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Abstract. Read produced the �rst example of a Banach space ER such that the as-
sociated Banach algebra B(ER) of bounded operators admits a discontinuous derivation
(J. London Math. Soc. 1989). We generalize Read's main theorem about B(ER) from
which he deduced this conclusion, as well as the key technical lemmas that his proof relied
on, by constructing a strongly split-exact sequence

{0} −→ W (ER) −→ B(ER) −→←− `∼2 −→ {0},
where W (ER) denotes the ideal of weakly compact operators on ER, while `∼2 is the
unitization of the Hilbert space `2, endowed with the zero product.

To appear in Studia Mathematica.

1. Introduction and statement of the main result

In 1989, Read [7] published the construction of a remarkable Banach space that we shall
denote by ER. Read's purpose was to produce an example of a discontinuous derivation
from the Banach algebra B(E) of bounded operators on a Banach space E, thus answer-
ing an open question in automatic continuity theory going back at least to [4], in which
Johnson had shown that, for each Banach space E that is isomorphic to its Cartesian
square E ⊕ E (or, more generally, such that E has a `continued bisection'), every homo-
morphism from B(E) into a Banach algebra is continuous. A general result states that
the continuity of all homomorphisms from a Banach algebra implies the continuity of all
derivations from it; see, e.g., [2, Theorem 2.7.5(i)]. Hence Read's result implies that John-
son's theorem does not extend to all Banach spaces, and it was the �rst example of a
Banach space E for which B(E) admits a discontinuous homomorphism.
Read's strategy was to establish the following theorem, from which the existence of

a discontinuous derivation from B(ER) into a one-dimensional Banach B(ER)-bimodule
follows by standard methods, as detailed in [7, Theorem 1].

Theorem 1.1 (Read). There exists a Banach space ER such that the Banach algebra

B(ER) contains a closed ideal I of codimension one, but the closed linear span of its
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products,

I 2 = span {ST : S, T ∈ I },
has in�nite codimension in B(ER). More precisely,

(i) I contains the ideal W (ER) of weakly compact operators on ER;

(ii) W (ER) has in�nite codimension in B(ER);

(iii) I 2 ⊆ W (ER).

This theorem will be an immediate consequence of our main result, which will also
incorporate and strengthen the key technical lemmas that Read used to establish it, as we
shall explain below, once we have stated our main result precisely. It involves the following
notation. Endow the separable, in�nite-dimensional Hilbert space `2 with the zero product,
and denote its unitization by `∼2 , so that `∼2 = `2⊕K1 as a vector space (where K denotes
the scalar �eld, either R or C, and 1 is the formal identity that we adjoin), and the product
and norm on `∼2 are given by

(ξ + λ1)(η + µ1) = λη + µξ + λµ1 and ‖ξ + λ1‖ = ‖ξ‖+ |λ| (ξ, η ∈ `2, λ, µ ∈ K).

Theorem 1.2. There exists a continuous, surjective homomorphism ψ from the Banach

algebra B(ER) onto `∼2 with kerψ = W (ER) such that the short-exact sequence

{0} // W (ER) // B(ER)
ψ

// `∼2 // {0}

splits strongly, in the sense that there is a continuous homomorphism from `∼2 into B(ER)
which is a right inverse of ψ.

Taking I to be the preimage under ψ of the codimension-one ideal `2 of `
∼
2 , we see that

clauses (i)�(iii) of Theorem 1.1 are satis�ed, so that Theorem 1.1 follows from Theorem 1.2,
as claimed above. To explain how Theorem 1.2 incorporates and strengthens the key
technical lemmas in Read's construction, let us �rst describe the latter in more detail.
After de�ning the Banach space ER, Read begins his study of it by showing that the

quotient E∗∗
R
/ER is isomorphic to a Hilbert space H, and he then identi�es a particular

orthonormal basis (an)n∈N for this Hilbert space (see [7, equation (3.6.5) and Lemma 3.7]).
Given an operator T ∈ B(ER), its bidual T ∗∗ induces an operator Θ0(T ) on E∗∗

R
/ER, and

hence on H, by a standard construction, as detailed in the diagram (2.1) below. Read's
main technical achievement is [7, Lemma 4.1], which states that when Θ0(T ) is considered
as an operator on H, its matrix M with respect to the orthonormal basis (an)n∈N has a
very special form, namely

M =



λ 0 0 · · ·
µ1 λ 0 0 · · ·
µ1 0 λ 0 0 · · ·
µ2 0 0 λ 0 0 · · ·
µ2 0 0 0 λ 0 0 · · ·
µ3 0 0 0 0 λ 0 0 · · ·
µ3 0 0 0 0 0 λ 0 0 · · ·
...

...
...

...
...

...
. . .


(1.1)
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for some scalars λ and µ1, µ2, µ3, . . . (Note that (1.1) corrects a typo in [7, equation (4.1.1)]:
the �rst entry of the �fth row of M should be µ2, not µ3, as [7, Lemma 4.1(c)] shows.)
Finally, in [7, Lemma 4.2], Read establishes a partial converse to this result by showing
that, in the case where only �nitely many of the scalars µ1, µ2, µ3, . . . are non-zero, (1.1)
arises as the matrix of Θ0(T ) for some operator T ∈ B(ER).
The connection between these results and Theorem 1.2 goes via the following observa-

tion. The �rst column of the matrix (1.1) is the image of the �rst basis vector under the
operator Θ0(T ), so that the sequence (µi)i∈N belongs to `2. Hence we can de�ne a mapping
ψ : B(ER)→ `∼2 by ψ(T ) = (µi)i∈N +λ1, where λ and µ1, µ2, . . . are the scalars determined
by Θ0(T ) via (1.1). We shall show that this mapping ψ is the surjective homomorphism
whose existence is stated in Theorem 1.2, which therefore strengthens Read's technical
lemmas in two ways. First, the surjectivity of ψ means that all possible matrices of the
form (1.1) arise as the matrix of Θ0(T ) for some operator T ∈ B(ER), not just those
whose �rst column vanishes eventually. Second, we can choose a preimage T under ψ of
the element (µi)i∈N + λ1 ∈ `∼2 in such a way that the corresponding mapping is a bounded
homomorphism.
Our motivation for proving Theorem 1.2 is that it has enabled us to show that:

• the Banach algebra B(ER) has a singular extension which splits algebraically, but
it is not admissible, and so does not split strongly;
• the homological bidimension of B(ER) is at least two.

The �rst of these results solves a natural problem left open in Bade, Dales, and Lykova's
comprehensive study [1] of splittings of extensions of Banach algebras, while the second
answers a question originating in Helemskii's seminar at Moscow State University. For
details of any unexplained terminology and how to deduce these results from Theorem 1.2,
we refer to [6].

Note added in proof. After the completion of [6], in joint work with Kania [5], we have
succeeded in constructing a singular extension of B(ER) which is admissible and splits
algebraically, but does not split strongly, thus complementing the �rst of the two results
mentioned above. Once again, Theorem 1.2 plays a key role in the proof of this result.

To conclude this Introduction, we would like to express the hope that, by elucidating
the structure of the Banach algebra B(ER), Theorem 1.2 will spark new interest in and
lead to further applications of this remarkable creation of Read's.

2. Read's Banach space ER and the proof of Theorem 1.2

We begin this section with some general conventions and results, followed by an overview of
Read's construction of the Banach space ER and details of the speci�c elements of Read's
work that we shall require in our proof of Theorem 1.2, before we conclude with the proof
itself. Our aim is to provide enough detail to make this presentation self-contained, without
repeating arguments already given in [7]. An expanded, entirely self-contained version of
the proof of Theorem 1.2, incorporating all necessary details of Read's construction, can
be found in [8, Chapter 5].
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We shall generally follow the notation and terminology used in [7]; in some places,
however, we add extra details or take a slightly di�erent view from Read's in order to
facilitate our proof of Theorem 1.2 and avoid ambiguities.
All results in [7] are stated for complex scalars only. We observe that the proofs carry

over verbatim to the real case, so we shall address both cases simultaneously, denoting the
scalar �eld by K, so that either K = R or K = C.
By an operator, we understand a bounded, linear mapping between Banach spaces. For

a Banach space E, we denote by E∗ its dual space, and we identify E with its canonical
image in the bidual space E∗∗. Let πE : E∗∗ → E∗∗/E denote the quotient mapping. Since
the restriction to E of the bidual T ∗∗ of an operator T ∈ B(E) is equal to T , it leaves
the subspace E invariant, and hence the Fundamental Isomorphism Theorem implies that
there is a unique operator Θ0(T ) ∈ B(E∗∗/E) such that the diagram

E∗∗
T ∗∗ //

πE
��

E∗∗

πE
��

E∗∗/E
Θ0(T )

// E∗∗/E

(2.1)

is commutative. Moreover, the mapping Θ0 : T 7→ Θ0(T ), B(E)→ B(E∗∗/E), is a contin-
uous, unital algebra homomorphism of norm at most one, and a standard characterization
of the ideal of weakly compact operators shows that ker Θ0 = W (E).
Let (A, ‖·‖A) be a Banach space with a normalized, symmetric basis (en)n∈N. By passing

to an equivalent norm, we may suppose that the basis (en)n∈N is 1-symmetric, that is, for
each n ∈ N, each permutation π of N, and all scalars λ1, . . . , λn, µ1, . . . , µn, we have∥∥∥∥ n

ÿ

j=1

λjµjeπ(j)

∥∥∥∥
A

6 max
{
|µ1|, . . . , |µn|

}∥∥∥∥ n
ÿ

j=1

λjej

∥∥∥∥
A

.

Read [7, De�nition 1.2(b)] de�nes the James-like space JA based on A as the collection of
all scalar sequences x = (λn)n∈N ∈ c0 such that the quantity

‖x‖JA = sup

{∥∥∥∥ n
ÿ

j=1

(λpj − λpj+1
)2ej + λ2pn+1

en+1

∥∥∥∥ 1
2

A

:

n, p1, . . . , pn+1 ∈ N, p1 < p2 < · · · < pn+1

}
is �nite, and observes that (JA, ‖ · ‖JA) is a Banach space.
In [7, Section 2], Read proceeds to show that, in the case where A contains no subspace

isomorphic to c0, the space JA is quasi-re�exive of order one, so that the canonical image
of JA has codimension one in its bidual (JA)∗∗, just like the original James space (which in
this approach corresponds to A = `1). Moreover, the standard unit vector basis (en)n∈N is a
shrinking basis for JA, so that the sequence (e∗n)n∈N of coordinate functionals is a basis for
the dual space (JA)∗. Like Read, we use (en)n∈N to denote the basis of both A and JA, and
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we identify (JA)∗∗ with JA⊕KΦ, where Φ is the functional on (JA)∗ given by 〈e∗n,Φ〉 = 1
for each n ∈ N. We record for later use that ‖Φ‖(JA)∗∗ = 1 by [7, Lemma 2.2(a)].
Let N0 = N ∪ {0} be the set of non-negative integers, and set

I = {2} ∪ {i ∈ N0 : i ≡ 0 mod 6, i ≡ 4 mod 6, or i ≡ 5 mod 6}.

For each i ∈ I, choose a Banach space (Bi, ‖ · ‖Bi
) with a normalized, 1-symmetric basis,

which we denote by (en)n∈N (independent of i), such that no subspace of Bi is isomorphic
to c0, and such that the family (Bi)i∈I is incomparable, in the sense that, for each i ∈ I and
each ε > 0, there exists n ∈ N with

‖σn‖Bi
6 ε · inf

{
‖σn‖Bj

: j ∈ I \ {i}
}
, (2.2)

where σn =
řn
k=1 ek; Read explains in the note following [7, De�nition 3.2] that such a

family exists. For i ∈ N \ I, set

Bi =

{
B0 if i ≡ 1 mod 6

B2 if i ≡ 2 mod 6 or i ≡ 3 mod 6,
(2.3)

so that Bi is now de�ned for each i ∈ N0, and we have a sequence (JBi)i∈N0 of James-
like Banach spaces, whose `2-direct sum Y =

(
À∞

i=0 JBi

)
`2

is at the heart of Read's

construction. By standard duality and the quasi-re�exivity of the spaces JBi, we have the
following identi�cations:

Y ∗ =

( ∞
à

i=0

(JBi)
∗
)
`2

and Y ∗∗ =

( ∞
à

i=0

(JBi)
∗∗
)
`2

=

( ∞
à

i=0

JBi ⊕KΦ

)
`2

. (2.4)

Another important piece of notation involves the Hilbert space B = `2(N0) and its
standard orthonormal basis (bn)n∈N0 , which Read relabels as follows for positive indices:

αn = b6n, βn = b6(n−1)+1, γn = b6(n−1)+2,

δn = b6(n−1)+3, xn = b6(n−1)+4, yn = b6(n−1)+5
(n ∈ N). (2.5)

For n ∈ N and ξ =
ř∞
i=0 ξibi ∈ B, Read introduces the tensor notation en ⊗ ξ = (ξien)∞i=0,

which de�nes an element of Y due to the uniform bound ‖en‖JBi
6 ‖e1 + e2‖Bi

6 2,
independent of i ∈ N0. This de�nition extends by linearity to tensors of the form x ⊗ ξ
for x ∈ c00. By assigning special symbols to the following linear combinations of the basis
vectors (2.5),

α′n = αn − (xn − yn), β′n = βn − (xn + yn),

γ′n = γn − (xn + yn), δ′n = δn −
( b0

2n
− xn + yn

) (n ∈ N), (2.6)

we can now de�ne Read's space ER as follows:

S = {α′n, β′n, γ′n, δ′n : n ∈ N}, V = spanS ⊆ B,

N = span {en ⊗ s : n ∈ N, s ∈ S} ⊆ Y, ER = Y/N.
(2.7)
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Note. Our de�nition of β′n above corrects a typo in [7, De�nition 3.4(b)], where the sign
of yn is wrong, as one can see by comparing it with the second line of the displayed equations
at the bottom of [7, p. 313] and the seventh displayed equation of [7, p. 319].

As we stated in the Introduction, the �rst two steps in Read's analysis of the space ER

consist of showing that the quotient E∗∗
R
/ER is isomorphic to a Hilbert space and identifying

an orthonormal basis for it. Read, however, does not obtain an explicit formula for this
isomorphism. Such a formula will be required in our proof of Theorem 1.2, so we shall now
recast Read's arguments in a form that will produce an explicit isomorphism U between
the closed subspace

H = span {b0, xn, yn : n ∈ N} (2.8)

of B and E∗∗
R
/ER.

To this end, we observe that the proof of [7, Lemma 3.7] shows that the restriction to H
of the quotient mapping QV : B → B/V is surjective and bounded below by 1

15
; that is,

QV |H is an isomorphism whose inverse has norm at most 15. (Read denotes this mapping
by α; we prefer QV |H as it is more descriptive and avoids any possible confusion with the
basis vectors αn.)
Set U0 = πERQ

∗∗
NR0 : B → E∗∗

R
/ER, where πER : E∗∗

R
→ E∗∗

R
/ER and QN : Y → ER are

the quotient mappings, and R0 : B → Y ∗∗ is the linear isometry given by

R0ξ = Φ⊗ ξ = (ξiΦ)∞i=0

(
ξ =

∞
ÿ

i=0

ξibi ∈ B
)
,

using the natural extension to Y ∗∗ of Read's tensor notation for Y introduced above. We
claim that U0 is surjective with kerU0 = V . To establish this claim, we �rst note that
kerQ∗∗N = N◦◦ (the bipolar of N) by a standard duality result, and therefore

ker(πERQ
∗∗
N ) = Y +N◦◦. (2.9)

Equation (2.4) shows that Y ∗∗ = Y +R0[B]. Combining this with the surjectivity of πERQ
∗∗
N

and (2.9), we obtain E∗∗
R
/ER = πERQ

∗∗
N [Y ∗∗] = U0[B], so that U0 is indeed surjective.

Next, to determine the kernel of U0, we require Read's observation [7, equation (3.6.3)]
that each element x∗∗ of Y ∗∗ can be expressed uniquely as x∗∗ = Φ ⊗ η0 +

ř∞
i=1 ei ⊗ ηi,

where ηi ∈ B for each i ∈ N0. Using this notation, Read [7, Lemma 3.6.4] shows that

N◦◦ = {x∗∗ : ηi ∈ V for each i ∈ N0}, (2.10)

which together with (2.9) immediately implies that V ⊆ kerU0.
Conversely, suppose that ξ ∈ kerU0. Then Φ⊗ ξ ∈ ker(πERQ

∗∗
N ), so by (2.9), we can �nd

y =
ř∞
i=1 ei ⊗ ηi ∈ Y such that Φ ⊗ ξ − y ∈ N◦◦, and hence ξ ∈ V by (2.10) (as well as

ηi ∈ V for each i ∈ N, but we do not need this information). This proves our claim.
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By the Fundamental Isomorphism Theorem, there is a unique isomorphism pU0 of B/V

onto E∗∗
R
/ER such that U0 = pU0QV , and hence we have a commutative diagram

H
QV |H
∼=

//
� _

ι

��

B/V ∼=

pU0 // E∗∗
R
/ER

B

QV

;; ;;

U0

44

R0 // Y ∗∗
Q∗∗N // // E∗∗

R
,

πER

OOOO
(2.11)

where ι : H → B denotes the natural inclusion.
This diagram shows in particular that the restriction U of the operator U0 to the sub-

space H is an isomorphism onto E∗∗
R
/ER, and so it induces a continuous algebra isomor-

phism AdU : T 7→ U−1TU of the Banach algebra B(E∗∗
R
/ER) onto B(H). Using this

notation, we can rephrase [7, Lemma 4.1] as follows: for each T ∈ B(ER), the matrixM of
the operator (AdU)◦Θ0(T ) with respect to the orthonormal basis (an)n∈N = (b0, xn, yn)n∈N
for H is given by (1.1). Alternatively, we can express this identity as

(AdU) ◦Θ0(T ) = λIH + τξ, (2.12)

where IH is the identity operator on H, ξ =
ř∞
n=1 µn(xn + yn), and τξ is the rank-one

operator on H given by η 7→ (η | b0)ξ, where (η | b0) denotes the inner product of η and b0.
We note in passing that the fact that the spaces (Bi)i∈I are chosen to be incomparable in
the sense of (2.2) plays a crucial role in the proof of [7, Lemma 4.1].
We are now ready to prove Theorem 1.2. Our proof re�nes that of [7, Lemma 4.2], as it

is given in [7, p. 320]. For clarity, we shall present a fully self-contained argument.

Proof of Theorem 1.2. For notational convenience, we shall replace the generic Hilbert
space `2 in the statement of Theorem 1.2 with the closed subspace

H0 = span {xn + yn : n ∈ N}
of the Hilbert space H given by (2.8). The space H0 is of course isometrically isomorphic
to `2 via the mapping ξ 7→

(
1

‘

2
(ξ |xn + yn)

)
n∈N, so this is really only a change in notation,

provided that we endow H0 with the zero product. Then, using that the vector b0 is
orthogonal to H0, we see that the mapping Υ: ξ + λ1 7→ τξ + λIH is a continuous, unital

algebra isomorphism of the unitization rH0 = H0 ⊕K1 of H0 (de�ned analogously to that
of `2 given on page 2) onto the closed subalgebra T = {τξ+λIH : ξ ∈ H0, λ ∈ K} of B(H).
By (2.12), the range of (AdU)◦Θ0 is contained in T , so we may consider the composite

continuous algebra homomorphism ψ given by

ψ = Υ−1 ◦ (AdU) ◦Θ0 : B(ER)→ rH0.

Since Υ−1 and AdU are both isomorphisms, we see that kerψ = ker Θ0 = W (ER). It
remains to construct a continuous algebra homomorphism which is a right inverse of ψ.
Let ξ =

ř∞
n=1 ξn(xn + yn) ∈ H0 and y = (y(i))∞i=0 ∈ Y be given, where y(i) ∈ JBi for

each i ∈ N0. By (2.3), we have JB6(n−1)+1 = JB0 for each n ∈ N, so that in analogy with
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the tensor notation already introduced, we may de�ne y(0) ⊗ βn to be the element of Y
whose (6(n−1)+1)st coordinate is y(0), while all other coordinates vanish. Then the series
ř∞
n=1 ξn y(0)⊗ βn converges in Y , and its sum has norm 1

‘

2
‖ξ‖B ‖y(0)‖JB0 .

Using (2.3) once more, we see that JB6(n−1)+2 = JB6(n−1)+3 = JB2 for each n ∈ N, so
that we have an absolutely convergent series

∞
ÿ

n=1

y(6(n− 1) + 3)

2n

in JB2, whose sum y′ has norm at most ‖y‖Y . As above, let y′ ⊗ γn be the element of Y
whose (6(n− 1) + 2)nd coordinate is y′, while all other coordinates vanish. Then the series
ř∞
n=1 ξn y

′ ⊗ γn converges in Y , and its sum has norm at most 1
‘

2
‖ξ‖B ‖y‖Y .

Combining these conclusions, we may de�ne an element of Y by

Tξy =
∞
ÿ

n=1

ξn

(
y(0)⊗ βn +

( ∞
ÿ

m=1

y(6(m− 1) + 3)

2m

)
⊗ γn

)
, (2.13)

and ‖Tξy‖Y 6
‘

2 ‖ξ‖B ‖y‖Y . The mapping Tξ : y 7→ Tξy is clearly linear and has norm at
most

‘

2 ‖ξ‖B, and hence we have a mapping

ρ0 : ξ 7→ Tξ, H0 → B(Y ), (2.14)

which is linear and bounded with norm at most
‘

2.
To prove that ρ0 is multiplicative, we must show that TηTξ = 0 for each pair ξ, η ∈ H0 be-

cause H0 has the zero product. Write ξ as ξ =
ř∞
n=1 ξn(xn + yn), and let y = (y(i))∞i=0 ∈ Y

be given. By (2.13), the element z = Tξy has the form z = (z(i))∞i=0, where

z(i) =


ξny(0) if i = 6(n− 1) + 1 for some n ∈ N,

ξn

∞
ÿ

m=1

y(6(m− 1) + 3)

2m
if i = 6(n− 1) + 2 for some n ∈ N,

0 otherwise.

Hence z(0) = 0 = z(6(m − 1) + 3) for each m ∈ N, so that another application of (2.13)
shows that 0 = Tηz = TηTξy, as required.
Next, we shall prove that

Tξ[N ] ⊆ N (ξ ∈ H0), (2.15)

where N is the subspace of Y given by (2.7). Since Tξ is bounded and linear, it su�ces
to show that Tξ(en ⊗ s) ∈ N for each n ∈ N and s ∈ S. Comparing (2.13) with (2.5),
we see that Tξ(en ⊗ η) = 0 for each η ∈ {αm, βm, γm, xm, ym : m ∈ N}, and therefore
Tξ(en ⊗ s) = 0 ∈ N for each s ∈ {α′m, β′m, γ′m : m ∈ N} by (2.6). Moreover, for m ∈ N, we
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have

Tξ(en ⊗ δ′m) = Tξ(en ⊗ δm)− 1

2m
Tξ(en ⊗ b0) =

∞
ÿ

k=1

ξk
en
2m
⊗ γk −

1

2m

∞
ÿ

k=1

ξk en ⊗ βk

=
1

2m

∞
ÿ

k=1

ξk en ⊗ (γk − βk) =
1

2m

∞
ÿ

k=1

ξk en ⊗ (γ′k − β′k) ∈ N,

which completes the proof of (2.15).

Thus, by the Fundamental Isomorphism Theorem, there is a unique operator qTξ ∈ B(ER)
such that the diagram

Y
Tξ //

QN

��

Y

QN

��
ER

qTξ // ER

(2.16)

is commutative, and ‖qTξ‖ = ‖QNTξ‖ 6
‘

2 ‖ξ‖B. The fact that the mapping ρ0 given
by (2.14) is an algebra homomorphism implies that the same is true for the mapping

ξ 7→ qTξ, H0 → B(ER), and hence

ρ : ξ + λ1 7→ qTξ + λIER ,
rH0 → B(ER),

is a continuous, unital algebra homomorphism, where IER denotes the identity operator
on ER.
We shall now complete the proof by showing that this homomorphism ρ is a right inverse

of ψ. Since ψ and ρ are both unital, it su�ces to show that ψ ◦ ρ(ξ) = ξ for each ξ ∈ H0,

which amounts to showing that (AdU) ◦ Θ0( qTξ) = τξ by the de�nitions of ρ, ψ, and Υ.
According to (2.12), both sides of this identity belong to T , so the fact (to be established
below) that

T = T ′ ⇐⇒ Tb0 = T ′b0 (T, T ′ ∈ T ) (2.17)

means that it is enough to verify that ((AdU) ◦Θ0( qTξ))b0 = τξ(b0), or, equivalently, that

Θ0( qTξ)Ub0 = Uξ. (2.18)

To prove (2.17), let T = τη + λIH ∈ T be given, where η ∈ H0 and λ ∈ K. Then we
have Tb0 = η + λb0, which uniquely determines both η and λ, and hence T , because b0 is
orthogonal to H0 3 η. This establishes the implication ⇐, while the converse is clear.
We begin our proof of (2.18) by observing that σm =

řm
j=1 ej is a unit vector in JBi for

each m ∈ N and i ∈ N0, and hence (σm ⊗ η)m∈N is a norm-bounded sequence in Y ⊆ Y ∗∗

for each η =
ř∞
i=0 ηibi ∈ B. Since the elements of the form e∗n ⊗ ζ = (ζie

∗
n)i∈N0 , where

n ∈ N and ζ =
ř∞
i=0 ζibi ∈ B, span a norm-dense subspace of Y ∗, and

〈σm ⊗ η, e∗n ⊗ ζ〉 =
∞
ÿ

i=0

ηiζi = 〈e∗n ⊗ ζ,Φ⊗ η〉 (m > n),
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we conclude that the sequence (σm⊗ η)m∈N weak∗-converges to Φ⊗ η in Y ∗∗ by a standard
elementary result (see, e.g., [3, Exercise 3.3]), as noted by Read [7, p. 315].
Writing ξ as ξ =

ř∞
n=1 ξn(xn + yn), we obtain

QNTξ(σm ⊗ b0) = QN

( ∞
ÿ

n=1

ξn σm ⊗ βn
)

by (2.13)

=
∞
ÿ

n=1

ξnQN(σm ⊗ βn) =
∞
ÿ

n=1

ξnQN(σm ⊗ (xn + yn)) by (2.6)�(2.7)

= QN

(
σm ⊗

∞
ÿ

n=1

ξn(xn + yn)

)
= QN(σm ⊗ ξ)

for each m ∈ N. This implies that

Q∗∗N T
∗∗
ξ (Φ⊗ b0) = w∗- lim

m→∞
QNTξ(σm ⊗ b0) = w∗- lim

m→∞
QN(σm ⊗ ξ) = Q∗∗N (Φ⊗ ξ)

because the bidual of an operator T is a weak∗-continuous extension of T . Combining this
identity with the diagrams (2.11), (2.1), and (2.16), we can now verify (2.18):

Θ0( qTξ)Ub0 = Θ0( qTξ)πERQ
∗∗
N (Φ⊗ b0) = πER

qT ∗∗ξ Q
∗∗
N (Φ⊗ b0)

= πERQ
∗∗
N T

∗∗
ξ (Φ⊗ b0) = πERQ

∗∗
N (Φ⊗ ξ) = Uξ,

which completes the proof. �
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