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ABSTRACT
Building on previous work of the authors, this paper formally defines and reviews the first approach, referred to
as navigation, towards a common understanding of search and decision making strategies to identify the most-
preferred solution among the Pareto set for a multiobjective optimization problem. In navigation methods, the
decision maker interactively learns about the problem, while the decision support system learns about the pref-
erences of the decision maker. This work introduces a detailed view on navigation leading to the identification
of integral components and features. A number of different existing navigation methods are reviewed and char-
acterized. Finally, an overview of applications involving navigation is given, and promising future research
direction are discussed.
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1 Introduction

Many optimization problems are made up of multi-
ple, often conflicting, criteria. This leads to the loss of
the formal but straightforward definition of optimality.
Contrary to the existence of a single optimal solution,
an entire set of Pareto optimal solutions (or trade-off
solutions) might exist that ‘optimizes’ the considered
criteria. Besides the complexity of solving multiob-
jective optimization problems (Miettinen, 1999), from
a decision makers point of view, this raises the prob-
lem of making a selection of a single most-preferred
solution.

Numerous different preference elicitation methods
are available to facilitate the process of constructing
representations of the decision makers’ preferences
(see e.g. Keeney and Raiffa (1976); Saaty (1977);
Chen and Pu (2004)). Alternatively, there are tech-
niques that allow an interactive search for a most-

preferred solution without necessarily relying on the
construction of an explicit notion of the actual prefer-
ences (see e.g. Korhonen and Wallenius (1988); Miet-
tinen et al. (2010); Eskelinen et al. (2010); Hartikainen
et al. (2015)). With the rise of human-machine inter-
faces, and the availability of powerful computer hard-
ware, we foresee interactive search techniques to play
an increasingly important role in the future. Conse-
quently, some formal considerations of this research
field are needed. Ultimately this should lead to a struc-
turing of existing approaches and a stipulation of fu-
ture research.

One way of approaching the above-sketched topic
can be found in the introduction of the concept of
navigation, which we will discuss based on the
following informal definition in this paper:

Definition 1.1 (Navigation) Navigation is the inter-
active procedure of traversing through a set of points
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(the navigation set) in the objective space guided by
a decision maker (DM). The ultimate goal of this
procedure is to identify the single most-preferred
Pareto optimal solution.

To the best of our knowledge, except our own
preliminary research (Allmendinger et al., 2012) and
the recent work of Hartikainen et al. (2015), which
touches upon navigation methods for computationally
expensive problems, the concept of navigation has not
been considered in the literature yet and in particular
not as formally and thoroughly as we do here.

Consequently, the contribution of this work is three-
fold: First, we describe the general framework of nav-
igation methods, including the key aspects of naviga-
tion and various features according to which naviga-
tion methods can be characterized (Section 3). Sec-
ond, we survey the current state-of-the-art in this re-
search field by providing a summary of existing nav-
igation methods as well as showcasing real-world ap-
plications of such methods (Section 4). Finally, we
highlight several promising research directions of nav-
igation (Section 5).

2 Preliminaries

This section provides the preliminaries and relevant
background necessary to formally define navigation
and put it in a proper context with existing research.
For this we will provide the basic concepts of mul-
tiobjective optimization and an overview on how
preference information can be accounted for in opti-
mization. Finally, we will touch upon the importance
of visualization in multiple criteria decision making
(MCDM).

Definition 2.1 (Multiobjective optimization prob-
lem) The general formulation of a multiobjective
optimization problem (MOP) is: “maximize”
f(x) subject to x ∈ X , where x is an n-dimensional
candidate solution vector, X is the search domain
and f = (f1, . . . , fp) is a vector objective function
f : X → Rp mapping solutions to a p dimensional
real-valued objective space. The term ‘maximize’ is
written in quotes in order to indicate that there are

not unique maxima to such a problem in general, and
a further definition is needed to define an ordering on
candidate solutions (see below).

Definition 2.2 (Pareto dominance) Consider two
solutions x1 ∈ X and x2 ∈ X . We say that x1 domi-
nates x2, also written as x1 ≻ x2, if and only if ∃i
such that fi(x1) > fi(x2) and ∀j, fj(x1) ≥ fj(x2).

Definition 2.3 (Pareto optimal) A solution x1 ∈ X is
called Pareto optimal if there does not exist a solution
x2 ∈ X that dominates it. The objective function
vector (or outcome) of x1 is called a Pareto optimal
outcome.

Definition 2.4 (Pareto front) The Pareto front (also
known as Pareto set, Pareto frontier, or non-dominated
set), denoted as PFtrue, is the set of all Pareto optimal
outcomes or {f(x)|x ∈ X, ̸ ∃y ∈ X, y ≻ x}.

From the above definitions it is apparent that to
solve a MOP, the decision maker (DM) needs to com-
pare several alternative non-dominated solutions and
then select the single most-preferred one. Various
preference-based approaches have been proposed in
the literature to facilitate this procedure. Tradition-
ally, these procedures have been classified as a pri-
ori, a posteriori, and interactive approaches referring
to procedures where the DM provides preference in-
formation before, after and during the optimization,
respectively (Branke et al., 2008).

A priori approaches allow the DM to specify the
kind of desired solutions upfront but this means that
the DM must have some form of understanding about
the problem (e.g. range of feasible objective values, in-
terdependcies of objectives) and her own preferences.
Examples of preferences provided by the DM include
reservation or aspiration levels (Haimes et al., 1971;
Wierzbicki, 1980), or weights representing the rela-
tive importance of objectives (Triantaphyllou, 2000).
In contrast, a posteriori approaches first approximate
or compute the Pareto front (or a part of it) using
e.g. evolutionary multiobjective optimization tech-
niques (Deb, 2001), and then ask the DM to select the
most-preferred solution.

Interactive approaches combine optimization with
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preference handling speeding up the convergence to
the most preferred solution (Branke et al., 2008). Typ-
ically, such approaches assume a mathematical model
of the DM’s preferences, which is build up during the
search procedure as preference information from the
DM becomes available. A commonly used approach
to build up the preference model (value functions) is
to prompt the DM to perform pairwise comparisons
of solutions (Greenwood et al., 1997; Branke et al.,
2010). Although effective in converging to the sin-
gle most-preferred solution, such methods can be com-
putationally expensive. Recent research (e.g. (Branke
et al., 2016, 2015)) investigated alternative methods to
minimize this computational burden.

It is apparent that both a posteriori and interactive
methods allow the DM to somehow traverse (or navi-
gate) through a set of points to identify a single most-
preferred solution. An integral aspect of this process,
and when solving a MOP in general, is that a DM
needs to compare several candidate solutions before
selecting the most-preferred one (Ruiz et al., 2015b).
This task becomes more challenging as the number of
objectives in the MOP increases1, urging the need for
decision support tools.

Graphical visualization tools (Lotov et al., 2005;
Lotov and Miettinen, 2008) are one example of such
tools, and also an integral part of the navigation frame-
work. A recent survey on this topic that provides
an overview of various visualization techniques, such
as techniques using bars, value paths, circles, poly-
gons, icons, and trees, has been presented in Miet-
tinen (2014). Note that while these techniques may
find application when dealing with small sets of can-
didate solutions (around ten or less), large solution
sets may first undergo a pre-processing (or infor-
mation reduction) step before using these techniques
(or require different tools altogether). Examples of
commonly used pre-processing steps include cluster-
ing (Malakooti and Raman, 2000) and multivariate
analysis techniques (Gnanadesikan, 2011).

1When deciding how many solutions to show to a DM (e.g. for
ranking or selection) or how many objectives to optimize simulta-
neously in a MOP, it may be worth keeping in mind the magical
number seven plus or minus two (Miller, 1956). This number has
been established via a series of psychological tests investigating the
limits of human beings in receiving and processing of information.

It will be apparent in the following sections that vi-
sualization is a core element of a navigation method,
and that developers of such methods are beginning to
work more closely with visualization and analytics ex-
perts to create more intuitive and efficient graphical
user interfaces (GUIs) to support the decision-making
process.

3 Navigation Framework
Following the rather general definition in the introduc-
tory section, some more precise definitions and elabo-
rations are needed in order to fully understand the con-
cept of navigation. Figure 1 sets the foundation of the
framework by illustrating the concept of navigation,
how it can be embedded in an IT-landscape, and its
relation to preference learning. A general framework
consists of three levels: a solving component, a learn-
ing component, and the navigation process itself, all
of which are embedded in a “computing cloud”. The
solving component captures the models, algorithms,
and data needed to create the navigation set. The
learning component is responsible for the preference
modelling and learning with the aim to establish a rich
set of preference information. The navigation process
itself communicates between the solving and learning
component via a GUI. This general framework cap-
tures the structure of several existing navigation meth-
ods (as will be described in Section 4.1) and is also
suitable in the context of computationally expensive
optimization problems (Hartikainen et al., 2015).

The following two sections will elaborate about this
framework and key features of navigation in more de-
tail.

3.1 Key Aspects of Navigation
Here we discuss several aspects that need to be ad-
dressed to define a navigation procedure.

1. What is the set to be navigated?
Three types of sets to be navigated can be dis-
tinguished: (i) the entire Pareto front, (ii) a true
subset of the Pareto front, or (iii) any other set
of points. Consequently, navigation can be com-
bined with a posteriori approaches in which the
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Figure 1: A framework of navigation and its embed-
ding into a commercial IT-landscape.

Pareto front is first identified/approximated be-
fore the navigation phase. A further interesting
case is found in many (classical) interactive ap-
proaches, which consider a single outcome and
progress from there.

2. How to navigate?
Navigation can be thought of as the following
iterative procedure: Upon a DM’s action, e.g.
specification of a desired navigation direction,
the system reacts such that new points are se-
lected/computed in real time and presented to the
DM. This loop of dialog- and move-phases is re-
peated until the DM has identified the most pre-
ferred solution in the navigation set. Figure 2
depicts this interactive procedure in form of a
flowchart.

Note that while navigation takes place in the ob-
jective space, the DM can also take information
from the decision space into consideration to af-
fect guidance through the navigation set.

3. Guidance provided by the navigation
During a navigation procedure, the DM can re-
quest guidance from the system. Two modes can
be distinguished: exploration mode and termina-
tion mode.

During the exploration mode, the control is fully

in the hand of the DM. In this mode, the DM
learns about the problem. Guidance/support pro-
vided by the method can facilitate this process us-
ing, for example: (i) cycle detection, (ii) informa-
tion about the possible alternatives, (iii) direction
derived from the navigation history, (iv) statis-
tics of the navigation history, (v) intensifica-
tion/diversification characteristics of navigation
steps.

The termination mode is entered when the DM
requests strong support from the system in order
to be convinced that the most-preferred solution
has been found. This information could be pro-
vided by the use of value functions, which are
e.g. extracted from the statements made by the
decision maker. In this mode, the system learns
from the DM.

3.2 Features of Navigation
Based on the integral properties of navigation, several
features arise that need to be considered prior or during
the interactive search:

1. Navigation in the Pareto vs. non-Pareto set?
On the one hand, when navigating in the Pareto
set only, any navigation direction implies the
worsening of at least a single objective. On the
other hand, navigating in the non-Pareto set may
allow for a simultaneous improvement without
‘sacrificing’ the current values. This has some
implications for possible navigation directions re-
sulting from the actions taken by the DM. In any
case, and ultimately, the final outcome of naviga-
tion should be a point of the current navigation
set for which no other point known dominating it
is known.

2. Does the starting point of the navigation proce-
dure affect the final solution reached?
A key question is whether the same ultimate point
is reached when starting from different points.
We believe this to be the case if certain assump-
tions are made with respect to the value function
of the DM, the consistency of the navigation and
the preference/direction statements.
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Figure 2: Interactive application of navigation with a DM including move- and dialog-phases. The flowchart
has been reproduced from (Eskelinen et al., 2010).

3. How to account for behavioral aspects (e.g. in-
consistent behavior)?
Especially in the exploration phase, a certain
amount of ‘inconsistent’ behavior is to be ex-
pected. This stems from the fact that the DM ex-
plores the navigation set in order to learn about
the problem. As a consequence, any method im-
plementing navigation should account for this is-
sue. Following the implications from prospect
theory (Kahneman and Tversky, 1979), a DM
may not judge symmetrically with respect to
gains and losses of previously obtained outcomes.
Navigation methods can take this into account by
selecting a dominated starting point. This is the
approach taken, for example, by the Nautilus ap-
proach (Miettinen et al., 2010), which will be de-
scribed in more detail in Section 4.1.

4. Is the problem of discrete or continuous nature?

The precise properties of the problem are impor-
tant. Whether the considered problem is discrete
or continuous influences the type of navigation
that can be used. In both cases, discrete represen-
tations satisfying different aspects (e.g. hypervol-
ume, uniformity, coverage, and approximation er-
ror) can be used as the basis for navigation. Sim-
ilar considerations may need to be made depend-
ing on whether the problem is linear vs nonlinear
and convex vs nonconvex.

3.3 Desirable Properties of Navigation
Depending on the problem type, the available infor-
mation about the problem and the DM’s preferences,
and the envisaged navigation concept, a navigation
method can be evaluated based on different quality
measures. In the context of nonconvex and computa-
tionally expensive optimization problems, an exhaus-
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Table 1: Characterization of existing navigation methods.

Navigation
method

Navigation set Type of so-
lution pro-
cedure

Nature of
problem

Graphical user interface
(GUI)

Navigation actions avail-
able to DM

Pareto race (Ko-
rhonen and Wal-
lenius, 1988)

Pareto front Interactive Linear and
quadratic-
linear (Ko-
rhonen and
Yu, 1997)

Current objective function
values in numerical form
and as barcharts

Update of navigation direc-
tion (reference point) and
speed (step size)

Database ap-
proach (Thieke
et al., 2007;
Ehrgott and
Winz, 2007)

Finite subset
of Pareto front

A posteri-
ori

Convex Application-specific but typ-
ically min and max objective
values in database, current
objective function values

Navigation direction

NAUTILUS (Mi-
ettinen et al.,
2010)

Outcomes of
feasible and
infeasible non-
Pareto optimal
solutions (but
final solu-
tion is Pareto
optimal)

Interactive Linear and
non-linear

Estimates of ideal and nadir
vectors, current objective
function values in numerical
form and as barchart, current
lower bound objective vec-
tor

Number of solutions visited
during navigation, prefer-
ence information (rank im-
portance of each current ob-
jective value OR specify
percentages reflecting ‘like-
ness’ of improving the cur-
rent objective values)

Pareto naviga-
tor (Eskelinen
et al., 2010)

Polyhedral
approximation
of the Pareto
front

A posteri-
ori

Non-linear
convex
and mildly
nonconvex

Estimates of ideal and nadir
vectors (or the DM provides
these vectors), evolution of
objective function values in
form of a value paths and
barcharts

Update of navigation direc-
tion (reference point) and
speed (step size)

Nonconvex
Pareto naviga-
tor (Hartikainen
et al., 2015)

PAINT
method-based
approximation
of the Pareto
front

A posteri-
ori

Nonconvex Estimates of ideal and nadir
vectors (or the DM provides
these vectors), evolution of
objective function values in
form of a value paths

Update of navigation direc-
tion (reference point and ob-
jective bounds) and speed
(step size)

E-
NAUTILUS (Ruiz
et al., 2015a)

Pareto front A posteri-
ori

Nonconvex Estimates of ideal and nadir
vectors (or the DM provides
these vectors), evolution of
objective function values in
form of a value paths and
barcharts

Number of intermediate
points and total number
of steps in the navigation
process

tive list of desirable properties is suggested in Har-
tikainen et al. (2015). This includes technical prop-
erties like completeness of the navigation (i.e. every
non-dominated point should be at least theoretically
reachable), computational efficiency and approxima-
tion quality, as well as properties related to the user
experience like navigation control, the cognitive load
on the DM and the availability of additional informa-
tion.

4 Previous Research Related to
Navigation

Although the concept of navigation has not been de-
fined and characterized in the literature as concretely
as we do here, several approaches incorporating this
concept have been proposed in the last three decades.
This section gives an overview of these approaches,
and also outlines several application domains where
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navigation methods have been applied or where we en-
visage that such methods would be beneficial.

4.1 Existing Navigation Methods
This section describes several seminal navigation
methods and links them to the key aspects and
features introduced in Section 3.2. Table 1 provides a
summary of the methods. The methods are described
in the order of their appearance highlighting the surge
in complexity and sophistication of the methods and
the IT-landscape they have been embedded in.

Pareto race: Korhonen and Wallenius (1988) devel-
oped arguably the first dynamic and visual interactive
search method to solve multiple objective linear pro-
gramming problems. This method, which the authors
called Pareto race, allows the DM to search freely
through the Pareto front. Interaction between the op-
timizer and the DM is ensured through a simple yet
intuitive user interface (see Figure 3). The interface
displays the objective function values in numeric form
and as bar graphs whose lengths adapts dynamically as
the DM searches through the Pareto front. Keyboard
controls enable the DM to dictate speed and direc-
tion of motion of the search. Pareto race exploits the
DM’s aspirations through an achievement (scalarizing)
function (Wierzbicki, 1980). Starting from a feasible
solution x∗, this function is used to project a refer-
ence direction on the set of (weakly) Pareto optimal
solutions by solving a parametric linear programming
problem. An update of the DM in the search configu-
ration changes this problem accordingly, thus enabling
a dynamic and real time search. Pareto race is inspired
by the visual reference direction approach to multi-
objective linear programming developed by Korhonen
and Laakso (1986b,a) but is more dynamic due to the
implicit definition of the reference direction. Pareto
race has been extended in a number of ways, such
as to multiple objective quadratic-linear programming
problems (Korhonen and Yu, 1997) and more recently
to nonlinear convex problems (Eskelinen et al., 2010);
this approach will be explained in more detail later in
this section.

Database approach: What we call the database ap-

Figure 3: Graphical user interface of Pareto race.
Screenshot taken from (Korhonen and Wallenius,
1988).

proach to navigation is closely related to the concept
of finite representation of the Pareto front of a multi-
objective optimization problem. If PFtrue denotes the
Pareto front of a multiobjective optimization problem
(see Definition 2.4), then a finite subset R ⊂ PFtrue

is called a finite representation of PFtrue. The name
indicates that, for the purposes of decision-making,
R can be considered instead of PFtrue. Under this
hypothesis, the decision making process is reduced
from the selection of a most preferred outcome from
an infinite set to selection from a finite set. More-
over, this selection from a finite set is supported by
a large number of methods in multi-criteria decision
aid, see e.g. Greco et al. (2016). This reduction to
selection from a finite set can, however, only be jus-
tified if the representative set R satisfies certain qual-
ity criteria. Subsequent to the work of Sayın (2000),
the most commonly considered criteria are cardinality
(the size of R should not be too large), coverage (every
area of the Pareto front should be represented) and uni-
formity (the representative points should be uniformly
distributed across the Pareto front). Since a survey of
methods for the computation of representative sets is
beyond the scope of this paper, we refer to Faulken-
berg and Wiecek (2010, 2012) and references therein.

For the purpose of this work, it is sufficient to note
that, since R acts as a substitute of the entire Pareto
front, we can consider the underlying solutions, the
outcomes of which form the set R, as a database of
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Figure 4: Graphical user interface of the Database
approach as used in a radiotherapy treatment design
problem. Screenshot taken from (Thieke et al., 2007).

solutions from which the DM needs to select a most
preferred solution. The search for a most preferred
solution can then be restricted to a search among the
database. Since the elements of the database have
been computed offline without the involvement of
a DM, no further optimization is necessary, and the
selection process can be handled online. This allows
the use of graphical user interfaces, visualization
tools and other techniques as appropriate for an
application. Figure 4 shows an example of a graphical
user interface as used in a radiotherapy treatment
design problem (Thieke et al., 2007), which will be
explained in more detail in the next section.

NAUTILUS: NAUTILUS (Miettinen et al., 2010) is
an interactive method based on an unusual navigation
set consisting of points that can be feasible or infea-
sible and where all points are dominated by at least
one non-dominated point except the last point. This
last point lies on the Pareto front and, given the DM
acts rationally, is the most preferred point. Plenty of
the interactive methods for multiobjective optimiza-
tion are based on the sequential determination of non-
dominated points by introducing new preferential in-
formation at each iteration. This means that the DM
must always allow the impairment of at least one ob-

Figure 5: Graphical user interface of NAUTILUS.
Screenshot taken from (Miettinen et al., 2010).

jective function to produce the next iteration. The main
purpose of NAUTILUS is to eliminate the ‘sacrifice’ of
at least one objective function at each iteration, due to
the psychological assumption that people do not react
symmetrically to gains and losses. Another important
purpose is to avoid the anchoring effect mainly due to
the starting point.

In this method, each solution dominates the previ-
ous one, whereupon the navigation is always carried
out improving all objective functions in a given di-
rection. This direction is obtained through the con-
sideration of preferential weights that reflect the DM’s
preferences and where, by minimizing an achievement
scalarizing function, the search is oriented towards the
part of the Pareto front that the DM prefers. In this
navigation process, the user interface shows the DM
the range of the attainable values for each objective
function (see Figure 5) at each iteration (upper and
lower bounds). These ranges are contracted at each it-
eration of the navigation procedure and thus guide the
search towards the desired part of the Pareto front.

Pareto navigator: Pareto navigator (Eskelinen et al.,
2010) extends the ideas of Pareto race (Korhonen and
Wallenius, 1988) to nonlinear convex and mildly non-
convex problems with multiple objectives, and works
as follows:
1. In a pre-processing (initialization) phase, a convex
polyhedral approximation of the non-dominated set is
computed using an appropriate approximation method.
In this way, the Pareto race concept can be transferred
to nonlinear problems, and expensive objective func-
tion evaluations can be avoided during the interactive
navigation phase.
2. After specifying an initial solution/point (e.g., from
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Figure 6: Graphical user interface of Pareto navigator.
Screenshot taken from (Eskelinen et al., 2010).

the previously computed approximation), the DM can
explore the non-dominated set and collect trade-off in-
formation by navigating in the polyhedral approxima-
tion. In each iteration of this navigation phase, the DM
specifies a search direction, for example, by a classi-
fication approach or by directly specifying a reference
point. The movement towards this direction is realized
using parametric linear programming on the polyhe-
dral approximation, and is visualized using, for exam-
ple, value paths with appropriate step lengths (see Fig-
ure 6).
3. At any time during the navigation, the DM can
change the speed of the movement, the direction, or
request the computation of the closest non-dominated
point. This point can then be included in the approx-
imation and the search can be continued, or the DM
may choose to terminate the search at this point.

When the DM has completed the learning phase
with the Pareto navigator, he or she may wish to
continue with some other interactive method to
complete the termination phase, or simply stop with
the final solution found.

E-NAUTILUS: Enhanced NAUTILUS (E-
NAUTILUS) (Ruiz et al., 2015a) is based on the
NAUTILUS method (Miettinen et al., 2010) and
shares the same motivation of avoiding trade-off and
anchoring bias. It can be seen as the a posteriori

version of NAUTILUS and applies a three-stage
solution process: In the first stage, the pre-processing
step, an a posteriori type method or evolutionary
multiobjective optimization algorithm is used to
pre-compute a well-spread Pareto set; for a recent
review on evolutionary-based interactive and a
posteriori decision making methods, please refer
to Purshouse et al. (2014). This is followed by the
interactive decision making stage, where, based on the
pre-computed solution set, the DM interacts with the
solution process until a single-most preferred solution
is found. In the final stage, the post-processing stage,
it is ensured that the Pareto optimality of the final
solution is guaranteed. Prior to the optimization,
the DM specifies the number of points (intermediate
points) (s)he wants to be shown at each step of the
navigation process, and the total number of steps
in the navigation procedure. At each step of the
navigation process, it is ensured that the intermediate
points are closer to the set of Pareto optimal solutions.
Thanks to the pre-processing stage, E-NAUTILUS
does not need to solve a new optimization problem
at each step of the navigation process, preventing the
DM from having to wait for the presentation of a new
solution set. This makes E-NAUTILUS more suitable
for problems with expensive evaluations.

Nonconvex Pareto navigator: Nonconvex Pareto
navigator (Hartikainen et al., 2015) extends the ideas
of the Pareto navigator (Eskelinen et al., 2010) to non-
convex problems. The approximation of the Pareto
front (generated in the initialization phase) is based
on the PAINT method (Hartikainen et al., 2012) ap-
plied to a set of precomputed non-dominated points.
The resulting piecewise linear approximation contains
all given non-dominated points and is consistent in the
sense that it is inherently non-dominated. To facili-
tate navigation between different and possibly uncon-
nected parts of this approximation, it is extended by
enlarged dominance cones that contain the positive or-
thant.

The advantage of adding enlarged dominance cones
to the approximation is two-fold: On the one hand,
it is shown that (under appropriate assumptions on
the choice of the cones) the approximation provides
a complete representation of the non-dominated set.
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Figure 7: Graphical user interface of Nonconvex
Pareto navigator. Screenshot taken from (Hartikainen
et al., 2015).

On the other hand, these cones can be used to in-
tegrate information on favorable trade-offs into the
model. The resulting piecewise linear approximation
is connected and can be represented by a mixed integer
linear programming problem. The navigation phase
combines ideas from the Pareto navigator (Eskelinen
et al., 2010) with classification-based preference mod-
els inspired by the NIMBUS method (Miettinen and
Mäkelä, 1995). Figure 7 shows the modern and infor-
mative graphical user interface of this approach.

4.2 Applications
Having outlined several seminal navigation methods
in the previous section, in this section we discuss
various problems and application domains to which
navigation has been applied or where we envisage
scope for its application in future.

Radiotherapy treatment design: The goal of exter-
nal radiation therapy of cancer is to eradicate tumor
cells by delivering ionizing radiation from an external
source to the tumor without compromising surround-
ing normal tissue and organs at risk (OAR). Due to
the physics of radiation delivery, there exists a trade-
off between the conflicting goals of tumor control and
the avoidance of side effects in surrounding normal tis-
sue. The most common technique used today is inten-

sity modulated radiotherapy (IMRT), which allows the
modulation of radiation intensities through the use of a
mechanical device called multi-leaf collimator (MLC).

For about the last two decades, optimization meth-
ods have been applied to assist oncologists in the de-
sign of IMRT treatments. Optimization models for
the selection of beam angles, fluence maps, and de-
livery sequences are well known in the literature, see
e.g. Ehrgott et al. (2009) and references therein. The
problem of interest here is the so-called fluence map
optimization problem, which consists in the determi-
nation of the modulated intensity patterns for a number
of pre-selected beam angles that, once delivered by the
(MLC) achieve the goals of maximizing tumor control
and minimizing normal tissue complications. While it
is natural to formulate and solve this problem as a mul-
tiobjective optimization problem (Küfer et al., 2003),
common practice is to determine optimal fluence maps
based on the use of a weighted sum of constituent ob-
jectives, and proceed in an iterative fashion between
the setting of weights and the solution of the resulting
optimization problem with a treatment planning soft-
ware, until a clinically acceptable treatment design has
been found. This leads to a time-consuming trial and
error process. Therefore, Thieke et al. (2007) proposed
a navigation process based on the database approach
instead.

Their multiobjective optimization model minimizes
a convex combination of the mean dose and the high-
est doses for each organ at risk as well as two objec-
tive functions for the target volume (the tumor). These
penalize delivering dose below a prescribed clinical
threshold and inhomogeneity of the dose distribution
in the target. The search procedure starts by first com-
puting a set of 2p−1 so-called extreme compromises,
which are obtained by minimizing the maximal value
of a subset of objectives, for every non-empty sub-
set of the p objectives. This approach is described in
more detail in Küfer et al. (2003). The next step in
the search procedure is to compute intermediate solu-
tions stochastically, with the goal of collecting a set
of points on the Pareto front that are significantly dif-
ferent and equidistant. All these solutions form the
database and can be computed without any human in-
volvement.

The determination of a treatment plan is then

Copyright c⃝2015 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. xx: pp-pp (2016)
DOI: xxx/xxx



NAVIGATION IN MULTIOBJECTIVE OPTIMIZATION METHODS 11

achieved by interactive and online exploration of the
database, supported by a graphical user interface that
encompasses visualizations of dose distributions and
other supporting information. Thieke et al. (2007) used
this system for the first time in two clinical test cases
(see Figure 4).

We note that another navigation system for radio-
therapy treatment design was proposed by Ehrgott and
Winz (2007) but never clinically tested.

Railway capacity evaluation: Gandibleux et al.
(2010) describe the Multi Criteria Decision Support
System RECIFE that supports the evaluation of the ca-
pacity of railway infrastructure at the station or junc-
tion level. The model’s constraints formulation is ca-
pable of taking several situations into account: simul-
taneous stops of several trains on one platform, con-
necting trains, train coupling or uncoupling, and cyclic
timetables for example. This model is structured pri-
marily as a multiobjective set packing problem (De-
lorme, 2003; Merel, 2012).

The decision process is organized around two ma-
jor criteria managed lexicographically. Each of them
corresponds to a stage of RECIFE. The optimization
stage considers the first criterion, which aims to max-
imize the number of trains scheduled in the timetable.
The objective function is optimized with a single ob-
jective ant colony optimization algorithm (Gandibleux
et al., 2004). A solution is a realistic timetable of zbest
trains including different types of trains (e.g., passen-
ger (TGV, IC/IR) and/or freight). Two equivalent solu-
tions have timetables with the same number of trains,
but with different types and/or schedules. As output of
this optimization stage, the algorithm returns a list L
of the best equivalent solutions found.

The simulation stage follows. It is designed to
help the DM to evaluate the stability of the generated
timetables and determine the critical items. The
second criterion maximizes the stability of equivalent
timetables by minimizing the sum of potential delays.
Similarly to a domino effect, the principle is based
on a propagation model of potential delays (Delorme
et al., 2009). Two types of delay are considered,
the primary delay caused by a disruption and the
secondary delay due to direct or indirect interactions
between trains. When a train is delayed, it may

produce conflicts with other trains. From the scenario
analyzed (kind of traffic, time-windows in the day,
density, etc.), the DM, who is usually an expert in
railway management, is able to infer reasonable values
of primary delay. He evaluates the impact of p ≥ 1
primary delays, each of them is then viewed as a
“dynamically” defined objective, and a corresponding
secondary delay is computed for each timetable
included in L. All the timetables are evaluated on the
p objectives giving their performance. RECIFE allows
the user to navigate among the computed Pareto
optimal solutions with the support of visual displays
such as schedule of trains, space-time graphic, Gantt
charts, and animated track views. The output corre-
sponds to one realistic timetable, which maximizes
the number of trains using the infrastructure, for the
given scenario of traffic, and offering a good stability
with regards to possible realistic delays.

Vehicle routing: Applications of the vehicle routing
problem (VRP) are typically found in the physical dis-
tribution of goods. Customers are visited by vehicles
that ship/collect certain goods from/to one or several
depots. Obviously, cost criteria are important, with the
minimization of the traveled distances as a prominent
example of an objective function. Besides, the ser-
vice provided by the logistical companies comes into
play, often being expressed as the agreement of service
with promised delivery dates or time windows. Conse-
quently, vehicle routing presents itself as a multiobjec-
tive problem, in which the balancing of the considered
objectives is of importance (Jozefowiez et al., 2008).

Interactive approaches involving concepts of navi-
gation have recently been adopted to the application
domain of the multiobjective VRP. For example,
in the work of Geiger and Wenger (2007); Geiger
et al. (2007), the DM is given the opportunity to
state his/her preferences by means of an overall
utility function, combining different objectives into an
overall evaluation; Figure 8 shows the graphical user
interface allowing the DM to specify his/her prefer-
ences. The system then computes a candidate solution
maximizing the currently stated utility function, and
reports it back to the DM. In a subsequent navigation
phase, the DM is allowed to update the utility function
prompting the optimization approach to search for
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Figure 8: Graphical user interface of a customized
navigation method as used in a multiobjective vehicle
routing problem.

a new solution. In this spirit, the search for alterna-
tives follows the directions given by the DM. The
navigation set at hand depends on the properties of
the global utility function. In the case that the utility
function employs a convex combination of criteria,
the search navigates towards solutions lying on the
convex hull of the Pareto front. However, due to
the heuristic nature of the implemented optimization
approach, which relies on local search, sub-optimal
candidate solutions may be presented to the DM too.
The interactive search finally terminates when the DM
chooses so. In a practical application, this is the case
when the DM has visited enough candidate solutions
to build his/her preferences, thus converging towards
a most-preferred solution.

Flexible manufacturing systems: A flexible man-
ufacturing system (FMS) is a manufacturing system
that possesses a certain degree of flexibility to react
to changes in the market place and/or customer
requirements (Tolio, 2009). The flexibility can relate,
for instance, to a system’s ability to produce new
product types and change the sequence of operations
executed (machine flexibility) or the ability to adapt
to large-scale changes in, for example, manufacturing
volumes and capacities (routing flexibility). However,
an FMS is extremely capital-intensive and thus

requires careful a priori performance analysis of the
system with respect to crucial future managerial,
economic and social factors (objectives). A structured
decision-making framework can facilitate the FMS
design and planning process and, ultimately, optimize
these objectives. Pareto race has been used as part
of the Visual Interactive Goal Programming (VIG)
system (Korhonen, 1987) to assist in the selection
process of FMSs (see e.g. Stam and Kuula (1991)).
More precisely, after a pre-screening stage at which
the set of alternative system configurations is nar-
rowed down to a small number of attractive candidate
solutions, Pareto race or another navigation method
can be used to explore the remaining configurations
in more detail with respect to e.g. capital and running
costs, manufacturing flexibility, production volumes
and investment risk.

Experimental optimization: An experimental opti-
mization problem is characterized by the feature that
the evaluation of candidate solutions involves conduct-
ing real experiments, e.g. physical or biochemical ex-
periments, and/or running expensive computer simula-
tions (Box, 1957; Schwefel, 1975; Rechenberg, 2000;
Knowles, 2009; Allmendinger and Knowles, 2012;
Allmendinger et al., 2015). Examples of such applica-
tions include many scientific and technological prob-
lems including in areas like drug discovery and man-
ufacturing (Farid, 2007; Small et al., 2011), analyti-
cal biochemistry (O’Hagan et al., 2005), experimental
quantum control (Shir, 2008), robotics (Harvey et al.,
1996), electronics design (Thompson, 1996), food sci-
ence (Herdy, 1997). The radiotherapy treatment de-
sign problem (Ehrgott and Winz, 2007; Thieke et al.,
2007) explained in Section 4.2 can also be considered
as a type of experimental optimization problem.

In addition to expensive evaluations, experimental
optimization problems often involve multiple objec-
tives, limited resources, and user preferences may be
available too (further challenges include noisy fitness
values, uncertainty, and constraints).

A common situation in experimental optimization
is that there is a limited budget and/or fixed project
deadline after which it is infeasible or very difficult to
perform any additional experiments. Information re-
lated to performed experiments is typically stored in
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a database. Consequently, similar to the radiotherapy
treatment design problem, navigation can be employed
in combination with the database approach to deter-
mine a single preferred solutions based on the set of
experiments performed upfront.

5 The Future of Navigation

In the previous sections we have discussed existing
research related to navigation, and also touched upon
several real-world applications that have been tackled
using navigation. The interesting question now is how
can or should navigation evolve to help us even further
in future? This section discusses several ideas on
how navigation can be made more versatile to address
more complex and emerging applications.

Accounting for uncertainty in navigation. Existing
navigation methods (see Section 4.1) assume (or
ignore) that the optimization problem at hand is
deterministic. Unfortunately, this condition is rarely
the case, especially when dealing with real-world
optimization problems. Of course, if we knew the
probability distributions governing the uncertainty,
then we could replace the underlying optimization
procedure with one that is capable of accounting
for uncertainty, such as a stochastic linear program-
ming (Kall and Mayer, 2010). If the number of
potential (uncertain) scenarios is very large or the
probability distributions are unknown, then the opti-
mization procedure can be linked with Monte Carlo
(MC) sampling. This approach becomes trickier when
dealing with expensive optimization problems as
MC trials can become costly and/or time-consuming.
Also, depending on the navigation method, e.g. the
database approach, we may need to perform MC trials
upfront. This leads to the next question, namely how
to represent uncertainty in an intuitive way for the DM
so as to affect the navigation direction and/or speed.

Accounting for many objectives in navigation.
Current applications of navigation methods are lim-
ited to problems with up to around five objectives.
However, of course, problems can have many more
objectives (Pilat and Neruda, 2013; Fleming et al.,
2005); in the evolutionary multiobjective community,

such problems are referred to as many-objective opti-
mization problems (Ishibuchi et al., 2008). Navigating
in a space with many objectives is challenging from
both an optimization algorithm and user perspective
as information from a potentially large number
of trade-offs needs to be processed to guide the
navigation process meaningfully. To support the
user in the navigation process of such problems, the
trade-offs between objectives need to be presented
in a more compact and intuitive way. For example,
it may be possible to group objectives according
to their importance in order to navigate through a
lower-dimensional space. Another option could be
to employ a hierarchical approach where navigation
is applied sequentially to different sets of objectives
until all objectives have been processed. Finally, if we
think of navigation as a sort of clustering approach,
then the application of (multiobjective) clustering
methods (Handl and Knowles, 2007; Branke et al.,
2008) may also prove promising to cope with many
objectives. In any case, adjusting the navigation
method and user interface to the underlying objective
optimization algorithm seems more crucial in the case
of many objectives.

Facilitating navigation through the design of more
intuitive graphical user interfaces (GUIs). To widen
both the application area and user group of navigation
methods, it is vital to establish GUIs that allow not
only for an intuitive interaction with the system but
also visualize relevant search-related information to
a DM. More efficient user interfaces become more
crucial as the complexity of problems increases,
e.g. because of uncertainty and many objectives. To
develop more intuitive and informative user interfaces
we can get inspiration and borrow ideas from related
research fields, such as visual analytics (Wong and
Thomas, 2004), game design (Johnson and Wiles,
2003), human computer interaction (Shneiderman,
1992). Furthermore, to ensure that the development
of the GUI is on the right track, the algorithm
designer may want to involve both visualization
experts and end users of the final navigation method.
The MCDM community has started to look at some
of these ideas recently (Hakanen and Miettinen, 2015).

Emerging application domains of navigation. Cur-
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rent research has developed navigation methods pri-
marily for problems where the objective functions are
known in closed form allowing the exploitation of gra-
dient information (which is in fact typically done).
However, there are also problems, such as experi-
mental optimization problems, where this information
is not available because the objective function val-
ues have to be determined via a physical experiment
or a time-consuming computer simulation. While a
database approach is feasible to cope with such prob-
lems (see above), this approach is static in the sense
that the navigation set is fixed during the search proce-
dure. One way to make navigation more interactive for
such problems, while keeping the number of expen-
sive evaluations at a minimum, is to use a surrogate-
assisted multiobjective optimization algorithm (Jin,
2011) to determine the solution(s) presented to the
DM.

6 Summary

Selecting the single most-preferred solution from a set
of candidate solutions is an intrinsically complex task
not only because there is limited understanding about
the problem at hand but also due to the presence of in-
complete, approximate, uncertain or fuzzy user prefer-
ences. An interactive procedure that traverses through
a set of points can aid in the process of finding a single
most-preferred solution.

In our previous preliminary work (Allmendinger
et al., 2012), we have introduced the umbrella term
navigation to refer to such interactive procedures. This
work extends our work by providing a more formal
and comprehensive overview on navigation and related
research. More precisely, we have described a general
framework to capture a wide range of navigation meth-
ods, described the key aspects of navigation and dis-
cussed several features according to which navigation
methods can be characterized. Following this, we have
put the framework in a proper context by linking it
with existing navigation methods and real-world prob-
lems to which these methods have been applied. Fi-
nally, we have highlighted directions of future research
including (i) widening the application of navigation
methods to more complex and emerging problem do-

mains, such as problems with uncertainty and many
objectives, (ii) development of more intuitive and in-
formative graphical user interfaces, and (iii) the devel-
opment of more efficient navigation methods based on
emerging techniques, such as surrogate-based meth-
ods.

Acknowledgement
This paper is a product of discussions initiated in the
Dagstuhl Seminar 12041: Learning in Multiobjective
Optimization. The authors acknowledge gratefully
Prof. Kaisa Miettinen and Dr. Jussi Hakanen for con-
tributing to these discussions.

References
Allmendinger, R., Braun, H., Ehrgott, M., Gandibleux,

X., Geiger, M. J., Klamroth, K., Korhonen, P.,
Luque, M., and Zitzler, E. (2012). Navigation in
multi objective optimization methods. In Greco,
S., Knowles, J. D., Miettinen, K., and Zitzler, E.,
editors, Learning in Multiobjective Optimization
(Dagstuhl Seminar 12041), pages 86–92, Leibniz-
Zentrum für Informatik Schloss Dagstuhl, Ger-
many.

Allmendinger, R., Handl, J., and Knowles, J. (2015).
Multiobjective optimization: When objectives ex-
hibit unequal latencies. European Journal of Oper-
ational Research, 243(2):497–513.

Allmendinger, R. and Knowles, J. (2012). On han-
dling ephemeral resource constraints in evolution-
ary search. Evolutionary Computation, 21(3):497–
531.

Box, G. E. P. (1957). Evolutionary operation: A
method for increasing industrial productivity. Ap-
plied Statistics, 6(2):81–101.

Branke, J., Corrente, S., Greco, S., Słowiński, R., and
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