the probabilities of the team taking each optimal action. In the
rest of the proof we will disturb the probabilities pGoodi of sets of agents, which will
change ∆. We focus in studying the variation in ∆, as minimizing the variation in ∆
also minimizes the variation in ϑ.

We prove by mathematical induction. Assume we change the pGoodi of x agents φi,
and ∆ is as small as possible. Now we will change x+ 1 agents. Let’s pick one agent φi
and increase its pGoodi by δ ≤ ε. It follows that pΦk > pΦl ,∀ak ∈ Goodi, al /∈ Goodi,
and the new ∆′ :=

∑
ak∈Good

∑
al∈Good |p

Φ
k − pΦl | > ∆.

If we add one more agent φj , such that Goodj ∩ Goodi = ∅, the probability
of voting for actions am ∈ Goodj increases. For small enough ε, pGoodj will be too
large to precisely equalize the probabilities, and it follows that pΦm > pΦk > pΦl ,∀am ∈
Goodj , ak ∈ Goodi, al /∈ Goodi∪Goodj , and∆′′ :=

∑
ak∈Good

∑
al∈Good |p

Φ
k−

pΦl | > ∆′. The same applies for each newly added agent, until we have a new team such
that n = c

∏
d∈D d (again, satisfying the conditions of the theorem).

The base case follows trivially. If we did not change the probability of any agent (i.e.,
x := 0), and we now increase pGoodi of a single agent φi, pΦk > pΦl ,∀ak ∈ Goodi, al /∈
Goodi, and ∆′ > ∆. By the same argument as before, adding more agents will only
increase ∆′, until n = c

∏
d∈D d. �

Thirdly, we also generalize to the case where the number of preferred actions r
changes for each agent. We consider that the number of actions in theGoodi of each
agent φi (ri) is decided according to a uniform distribution on the interval [1, r′].

Proposition 7. If n = r′ × c
∏
d∈D d, the probability that the team is optimal→ 1 as

c→∞.
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Proof. For large n, the number of agents with ri = 1, . . . , r′ is the same. Therefore, if for
each subsetΦi ⊂ Φ, such that rφ = i,∀φ ∈ Φi, we have that pΦi

k = pΦ
i

l , ∀ak, al ∈ Good,
we will have that pΦk = pΦl ,∀ak, al ∈ Good. Given an optimal team of size n, we have
r′ subsets Φi of size n/r′ each. It follows by Theorem 1 that n/r′ = c

∏
d∈D d, and:

n = r′ × n/r′ = r′ × c
∏
d∈D

d,

hence n also follows the necessary conditions in Proposition 2. Similarly as in Theorem 1,
as n→∞ with c→∞, the probability of picking a suboptimal solution converges to 0,
and the probability of picking each of the optimal solutions converges to 1/

∏
ω |Goodω|

(satisfying optimality condition (ii)). �

Lastly, we discuss the assumption that world states are independent. In design
problems they could actually be correlated. We present below a constructive proof
showing that we can use our model to study design problems with correlated parameters.

Proposition 8. The previous results apply for problems with correlated parameters.

Proof. Let’s consider a design problem with a set Υ of parameters υ. We can divide Υ in
Υk sets, where all υ ∈ Υk are correlated, but υi and υj are independent, ∀υi ∈ Υi, υj ∈
Υj , i 6= j. That is, all parameters υ in a Υk set are correlated, but the parameters between
two different Υk sets are independent. This can always be performed, as in the worst
case where all parameters are correlated, we can have a single Υk := Υ .

Now, instead of modeling each design parameter υ as a world state ω (as in our
original model), we can model each set Υk as a world state ω. Hence, instead of an
action a being one value assigned to a parameter υ, an action a now represents one
full combination of values to each υk in a set Υk. Therefore, instead of voting at each
parameter υ, each agent φi now votes for one combination of value assignments (of
correlated parameters) at each set Υk. As all sets Υk are independent, we still have agents
voting for independent world states ω and the previous results still apply. In the worst
case, where all parameters of the problem are correlated, we would have agents voting
for entire solutions, and the model would be considered as having a single world state. �

5 Synthetic Experiments

0.0 0.1 0.2 0.3
maxλ+

0.0
0.2
0.4
0.6
0.8

%
 o

f O
pt

im
al

Fig. 5: Percentage as
max λ+ grows.

We run synthetic experiments, where we simulate design agents
and evaluate diverse and uniform teams (henceforth diverse and
uniform). We randomly create pdfs for the agents, and simulate
voting iterations across a series of world states. We repeat all our
experiments 100 times, and in the graphs we plot the average
and the confidence interval of our results (according to a t-
test with p := 0.01). We run 1000 voting iterations (z), and
measure how many optimal solutions the team is able to find.
We study a scenario where the number of actions (|A|) := 100,
and the number of optimal actions per world state (|Goodω|)
is, respectively: < 2, 3, 5, 5, 5 >, in a total of 750 optimal
solutions.
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At each repetition of our experiment, we randomly cre-
ate a pdf for the agents. We start by studying the impact
of maxλ+ in uniform. When creating the uniform team,
the total probability of playing any of the optimal actions
(i.e., pGood) is randomly assigned (uniform distribution)
between 0.6 and 0.8. We fix the size of the team (25) and
evaluate different maxλ+ in Figure 5. As expected from
Proposition 1, for maxλ+ := 0 the system finds the high-
est number of optimal solutions; and as maxλ+ increases,
it quickly drops.

We then study the impact of increasing the number of
agents, for uniform and diverse. To generate a diverse team,
we draw randomly a rω in an interval U for each world state, that will be the size of
|Goodi|. We study three variants: diverse*, where U := (0, |Goodω|]; diverse, where
U := (0, |Goodω|), and diverse∆, where we allow agents to have different riω, also
drawn from (0, |Goodω|). We independently create pdfs randomly for each agent φi.
For each agent we draw a number between 0.6 and 0.8 to distribute over the set of optimal
actions, and randomly decide rω actions to compose itsGoodi set. We distribute equally
80% of the probability of voting over optimal actions on the actions of that set.
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Fig. 7: Percentage for
larger teams.

As we can see, in Figure 6, the number of solutions
decreases for uniform as the number of agents grows. Nor-
mally, in social choice, we expect the performance to im-
prove as teams get larger, so this is a novel result. It is,
however, expected from our Proposition 1. Diverse, on the
other hand, improves in performance for all 3 versions, as
predicted by our theory. However, the system seems to con-
verge for a fixed z, as the performance does not increase
much after around 20 agents. Hence, in Figure 7 we study
larger diverse (continuous line) and diverse∆ teams (dashed
line), going all the way up to 1800 agents. We also study
four different number of voting iterations (z, shown in the
figure by different lines): 1000, 2000, 3000, 4000. As we can see, although adding more
agents was not really improving the performance in the experimental scenario under
study, there is clearly a statistically significant improvement (p < 0.01) by increasing
the number of voting iterations, with the system improving from finding around 53%
of the optimal solutions, all the way up to finding more than 80% of them. However,
there is a diminishing returns effect, as the impact of adding more iterations decreases as
the actual number of iterations grow larger. We also note that diverse∆ is better than
diverse, and the difference increases as z grows.

As we can see, although theoretically possible, it is still a challenge to have a system
that can find all the possible optimal solutions. Moreover, it would be expensive to
pool the votes of agents through a large number of voting iterations. However, as we
show next, we can actually approximate this process in a real system, by pooling only
a small number of solutions from each agent, and executing many voting iterations by
aggregating different combinations of these solutions.
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6 Experiments in Architectural Design

6.1 Architectural Design Domain

Base

Office Park

Contemporary

Fig. 8: Parametric
designs.

We study a real system for architectural building design. This is
a fundamental domain, since the design of a building impacts its
energy usage during its whole life-span [6, 3]. We use Beagle [6],
a multi-objective design optimization software that assists users
in the early stage design of buildings. First, the designer creates a
parametric design, containing (as discussed in Section 3) a set of
parameters that can be modified within a specified range, allowing
the creation of many variations. The ranges are defined according to
the legislation (i.e., setback, maximum height, etc), or the intention
of the designer (for example, the general shape of the building).
We use designs from Gerber and Lin (2013) [6], shown in Figure 8:
base, a simple building type with uniform program (i.e., tenant type);
office park, a multi-tenant grouping of towers; and contemporary,
a double “twisted” tower that includes multiple occupancy types,
relevant to contemporary architectural practices.

Beagle uses a genetic algorithm (GA) to optimize the building
design based on three objectives: energy efficiency, financial perfor-
mance and area requirements. In detail, the objective functions are:
Sobj : maxSPCS; Eobj : minEUI; Fobj : maxNPV . SPCS is
the Spatial Programming Compliance Score, EUI is the Energy Use Intensity and NPV
is the Net Present Value, defined as follows.

SPCS defines how well a building conforms to the project requirements (by measur-
ing how close the area dedicated to different activities is to a given specification).
Let L be a list of activities (in our designs, L=<Office, Hotel, Retail, Parking>),
area(l) be the total area in a building dedicated to activity l and requirement(l) be
the area for activity l given in a project specification. SPCS is defined as: SPCS :=

100×
(
1−

∑
l∈L |area(l)−requirement(l)|

|L|

)
.

EUI regulates the overall energy performance of the building. This is an estimated
overall building energy consumption in relation to the overall building floor area. The
process to obtain the energy analysis result is automated in Beagle through Autodesk
Green Building Studio (GBS) web service.

Finally, NPV is a commonly used financial evaluation. It measures the financial
performance for the whole building life cycle, given by: NPV :=

(∑T
t=1

ct
(1+r)t

)
−

c0, where T is the Cash Flow Time Span, r is the Annual Rate of Return, c0 is the
construction cost, and ct := Revenue− Operation Cost.

Many options affect the execution of the GA, including: initial population size, size of
the population, selection size, crossover ratio, mutation ratio, maximum iteration. Further
details about Beagle are at Gerber and Lin (2013) [6]. In the end of the optimization
process, the GA outputs a set of solutions. These are considered “optimal”, according
to the internal evaluation of the GA, but are not necessarily so. As in our theory, for
each parameter the assigned value is going to be one of the optimal ones with a certain
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probability. In fact, most of the solutions outputted by the GAs are later identified as
sub-optimal and eliminated in comparison with better ones found by the teams.

We model each run of the GA as an agent φ. Each parameter of the parametric
design is a world state ω, where the agents decide among different actions A (i.e.,
possible values for the current parameter). Our model assumes independent multiple
voting iterations across all world states. However, in general it could be expensive to pool
agents for votes in a large number of iterations. Therefore, in order to test the applicability
of the predictions of our model in more realistic scenarios, in our experiments we pool
only 3 solutions per agent, but run multiple voting iterations by aggregating over all
possible combinations of them. That is, at each combination we pick one solution per
agent, and vote across all the parameters, in a total of 81 voting iterations with 4 agents.

6.2 Empirical Results

Table 1: GA parameters.

Agent PZ SZ CR MR
Agent 1 12 10 0.8 0.1
Agent 2 18 8 0.6 0.2
Agent 3 24 16 0.55 0.15
Agent 4 30 20 0.4 0.25

We run experiments across the different parametric designs
shown in Figure 8. These are designs with increasing com-
plexity. More details about the designs and the meanings
of each parameter are available in Gerber and Lin (2013)
[6]. We create 4 different agents, using different options
for the GA, as shown in Table 1 (Initial Population and
Maximum Iteration were kept as constants: 10 and 5. PZ
= Population Size, SZ = Selection Size, CR = Crossover
Ratio, MR = Mutation Ratio). We are dealing here with real
(and consequently complex) design problems, where the
true set of optimal solutions is unknown. We approach the problem in a comparative
fashion: when evaluating different systems, we consider the union of the set of solutions
of all of them. That is, let Hx be the set of solutions of system x; we consider the set
H :=

⋃
xHx. We compare all solutions inH, and consider as optimal the best solutions

inH, forming the set of optimal solutions O. We use the concept of Pareto dominance:
the best solutions inH are the ones that dominate all other solutions (i.e., they are better
in all 3 objectives). As we know which system generated each solution o ∈ O, we
estimate the set of optimal solutions Sx of each system.

Although our theory focuses on plurality voting, we also present results using the
mean and the median of the opinions of the agents. That is, given one combination (a
set of one solution from each agent), we also generate a new solution by calculating the
mean or the median of the values from each agent across all parameters. Also, when
performing the voting aggregation (vote), we consider values that are the same up to 3
decimal places as equal. Concerning uniform, we evaluate a team composed of copies of
the “best” agent. By “best”, we mean the agent that finds the highest number of optimal
solutions. According to Proposition 1, such an agent should be the one with the lowest
maxλ+, and we can predict that voting among copies of that agent generates a large
number of optimal solutions. Hence, for each design, we first compare all solutions of
all agents, to estimate which one has the largest set of optimal solutions S. We, then,
run that agent multiple times, creating uniform. For diverse, we consider one copy of
each agent in Table 1. We aggregate the solutions of diverse and uniform. We run 81
aggregation iterations, by selecting 3 solutions from each agent φi, in its set of solutions
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Hi, and aggregating all possible combinations of these solutions. We evaluate together
the solutions of all agents and all teams (i.e., we construct H with the solutions of all
systems), in order to estimate the size of Sx of each system.

Since the true optimal solutions set is unknown, we first plot the percentage of
unique solutions found by each system in relation to the total number of unique optimal
solutions inH. Hence, in Figure 9 (a), we show the percentage of optimal solutions for
all systems, in relation to |O|. For clarity, we represent the result of the individual agents
by the one that had the highest percentage. As we can see, in all parametric designs
the teams find a significantly larger percentage of optimal solutions than the individual
agents. The agents find less than 1% of the solutions, while the teams are in general
always close to or above 15%. In total (considering all aggregation methods and all
agents), for all three parametric designs the agents find only about 1% of the optimal
solutions, while uniform finds around 51% and diverse 47%. Looking at vote, in base
diverse finds a larger percentage of optimal solutions than uniform (around 9.4% for
uniform, while 11.6% for diverse). In office park and contemporary, however, uniform
finds more solutions than diverse. Based on Proposition 1, we expect that this is caused
by the best agent having a lower maxλ+ in office park and contemporary than in base.
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Fig. 9: Percentage of optimal solutions of each system.

Figure 9 (b) shows the percentage of optimal solutions found, in relation to the size
of the set of evaluated solutions of each system. That is, let Ox be the set of optimal
solutions of system x, inO. We show |Ox|

|Hx| . Concerning vote, the teams are able to find a
new optimal solution around 20% of the time for base, around 73% of the time for office
park and around 36% of the time for contemporary. Meanwhile, for the individual agents
it is close to 0%. We can see that teams have great potential for generating new optimal
solutions, as expected from our theory. However, as studied in our synthetic experiments,
we can expect some diminishing returns when increasing the number of voting iterations.
It is interesting to note that the performance of the teams is much higher for office
park than for the other two parametric designs. In base and contemporary, the building
mass is parametrized into a single volume, while in office park the building mass has
multiple volumes. Hence, a possible explanation is that the division in multiple volumes
facilitated the generation of multiple optimal solutions, since these can be combined
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in many different ways. We also plot in Figure 10 (a) the percentage of solutions that
were reported to be optimal by each agent, but were later discovered to be suboptimal by
evaluating H. A large amount of solutions are eliminated, close to 100%, helping the
designer to avoid making a poor decision, and increasing her confidence that the set of
optimal solutions found represent well the “true” Pareto frontier. Moreover, we test for
duplicated solutions across different aggregation methods, different teams and different
agents. The number is small: only 4 in contemporary, and none in base and office park.
Hence, we are providing a high coverage of the Pareto frontier for the designer. We show
the total number of optimal solutions in Figure 10 (b).
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Fig. 10: Additional analysis.

7 Conclusion

Design imposes a novel problem to social choice: maximize the number of optimal
solutions. We present a new model for agent teams, that shows the potential of voting
agents to be creative, by generating a large number of optimal solutions to the designer.
Our analysis, which builds a new connection with number theory, shows that: (i) uniform
teams are in general suboptimal, and converge to a unique solution; (ii) diverse teams
are optimal as long as the team’s size grows carefully; (iii) the minimum optimal team
size is constant with high probability; (iv) the worst case for teams is a prime number of
optimal actions. Experiments considered bounded time and relaxed assumptions. We
also show results in architecture, where teams find a large number of solutions.
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