
Avoiding Target Congestion on the Navigation of Robotic
Swarms

Leandro Soriano Marcolino · Yuri Tavares dos Passos · Álvaro Antônio

Fonseca de Souza · Andersoney dos Santos Rodrigues · Luiz Chaimowicz

Received: 24 August 2015 / Accepted: 19 May 2016

Abstract Robotic swarms are decentralized systems

formed by a large number of robots. A common problem

encountered in a swarm is congestion, as a great number

of robots often must move towards the same region.

This happens when robots have a common target, for

example during foraging or waypoint navigation. We

propose three algorithms to alleviate congestion: in the

first, some robots stop moving towards the target for a

random number of iterations; in the second, we divide

the scenario in two regions: one for the robots that

are moving towards the target, and another for the

L. S. Marcolino
Teamcore Laboratory
Computer Science Department
University of Southern California
Los Angeles, CA, USA.
E-mail: sorianom@usc.edu

Y. T. dos Passos
Centro de Ciências Exatas e Tecnológicas
Universidade Federal do Recôncavo da Bahia
Cruz das Almas, BA, Brazil.
E-mail: yuri.passos@ufrb.edu.br

A. A. F. de Souza
VeRLab – Vision and Robotics Laboratory
Computer Science Department
Universidade Federal de Minas Gerais
Belo Horizonte, MG, Brazil.
E-mail: alvaro.souza@dcc.ufmg.br

A. S. Rodrigues
Centro de Ciências Exatas e Tecnológicas
Universidade Federal do Recôncavo da Bahia
Cruz das Almas, BA, Brazil.
E-mail: andersoneyrodrigues@gmail.com

L. Chaimowicz
VeRLab – Vision and Robotics Laboratory
Computer Science Department
Universidade Federal de Minas Gerais
Belo Horizonte, MG, Brazil.
E-mail: chaimo@dcc.ufmg.br

robots that are leaving the target; in the third, we

combine the two previous algorithms. We evaluate our

algorithms in simulation, where we show that all of them

effectively improve navigation. Moreover, we perform an

experimental analysis in the real world with ten robots,

and show that all our approaches improve navigation

with statistical significance.

Keywords Robotic swarms · traffic control · naviga-

tion · distributed coordination

The final publication is available at Springer via http://dx.doi.org/10.1007/s10514-016-9577-x

1 Introduction

Robotic swarms are systems formed by a large number

of relatively simple robots, placed in the same region

and interacting to fulfill a common goal. The inspiration

of robotic swarms arises from insect colonies behavior,
such as ants and bees. In these colonies, individuals

interact using only local communication and there is no

central unit controlling each and every individual. Even

so, they are able to perform complex global behavior

and solve hard problems in the real world.

In an environment where there are multiple robots,

the tendency for a robot to interfere with other robots

execution is greater (Lerman and Galstyan 2002). A

common problem in the navigation of swarms is conges-

tion, which happens when a large number of robots must

move towards the same region simultaneously. For ex-

ample, it is common that robots have a common target,

as in waypoint navigation (Marcolino and Chaimowicz

2008). Even if they have distinct targets, these might
be located close to each other, in the same region.

Besides waypoint navigation, we can also see this

kind of congestion when a swarm of robots is solving a

2 Leandro Soriano Marcolino et al.

foraging problem (Sahin et al. 2008; Sahin 2004) (i.e.,

when robots must move to locations in the environ-

ment to collect items and transport them to a specific

location). The foraging problem has many practical ap-

plications in the real world, such as transportation of

toxic material or debris from landslides.

The congestion problem could be solved by using a

central processing unit to compute the best trajectory

for each robot. However, there is a drawback: the system

becomes dependent on this central unit and the solution

is not scalable to a large number of robots.

We can see many works in the robotics and in the

multi-agent systems literature dealing with traffic con-

trol in a distributed fashion, but they focus mainly

in scenarios where agents navigate in delimited lanes

and meet in the intersections of these lanes (Carlino

et al. 2013; Ikemoto et al. 2004; Ferrati and Pallottino

2013; Hoshino 2011). Here, however, we are dealing

with a problem where robots may arrive from anywhere,
and must go towards a specific target, not simply pass

through an intersection.

There are also many collision avoidance algorithms

(Alonso-Mora et al. 2015; van den Berg et al. 2011;
Franchi et al. 2015; Krontiris and Bekris 2011), but

avoiding collision does not necessarily lead to a better

performance in the common target problem, as the sys-

tem can still become cluttered and inefficient even with

a good collision avoidance algorithm.

In this work we present three fully distributed algo-

rithms for congestion control of a swarm of robots that

move towards a common target. Our first algorithm, orig-

inally proposed in Marcolino and Chaimowicz (2009),

uses a probabilistic finite state machine to coordinate

robot navigation. Robots near the target stop moving

towards their objective for a random number of iter-

ations, in order to help other robots reach the target.

However, although this algorithm alleviates the conges-

tion when robots are reaching the target, robots still

have problems to exit the target area. Therefore, we

propose a novel algorithm that divides the target area

in two regions: one for the robots to move towards the

target, and another for the robots to exit the target area.

If a robot is moving towards the target and finds itself

in the wrong area, it will move towards its appropriate

region. Finally, in our third algorithm we combine the

ideas from the two previous ones, effectively alleviating

the congestion both for robots entering and for robots

exiting the target area.

We evaluate our algorithms in simulation, where we

show that we can improve the time of the executions

in 76%, clearly outperforming the baseline approach of

using only collision avoidance. We also show that ORCA,

a state of the art collision avoidance mechanism (van den

Berg et al. 2011), is unable to handle the common target

problem, as it reaches an equilibrium where the robots

circulate around the target and do not move towards

it. Additionally, we analyze our algorithms with real

robots, and show that all our approaches improve the

navigation with statistical significance for a group of 10

real e-puck robots.

This paper is organized as follows: in the next section

we present relevant related work. In Section 3 we present

our first proposed algorithm, while in Section 4 we ex-

plain our second algorithm, and how both algorithms
can be combined into a single one. We show and discuss

our results in Section 5, where we study simulations and

executions with real robots. Finally, Section 6 presents

our conclusions and possible directions for future work.

2 Related work

We can find related works about traffic control not only
in the robotics literature, but also in multi-agent systems,

and even in the computer graphics literature. Besides,

biological studies also show traffic control in animals

and bacteria swarms. In this section we discuss these in

detail. We will begin by discussing the works in robotics.

The problem of traffic control can be considered

as a resource conflict problem. In Cao et al. (1997),

it is denoted a “resource conflict” when a single and

indivisible resource is requested by various robots. In

the context of this work, the resource in question is

the common target, represented by a small region of

space. A theoretical study of spatial conflicts is presented

in Savchenko and Frazzoli (2005), where a conflict is

defined as an event generated when two robots get closer

than a velocity-dependent safety distance. In their work,

they prove that the time needed to transfer each robot

from its origin to its destination, chosen arbitrarily, takes

Θ(L̄
√
n) time to complete, where n is the number of

robots and L̄ is the average distance between origins

and destinations.

The problem of organizing the traffic of a group of

robots has been studied since the 80s. In Grossman

(1988), an algorithm for traffic control of automated

guided vehicles is presented, but his control is made in

a centralized manner. The works of Kato et al. (1992);

Caloud et al. (1990) treat this problem in a decentral-

ized manner using traffic rules that each robot obeys.

However, they do not consider the specific problem

where every robot must go towards a common target.

In general, these works assume that the robots navigate

in delimited lanes (like streets or roads). These lanes

meet in intersections, where congestion may happen.

The traffic control, normally, is executed only at these

intersections.

Avoiding Target Congestion on the Navigation of Robotic Swarms 3

Although traffic control has been studied for a long

time, the problem of controlling the traffic of a swarm

of robots that navigate towards a common goal has not

been well studied. In the works of Sahin (2004); Sahin

et al. (2008); Barca and Sekercioglu (2013); Brambilla

et al. (2013); Bayındır (2015), which present thorough

reviews about swarm robotics, this problem is not specif-

ically discussed.

Many works in robotics, however, study how to find

efficient paths for a group of robots. For example, Olmi

et al. (2009) develop an algorithm to coordinate prede-

fined paths for a group of robots in industrial environ-

ments, and a central processing unit changes the path

of each robot in case there is a possible collision. In Guo

and Parker (2002), a distributed algorithm is designed

for motion planning for multiple robots, but their sim-

ulation experiments involve at most three robots. The

work of Peasgood et al. (2008) deals with the trajectory

collision problem for several robots, but in a context

where the targets of each robot is different. Their ap-

proach also needs a roadmap of the environment. In

Hoshino (2011), the congestion problem is dealt in a

simplistic scenario: the robots navigate in lanes, and

they are only allowed to move in one direction, without

passing other robots. Ferrati and Pallottino (2013) pro-

pose an algorithm for distributed traffic management of

a group of mobile collaborative vehicles moving within

a shared environment, however they did not treat the

common target problem. Ikemoto et al. (2004) show

a completely distributed algorithm that, based on a

spatial temporal pattern, coordinates the movement of

robots into intersections or junctions. Overall, the works

in robotics focus on the situations where robots navigate

in delimited lanes, or present only results in simulation

environments, or do not show results for a large group
of robots.

Instead of dealing explicitly with traffic control, there

are works that focus on finding more efficient approaches

to collision avoidance than using local repulsion forces. In

Krishna and Hexmoor (2004), an algorithm is proposed

in which robots coordinate their velocities in order to

avoid collisions. The coordination may entail not only

the robots directly involved in the probable collision, but

the robots in the neighborhood as well, which might have

to change their velocities to help the robots involved.

The work presented in Krontiris and Bekris (2011) deals

with the collision resolution problem in a decentralized

fashion, using an extension of the obstacle prevention

policy named Generalized Roundabout Policy (Pallottino

et al. 2007). Franchi et al. (2015) study the problem of

encircling a moving target while guaranteeing collision

avoidance between the robots. Other examples of works

dealing with collision avoidance are Yasuaki and Yoshiki

(2001); Cai et al. (2007); van den Berg et al. (2008,

2011); Alonso-Mora et al. (2015). However, as mentioned,

collision avoidance algorithms may not be sufficient for

preventing congestion situations when a large number of

robots converge to the same region. Hence, even with a

good collision avoidance behavior, the system may still

become cluttered and inefficient.

Traffic control is also an important issue in biology,

when studying animal and bacteria swarms. For example,

Bazazi et al. (2012) show that tadpoles form vortexes

when foraging for food. Shapiro (1988) comments that

the Myxococcus xanthus bacteria constructs spherical

colonies containing millions of individuals, surrounding

a common target in order to feed. Couzin and Franks

(2002) study the behavior of army ants, showing that

they form massive three-lane structures while transport-
ing resources, minimizing traffic congestion.

Concerning robotic swarms, Santos et al. (2014)

study the case where subgroups of a swarm meet during
navigation, and each subgroup must remain segregated

from the others while navigating. The navigation of dif-

ferent groups is also studied by Santos and Chaimowicz

(2011), where a hierarchical approach is used in order

to control each robotic group.

In Ducatelle et al. (2011a), self-organized cooperation

between two different groups is studied, one formed

by wheeled robots and the other by flying robots that

can attach to the ceiling. Using only simulation, it is

shown how this system is able to find efficient paths in

complex environments. Ducatelle et al. (2011b, 2014)
show an algorithm where the swarm members cooperate

to dynamically find efficient paths between two targets.

However, they still face congestion problems near the

common targets when the number of robots is large,

decreasing performance. In a very recent work, Demir

et al. (2015) study how to use Markov chains to control

a swarm to a certain desired spatial distribution, but

such approach does not apply for the common target

problem studied in this paper.

Some works, in the multi-agent systems field, use a

manager agent to administrate the traffic at intersec-

tions where congestion may happen, as in Dresner and

Stone (2005). Other works are dealing with manager free

scenarios; Carlino et al. (2013), for instance, propose the

use of auctions to manage traffic congestion for a large

group of autonomous vehicles at intersections. However,

these methods do not solve the problem discussed in this

paper. In the common target case, robots may arrive

from and depart to any direction. Besides, this target

can be located in any place of an unstructured environ-

ment, not only in fixed locations such as intersections

or junctions.

4 Leandro Soriano Marcolino et al.

We also found related works in computer graphics,

in the research of crowd simulations. For example, in

Treuille et al. (2006), a mechanism is proposed to avoid

congestion among people during the simulations of a big

crowd. The authors propose an approach where agents

plan early to avoid a congestion, enabling smoother

trajectories than using only local repulsion forces. The

method, however, is not completely decentralized, mak-

ing it hard to be implemented for a swarm of robots.

Besides, it focuses on the case where agents move in

opposite directions, not on the case where many robots
try to reach the same target.

As we can see, although there are many works deal-

ing with traffic control and collision avoidance, there
are not so many works dealing directly with the pro-

posed problem, in which many robots converge to a

common target in an unstructured environment, and

must coordinate themselves in a distributed, robust and

fault-tolerant fashion. This problem often happens in

the navigation of swarms, for example, when they are

using waypoints or foraging. In particular, we first no-

ticed this problem during the experiments in Marcolino

and Chaimowicz (2008), and it is also mentioned as a
problem during the navigation of swarms in Ducatelle

et al. (2011b, 2014).

We propose two decentralized coordination mecha-

nisms that prevent congestion for a swarm of robots in
the common target problem, without assuming the use

of delimited lanes nor needing an external infra-structure

to control the traffic. This is the main contribution of

our work. Our first approach, originally introduced in

Marcolino and Chaimowicz (2009), is based on a proba-
bilistic finite state machine (Vidal et al. 2005). In this
paper, firstly we revisit our algorithm, but we present

novel and detailed experiments with a large number of

robots that allow us to further understand and evaluate

the algorithm. We also introduce a novel algorithm that

surpass our original one, based on the creation of two

areas that alleviate the bottleneck when robots are leav-

ing the target region. Finally, we study the combination

of both approaches, and present an extensive experimen-

tation in the real world, with ten e-puck robots.

We execute many simulations in order to study the

impact of the algorithms’ parameters. There is a large

body of work that presents microscopical and/or macro-

scopical models of a swarm (Lerman and Galstyan 2002;

Martinoli et al. 2004; Correll and Martinoli 2006), which

can be used to find optimal algorithm parameters an-

alytically; or at least in a much faster fashion than

performing simulations. However, the assumptions that

are common in such models generally do not hold when

the system is cluttered (Martinoli et al. 2004); thus

NORMAL

LOCKED

WAITING

IMPATIENT

ρ

1-ρ

Inside danger region and

has neighbor inside α-area

Outside danger region and waiting

or locked neighbor inside α-area
No waiting or locked

neighbor inside α-area

Reached target

Inside danger region

Fig. 1: Probabilistic finite state machine of the PCC

algorithm.

modeling a swarm in the common target scenario is still

an open problem.

3 Probabilistic Congestion Control

Our first solution for this problem is called Probabilistic

Congestion Control Algorithm (PCC). The objective

of the algorithm is to avoid that all robots be “selfish”,

simultaneously trying to move towards the target. In

order to achieve this, each robot uses a probabilistic
state machine to coordinate within a region around the

common target. This solution was first proposed in Mar-

colino and Chaimowicz (2009), and here we refine the

algorithm and perform a deeper and thorough analysis.

The basic idea is that some of the robots choose to

wait before going to the target, in order to minimize

the chance of robots interfering with the other members

of the swarm. Therefore, a smaller number of robots

try to reach the target at the same time, decreasing
the congestion problem. Note that we do not prevent

that two or more robots head towards the target at

the same time, we only want to reduce the number

of robots that try to go simultaneously. With a small

number of robots at the target region, collision avoidance

techniques should work well.

The solution is modeled using a Probabilistic Finite

State Machine (Vidal et al. 2005), in which some edges

are annotated with probabilities that define which tran-

sition will be taken. The state machine, presented in

Figure 1, shows the possible behaviors for each robot.

There are four different states: normal, waiting, locked

and impatient. From the waiting state, the robot can

switch to the impatient state with probability ρ > 0 or

stay in the same state with probability 1− ρ.

In order to describe these behaviors, first we have to

make a few definitions. We start by defining two regions

around the target: a danger region, with a large radius,

and a free region, with a small radius (Figure 2). The

Avoiding Target Congestion on the Navigation of Robotic Swarms 5

Xσ
Free

γ

Danger

Fig. 2: Free and danger regions. “X” indicates the posi-

tion of the target.

general idea is that the robots that reach the danger

region must coordinate so that only few of them enter

the free region at the same time. Upon entering the
free region, they should move straight to the target,

otherwise they could obstruct other robots, as they

would be too close to the target to wait. Therefore, we

define the free region as a circular region with radius

σ around the target. Around this region, we define the

danger region as a ring-shaped region with inner radius

σ and outer radius γ.

For each robot, it is also necessary to define which

other robots will be considered neighbors and hence

influence its navigation to the target. Therefore, we

define a sub-area in the robot’s sensor region as an α-

area. Considering a coordinate system centered at the
robot’s position with the y axis pointing towards the

target, the α-area will be defined by the circular sector

[−α, α] centered in y with radius δ (see Figure 3). The

importance of defining an α-area will be explained later

in this section.

We consider that a robot detects the presence of

another (and avoid collisions) when the distance between

them is lower than δ. Every time a robot, i, detects

the presence of another, j, it sends a message saying

its target and its current state. In order to decrease

the number of messages, each robot can send only one

message at every ε iterations. Moreover, a robot will

only send a message if it is inside the danger region or

if it is in the locked state, which will be described later.

Finally, we introduce our algorithm, by describing

the behaviors of each state in the probabilistic finite state

machine. A formal description of the algorithm is shown

in Algorithm 1. It works as follows: a normal robot

j moves in the direction of the target while avoiding

x

y




-area

Target

Rob
ot



Fig. 3: Sensing area (α-area) considered by a robot to

change its state.

collisions. It can follow a simple potential field controller,

such as:

uj = a · tj − b ·
∑
i∈Nj

r(i, j), (1)

where uj is the control input for robot j, a and b are

positive constants, tj is a function that drives the robot

towards the target, Nj is the set of robots in the neigh-

borhood of j and r(i, j) is a repulsive function that

drives robot j away of its neighbor i. The proposed

algorithm does not depend on which specific functions

tj and r(i, j) are used.

When a normal robot j is in the danger region, and

detects another robot i, it will check if that robot is

within its α-area and if they have the same target. The

constant α used in the area verification will be called

αw. If both conditions are true, j will change its state

to waiting. This situation can be seen in Figure 4 (a). It

is important to define an α-area, instead of considering

the full sensing range of the robot, in order to avoid that

robots stop moving towards the target because of other

robots behind them, in a situation where they could

easily reach the target with a low risk of congestion.

A waiting robot will try to remain stationary in

the point where it changed its state while at the same

time avoiding collisions. Collision avoidance must have

a higher priority than staying at the same place where

it changed state; we only want to prevent that the robot

changes too much its position due to the influence of

other robots. Therefore, its control equation can be given

by:

uj = 0 · tj − b1 ·
∑
i∈Nj

r(i, j) + b2 ·
wj − qj

||wj − qj ||
, (2)

6 Leandro Soriano Marcolino et al.

/* Control equations */

if state = normal or impatient then
// Move towards target, while avoiding

collisions

uj = a · tj − b ·
∑

i∈Nj
r(i, j);

end
if state = waiting or locked then

// Try to remain stationary, while avoiding

collisions

uj = −b1 ·
∑

i∈Nj
r(i, j) + b2 · wj−qj

||wj−qj||
end
/* State changes */

if state = normal then
if inside danger region and has neighbor in
αw-area then

state := waiting;
end
if outside danger region and has neighbor i in
αl-area then

if statei = waiting or locked then
state := locked;

end

end

end
if state = waiting then

if mod(iteration,η) = 0 and rand() < ρ then
// Changes state after η iterations with

probability ρ

state := impatient;
end

end
if state = locked then

if inside danger region then
state := waiting;

else if there is no neighbor i in αl-area where
statei = waiting or locked then

state := normal;

end
if state = impatient then

if disttarget < ε then
state := normal;
target := next target; // This robot will

not be considered by the other robots

anymore - except for collision

avoidance

end

end

Algorithm 1: PCC algorithm.

where b1 > b2 are constants, qj is the current position of

robot j and wj is the point where the robot j changed

its state to waiting. We kept the term 0 · tj just to

emphasize that the function driving the robot towards

the target will be ignored.

At every η iterations, a waiting robot will check if

it can change its state. As mentioned, the robot will

change its state to impatient with probability ρ and will

keep its state as waiting with probability 1− ρ.

An impatient robot moves in the direction of the

target, in a similar way as a normal robot. However, an

impatient robot will not stop anymore, i.e., it cannot

change its state until it reaches the target. Only after the

robot reaches the target, it will change its state back to

normal (and it will move towards its next destination).

Therefore, by following this algorithm, we are able to

make the robots stop and wait around the borderline of

the danger region, decreasing the congestion. However,

the robots that are outside the danger region would

still try to navigate towards the target, and, due to the

repulsion forces, would push the waiting robots towards

the target, causing a congestion again. It is necessary to

have a mechanism to force the robots outside the danger

region to also wait before they can enter in the region.

In order to solve this problem, a normal robot can

also change its state to locked. This transition will hap-

pen when the robot is outside the danger region and

detects a waiting or a locked robot with the same target
as its own. The robot still uses the α-area to evaluate

which robots it should consider to change its behavior.

This α-area does not need to be the same as the one in

the last case (when a normal robot changes to waiting),

so we will call its defining constant as αl. In this case, we

recommend the α-area to be narrower, i.e., a smaller α
can be used to check whether a certain neighbor should

be considered to change the robot’s state. The reason is

that in this case the robot only should stop moving if a

robot immediately in front of it is waiting or locked.

In the locked state, the robot behaves in the same
way as a waiting robot: it will not move in the direction

of the target. This situation can be seen in Figure 4 (b)

and (c), where robot k stops moving in the direction of

the target because robot j is in the waiting state in the

α-area of k. The transition from the locked state does

not depend on probabilities. A locked robot will switch

back to normal when there are no more waiting or

locked robots in its α-area. Here, we implement a slight

variation over the algorithm proposed in Marcolino and

Chaimowicz (2009): if a locked robot is pushed into the

danger region by the other robots, it changes to the

waiting state. This modification gives a slightly better

performance for large groups of robots.

We can see how the system proceeds in Figure 4 (d).

After some iterations, the robot j resumes its movement

towards the target in the impatient state. Moreover,

robot k changes its state to normal and also starts to

move in the direction of the target. We can see in the

figure that other robots change their state to waiting

upon reaching the danger region and, therefore, will

not impose difficulties for robot j to reach the target,

enabling a smoother navigation.

Avoiding Target Congestion on the Navigation of Robotic Swarms 7

X

Free

Danger

i
j

k

(a)

X

Free

Danger

i
j

k

(b)

X

Free

Danger

i
j

k

(c)

X

Free

Danger

i

j

k

(d)

Fig. 4: Steps of the execution of the proposed coordina-

tion algorithm. Green (dark) robots are in the waiting or

locked states. The arrows indicate message transmission.

It is important to mention that the proposed coordi-

nation algorithm does not depend on the knowledge of

the global position of the robots. A robot only needs to

know the direction and the distance to its target in order

to detect whether it is in the danger region or in the free

region, and must be able to locally sense if a neighbor

is in its α-area. As this algorithm is an improvement on

methods where robots must move towards a target, they

would already have an estimate of the direction and

distance to the target in order to be able to converge

to it. It is also necessary for the waiting robots to try
to stay around the same area where they stopped. This

can be achieved with a relative positioning system or

even approximate methods could be used. We only want

to avoid that the waiting robots are pushed towards

different areas of the scenario due to the other robots,

but it is not strictly necessary that they stay in the

same place. Therefore, the coordination algorithm does

not impose additional requirements to the system be-

sides the ability to locally sense and communicate with

neighbors.

The communication requirements of the algorithm

can also be relaxed. We can implement this algorithm

using only two kinds of messages: warning and stop

messages. Messages of the type warning are sent by

normal robots, to warn other robots in the danger -

region that they might have to change their state to

waiting ; while messages of the type stop are sent by

waiting and locked robots, to tell other robots outside

the danger region that they might have to change their

state to locked. This facilitates the implementation when

using alternative ways of communication (such as light)

instead of network packets, as only a binary information
is necessary for the execution, instead of communicating

all the three possible states. It would still be necessary

to find a way to let the robots know the target of their

neighbors, or the robots could assume that all robots

have the same target (this variant, however, was not
tested in our implementation).

3.1 Analysis

In this section we are going to analyze some aspects of

the proposed algorithm. First, we are going to prove

two important characteristics: (i) the system is effective

in preventing that many robots go to the target at the

same time interval; (ii) all robots eventually go to the

target.

Before developing the proofs, we need to find an

appropriate model for the system. The situation in which

a waiting robot might change its state to impatient with

a probability ρ > 0 or remain in the waiting state

with a probability 1− ρ can be considered a Bernoulli

8 Leandro Soriano Marcolino et al.

trial. Therefore, the number of robots that will change

their state to impatient in a set of n waiting robots

can be modeled as a binomial distribution. Let X be a

random variable that defines the number of robots that

change their state to impatient and Pr(X) be the mass

distribution function of the binomial distribution with

n trials and probability ρ.

The robots are not necessarily synchronized, but the

interval between attempts to change state is approxi-

mately equal for all robots. Hence, we will consider that,

in a given time interval, all waiting robots will make

exactly one attempt to change state. This time interval

will be called an iteration.

Proposition 1 Given a set of n waiting robots, the
probability that r robots go to the target at the same

iteration converges to zero as r gets higher.

Proof The probability that the number of robots that

will change their state to impatient in a given iteration is

higher than r is given by 1−Pr(X ≤ r). The second term

is the cumulative distribution function of the binomial,

that tends to 1 as r increases. Hence, this clearly tends

to zero. ut

Therefore, we showed that the system is effective

in preventing that many robots go to the target at the

same time interval. Now we are going to show that all

robots eventually go to the target.

Proposition 2 Given a set of n waiting robots, the

probability that all robots remain in the waiting state

converges to zero as the number of iterations gets higher.

Proof The probability that all robots will remain in the
waiting state is given by Pr(X = 0). After m iterations,

the probability that all robots will remain in the waiting

state is given by Pr(X = 0)m, which clearly tends to

zero as m gets higher since Pr(X = 0) < 1. ut

We did not consider locked robots in our analysis

because they will eventually move after waiting or locked

robots in their α-area move. We can model this situation

as a directed graph, showing the dependencies between

the robots. A robot can depend on robots in front of it

to move, but cannot depend on robots behind it (given

that αl < 90◦). Besides, all the α-areas of the robots are

directed towards the same target, avoiding situations

where an indirect cycle would be formed. As we can

see, there is no cycle in the dependency graph, thus no

deadlock situations will happen.

It is also important to discuss some aspects concern-

ing the selection of the parameters. One of the most

important parameters in the definition of the system

behavior is ρ, the probability that a robot will leave the

waiting state. If it is low, the system will be “conserva-

tive” and robots might remain stationary longer than

necessary. If it is high, the system will be “aggressive”

and congestion situations might happen. Between these

two extremes, there is a value that will minimize the time

needed for task execution. This point can be estimated

by an experimental evaluation. As a general guideline,

if the designer expects a large number of robots trying

to reach a certain target, it is better to use a smaller

value of ρ. If the designer expects a small number of

robots trying to reach a certain target, it is better to
use a larger value of ρ.

As for the size of the free region, if it is small we might

have a lot of waiting robots too near the target, which

makes it more difficult for other robots to reach and leave

the target region. If it is large compared to the size of

the danger region, the area in which robots might change

their state to waiting will be small and congestion might

happen. A similar analysis can be made for the size of

the danger region. If it is large, robots that are far away

from the target will unnecessarily cease their attempt

to reach it. If it is small we will not have enough waiting

robots to decrease the congestion problem, and they

might stop too near the target, making the movement

of normal and impatient robots harder. Hence, it is

necessary to find a good compromise point. In Section

5 we perform an experimental study on the impact of

all these parameters.

This algorithm focuses on avoiding congestion when

entering the target. However, we noticed that there is
still a problem when the robots have to exit the target

and move towards their next objective. The large number

of robots surrounding the danger region makes it hard

for the robots to exit the area, and they end up causing

a congestion inside the danger region. Therefore, we

propose a new algorithm where the robots leave open

areas around the target to facilitate the exit of their

teammates from the target area. We are going to explain

this algorithm in the next section.

4 Entrance and Exit Regions

4.1 Basic Algorithm

Our next algorithm can either work as a complement of

the previous one, or by itself, as a new approach. First,

we are going to explain the part that is independent of

the PCC algorithm, and later, in the next section, how

the PCC algorithm can be extended. We will call our

basic algorithm as Entrance and Exit Regions (EE).

Our objective is to decrease the congestion not only

among the robots arriving in the target, but also exiting

Avoiding Target Congestion on the Navigation of Robotic Swarms 9

ω

ω

β β

ml

γ

D

Fig. 5: Division of the region around the target in entry

(white) and exit (shaded) areas.

from it. The main idea of the algorithm is to divide the

area around the target in entry and exit regions.

Hence, a circular area centered in the target is di-

vided in four circular sectors: two defined by angle ω

and two by angle β. We also define a circular area with

radius γ around the target, as shown in Figure 5. Note

in the figure that the circle is divided by two lines: l,

and m, as we will refer to them later in the text.

A formal description of the algorithm is shown in

Algorithm 2. The algorithm affects the behavior of the
robots when they are in the ring-shaped region defined

by the inner radius γ and outer radius D. The area

of the sectors defined by angle ω will be used as an

entrance to the target region, so it will be called entry

region. The area of the sectors corresponding to angle β

will be used as an exit of the target region, and will be

the exit region. We expect that the robots will be able

to enter and exit the target region without congestion by

using these different areas. The robots within a distance

γ from the target will behave normally, i.e., they will

either move towards the target or exit the target area

towards their next destination.

When a robot is moving towards the target, and is

within a distance D from it, the robot verifies whether

it is outside the entry region. This test can be executed

considering the target’s position and the current robot’s

position, under a common global frame.

We call the target coordinates as (xG, yG), and

the current robot’s position as (x, y). We also define

φ = 90◦ − ω/2, and ψ = 90◦ + ω/2, as illustrated in

Figure 6. Therefore, if the distance between the robot

and the target is higher than γ, the following condition

if disttarget < D then
if disttarget > γ and not in entry region then

// Tested using Equation 3

tj := vector towards (xW , yW); // Equations

5, 6

uj = a · tj − b ·
∑

i∈Nj
r(i, j); // Go towards

entry region, while avoiding

collisions

else
tj := vector towards target;
if in entry region and disttarget > γ and not
reached target then

uj =
a·tj−b·

∑
i∈N1

j
r(i, j)− b

2
·
∑

i∈N2
j
r(i, j);

// Forces pushing the robot away

of the entry region are divided by

half. N2
j is the set of neighbors

whose repulsive force pushes the

robot away of the entry region,

and N1
j is the rest of the

neighbors.

else
if reached target then

uj = a · tj − b
2
·
∑

i∈Nj
r(i, j);

// Repulsive forces are divided

by half

else
uj = a · tj − b ·

∑
i∈Nj

r(i, j); // Go

towards target, while avoiding

collisions

end

end

end

else
tj := vector towards target;
uj = a · tj − b ·

∑
i∈Nj

r(i, j); // Go towards

target, while avoiding collisions

end

Algorithm 2: EE algorithm.

determines whether the robot is inside the entry region:
(y − yG − tan(φ)(x− xG) ≥ 0)∧
(y − yG − tan(ψ)(x− xG) ≥ 0) if y > yG

(y − yG − tan(φ)(x− xG) ≤ 0)∧
(y − yG − tan(ψ)(x− xG) ≤ 0) if y ≤ yG

(3)

If the robot is not in the entry region, it is compelled

to move to the nearest point in the border of the en-

try region. The relative distance d between its current

position and the nearest point is given by:

d =
y − tan(θ)(x− xG)− yG√

(tan2(θ) + 1)
, (4)

where:

θ =


φ if ((y > yG) ∧ (x > xG))∨

((y ≤ yG) ∧ (x ≤ xG))

ψ otherwise

10 Leandro Soriano Marcolino et al.

l m

.

d
.

d ψ
ϕψ

ϕ

ϕψ

Fig. 6: Nearest distance between a point in the exit

region and the entry region boundary.

Equation 4 can return positive or negative values,

depending on the robot’s position in relation to the

nearest border. That is, a negative relative distance will

make the robot move towards the left, while a positive

relative distance will make the robot move towards the

right.

As illustrated in Figure 6, the point (xW , yW) to

which the robot must move is given by:

xW = x+ d cos(ϑ) (5)

yW = yG + tan(θ)(xW − xG), (6)

where:

ϑ =


90◦ + φ if ((y > yG) ∧ (x > xG))∨

((y ≤ yG) ∧ (x ≤ xG))

ψ − 90◦ otherwise

Similarly as in the previous algorithm, each robot

can follow a simple potential field controller, such as the

one defined in Equation 1. Hence, the function tj will

either drive the robot towards the target (if the robot

is in the entry region) or drive the robot towards the

point (xW , yW) (if a robot that was going towards the

target happened to be in the exit region). As before, the

proposed algorithm does not depend on which specific

functions tj and r(i, j) are used.

As expected from Equation 1, in order to avoid

collisions, the robots must also react to repulsive forces

relative to their neighbors. If a robot is inside the entry

region, the repulsive forces applied to it are divided by

half if they push the robot outside the entry region. This

reduction happens by verifying if the direction of the

repulsive force vector crosses the nearest delimiting line,

from inside of the entry region to outside (Figure 7).

This reduction does not prevent robots from exiting the

entry region, but decreases the number of robots that

are pushed away of it.

Finally, after a robot arrives at the target, the repul-

sive forces induced by other robots are also divided by

half. This is done to facilitate the exit as the robot may

come across others arriving at the target.

x = xG

y = yG

Fig. 7: Forces that push the robots away of the entry

region are divided by half.

4.2 Extending PCC

Now we are going to explain how the PCC algorithm

can work together with the EE algorithm. This version,

with both algorithms running at the same time, will be

called PCC-EE.

We still define the danger and the free regions of the

PCC algorithm, as well as the exit and entry regions

of the EE algorithm. The circular region of radius γ of

the EE algorithm corresponds to the danger region (of

same radius) of the PCC algorithm.

if disttarget < D and disttarget > γ and not in entry
region then // tested using Equation 3

tj := vector towards (xW , yW); // Equations 5,

6

uj = a · tj − b ·
∑

i∈Nj
r(i, j); // Go towards

entry region, while avoiding collisions

else
run PCC; // The robot follows the PCC

algorithm, but using the same rules for

the repulsive forces as Algorithm 2: (i)

forces that push the robot away of the

entry region are divided by half; (ii)

all repulsive forces suffered by robots

exiting the target region are divided by

half.

end

Algorithm 3: PCC-EE algorithm.

The formal description of PCC-EE can be seen in

Algorithm 3. Robots follow both algorithms in the entry

region, but only the EE algorithm in the exit region.

Therefore, while they are moving towards the target

Avoiding Target Congestion on the Navigation of Robotic Swarms 11

Fig. 8: E-puck robots used in the experiments.

they must also verify whether they are in the entry

region. If they are outside, they will move towards the

nearest point in the entry region, following Equations
5, 6. Inside the entry region, the robots also follow the

PCC algorithm. Therefore, they can change their state

to waiting in the danger region, or to locked if there is

a robot in the waiting or locked state in front of them.

We expect that the PCC-EE algorithm will be the

best one in alleviating congestion, as it deals with the

congestion caused by robots arriving in the target region,

by using the PCC algorithm, and with the robots exiting

the target region, by using the EE algorithm. In the

next section we evaluate how these algorithms perform

when a large number of robots must arrive in the same

target, both in simulation and in real experiments.

5 Results and Discussion

In order to evaluate our algorithms, we executed simula-
tions and experiments with real robots. The proposed al-

gorithms were tested in simulation using the Stage robot

simulator (Gerkey et al. 2003). The real experiments

were performed using ten e-puck robots. The e-puck is

a small-sized (7cm diameter) differential drive robot

that is very suitable for swarm experimentation (Cianci
et al. 2007). Each robot is equipped with a ring of 8 IR

sensors that allows proximity sensing and a group of

colored LEDs to indicate robot status. Local processing

is performed by a dsPIC microprocessor and a blue-

tooth wireless interface allows remote control. Figure

8 shows the robots used in our experiments. Both in

the simulations and in the real experiments, we consider

non-holonomic robots using control equations based on

Luca and Oriolo (1994). Also, in our implementation, we

considered repulsive forces generated by the following

equation (Siegwart and Nourbakhsh 2004):

F =

−K ×
(

1

d
− 1

I

)(
o− p

d3

)
if d < I

0 otherwise

where K > 0 is a constant, p = [x, y]T the current

robot’s position, o = [xo, yo]T the neighbor’s position,

d = ||o − p|| the euclidean distance between o and p,

and I the influence radius, i.e., the maximum distance

that a robot can detect its neighbor.

Parameter Safe Unsafe
Neighbor distance 3.9 2.4

Maximum neighbors 60 23
Time horizon 2 2
Robot radius 1.8 1.8

Maximum speed 2.5 2.5

Table 1: Parameters used in the ORCA executions.

5.1 Collision Avoidance

Before introducing our results, we first study the behav-

ior of ORCA (Optimal Reciprocal Collision Avoidance),
a state of the art collision avoidance algorithm (van den

Berg et al. 2011). We used the open source library RVO2

in our implementation (van den Berg et al. 2015). The

objective of this study is to motivate the need for our

algorithms, and show that local repulsion forces is a

reasonable baseline for comparison.

The basic idea of ORCA is to define the collision

avoidance problem as a linear optimization problem. By
inferring the velocities of the neighbors, each robot is

able to solve a linear program in order to calculate its

own velocity, guaranteeing a collision-free navigation

(assuming that all robots are also doing the same).

Unfortunately, ORCA is not able to perform well

in the common target problem. We tested two different
parametrizations, shown in Table 1. The description of

these parameters are available in the documentation

of the RVO2 library. The “safe” parametrization allows

the robots to properly avoid collisions, but the system

reaches an equilibrium state where no robot is able to
converge to the target. The “unsafe” parametrization

has many collisions, but all robots are able to reach

the target. We parametrized for 20 robots. Note that

although ORCA theoretically guarantees an execution

free of collisions, in practice we still have collisions in our

executions, due to our parametrization. However, even

with a parametrization that still has a few collisions

(“safe”), the system was already not able to converge.

For instance, in one of our executions we found that

in the unsafe case, all robots were able to reach the

target after 5742 iterations, with 12 collisions. In the

safe case, all robots were still not able to reach the

target after 696817 iterations, with no collisions. For

comparison, using only local repulsion forces all robots

are able to reach the target with only 2472 iterations,

and no collisions.

In order to better understand ORCA’s behavior, we

show in Figure 9 screenshots of one execution with 40

robots, in the safe case (red robots are moving towards

the target, while blue robots already reached the target).

Figure 9 (a) shows the initial position (the target is in

the center of the scenario). The robots move towards the

12 Leandro Soriano Marcolino et al.

target (Figure 9 (b)). We can see that some robots form

a circle around the target, while others move towards

the target, inside the circle. The robots inside the circle

are able to eventually reach the target and move towards

their next goal (Figure 9 (c) and (d)). However, the other

robots maintain a circular motion around the target area,

and no robot moves towards the target anymore (Figure

9 (e) and (f)). Besides, we found that even in the unsafe

case, most of the executions were not successful with 40

robots, due to a high number of collisions between the

robots.
We explain briefly why ORCA does not work well

in the common target problem. In Figure 10 we show a

diagram with 6 robots, represented by the circles. The

red (continuous) arrows show the robots desired veloci-

ties (towards the target). We represent by the parabolic

region the set of velocity vectors that will be avoided by

the robots in order to avoid collisions, according to the

ORCA algorithm. Hence, the resulting velocity vector

will be perpendicular to the desired velocity, for each

robot. As this process continues at each iteration, all

robots will execute a circular motion around the target,

instead of moving towards the target.

As we can see, although ORCA is a state of the art

collision avoidance algorithm, it is not suitable for the

common target problem. Hence, in our next experiments,

we will compare our algorithms against executions using

only local repulsion forces.

We also tested using ORCA with our algorithms, in

order to avoid collisions while the robots run our coor-

dination methodologies (instead of using local repulsion

forces to avoid collisions in our algorithms). However,

we found that all robots are still not able to converge to
the target. Hence, we will use local repulsion forces to

avoid collisions when running our algorithms. For the

interested readers, we show in Appendix A a screenshot

of the PCC-EE algorithm with ORCA.

5.2 Simulations

We considered scenarios where the robots are initially in

random positions, but distant from the danger region.

After reaching the common target, the robots will move

towards a next target, that will be either to the left or

to the right of the common one. This decision is taken

based on a uniform probability, so we can expect that

about half of the robots go to the left, and half to the

right. The new targets are aligned with the common

one, but far away in the x axis. In Table 2 we show all

the parameters of the simulations. Besides, we always

use a normalized force towards the target, with norm

equal to 2.5. The repulsion forces are proportional to

the relative distances, and multiplied by 0.5.

Parameter Meaning Value

I Influence Radius 2m

— Communication Radius 3m

γ Radius of danger region 3.5m

σ Radius of free region 1.5m

D
Radius of region where EE is
applied

10m

ω Angle of entry region 120◦

αw Angle of α-area for waiting robot 115◦

αl Angle of α-area for locked robot 45◦

δ Radius of α-area 3m

ε
Number of cycles before sending a
message

25

η
Number of cycles for testing if a
waiting robot will change state

40

Table 2: Parameters used in the simulations.

Before presenting our experimental analysis, we will

show execution screenshots of all algorithms, with 140

robots. We first show, in Figure 11, an execution without

using any coordination algorithm, only potential fields.

Robots that are going towards the target are shown

in red, robots that reached the target in yellow and

robots that completed the execution (i.e., are further

than 10m from the target) in black. In the beginning of

the execution, the robots are initially located encircling

the danger region, as shown in Figure 11 (a). As we can

see from Figure 11 (a) to (f), the robots surround the

common target but the execution is very inefficient, as

they compete to reach the target and are repelled by

their repulsive forces. Moreover, it is hard for robots

that already arrived in the target to exit the area.

In Figure 12, we present an execution of the PCC

algorithm. Robots in normal, waiting, locked, and im-

patient states are represented by the colors red, green,

cyan, and blue, respectively. Figure 12 (b) shows when

the first robots enter the waiting state. Soon the robots

behind them change to locked, and also stop moving

towards the target, while one robot becomes impatient

(Figure 12 (c)). In Figure 12 (d), we can see that some

robots are able to reach the target, while more robots

change to impatient. However, it is hard for the robots

to leave the area of the target; we can see in Figure 12

(e) that many impatient robots end up accumulating

in the danger region. Eventually the robots are able to

reach the target, and move to the next one (Figure 12

(f)).

Avoiding Target Congestion on the Navigation of Robotic Swarms 13

(a) 0s. Initial position. (b) 5min 28s. Some robots approach the
target area, while others start forming
a circle around the target.

(c) 10min 57s. The robots in the center
of the circle are able to reach the target
eventually. We see one of them leaving
the region in the right hand side.

(d) 16min 26s. More robots are able to
leave the target region, and the center
becomes less crowded.

(e) 21min 56s. After the center is empty,
the other robots still circulate around
the target.

(f) 27min 25s. Robots keep circulating
around the target instead of converging
to it.

Fig. 9: Execution screenshots of the ORCA algorithm (video available at https://youtu.be/gDXrHgrb7q4).

Fig. 10: ORCA reaches an equilibrium state in the com-

mon target problem.

We now show screenshots of the EE algorithm (Fig-

ure 13). As we can see, the robots quickly open the exit

region (Figure 13 (b)), and the first robots are able to

reach the target (Figure 13 (c)). The robots can easily

exit the area (Figure 13 (d), (e)), and soon there are

only a few robots left (Figure 13 (f)).

Finally, Figure 14 shows an execution of the PCC-EE

algorithm. As before, robots in normal, waiting, locked,

and impatient states are represented by the colors red,

green, cyan, and blue, respectively. In Figure 14 (a), we

have the beginning of the execution. Some iterations

later, as we see in Figure 14 (b), the entry and exit

regions are starting to get formed, since robots move

away of the east and west areas and concentrate in

the north and south areas. At the same time, we can

notice that the robots in the danger region change to the

waiting state, and the ones outside the danger region

to locked. In Figure 14 (c), we can see that the division

in entry and exit regions gets more pronounced, while

some robots could already reach the target and are now

trying to exit the area around it. As we can see in Figure

14 Leandro Soriano Marcolino et al.

(a) 0s. Beginning of the execution. (b) 12s. Robots simultaneously try to
reach the target, forming a circular
shape.

(c) 28s. Shape gets more compact, but
still no robot is able to exit.

(d) 9min 59s. After many iterations,
robots can finally exit.

(e) 13min 34s. Other robots still get
stuck in the central area.

(f) 1h 3min 19s. Towards the end,
robots are still competing for the cen-
ter.

Fig. 11: Execution screenshots without any coordination algorithm (video available at

https://youtu.be/4tE4aka24QE).

14 (d), (e), they can easily exit the area and soon we

reach the situation in Figure 14 (f), where there are only

a few robots left.

We now present our experimental analysis. We mea-

sure the number of iterations needed for the last robot

to go to the target and reach at least D meters away

from it. All simulations were executed 40 times, and we

calculated the mean and the confidence interval of the

results, with p-value equals to 0.01 (shown by the error

bars in the graphs, unless otherwise noted).

We performed an extensive experimental study of

the impact of some of the algorithms’ parameters, which

we will present later in this section. First, we present the

performance of the proposed algorithms as the number

of robots increase (measured in terms of number of iter-

ations to exit the target area, as mentioned). We used

ρ = 0.035 in PCC, the best parameter found for 100

robots. For the PCC-EE algorithm, we used ρ = 0.15,

again the best found for 100 robots. We can see the

results in Figure 15. As can be observed, all algorithms

are significantly better than an approach without coor-

dination (labeled as “NoCoord”), after a certain number

of robots. For 140 robots, the PCC algorithm had an im-

provement of about 40%, while the EE and the PCC-EE

could reach an improvement of about 76%. We can also

note that both the approach without any coordination

and the PCC algorithm tended to increase exponentially

as the number of robots increase, while the EE (and the

PCC-EE) increase in a more linear fashion.

As can be seen, the performance of the PCC-EE and

the EE algorithm was very similar, but the PCC-EE

seems to get better than the EE as the number of robots

increase. In fact, if we use the best ρ value found for 140

robots (ρ = 0.08, as we will show later), the PCC-EE

performs about 7% better than the EE algorithm, with

statistical significance (p-value equals to 9.349× 10−7).

Avoiding Target Congestion on the Navigation of Robotic Swarms 15

(a) 0s. Beginning of the execution. (b) 5s. Some robots change to waiting. (c) 10s. Robots around danger region
change to locked, while one robot be-
comes impatient.

(d) 36s. More robots become impatient,
while a few reach the target.

(e) 5min 57s. Robots have difficulty to
exit the target region, so the area still
gets cluttered.

(f) 34min 19s. Later execution, after
most of the robots could reach the tar-
get.

Fig. 12: Execution screenshots of the PCC algorithm (video available at https://youtu.be/wutQn7laEOU).

Figure 16 shows the number of messages sent during

the execution of all algorithms. The number of messages

of the PCC and the PCC-EE algorithm seems to increase

in a quadratic way, as the number of robots increase.

The best quadratic model found for the curves was y =

0.96635x2+9.11628x+503.93571 for the PCC algorithm,

and y = 0.3337x2 + 8.6183x− 19.3714 for the PCC-EE

algorithm. Both fittings have an adjusted coefficient

of determination (adjusted R2) of 0.9978 and 0.9995,

respectively. For the PCC algorithm, the best linear

model was y = 163.73x−4134.54, while for the PCC-EE

was y = 62.013x − 1621.214. This time, the adjusted

coefficient of determination (R2) of the curves was 0.9501

and 0.9593, respectively. Even though the best model
seems to be a quadratic, we can see that the quadratic

term is quite small. Therefore, these algorithms should

scale well. As in the PCC-EE algorithm the robots can

exchange messages only inside the entry region, the

number of messages was much lower than in the PCC.

The EE algorithm does not require message exchange

during its execution. So, it is equivalent to the approach

without any coordination in terms of the number of

messages, but it is almost as efficient as the PCC-EE,

and much more efficient than the PCC. Therefore, the

EE algorithm is highly efficient and scalable. In order

to verify that the performance improvement of the EE

algorithm is caused mainly by a faster exit of the robots

in the target area, we calculated the mean and the

standard deviation of the number of iterations each

robot takes to reach a distance D for one execution,

after arriving at the target. The result can be seen in

Figure 17, where this time the bars show the standard

deviation of the results. As can be observed, the robots
in the EE algorithm could leave faster the target region.

The previous results were obtained after performing

experiments to study the impact of the algorithms’ pa-

rameters. We present now our results involving ρ in the

PCC and PCC-EE algorithm. This experimentation con-

16 Leandro Soriano Marcolino et al.

(a) 0s. Beginning of the execution. (b) 13s. Formation of entry and exit
regions.

(c) 35s. A few robots reach the target.

(d) 1min 25s. Robots can easily exit
the target area.

(e) 4min 09s. Robots keep exiting easily. (f) 17min 31s. Later execution, only a
few robots are left.

Fig. 13: Execution screenshots of the EE algorithm (video available at https://youtu.be/jte3NRS9pQg).

sists in measuring the number of iterations to complete
execution for different ρ values.

We can see the result for the PCC algorithm in

Figure 18. As expected, there is a local minimum in

the graph, and either a bigger or a smaller ρ leads to a

worse performance.

We executed the same experiment to determine the

optimal value of ρ in the PCC-EE algorithm. This time,

we also studied the case with 140 robots, in order to

more clearly identify if the PCC-EE could overcome

the EE algorithm (as mentioned earlier). The result
can be seen in Figure 19. As we can see, ρ has a lower

influence in the algorithm’s performance than in the

PCC case. Even with ρ = 1, the robots present a very

good performance, and the presence of a local minimum

is not as clear as in the last case. We can show, however,

that ρ = 0.15 for 100 robots is about 6% better than

ρ = 1 with p-value equals to 0.0002235.

We also studied the impact of the size of the dan-

ger region on the PCC and the PCC-EE algorithms,

which are shown in Figures 20 (a) and (b), respectively.
For the PCC algorithm, a radius (γ) of size 4 is 13%,

4% and 10% better than a radius of size 2, for 80,

100 and 120 robots, respectively. Two of these results
are statistically significant, with the following p-values:

4.334× 10−6, 0.2399, 8.461× 10−4, respectively. For the

PCC-EE, the impact is less significant. A radius of

size 4 is only 5%, 8% and 5% better, for 80, 100 and

120 robots, respectively. The p-values are, respectively:

0.03773, 2.76× 10−5, 0.008034.

5.3 Real Experiments

The proposed algorithms were thoroughly tested with

the e-puck robots, in order to evaluate them in a real life

environment, with all the localization, communication

and actuation errors.

We used the system for robotic swarms localization

inside internal environments by Garcia and Chaimow-

icz (2009). With this system, a robot’s position can be

Avoiding Target Congestion on the Navigation of Robotic Swarms 17

(a) 0s. Beginning of the execution. (b) 10s. Formation of entry and exit
regions.

(c) 30s. Exit region gets more pro-
nounced.

(d) 2min. Robots easily exit the target
area.

(e) 11min 3s. Robots keep exiting easily. (f) 15min 35s. Later execution, only a
few robots are left.

Fig. 14: Execution screenshots of the PCC-EE algorithm (video available at https://youtu.be/V cqJRFcwvo).

0 20 40 60 80 100 120 140 160
Number of Robots

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f I
te

ra
tio

ns

NoCoord
PCC
EE
PCC-EE

Fig. 15: Execution time for the algorithms.

considered in a global referential, making straightfor-

ward the implementation of the algorithms in the way

described in Sections 3, 4. Unfortunately, the e-pucks’s

infrared sensors have a low range. Due to this, we imple-

0 20 40 60 80 100 120 140 160
Number of Robots

0

5000

10000

15000

20000

25000

N
u
m
b
e
r
o
f
M
e
ss
a
g
e
s PCC

PCC-EE

Fig. 16: Number of sent messages.

mented “virtual sensors” from the positions obtained by

the localization system. The parameters used in the real

experiments can be seen in Table 3. Besides, we always

use a normalized force towards the target, with norm

18 Leandro Soriano Marcolino et al.

0 20 40 60 80 100 120 140 160
Number of Robots

0

200

400

600

800

1000

1200

1400

1600

1800

N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s
to

Le
a
v
e

PCC
EE

Fig. 17: Time used by the robots to leave the target

region. The bars show the standard deviation.

Parameter Meaning Value

I Influence Radius 30cm

— Communication Radius 30cm

γ Radius of danger region 40cm

σ Radius of free region 10cm

D
Radius of region where EE is
applied

70cm

ω Angle of entry region 90◦

αw Angle of α-area for waiting robot 115◦

αl Angle of α-area for locked robot 45◦

δ Radius of α-area 30cm

ε
Number of cycles before sending a
message

2

η
Number of cycles for testing if a
waiting robot will change state

4

Table 3: Parameters used in the executions with real

robots.

equal to 2.5. The repulsion forces are proportional to

the relative distances, and multiplied by 5.

We start by showing some example executions, and

then we are going to analyze the performance after many

samples. Figure 21 shows some images of the execution of

the algorithm using only local repulsion forces. We show

by a dashed yellow circle the robots that were able to

reach the target, and are now moving towards their next

waypoint (we do not put a circle in the robots that are

already in the next waypoint or are very near it). We can

see the initial configuration in Figure 21 (a). Figure 21

(b) presents all robots going towards the common target.

Because this algorithm has no coordination, they move

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0

10000

20000

30000

40000

50000

60000

70000

N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s 80

100
120

(a) From ρ = 0.01 to ρ = 1.0.

0.01 0.02 0.03 0.04 0.05 0.06
ρ

10000

15000

20000

25000

30000

35000

40000

N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s 80

100
120

(b) From ρ = 0.01 to ρ = 0.06.

Fig. 18: Execution time for the PCC algorithm, varying

ρ and number of robots.

towards the target using only repulsive forces to avoid

collision with their neighbors. Hence, the system soon

becomes cluttered, as we can see in Figure 21 (c). Even

after some robots are able to reach the target, it is hard

for them to exit from the target region (Figure 21 (d),

(e)). Finally, Figure 21 (f) presents the stage when most

of the robots were able to reach the target.

Now we show in Figure 22 some images of an execu-

tion of the PCC algorithm. Robots in the waiting mode

are indicated by a green circle, and impatient robots by

a blue star. We can see the initial state in Figure 22 (a).

Figure 22 (b) shows some seconds later, when the first

robots changed to the waiting state. As more robots

approach the danger region, we soon have two more

robots waiting, while others move towards the target, as

we see in Figure 22 (c). In Figure 22 (d), we see robots

in the impatient state moving towards the target, while

others that already reached the target try to move away

towards their next objective. One of them is finally able

to exit the region, as we see in Figure 22 (e). Meanwhile,

Avoiding Target Congestion on the Navigation of Robotic Swarms 19

0.2 0.4 0.6 0.8 1.0
ρ

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f I
te

ra
tio

ns

80
100

120
140

(a) From ρ = 0.05 to ρ = 1.0.

0.10 0.15 0.20 0.25 0.30
ρ

7400
7500
7600
7700
7800
7900
8000
8100

Nu
m

be
r o

f I
te

ra
tio

ns

(b) 80 Robots, from ρ = 0.10
to ρ = 0.30.

0.10 0.15 0.20 0.25 0.30
ρ

9000

9200

9400

9600

9800

10000

Nu
m

be
r o

f I
te

ra
tio

ns

(c) 100 Robots, from ρ = 0.10
to ρ = 0.30.

0.10 0.15 0.20 0.25 0.30
ρ

10800

11000

11200

11400

11600

11800

Nu
m

be
r o

f I
te

ra
tio

ns

(d) 120 Robots, from ρ = 0.10
to ρ = 0.30.

0.10 0.15 0.20 0.25 0.30
ρ

12000
12500
13000
13500
14000
14500
15000

Nu
m

be
r o

f I
te

ra
tio

ns

(e) 140 Robots, from ρ = 0.06
to ρ = 0.30.

Fig. 19: Execution time for the PCC-EE algorithm,

varying ρ and number of robots.

others still try to exit the target area while impatient

robots move towards the target. Finally, Figure 22 (f)

illustrates a later stage when most of the robots already

reached the target.

The execution with the EE algorithm can be seen in

Figure 23. We show by a dashed red square the robots in

the exit region that are moving towards the entry region.

Figure 23 (a) shows the initial state, while Figure 23

(b) shows four robots in the exit region moving towards

the entry region. With the area around the target more

free, the robots that reach the target can easily move

towards their next objective, as we show in Figure 23

(c), (d) and (e). Finally, the state where most of the

robots could complete the execution is shown in Figure

23 (f).

Finally, the execution of the PCC-EE algorithm can

be seen in Figure 24. Again, the initial configuration is

2.0 2.5 3.0 3.5 4.0
Size Danger Region

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s 80

100
120

(a) PCC

2.0 2.5 3.0 3.5 4.0
Size Danger Region

0

5000

10000

15000

20000

N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s 80

100
120

(b) PCC-EE

Fig. 20: Influence of the size of the danger region.

shown in Figure 24 (a). Figure 24 (b) shows some seconds

later, when five robots go towards the entry region, while

at the same time two robots already in the entry region

change to the waiting state. More robots change to

waiting, while only two are left in the exit region, as

we see in Figure 24 (c). With the exit region free, we

can see a robot easily going towards its next objective,

in Figure 24 (d), while impatient robots approach the

target. In Figure 24 (e), we can see more robots easily

exiting the area, while other robots wait nearby. Finally,

Figure 24 (f) illustrates a later stage, after almost all

robots completed the execution.

We also executed an experimental analysis of all

algorithms with real robots. We repeated 10 times the

execution of each algorithm, using the same parameters

as in the previous example executions. However, for the

PCC and the PCC-EE algorithms, we run executions

with ρ = 0.06 and with ρ = 0.8 (we choose ρ = 0.8

since it seemed to give the best result in our preliminary

experiments). The result is shown in Figure 25, where the

bars indicate the confidence intervals with p-value 0.01.

20 Leandro Soriano Marcolino et al.

(a) 0s. Initial position. (b) 23s. Robots move to-
wards target.

(c) 41s. System gets clut-
tered, as all robots try to
reach the target.

(d) 1min 03s. Robots still
compete for the center.

(e) 3min 35s. It is hard for
the robots to exit the target
area.

(f) 6min 11s. Later stage,
when most robots could
reach the target.

Fig. 21: Experiment with e-pucks using only

local repulsion forces (video available at

https://youtu.be/wl90yB9qla8).

As we can see, all algorithms had a better performance

than only using local repulsion forces, especially when

ρ = 0.8. We can show that the PCC, PCC-EE and EE

algorithms are 22%, 14% and 17% better than using

only local repulsion forces, respectively, with p-values
equal to 0.001198, 0.02873, 0.008517.

Concerning a comparison between the proposed al-

gorithms, we find that EE is statistically significantly

better than the PCC and the PCC-EE algorithms with

ρ = 0.06 (p-values equal to 0.007761 and 0.02472, re-

spectively); however the difference between the EE and

the PCC-EE with ρ = 0.8 is not statistically signifi-

cant (p-value equal to 0.5709). It seems that the PCC

with ρ = 0.8, however, is better than the EE, but the

p-value is 0.1622. Hence, with a p-value < 0.1 the dif-

(a) 0s. Initial position. (b) 26s. Some robots change
to waiting.

(c) 31s. More robots change
to waiting, while others ap-
proach the target.

(d) 1min 29s. Two robots
are able to reach the target,
while more get nearby.

(e) 2min. It is hard for the
robots to exit the area of the
target, but one approaches
its next objective.

(f) 6min 33s. Later stage,
when most robots could
reach the target.

Fig. 22: Experiment with e-pucks using

the PCC algorithm (video available at

https://youtu.be/Rabf5Jrbd1A). In the video,

robots with all the leds on are in the waiting or locked

state.

ference between the algorithms is still not statistically

significant.

Therefore, in the real executions the PCC algorithm

seems to have the best performance, even though in

our simulations the PCC-EE and the EE algorithms

performed significantly better. One possible explanation

is that the focus of the EE algorithm is in avoiding

congestion when the robots are exiting the target region,

but this problem does not affect the execution much if

the number of robots is not large. Notice, for example,

that as shown in Figure 17, the robots using the PCC

and the EE algorithms needed a very similar number of

iterations to leave the target area for an execution with

Avoiding Target Congestion on the Navigation of Robotic Swarms 21

(a) 0s. Initial position. (b) 47s. Robots move to-
wards the entry region.

(c) 1min 12s. Two robots
are able to reach the target,
and move towards their next
objective.

(d) 3min 02s. More robots
reach the target, and can eas-
ily use the exit region.

(e) 4min 57s. Almost all
robots are already in the
next objective or moving to-
wards it.

(f) 5min 16s. Later stage,
when most robots completed
execution.

Fig. 23: Experiment with e-pucks using the EE algorithm

(video available at https://youtu.be/XWgF4a4SdVs).

20 robots, and the difference between the algorithms

increased as the number of robots increased. Hence, as

our real experimentation was with 10 robots, we still

could not observe an improvement of the EE over the

PCC algorithm (and, consequently, also of PCC-EE over

PCC).

Nevertheless, the performance of the EE and the

PCC algorithms are very similar, but the EE has the

advantage of not needing communication between the

robots nor needing to find a good parametrization for ρ.

We also studied the total number of messages sent

by all robots during the PCC and PCC-EE executions.

We can see the results in Figure 26 (where, again, the

bars show the confidence interval with p-value 0.01).

For the executions with ρ = 0.06, both algorithms used

a similar amount of messages, and the result is not

(a) 0s. Initial position. (b) 21s. Robots move to-
wards the entry region, while
others wait near the target.

(c) 36s. More robots change
to waiting, while two are
still left in the exit region.

(d) 1min 23s. One robot
reaches the target, and can
easily exit.

(e) 4min 46s. More robots
go towards their next objec-
tive.

(f) 6min 17s. Almost all
robots completed execution.

Fig. 24: Experiment with e-pucks using

the PCC-EE algorithm (video available at

https://youtu.be/jyjC3bffkdQ). In the video, robots

with all the leds on are in the waiting or locked state.

statistically significant. However, for ρ = 0.8, PCC uses

about 25% less messages than the PCC-EE algorithm,

with statistical significance (p-value 0.008369). This

is a surprising result, since we would normally expect

PCC-EE to use less messages (as how we found in the

simulations). One explanation could be that, because

the number of robots is small, the most important factor

in determining the number of messages could have been

the execution time, and PCC performed better than

PCC-EE with ρ = 0.8.

22 Leandro Soriano Marcolino et al.

NoCoord EE PCC
ρ=0.06

PCC-EE
ρ=0.06

PCC
ρ=0.8

PCC-EE
ρ=0.8

0
100
200
300
400
500
600
700
800

Ti
m

e
(s

)

Fig. 25: Results in the real world executions.

PCC
ρ=0.06

PCC-EE
ρ=0.06

PCC
ρ=0.8

PCC-EE
ρ=0.8

0

100

200

300

400

500

600

700

Nu
m

be
r o

f M
es

sa
ge

s

Fig. 26: Total number of messages sent in the real world

executions.

6 Conclusion

In this paper, we presented three algorithms to alleviate

congestion of a swarm of robots when they move towards

a common target. Our first algorithm, PCC, uses prob-

abilistic finite state machines; our second, EE, divides

the area around the target in entry and exit regions;

and our third approach, PCC-EE, is a combination of

the two previous algorithms. We presented experiments

in simulation and with real robots.

Our simulations show that all algorithms present a

significant improvement compared to an execution using

only local repulsion forces. The EE and the PCC-EE

algorithm had the best performance, with the PCC-EE

being only slightly better than the EE. The EE algo-

rithm, however, does not require the robots to exchange

messages, and is much easier to configure, as it is not

necessary to set up the variable that defines how long the

robots are expected to wait (ρ). In the other algorithms,

we had to determine a good value for this parameter by

performing many executions. We could also show that

in the EE algorithm the robots can exit the target area

in a much more efficient way, and that seems to be the

reason for its excellent performance.

We also performed many real world executions, with

a team of 10 e-puck robots. Based on that we could

show that all proposed algorithms are better than using

only local repulsion forces with statistical significance in

the real world. PCC seems to have the best performance,

which could be explained by the number of real robots

not being very large in comparison with our experiments

in simulation. EE, however, had a very similar perfor-

mance (the difference between the algorithms was not

even statistically significant), without the need of control

messages nor the need to parametrize ρ, as mentioned.

Additionally, we studied the performance of ORCA,

a state of the art collision avoidance mechanism. We

showed that ORCA is not able to handle the common

target problem, as the robots circulate around the target

instead of moving towards it. Hence, we show that local

repulsion forces is, indeed, a reasonable baseline for

comparison with our algorithms.

As the EE algorithm assumes that we can divide the

environment in two global regions, entry and exit, some

readers may wonder about the performance of other

approaches that use the global coordinated frame, such

as forming an attraction vortex around the target, or

forcing the robots to move to one side of the target region

and form a lane. After performing initial experiments,

however, we found that such approaches force the robots

to move more in the environment than the algorithms

presented, and have a worse performance than using

only local repulsion forces.

Additionally, the need of a global coordinated frame

could be relaxed in the EE algorithm. Some environmen-
tal marks could be used to help the robots determine

when they are in the exit region, or the robots in the exit

region could move towards the entry region in a more

relaxed fashion, instead of moving towards a specific

point. In case environmental marks are not feasible, the

robots would only need to know their global angle in

relation to the target (e.g., using a compass); the full

global position is not necessary. If this is still unfeasible

for a given application, then a designer should select the

PCC algorithm (which in fact had the best performance

in the real world executions).

There are many possibilities for future works dealing

with the problem of congestion for a swarm of robots. It

would be nice to develop a model for the common target

problem, in order to analytically find the optimal values

for the algorithms’ parameters, instead of performing

extensive experimentation. For instance, for the PCC

and PCC-EE algorithm, determining ρ is important for

a good execution, and we had to run many simulations

to study the impact of different values of this parame-

ter. It is still a challenge, however, to model cluttered

systems. An alternative could be to have a dynamically

changing ρ or let the robots learn the best value during

the execution.

Avoiding Target Congestion on the Navigation of Robotic Swarms 23

Another important research direction would be to

study what would be the theoretically optimal amount

of time that the robots should spend to reach the target,

in order to study how far our current algorithms are

from this theoretically optimal solution.

As we move towards more and more executions with

a great number of robots in the real world, and as

society finds more applications for swarm robotics, the

impact of congestion problems will increase. Hence, it

is necessary to find now efficient ways to alleviate it in

order to effectively have a swarm of robots acting in the

real world in an useful way.

Acknowledgments

This work was partially supported by CAPES, CNPq,

and FAPEMIG.

References

Alonso-Mora, J., Naegeli, T., Siegwart, R., Beardsley, P.: Col-
lision avoidance for aerial vehicles in multi-agent scenarios.
Autonomous Robots 39, 101–121 (2015)

Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed.
Robotica 31, 345–359 (2013)

Bayındır, L.: A review of swarm robotics tasks. Neurocom-
puting (2015). (In Press)

Bazazi, S., Pfennig, K.S., Handegard, N.O., Couzin, I.D.:
Vortex formation and foraging in polyphenic spadefoot
toad tadpoles. Behavioral Ecology and Sociobiology 66(6),
879–889 (2012)

van den Berg, J., Guy, S.J., Lin, M., , Manocha, D.: Reciprocal
n-body collision avoidance. In: Pradalier, C., Siegwart, R.,
Hirzinger, G. (eds.) Robotics Research: The 14th Inter-
national Symposium ISRR, Springer Tracts in Advanced
Robotics, vol. 70, pp. 3–19. Springer-Verlag (2011)

van den Berg, J., Guy, S.J., Snape, J., Lin, M.C.,
Manocha, D.: RVO2 library: Reciprocal collision avoid-
ance for real-time multi-agent simulation (2015). URL
http://gamma.cs.unc.edu/RVO2/publications/

van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal velocity
obstacles for real-time multi-agent navigation. In: Pro-
ceedings of the 2008 IEEE International Conference on
Robotics and Automation, ICRA, pp. 1928–1935 (2008)

Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm
robotics: a review from the swarm engineering perspective.
Swarm Intelligence 7(1), 1–41 (2013)

Cai, C., Yang, C., Zhu, Q., Liang, Y.: Collision avoidance in
multi-robot systems. In: Proceedings of the 2007 IEEE In-
ternational Conference on Mechatronics and Automation,
pp. 2795–2800. Harbin, China (2007)

Caloud, P., Choi, W., Latombe, J.C., Le Pape, C., Yim, M.:
Indoor automation with many mobile robots. In: Proceed-
ings of the IEEE International Workshop on Intelligent
Robots and Systems, IROS, pp. 67–72 (1990)

Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile
robotics: Antecedents and directions. Autonomous Robots
4, 226–234 (1997)

Carlino, D., Boyles, S.D., Stone, P.: Auction-based au-
tonomous intersection management. In: Proceedings of

the 16th International IEEE Conference on Intelligent
Transportation Systems, ITSC, pp. 529–534 (2013)

Cianci, C.M., Raemy, X., Pugh, J., Martinoli, A.: Communi-
cation in a Swarm of Miniature Robots: The e-Puck as an
Educational Tool for Swarm Robotics. In: Proceedings
of Simulation of Adaptive Behavior (SAB-2006), Swarm
Robotics Workshop, Lecture Notes in Computer Science
(LNCS), vol. 4433, pp. 103–115 (2007)

Correll, N., Martinoli, A.: Towards optimal control of self-
organized robotic inspection systems. In: Proceedings of
the 8th International IFAC Symposium on Robot Control
(2006)

Couzin, I.D., Franks, N.R.: Self-organized lane formation and
optimized traffic flow in army ants. Proceedings of the
Royal Society of London, Series B 270, 139–146 (2002)

Demir, N., Eren, U., Açıkmeşe, B.: Decentralized probabilistic
density control of autonomous swarms with safety con-
straints. Autonomous Robots (2015). (In Press – Published
online)

Dresner, K., Stone, P.: Multiagent traffic management: an
improved intersection control mechanism. In: Proceedings
of the fourth international joint conference on autonomous
agents and multiagent systems, AAMAS, pp. 471–477.
ACM, New York, NY, USA (2005)

Ducatelle, F., Di Caro, G., Förster, A., Bonani, M., Dorigo,
M., Magnenat, S., Mondada, F., O’Grady, R., Pinciroli, C.,
Rétornaz, P., Trianni, V., Gambardella, L.: Cooperative
navigation in robotic swarms. Swarm Intelligence 8(1),
1–33 (2014)

Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella,
L.M.: Self-organized cooperation between robotic swarms.
Swarm Intelligence 5(2), 73–96 (2011a)

Ducatelle, F., Di Caro, G.A., Pinciroli, C., Mondada, F., Gam-
bardella, L.: Communication assisted navigation in robotic
swarms: self-organization and cooperation. In: Proceed-
ings of the 24th IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, pp. 4981–4988. San
Francisco, USA, September 25–30 (2011b)

Ferrati, M., Pallottino, L.: A time expanded network based
algorithm for safe and efficient distributed multi-agent
coordination. In: Proceedings of the IEEE 52nd Annual
Conference on Decision and Control, CDC, pp. 2805–2810
(2013)

Franchi, A., Stegagno, P., Oriolo, G.: Decentralized multi-
robot encirclement of a 3D target with guaranteed colli-
sion avoidance. Autonomous Robots (2015). (In Press –
Published online)

Garcia, R.F., Chaimowicz, L.: Uma infra-estrutura para exper-
imentação com enxames de robôs. In: Proceedings of the
IX Simpósio Brasileiro de Automação Inteligente, SBAI
(2009). (In Portuguese)

Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage
project: Tools for multi-robot and distributed sensor sys-
tems. In: Proceedings of the 11th International Conference
on Advanced Robotics, ICAR, pp. 317–323 (2003)

Grossman, D.: Traffic control of multiple robot vehicles. IEEE
Journal of Robotics and Automation 4(5), 491 –497 (1988)

Guo, Y., Parker, L.E.: A distributed and optimal motion
planning approach for multiple mobile robots. In: Pro-
ceedings of IEEE International Conference on Robotics
and Automation, ICRA, pp. 2612–2619 (2002)

Hoshino, S.: Multi-robot coordination methodology in con-
gested systems with bottlenecks. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, pp. 2810–2816. IEEE (2011)

24 Leandro Soriano Marcolino et al.

Ikemoto, Y., Hasegawa, Y., Fukuda, T., Matsuda, K.: Zip-
ping, weaving: Control of vehicle group behavior in non-
signalized intersection. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, ICRA,
pp. 4387–4391. New Orleans, USA (2004)

Kato, S., Nishiyama, S., Takeno, J.: Coordinating mobile
robots by applying traffic rules. In: Proceedings of the
lEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, pp. 1535–1541 (1992)

Krishna, K.M., Hexmoor, H.: Reactive collision avoidance
of multiple moving agents by cooperation and conflict
propagation. In: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA, pp. 2141–
2146 (2004)

Krontiris, A., Bekris, K.E.: Using minimal communication
to improve decentralized conflict resolution for non-
holonomic vehicles. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, IROS, pp. 3235–3240. IEEE (2011)

Lerman, K., Galstyan, A.: Mathematical model of foraging
in a group of robots: Effect of interference. Autonomous
Robots 13, 127–141 (2002)

Luca, A.D., Oriolo, G.: Local incremental planning for non-
holonomic mobile robots. In: Proceedings of the IEEE
International Conference on Robotics and Automation,
ICRA, pp. 104–110 (1994)

Marcolino, L.S., Chaimowicz, L.: No robot left behind: Coordi-
nation to overcome local minima in swarm navigation. In:
Proceedings of the 2008 IEEE International Conference on
Robotics and Automation, ICRA, pp. 1904–1909 (2008)

Marcolino, L.S., Chaimowicz, L.: Traffic control for a swarm
of robots: Avoiding target congestion. In: Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, pp. 1955–1961 (2009)

Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm
robotic systems: A case study in collaborative distributed
manipulation. The International Journal of Robotics Re-
search 23(4–5), 415–436 (2004)

Olmi, R., Secchi, C., Fantuzzi, C.: A coordination technique
for automatic guided vehicles in an industrial environment.
In: Proceedings of the 9th IFAC International Symposium
on Robot Control, SYROCO, pp. 359–364 (2009)

Pallottino, L., Scordio, V.G., Bicchi, A., Frazzoli, E.: De-
centralized cooperative policy for conflict resolution in
multivehicle systems. IEEE Transactions on Robotics
23(6), 1170–1183 (2007)

Peasgood, M., Clark, C., McPhee, J.: A complete and scalable
strategy for coordinating multiple robots within roadmaps.
IEEE Transactions on Robotics 24(2), 283–292 (2008)

Sahin, E.: Swarm robotics: From sources of inspiration to
domains of application. In: SAB 2014 International Work-
shop on Swarm Robotics – Revised Selected Papers, Lec-
ture Notes in Computer Science, vol. 3342, pp. 10–20.
Springer (2004)

Sahin, E., Girgin, S., Bayindir, L., Turgut, A.E.: Swarm
robotics. In: Swarm Intelligence, Natural Computing Se-
ries, pp. 87–100. Springer (2008)

Santos, V.G., Campos, M.F.M., Chaimowicz, L.: On seg-
regative behaviors using flocking and velocity obstacles.
In: Ani Hsieh, M., Chirikjian, G. (eds.) Distributed Au-
tonomous Robotic Systems: The 11th International Sym-
posium, pp. 121–133. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014)

Santos, V.G., Chaimowicz, L.: Hierarchical congestion control
for robotic swarms. In: Proceedings of the IEEE/RJS In-
ternational Conference on Intelligent Robots and Systems,

IROS, pp. 4372–4377 (2011)
Savchenko, M., Frazzoli, E.: On the time complexity of conflict-

free vehicle routing. In: Proceedings of the American
Control Conference, pp. 3536–3541 (2005)

Shapiro, J.A.: Bacteria as multicellular organisms. Scientific
American pp. 82–89 (1988)

Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous
Mobile Robots. Bradford Company, Scituate, MA, USA
(2004)

Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In:
Proceedings of the 33rd International Conference and Exhi-
bition on Computer Graphics and Interactive Techniques,
SIGGRAPH, pp. 1160–1168. ACM, New York, NY, USA
(2006)

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F.,
Carrasco, R.C.: Probabilistic finite-state machines – part
I. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(7), 1013–1025 (2005)

Yasuaki, A., Yoshiki, M.: Collision avoidance method for mul-
tiple autonomous mobile agents by implicit cooperation.
In: Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, IROS, pp. 1207–1212.
Maui, USA (2001)

A PCC-EE With ORCA

In Figure 27 we show screenshots of the PCC-EE algorithm
using ORCA to avoid collisions (instead of using local repulsion
forces). Figure 27 (a) shows the initial position of the robots.
Robots in the exit region move towards the entry region,
while the robots in the entry region follow the PCC algorithm
(Figure 27 (b)). We notice in Figure 27 (c) that some robots
are able to reach the target, but others form an arc in the
entry region. All robots that were not in the arc are able
to reach the target. However, the robots in the arc stay in
equilibrium, and are not able to leave anymore (Figure 27 (d),
(e), and (f)).

This situation is similar to the one discussed in the main
paper: as all velocity vectors point towards the target, the
resulting velocity vector of all robots in the arc points towards
the perpendicular of the preferred velocity vector (towards
the target). This time, however, the robots in the borderline
of the entry region are not able to leave the area, as they
immediately return to the entry region due to the PCC-EE
algorithm. Hence, instead of circulating around the target
area, the robots stay locked in arcs around the target area.

Avoiding Target Congestion on the Navigation of Robotic Swarms 25

(a) 0s. Beginning of the execution. (b) 4min 30s. Robots move towards the
entry region, following the PCC algo-
rithm inside it.

(c) 9min 0s. Some robots are able to
reach the target, but others form an
arc in the entry region, surrounding
the target.

(d) 13min 30s. The robots that were
not in the arcs around the target are
able to reach the target.

(e) 18min 0s. The robots in the arcs still
do not converge towards the target.

(f) 22min 31s. After many iterations,
the robots still do not go towards the
target, locked in the arcs in the entry
region.

Fig. 27: Execution screenshots of the PCC-EE algorithm, using ORCA to avoid collisions (video available at

https://youtu.be/ch0v2jje56E).

