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Abstract. We introduce a new class of protocols called Proofs of Work or Knowl-
edge (PoWorKs). In a PoWorK, a prover can convince a verifier that she has either
performed work or that she possesses knowledge of a witness to a public state-
ment without the verifier being able to distinguish which of the two has taken
place.

We formalize PoWorK in terms of three properties, completeness, f -soundness
and indistinguishability (where f is a function that determines the tightness of the
proof of work aspect) and present a construction that transforms 3-move HVZK
protocols into 3-move public-coin PoWorKs. To formalize the work aspect in a
PoWorK protocol we define cryptographic puzzles that adhere to certain unifor-
mity conditions, which may also be of independent interest. We instantiate our
puzzles in the random oracle (RO) model as well as via constructing “dense”
versions of suitably hard one-way functions.

We then showcase PoWorK protocols by presenting a number of applications.
We first show how non-interactive PoWorKs can be used to reduce spam email
by forcing users sending an e-mail to either prove to the mail server they are
approved contacts of the recipient or to perform computational work. As op-
posed to previous approaches that applied proofs of work to this problem, our
proposal of using PoWorKs is privacy-preserving as it hides the list of the re-
ceiver’s approved contacts from the mail server. Our second application, shows
how PoWorK can be used to compose cryptocurrencies that are based on proofs
of work (“Bitcoin-like”) with cryptocurrencies that are based on knowledge rela-
tions (these include cryptocurrencies that are based on “proof of stake”, and oth-
ers). The resulting PoWorK-based cryptocurrency inherits the robustness prop-
erties of the underlying two systems while PoWorK-indistinguishability ensures
a uniform population of miners. Finally, we show that PoWorK protocols imply
straight-line quasi-polynomial simulatable arguments of knowledge and based
on our construction we obtain an efficient straight-line concurrent 3-move statis-
tically quasi-polynomial simulatable argument of knowledge.

Keywords: proof of work, cryptographic puzzle, concurrent zero-knowledge,
dense one-way functions, cryptocurrencies.



1 Introduction

We introduce a new class of prover verifier protocols where the prover wishes to con-
vince the verifier that it is either in possession of a witness to a publicly known state-
ment or that it has invested a certain amount of computational effort. A Proof of Work
or Knowledge (PoWorK) enables the prover to achieve this objective while at the same
time ensuring that the verifier is incapable of distinguishing which way the prover has
followed : performing the work or exploiting her knowledge of the witness.

At an intuitive level a PoWorK protocol is a disjunction of a proof of work and
a proof of knowledge. Proofs of knowledge are a fundamental notion in cryptography
[GMR85] with a very wide array of applications in the design of cryptographic pro-
tocols. They have been studied extensively, both in terms of efficient constructions,
e.g., [Sch89], as well as in terms of their composability with themselves or within
larger protocols, see e.g., [CDS94, DNS98, CGGM00, Can01, CF01, Pas03, Pas04].
Proofs of work on the other hand, were first introduced in [DN92], further studied in
[RSW96, Bac97, JB99, DGN03, CMSW09], and were primarily applied as a denial of
service network or spam protection mechanism; recently they have also found impor-
tant applications in building decentralized cryptocurrencies (notably Bitcoin [Nak08]
but also many others).

In an interactive proof protocol, we are interested primarily in two basic properties,
soundness and zero-knowledge, that represent the adversarial objectives of the prover
and the verifier respectively: the prover must not be able to convince the verifier of false
statements while the verifier should not extract any knowledge from interacting with
the prover beyond what can be inferred by the public statement. An important class of
prover verifier protocols is the 3-move honest-verifier zero knowledge (HVZK) proto-
cols. They are three-move protocols that are “public-coin”, i.e., the verifier in the second
move merely selects a random value (that is drawn independently to the statement of
the prover’s first move) and submits it to the prover. 3-move HVZK protocols capture
a very wide class of practical proofs of knowledge (including Schnorr’s identification
scheme [Sch89]) but also all languages in NP can be shown with a (computational)
HVZK protocol via reduction to e.g., the Hamilton cycle protocol [Blu87]. The class of
Σ-protocols possesses very useful properties including being closed under conjunction
and disjunction operations [CDS94].

Given the above, one may construct a PoWorK protocol for a languageL as follows:
the verifier samples a cryptographic puzzle, puz, and submits it to the prover. The prover
provides a commitment ψ and shows that she either possesses a witness w showing that
the statement x belongs to L or that the commitment ψ contains a solution to puz. It
is easy to prove that this is a general four-move protocol that implements a PoWorK
for any language L and any cryptographic puzzle. On the other hand, it is known that
for zero-knowledge proofs, two-round protocols do not exist for non-trivial languages
[GO94] and this result remains true even if the zero-knowledge property is relaxed to
O(λlog

c(λ))-simulatability [Pas03], in the sense that only languages decidable in quasi-
polynomial time may have two-round quasi-polynomial-time simulatable protocols.
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1.1 Our results.

We define and construct efficient three-move PoWorK protocols as well as relevant cryp-
tographic puzzles. Morerover, we demonstrate how PoWorK can instantiate systems
that reduce email spam while preserving user privacy, how they are useful in compo-
sition of cryptocurrency systems and how they can give rise to concurrent simulatable
protocols. In more details:

Definition of PoWorKs. Our formalization entails two definitions, f -soundness and
(statistical) indistinguishability. In f -soundness we require that any prover that has run-
ning time (in number of steps) less than a specified parameter calibrated according to
the function f of the running time of the puzzle solver, it is guaranteed to lead to a
knowledge extractor. The importance of the function f is to provide a safe running time
upper bound under which the complete protocol execution is successful only via an
(a-priori) knowledge of the witness. Indistinguishability on the other hand, ensures that
a malicious verifier is incapable of discerning whether the prover performs the proof
of work or possesses the knowledge of the witness. We note that timing issues are not
taken into account in our model (i.e., we assume that the prover always takes the same
amount of time to finish no matter which one of the two strategies it follows). What
we do care about though, is that the prover who performs a proof of work spends at
least a certain amount of computational resources. Note that indistinguishability eas-
ily implies witness indistinguishability [FS90], and thus any PoWorK is also a witness
indistinguishable protocol.

PoWorK Constructions. We present a three-move public-coin protocol instantiating a
PoWorK given any 3-move HVZK protocol with special soundness. Our protocol trans-
formation preserves the structure and round complexity of the given 3-move HVZK
protocol. Observe that the verifier cannot simply provide a puzzle challenge since this
would violate the public-coin characteristic of the protocol. To achieve our construction
we require puzzle generation algorithms that have a suitable uniformity characteristics,
specifically, we require that the domain of puzzles (the “puzzle space”) and the chal-
lenge space of the 3-move HVZK protocol are statistically very close (in terms of the
distributions induced by the puzzle sample algorithm and the verifier in the protocol).
Given such suitable puzzle distribution we present a protocol where the prover is capa-
ble of generating a puzzle solution on the fly (utilizing the verifier’s public coins) and
solve it, if she wishes. To establish the practicality of our approach we also construct
puzzles that are “dense” within {0, 1}l and hence consistent with the challenge space of
many natural 3-move HVZK protocols. Our dense puzzle based PoWorK construction
has the characteristic that is black-box with respect to the underlying puzzle system
(which is suitable for puzzles whose security is argued, say, in the Random Oracle
model).

Definition and instantiations of puzzles. We give formal definitions of cryptographic
puzzle systems PuzSys that are easy to generate, hard to solve, and easy to verify. We
define additional properties like density and amortization resistance and we give two
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instantiations. Our first instantiation utilizes the random oracle model [BR93] while the
second relies on complexity assumptions. More specifically, we use Universal One Way
Hash Function families (UOWHF) [NY89] to build extractors with special properties,
invoking a variant of leftover hash lemma [Dod05]. We then combine this special ex-
tractor with suitably hard one-way functions to obtain our second puzzle instantiation;
we present an instantiation of this methodology for the discrete-logarithm problem. As
an intermediate result, which may be of independent interest, we show how to convert
any arbitrary oneway function to a “dense” oneway function over {0, 1}`(λ) for some
`(·) and security parameter λ ∈ Z+ (cf. Theorem 3).

Our puzzle definitions are close in spirit to previous formalizations [RSW96, WJHF04,
CMSW09, MMV11, BGJ+16] with the following distinctions. [CMSW09], defines the
hardness of a puzzle as a monotonically increasing function that maps the running time
of an adversary to the success rate of solving the puzzle. Contrary to this, our defini-
tion, motivated by our proof of knowledge application, imposes a sharp time threshold,
below which the success rate of solving a puzzle becomes negligible. Also, contrary to
time-lock puzzles [RSW96, WJHF04, MMV11, BGJ+16], we do not restrict the paral-
lelizability of our puzzles as such feature does not hurt (and may even be desirable) in
the PoWorK context. Parallelizable puzzles, like the ones we are focusing on here, have
become very popular by their applications on cryptocurrencies. The requirement there
is that the puzzle solver should spend a minimum of computational resources to find a
solution to the puzzle (and may or may not choose to parallelize).

Applications. Generally speaking, PoWorKs can be used in applications where we
would like to allow access to either “registered” or “approved” users (who know a wit-
ness) or to every user who is willing to invest computational effort. The key property
of PoWorKs is that they enhance privacy since they do not leak the type of user (i.e.
approved or not) to the entity that verifies access. A nice illustration of this type of ap-
plication of PoWorKs is in regard to reducing spam email. Dwork and Naor proposed
using proofs of work to control spam e-mails [DN92]. The gist of the idea is that every
non-approved contact of a receiver would have to perform some work (i.e. invest com-
putational effort) in order to send her an email. A downside of the method is that the
mail server has to maintain an updated list of “approved-contacts” for every user; this
can be a privacy concern for the users (not to mention the cost of updating the approved
contacts database). We show how by using PoWorK’s, one can still enforce the non-
approved senders to perform work while preserving user privacy, since the mail server
(who acts as a PoWorK verifier) will not be able to distinguish between approved and
non-approved contacts because of PoWorK indistinguishability property.

Our second application is related to cryptocurrencies based on blockchains to main-
tain the ledger of transactions. These systems can be naturally divided by the mech-
anism they use to produce the next block in the blockchain as follows: first there are
“puzzle-based” ones, (e.g., Bitcoin [Nak08] and many others that followed1 it), and
then there are “knowledge-based” ones, that include those2 that use “proof-of-stake”,

1 E.g., Litecoin, Dogecoin, Ethereum, Dashcoin, etc.
2 E.g., Peercoin, NXT, Nushares, Faircoin etc.
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“proof-of-activity” or other type of consensus mechanism that relies e.g., on a public-
key infrastructure, e.g., [BLMR14, DM16, Maz15]). We demonstrate how given two
cryptocurrencies C1, C2 of each type, one can use PoWorK to fuse them into a single
cryptocurrency C with the following properties: (i) in C, the miners that perform C1-type
of mining are indistinguishable from those that perform C2-type of mining, (ii) C would
reach consensus in the sense of persistence of transactions in the ledger under the con-
junction of the conditions that systems C1, C2 would do, (iii) C would satisfy liveness
under the disjunction of the conditions that systems C1, C2 would do.3 PoWorK-based
cryptocurrencies that fuse the knowledge-based and the puzzle-based approach have
novel features in the context of cryptocurrencies: for instance, by composing a regu-
lar Bitcoin-like cryptocurrency C1 with a centralized cryptocurrency C2 supported by
a single authority, we get a cryptocurrency C that resembles Bitcoin but has a trusted
authority with a trapdoor that enables it to regulate and normalize the block produc-
tion rate. Such systems may offer a more attractive solution for nation-states or central
banks that wish to issue centralized cryptocurrencies, however they do not want to be
constantly involved with block production and they prefer to leave ledger maintenance
to the public, while retaining the ability to issue blocks in case of an emergency situation
(e.g., many miners go offline due to a software problem). The PoWorK indistinguisha-
bility property is critically useful in this setting, since it enables the regulation of the
block production rate made by the trusted party to be indistinguishable to everyone,
thus ensuring that the trusted party’s involvement will be unnoticed and hence will have
no impact to the economy that the cryptocurrency supports.

Our third application relates to zero-knowledge protocols and concerns quasi-poly-
nomial time straight-line simulatable arguments of knowledge. This class of protocols
was introduced by [Pas03] and was motivated by the construction of concurrent zero-
knowledge proofs in the plain model (as opposed to using a “setup” assumption). In
[Pas03] a four-move argument of knowledge was presented that is quasi-polynomial
time simulatable. We show that any suitable PoWorK protocol (see Theorem 1 for the
precise formulation) implies quasi-polynomial time straight-line simulatable arguments
of knowledge. Given our 3-move PoWorK construction, this immediately yields a 3-
round protocol in this setting which is optimal in terms of efficiency (round complexity
is optimal and computational overhead is just two exponentiations for prover and veri-
fier in total when using the elliptic curves from [BHKL13]); we note that a similar result
in terms of rounds can be obtained via a different route, specifically, via the efficient OR
composition with an input-delayedΣ-protocol as recently observed in [CPS+16], how-
ever the resulting complexity overhead would be at least 5 exponentiations for prover
and verifier in total when instantiated using discrete logarithms.

Roadmap. The rest of this paper is organized as follows. In Section 2, we provide ba-
sic notation, and formalize cryptographic puzzles, the additional properties of dense
samplable puzzles and the property of amortization resistance, as well as the notion of
PoWorKs by defining completeness, f -soundness and indistinguishability. In Section
3, we present our efficient dense puzzle based construction built upon an arbitrary 3-

3 For definitions of properties like liveness and persistence of the ledger we refer to e.g.,
[GKL15, BMC+15].
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move special sound HVZK protocol for a language L and some puzzle system, and
prove that our construction achieves f -soundness and indistinguishability. In the same
section, we present two dense puzzle instantiations. Finally, in Section 4, we describe
the applications of PoWorKs. Namely, (i) a method to reduce the amount of spam email
while preserving the privacy of the receiver, (ii) the composition of knowledge-based
and puzzle-based cryptocurrencies that gives rise to PoWorK-based cryptocurrencies,
(iii) an efficient 3-move straight-line concurrent statistically λpoly(log λ)-simulatable ar-
gument of knowledge as defined in [Pas03, Pas04].

Alternative PoWorK constructions. In Appendix C we provide a second PoWorK con-
struction based on the Lapidot-Shamir 3-move special sound computationally special
HVZK protocol [LS90], which is less efficient than the dense puzzle based construction
but works for all puzzle systems; note that this construction is not black-box with re-
spect to the puzzle and depending on the puzzle may not be public-coin. A third way to
construct PoWorK’s can be derived from the recent efficient OR composition technique
that was introduced in [CPS+16] that can be used with “input-delayed” Σ-protocols,
i.e., protocols where the statement need not be determined ahead of time. It is easy to
see that in the case that a puzzle accepts an “input-delayed” Σ proof of knowledge of
the puzzle solution (e.g., a puzzle based on discrete-logarithms), a third possible con-
struction method for PoWorK’s is facilitated. We stress however that these alternative
methods for constructing PoWorK’s do not combine well with puzzles based on hash
functions and thus may be of only theoretical interest in the context of our primitive.

2 Definitions

We start by setting the notation to be used in the rest of the paper. By λ we denote
the security parameter and by negl(·) the property that a function is negligible in some

parameter. Let z $← Z denote the uniformly at random selection of z from space Z and
∆[X,Y] the statistical distance of random variables (or distributions) X,Y. Composi-
tion of functions is defined by ◦.

Let 〈P(y) ↔ V〉(x, z) denote the interaction between a prover P and a verifier
V on common input x, auxiliary input z, and P’s private input y. For an algorithm B
that is part of an interactive protocol let viewB and outputB denote the views and the
output of B respectively. Let StepsB(x) be the number of steps (i.e. machine/operation
cycles) executed by algorithm B on input x, and StepsP(〈P(y) ↔ V〉(x, z)) be the
number of steps of P , when interacting on inputs x, y, z4. IfRL is a witness relation for
the language L ∈ NP (i.e. RL polynomial-time-decidable and (x,w) ∈ RL implies
that |w| ≤ poly(|x|)), we define the set of witnesses for the membership x ∈ L as
RL(x) = {w : (x,w) ∈ RL}.

2.1 Cryptographic Puzzles

Roughly speaking, a cryptographic puzzle should be easy to generate, hard to solve,
and easy to verify. Given a specific security parameter λ, we denote the puzzle space

4 In this work we focus on parallelizable puzzles so counting in number steps as opposed to
actual running time is more intuitive.
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as PSλ, the solution space as SSλ, and the hardness space as HSλ. We first define
puzzles with a minimum set of properties, and then add extra properties that are useful
in our constructions.

Definition 1. A puzzle system PuzSys = (Sample,Solve,Verify) consists of the follow-
ing four algorithms:

– Sample(1λ, h) is a probabilistic puzzle instance sampling algorithm. On input the
security parameter 1λ and a hardness factor h ∈ HSλ, it outputs a puzzle instance
puz ∈ PSλ.

– Solve(1λ, h, puz) is a probabilistic puzzle solving algorithm. On input the security
parameter 1λ, a hardness factor h ∈ HSλ and a puzzle instance puz ∈ PSλ, it
outputs a potential solution soln ∈ SSλ.

– Verify(1λ, h, puz, soln) is a deterministic puzzle verification algorithm. On input
the security parameter 1λ, a hardness factor h ∈ HSλ, a puzzle instance puz ∈
PSλ and a potential solution soln ∈ SSλ it outputs true or false.

Subsequently, we define the following properties for a puzzle system.

Completeness: We say that a puzzle system PuzSys is complete, if for every h ∈ HSλ:

Pr

[
puz← Sample(1λ, h); soln← Solve(1λ, h, puz) :
Verify(1λ, h, puz, soln) = false

]
= negl(λ).

Note that the number of steps that Solve takes to run is monotonically decreasing in
the hardness factor h and may exponentially depend on λ, while Verify should run in
polynomial time in λ.

g-Hardness: We say that a puzzle system PuzSys is g-hard for some function g, if for
every adversary A, for every auxiliary tape z ∈ {0, 1}∗ and for every h ∈ HSλ:

Pr

puz← Sample(1λ, h); soln← A(z, 1λ, h, puz) :
Verify(1λ, h, puz, soln) = true∧
∧StepsA(z, 1λ, h, puz) ≤ g(StepsSolve(1λ, h, puz))

 = negl(λ).

Dense Samplable Puzzles. In addition to the standard puzzle definition, for our PoWorK
construction in Section 3 we need puzzles that can be sampled by just generating ran-
dom strings (i.e. the puzzle instances should be “dense” over {0, 1}`(λ,h) for some
function ` and λ, h ∈ Z+). Formally it holds that for some function ` in λ and h,

∆[Sample(1λ, h),U`(λ,h)] = negl(λ),

where U`(λ,h) stands for the uniform distribution over {0, 1}`(λ,h). For such puzzles
we will require some additional properties. First there should be a puzzle sampler that
outputs a valid solution together with puz:

– SampleSol(1λ, h) is a probabilistic solved puzzle instance sampling algorithm. On
input the security parameter 1λ and a hardness factor h ∈ HSλ, it outputs a puzzle
instance and solution pair (puz, soln) ∈ PSλ × SSλ.
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Correctness of Sampling: We say that a puzzle system PuzSys is correct with respect
to sampling, if for every h ∈ HSλ, we have that:

Pr
[
(puz, soln)← SampleSol(1λ, h) : Verify(1λ, h, puz, soln) = false

]
= negl(λ).

Efficiency of Sampling: We say SampleSol is efficient with respect to the puzzle g-
hardness, if for every λ ∈ Z+, h ∈ HSλ and puz ∈ PSλ, we have that:

StepsSampleSol(1
λ, h)) < g(StepsSolve(1

λ, h, puz)).

Statistical Indistinguishability: We define the following two probability distributions

Ds,λ,h
def
=
{
(puz, soln)← SampleSol(1λ, h)

}
and

Dp,λ,h
def
=
{
puz← Sample(1λ, h), soln← Solve(1λ, h, puz) : (puz, soln)

}
.

We say a PuzSys is statistically indistinguishable, if for every λ ∈ Z+ and h ∈ HSλ:

∆[Ds,λ,h,Dp,λ,h] = negl(λ).

(τ, k)-Amortization Resistance. For certain applications it is important that the puzzle
is not amenable to amortization. We say that a g-hard puzzle system, PuzSys, is (τ, k)-
amortization resistant if for every adversaryA, for every auxiliary tape z ∈ {0, 1}∗ and
for every h ∈ HSλ:

Pr


∀1 ≤ i ≤ k : puzi ← Sample(1λ, h);
{soln1, . . . , solnk} ← A(z, 1λ, h, {puz1, . . . , puzk}) :(
∀1 ≤ i ≤ k : Verify(1λ, h, puzi, solni) = true

)
∧

∧
(
StepsA(z, 1

λ, h, {puz1}ki=1) ≤ τ
(∑k

i=1 g(StepsSolve(1
λ, h, puzi))

))
 = negl(λ).

Informally, (τ, k)-amortization resistance implies a lower bound on the hardness preser-
vation against adversaries that attempt to benefit from solving vectors of puzzles of
length k.

2.2 Definition of PoWorK

In a PoWorK, the prover P may interact with the verifier V by running in either of the
two following modes: (a) the Proof of Knowledge (PoK) mode, where P convinces V
that she knows a witness for some statement x, or (b) the Proof of WorK (PoW) mode,
where P makes calls to the puzzle solving algorithm to solve a certain puzzle. For some
language in NP and a fixed puzzle system PuzSys, we define PoWorK to satisfy: (i)
completeness, (ii) f -soundness (for some “computation-scaling” function f ) and (iii)
indistinguishability, as follows:

Definition 2 (PoWorK). Let L be a language inNP and RL be a witness relation for
L. Let PuzSys = (Sample,Solve,Verify) be a puzzle system anf f be a function. We say
that (P,V) is an f -sound Proof of Work or Knowledge (PoWorK) for L and PuzSys, if
the following properties are satisfied:
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(i). Completeness: for every x ∈ L ∩ {0, 1}poly(λ) , w ∈ RL(x), z ∈ {0, 1}∗ and
every hardness factor h ∈ HSλ, it holds that

(i.a) Pr[outV ← 〈P(w)↔ V〉(x, z, h) : outV = accept] > 1− 1/poly(λ)
and

(i.b) Pr[outV ← 〈PSolve(1λ,h,·) ↔ V〉(x, z, h) : outV = accept] > 1−1/poly(λ) .

(ii). f -Soundness: For every x ∈ {0, 1}poly(λ), y, z ∈ {0, 1}∗, every hardness factor
h ∈ HSλ and prover P∗ define by πx,y,z,h,λ the probability

Pr

[
puz← Sample(1λ, h); outV ← 〈P∗(y)↔ V〉(x, z, h) : (outV = accept

)
∧StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤ f(StepsSolve(1λ, h, puz))

]
.

f -Soundness holds if there are non-negligible functions s, q such that for any P∗,
there exists a PPT witness-extraction algorithm K such that for any λ ∈ N, x ∈
{0, 1}poly(λ), y, z ∈ {0, 1}∗, h ∈ HSλ, if πx,y,z,h,λ ≥ s(λ) (representing the
knowledge error), then

Pr[KP
∗
(x, y, z, h) ∈ RL(x)] ≥ q(λ) .

(iii). Statistical (resp. Computational) Indistinguishability: for every x ∈ L∩{0, 1}poly(λ),
w ∈ RL(x), z ∈ {0, 1}∗, for every hardness factor h ∈ HSλ and for every veri-
fier (resp. PPT verifier) V∗ , the following two random variables are statistically
(resp. computationally) indistinguishable:

DV
∗

PoK
def
= {viewV∗ ← 〈P(w)↔ V∗〉(x, z, h)}

DV
∗

PoW
def
=
{
viewV∗ ← 〈PSolve(1λ,h,·) ↔ V∗〉(x, z, h)

}
.

Intuitively, soundness is related to the hardness of solving a presumably hard crypto-
graphic puzzle. The hardness threshold T is set to be the (probabilistic) computational
complexity (in number of steps) of the puzzle solver, when the latter is provided some
output of the puzzle sampling algorithm, scaled to some function f . According to Def-
inition 2, any prover who does not know a witness, cannot convince the verifier in
less than f(T ) steps with some good probability. Observe that in the definition of f -
soundness, the convincing capability of the prover is limited by the hardness of solving
puzzle challenges. This implies that in an f -sound protocol, provers who do not know
(per the knowledge extractor) are forced to “work” in order to convince the verifier. The
indistinguishability property of PoWorKs implies that a (potentially malicious) verifier
cannot distinguish the running mode (PoK or PoW) that P follows.

3 The Dense Puzzle Based PoWorK Construction

In this section, we show how to transform an arbitrary 3-move, public coin, special
sound, honest verifier zero-knowledge (SS-HVZK) (cf. App. A) into a 3-move public-
coin PoWorK. Our construction is lightweight and requires dense samplable puzzle sys-
tems that we formalized in Section 1. Additionally, we provide a second construction
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(cf. App. C) which is less efficient, non-black-box on the puzzle, but it works for all puz-
zle systems and may not be public-coin (depending on the puzzle). For both construc-
tions, we consider a puzzle system PuzSys that achieves completeness and g-hardness
for some function g : N −→ R+. In addition, for dense samplable puzzle systems, we
also require correctness, efficient samplability, and statistical indistinguishability.

3.1 Preliminaries

The puzzle, solution and hardness spaces are denoted by PSλ,SSλ,HSλ, as in Sec-
tion 2.1. Our PoWorK protocols are interactive proofs between a prover P and a verifier
V , denoted by (P,V).

The challenge space of our dense puzzle based construction (P,V), denoted by
CSλ, is determined by the security parameter λ. From an algebraic point of view, CSλ
is set to be a group with operation ⊕, where performing ⊕ and inverting an element
should be efficient. For the first construction, we require thatPSλ ⊆ CSλ. For instance,
we may set CSλ as the group

(
GF(2`(λ),⊕

)
, where `(λ) is the length of the challenges

and⊕ is the bitwise XOR operation. Of course, one may select a different setting which
could be tailor made to the algebraic properties of the underlying primitives.

Let ChSampler be the algorithm that samples a challenge from CSλ. For a fixed
security parameter, we define the following random variables (r.v.):

– The challenge sampling r.v. Cλ,h
def
= ChSampler(1λ, h).

– The puzzle sampling r.v. Pλ,h
def
= {puz← Sample(1λ, h) : puz}.

Finally, we denote by x⊕D (resp. DInv) the r.v. of performing⊕ on some fixed x ∈ CSλ
and an element y sampled from r.v. D (resp. inverting an element sampled from D). The
r.v. D⊕ x is defined similarly. Formally,

x⊕D
def
= {y ← D : x⊕ y}, D⊕ x def

= {y ← D : y ⊕ x}, DInv def= {y ← D : −y}.

3.2 The Dense Puzzle Based Compiler

We now provide a detailed description of our protocol (P,V), which can be viewed
as a compiler that can transform a SS-HVZK protocol Π = (P1Π ,P2Π ,VerΠ) for
L ∈ NP (cf., App. A for details) and a g-hard puzzle system PuzSys into a 3-move
PoWorK. The resulting PoWorK protocol achieves Θ(g)-hardness and statistical indis-
tiguishability. From a syntax point of view, our compiler will set the challenge space of
the PoWorK CSλ to be equal to CSΠ . We denote by SimΠ the HVZK simulator of Π .

The protocol (P,V) can be executed in either of the two following modes:

1. Proof of Knowledge (PoK) mode: P has a witness w ∈ RL(x) as private input.
In order to prove knowledge of w to V , P runs P1Π and P2Π as described by the
original SS-HVZK protocol, with the difference that instead of providing P2Π with
the challenge c from V directly, P runs the puzzle sampler algorithm to receive a
pair of a puzzle and its solution, (puz, soln), computes the value c̃ = c ⊕ puz and
runs P2Π with challenge c̃.
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2. Proof of Work (PoW) mode: P has no private input and tries to convince V that
it has performed a minimum amount of computational “work” (i.e. at least some
expected number of steps). To achieve this, P runs SimΠ to simulate a transcript
of the original SS-HVZK protocol. Then, it receives the challenge c from V and
computes the value puz = (−c)⊕ c̃. It runs the Solve algorithm on input puz, and if
puz is a puzzle in PSλ (which, as we argue later, must occur with high probability),
then it obtains a solution soln of puz, except for some negligible error.

The verification mechanism, must be the same for both modes, so that indistin-
guishability can be achieved. Namely, the verifier checks that: (i) the relation c̃ = c⊕puz
holds, (ii) the transcript of the SS-HVZK protocol is accepting and (iii) the prover has
output a correct pair of a puzzle puz and some solution soln of puz. The protocol (P,V)
is presented in detail in Figure 1.

Statement: x ∈ L ∩ {0, 1}poly(λ).
Prover’s private input: w ∈ RL(x).

P: (ã, φ1)← P1Π(w, x).
P → V: ã.
P ← V: c← ChSampler(1λ, h);

P : • sample a puzzle-solution pair
(puz, soln)← SampleSol(1λ, h);
• set c̃ = c⊕ puz;
• execute r̃ ← P2Π(φ1, c̃);

P → V: c̃, r̃, puz, soln.

Verification:

1. c̃ = c⊕ puz.
2. VerΠ(x, ã, c̃, r̃) = 1.
3. Verify(1λ, h, puz, soln) = true.

(a) Knowing the witness (PoK)

Statement: x ∈ L ∩ {0, 1}poly(λ).
Prover’s private input: −

P : • execute (ã, c̃, r̃)← SimΠ(x);
P → V: ã.
P ← V: c← ChSampler(1λ, h);
P : • set puz = (−c)⊕ c̃;
• compute a puzzle solution
soln← Solve(1λ, h, puz);

P → V: c̃, r̃, puz, soln.

Verification:

1. c̃ = c⊕ puz.
2. VerΠ(x, ã, c̃, r̃) = 1.
3. Verify(1λ, h, puz, soln) = true.

(b) Doing work (PoW)

Fig. 1: The Dense Puzzle Based PoWorK Construction for fixed security parameter λ
and pre-determined hardness factor h ∈ HSλ, given a 3-move-SS-HVZK protocol Π
for language L and a dense samplable puzzle system PuzSys satisfying that PSλ ⊆
CSλ = CSΠ ; ChSampler is the challenge sampling algorithm over CSλ.

3.3 Security of the Dense Puzzle Based Construction.

In order to prove that our protocol satisfies soundness and indistinguishability, we need
to assume that the challenge and puzzle distributions satisfy some plausible properties
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and that the presumed g-hardness of the puzzle system dominates the step complexity
of the group operation and challenge sampling algorithms. In detail, we require that:

(A). The challenge and puzzle sampling distributions are statistically close.
(B). The challenge sampling distribution is (statistically) invariant to any group opera-

tion, i.e. (a) inverting a challenge sampled from CSλ and (b) performing ⊕ oper-
ations on some element x in CSλ = CSΠ and a sampled challenge. Observe that
these two assumptions imply that the puzzle sampling distribution is also (statisti-
cally) ⊕-invariant.

(C). With high probability, the number of steps needed for StepsSolve(1
λ, h, puz) to

solve a g-hard puzzle puz according to Pλ,h, scaled to the puzzle hardness function
g, is more than the number of steps of performing group operations (inversion and
⊕ operation), or sampling from CSλ.

(A). For every hardness factor h ∈ HSλ, the r.v. Cλ,h and Pλ,h are ε1-statistically close,
where ε1(·) is a negligible function.

(B). For every x ∈ CSλ and hardness factor h ∈ HSλ, the r.v. Cλ,h is ε2-statistically close to
the r.v. x⊕Cλ,h, Cλ,h ⊕ x and CInv

λ,h, where ε2(·) is a negligible function.
(C). There exists a constant κ < 1 and a negligible function ε3(·) s.t. for every hardness factor

h ∈ HSλ and every r, r′ ∈ CSλ

Pr[puz← Sample(1λ, h) : κ · g(StepsSolve(1λ, h, puz)) >
> StepsChSampler(1

λ, h) + StepsInv(r) + Steps⊕(r, r
′)] ≥ 1− ε3(λ),

where StepsInv, Steps⊕ denote the number of steps needed for inversion and group opera-
tion in CSλ.

Fig. 2: Assumptions for our Dense Puzzle Based PoWorK Construction, where Cλ,h

and Pλ,h are the challenge sampling and the puzzle sampling distributions respectively.

The assumptions described are stated formally in Figure 2. Assumptions (A) and
(B) can be met for meaningful distributions, widely used in cryptographic protocols.
For example, when Cλ,h and Pλ,h are close to uniform, it is straightforward that as-
sumption (A) holds. Moreover, since the uniform distribution is invariant under group
operations, we have that assumption (B) also holds. The assumption (C) is expected to
hold for any meaningful cryptographic puzzle construction. Indeed, if solving a puzzle
is believed to be hard (on average) within a bounded amount of steps T , then perform-
ing efficient tasks, such as group operations or sampling a challenge in the space where
this puzzle belongs must be feasible in a number of steps much less than T .

We prove that our dense puzzle based construction is a PoWorK, assuming (A),(B)
and (C), the g-hardness of PuzSys and the soundness and ZK properties of the origi-
nal SS-HVZK protocol. The soundness of our protocol is in constant relation with the
hardness of PuzSys.
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Theorem 1. Let L be a language inNP and letΠ = (P1Π ,P2Π ,VerΠ) be a special-
sound 3-move statistical HVZK protocol for L, where the challenge sampling distribu-
tion is uniform. Let PuzSys = (Sample,SampleSol,Solve,Verify) be a dense samplable
puzzle system that satisfies g-hardness for some function g. Define (P,V) as the pro-
tocol described in Figure 1 when built upon Π,PuzSys and assume that (A),(B),(C) in
Figure 2 hold. Then, (P,V) is a

(
(1− κ)/2

)
· g-sound PoWorK for L and PuzSys with

statistical indistiguishability, where κ is the constant defined in assumption (C).

Proof. Completeness. By the completeness of Π and the correctness of PuzSys, the
dense puzzle based PoWorK construction is complete in the case that P executes the
PoK mode of the protocol. Regarding the PoW mode, an honest execution of PuzSys is
incorrect, only if either of the two following cases is true:

(i). puz = (−c)⊕ c̃ ∈ CSλ \ PSλ, i.e. puz is not a puzzle. By assumptions (A), (B)
in Figure 2, this happens with negligible probability, since

∆[ Pλ,h,Cλ,h] ≤ ε1(λ) ∧∆[Cλ,h,C
Inv
λ,h ⊕ c̃] ≤ 2 · ε2(λ)⇒

⇒ ∆[Pλ,h,C
Inv
λ,h ⊕ c̃] ≤ ε1(λ) + 2 · ε2(λ),

where we applied (B) two times (one for inversion and one for ⊕ operation).
(ii). puz is a puzzle, but the puzzle solver algorithm Solve does not output a solution

for puz. Namely, we have that Verify(1λ, h, puz, soln) = false. By the complete-
ness property of PuzSys, this also happens with negligible probability.

Therefore, (P,V) achieves completeness with high probability, as required in Defini-
tion 2.(
(1− κ)/2

)
· g-Soundness. First, we make use of the special soundness PPT extractor

KΠ of Π to construct a knowledge extractor K that on input (x, y, z, h) and given the
code of an arbitrary prover P̂ , executes the following steps:

1. By applying standard rewinding, K interacts with P̂(y) for statement x and aux-
iliary input z, using two challenges c1, c2 sampled from Cλ,h and receives two
protocol transcripts 〈ã1, c1, (c̃1, r̃1, puz1, soln1)〉 and 〈ã1, c2, (c̃2, r̃2, puz2, soln2)〉.

2. K runs KΠ on input (x, 〈ã1, c̃1, r̃1〉, 〈ã1, c̃2, r̃2〉).
3. K returns the output of KΠ .

Since KΠ is a PPT algorithm, K also runs in polynomial time.

Assume that for some x ∈ {0, 1}poly(λ), y ∈ {0, 1}∗, z ∈ {0, 1}∗, h ∈ HSλ, there
exists a prover P∗ and a non-negligible function s(·) s.t

Pr[puz← Sample(1λ, h); outV ← 〈P∗(y)↔ V〉(x, z, h) : (outV = accept)∧
∧ StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤

(
(1− κ)/2

)
· g(StepsSolve(1λ, h, puz))] ≥ s(λ).

We will construct an algorithmW that will make use of P∗ to break the g-hardness
of PuzSys. The input that W receives is 〈(x, y, z), 1λ, h, puz〉, where (x, y, z) is the
auxiliary input and puz sampled from Sample(1λ, h). Then,W executes the following
steps:
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1. It samples c1 by running ChSampler(1λ, h).
2. It interacts with P∗(y) for statement x, auxiliary input z, hardness factor h and

challenge c1. It receives the transcript 〈ã1, c1, (c̃1, r̃1, puz1, soln1)〉.
3. It computes the inverse of puz, denoted by (−puz).
4. It computes c2 = c̃1 ⊕ (−puz).
5. It rewinds P∗ at the challenge phase and provides P∗ with challenge c2. It receives

a second transcript 〈ã1, c2, (c̃2, r̃2, puz2, soln2)〉.
6. It returns the value soln2.

By the assumption for P∗ and the splitting Lemma, we have that when P∗ is chal-
lenged with two honestly selected c1, c2, it outputs two accepting transcripts by running
in no more than

(
(1 − κ)/2

)
· g(StepsSolve(1λ, h, puz)) steps with at least (s(λ)/2)2

probability. We denote by Equal, the event that this happens and c̃1 = c̃2 holds. Obvi-
ously, either Equal, or ¬Equal will occur with at least (s(λ)/2)2/2 = s(λ)2/8 proba-
bility.

Assume that Equal happens with at least s(λ)2/8 probability. We will show that this
case leads to a contradiction; namely,W will output a solution of puz while running in
no more than g(StepsSolve(1

λ, h, puz)) steps, hence breaking the g-hardness of PuzSys.
We observe that for any puz, if both transcripts generated by the interaction with

P∗ are accepting and the values c̃1, c̃2 are equal, then we have that(
c2 = c̃1 ⊕ (−puz)

)
∧ (c̃2 = c2 ⊕ puz2) ∧ (c̃1 = c̃2)⇒ puz2 =

(
− (−puz)

)
= puz,

where the second equality holds due to verification step 1. Therefore, it holds that

Verify(1λ, h, puz2, soln2) = true⇔ Verify(1λ, h, puz, soln2) = true. (1)

By the assumptions (A),(B) in Figure 2, we have that there are negligible functions
ε1(λ), ε2(λ) s.t. for any c̃1 that P∗ returns,

∆[c̃1 ⊕CInv
λ,h, c̃1 ⊕PInv

λ,h] < 2ε1(λ) and ∆[Cλ,h, c̃1 ⊕CInv
λ,h] < 2ε2(λ),

where in the first and second inequality, we applied assumptions (A) and (B) respec-
tively two times (one for inversion and one for⊕ operation). Therefore, by the triangular
inequality we have that

∆[Cλ,h, c̃1 ⊕PInv
λ,h] < 2ε1(λ) + 2ε2(λ). (2)

Eq. (2) implies that the probability distribution of c2 = c̃1 ⊕ (−puz) thatW computes
is [2ε1(·) + 2ε2(·)]-statistically close to the challenge sampling distribution of V .

By construction, the running time ofW (in number of steps) is at most

2 · StepsP∗ (〈P∗(y)↔ V〉(x, z, h)) + Steps
(
((−puz)))+

+Steps(c̃1 ⊕ (−puz)) + StepsChSampler(1
λ, h).

By assumption (C) in Figure 2, there is a negligible function ε3(·) and a constant
κ < 1 s.t.

Pr[puz← Sample(1λ, h) : κ · g(StepsSolve(1λ, h, puz)) < StepsChSampler(1
λ, h)+

+Steps((−puz)) + Steps(c̃1 ⊕ (−puz))] ≤ ε3(λ).
(3)
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When Equal occurs, then it holds that

StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤
(
(1− κ)/2

)
· g(StepsSolve(1λ, h, puz)),

hence by the assumption for P∗ and Eq. (2), (3), the probability that the running time
ofW is bounded by

StepsW(1λ, (x, y, z), h, puz) ≤
≤ 2 · StepsP∗(〈P∗(y)↔ V〉(x, z, h)) + κ · g(StepsSolve(1λ, h, puz)) ≤
≤ (2 ·

(
(1− κ)/2

)
) · g(StepsSolve(1λ, h, puz)) + κ · g(StepsSolve(1λ, h, puz)) =

= g(StepsSolve(1
λ, h, puz)),

is at least Pr[Equal]−
(
2ε1(λ)+2ε2(λ)+ε3(λ)

)
. By Eq. (1) ,(2), (3), and the assumption

Pr[Equal] ≥ s(λ)2/8, we have that for auxiliary tape (x, y, z) and hardness factor h:

Pr


puz← Sample(1λ, h);
soln∗ ←W(1λ, (x, y, z), h, puz) :
Verify(1λ, h, puz, soln∗) = true ∧
∧StepsW(1λ, (x, y, z), h, puz)
≤ g(StepsSolve(1λ, h, puz))

 ≥ s(λ)2/8− (2ε1(λ) + 2ε2(λ) + ε3(λ)
)
,

which contradicts to the g-hardness of PuzSys, as s(λ)2/8−
(
2ε1(λ)+2ε2(λ)+ε3(λ)

)
is

a non-negligible function. Therefore, it holds that Pr[Equal] ≤ s(λ)2/8 which implies
that

Pr[¬Equal] ≥ s(λ)2/8. (4)

By the construction of K and the special soundness property of Π , we have that
K will return a witness for x whenever KΠ is provided with different c̃1, c̃2. Define
q(λ) = s(λ)2/8. By Eq. (4), we have that when K is given oracle access to P∗, it holds
that

Pr[KP
∗
(x, y, z, h) ∈ RL(x)] = Pr[¬Equal] ≥ q(λ).

Thus, we conclude that our protocol is
(
(1− κ)/2

)
· g-sound.

Statistical Indistinguishability. Assume that the protocol described in Figure 1 does
not satisfy the PoWorK indistinguishability property in Definition 2. Then, for some
(x, z, h) there exists a verifier V∗ that w.l.o.g. outputs a single bit and can distinguish
between:

DV
∗

PoK = {viewV∗ ← 〈P(w)↔ V∗〉(x, z, h)} and

DV
∗

PoW =
{
viewV∗ ← 〈PSolve(1λ,h,·) ↔ V∗〉(x, z, h)

}
.

with non-negligible advantage η(λ).
In the following, we will show that if such a V∗ exists, then we can construct an ad-

versary B who breaks the statistical (auxiliary input) HVZK property of the underlying
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3-move protocol Π = (P1Π ,P2Π ,VerΠ). This means (see Appendix A) that B can
distinguish between:

DΠ =
{
(ã, φ1)← P1Π(w, x); c̃

$← CSΠ ; r̃ ← P2Π(φ1, c̃) : (ã, c̃, r̃)
}

and

DSim = {(ã, c̃, r̃)← SimΠ(x, (z, h)) : (ã, c̃, r̃)}

with some non-negligible advantage η′(λ), where (z, h) is the auxiliary input. Namely,
B takes as input (x, (z, h), (ã, c̃, r̃)), and works as follows:

1. Invokes V∗ with input x, z, h and first move message ã.
2. V∗ responds back with his challenge c.
3. B computes puz = (−c) ⊕ c̃ and runs Solve on input (1λ, h, puz) to receive back

soln.
4. B sends (c̃, r̃, puz, soln) to V∗.
5. B returns V∗’s output b∗.

By construction of B, what is left to argue is that puz = (−c) ⊕ c̃ and soln ←
Solve(1λ, h, puz) are indistinguishable from a pair (puz′, soln′) that was picked by
SampleSol(1λ, h). We stusy the following two cases:

1. B’s input is sampled according to DΠ : By the assumption (B) in Figure 2 and for
any c returned by V∗, we have that:

∆[Cλ,h,C
Inv
λ,h ⊕ c̃] < 2ε2(λ),

where we applied (B) two times (one for inversion and one for ⊕ operation). By
assumption (A), we have that

∆[Cλ,h,Pλ,h] < ε1(λ).

By the triangular inequality, we have that for the distribution of puz = (−c)⊕ c̃, it
holds that

∆[Pλ,h,C
Inv
λ,h ⊕ c̃] < ε1(λ) + 2ε2(λ).

By the statistical indistinguishability property of PuzSys (Definition 1), we have
that the distribution {soln ← Solve(1λ, h, puz) : soln} is ε4(λ)-statistically close
to the distribution {(soln′, puz′)← SampleSol(1λ, h) : soln′}, for some negligible
function ε4. Consequently, the probability distribution of puz that B computes is
[ε1(λ) + 2ε2(λ) + ε4(λ)]-statistically close to the puzzle sampling distribution.

2. B’s input is sampled according to DSim: in this case, it is straightforward that B
simulates perfectly the PoW mode of the PoWorK protocol.
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By the above and given that the probability of success of V∗ is at least η(λ), we
have that∣∣Pr[(ã, c̃, r̃)← DΠ : B(x, (z, h), ã, c̃, r̃) = 1]−

− Pr[(ã, c̃, r̃)← DSim : B(x, (z, h), ã, c̃, r̃) = 1]
∣∣ ≥

≥
∣∣∣(Pr[viewV∗ ← DV

∗

PoK : V∗(viewV∗) = 1]− (ε1(λ) + 2ε2(λ) + ε4(λ))
)
−

− Pr[viewV∗ ← DV
∗

PoW : V∗(viewV∗) = 1]
∣∣∣ ≥

≥
∣∣∣Pr[viewV∗ ← DV

∗

PoK : V∗(viewV∗) = 1]−

− Pr[viewV∗ ← DV
∗

PoW : V∗(viewV∗) = 1]
∣∣∣− (ε1(λ) + 2ε2(λ) + ε4(λ))

)
≥

≥ η(λ)−
(
ε1(λ) + 2ε2(λ) + ε4(λ)

)
.

Therefore, B is successful in breaking the statistical HVZK property of the un-
derlying 3-move SS-HVZK protocol with non-negligible advantage η′(λ) = η(λ) −(
ε1(λ) + 2ε2(λ) + ε4(λ)

)
. This leads us to the conclusion that the protocol in Figure 1

is a PoWorK with statistical indistinguishability.
ut

Remark. Theorem 1 can be extended to encompass the case where the protocol Π
to be compiled in the construction described in Figure 1 achieves T (λ)-computational
HVZK, i.e. it is HVZK for every verifier B which runs in T (λ) steps. Specifically, in the
indistinguishability proof the running time of the HVZK adversary B is (in number of
steps) bounded by:

StepsV∗(〈(P1Π ,P2Π)(w), VerΠ(c̃)〉(x, z, h))+
+StepsInv(c) + Steps⊕((−c), c̃) + StepsSolve(1

λ, h, puz).

Therefore, we can prove that if T (λ) is an asymptotically larger function than the time
of the puzzle solving algorithm, then our dense puzzle based construction achieves
computational indistinguishability.

3.4 Dense Puzzle Instantiation in the Random Oracle Model
We now instantiate a dense puzzle system in the random oracle model. For a given
security parameter λ, let O : {0, 1}∗ 7→ {0, 1}m be a random oracle, where m ≥ λ/2.
Our dense puzzle system is described in Figure 3.

Theorem 2. Let λ ∈ Z+ be the security parameter. Define PSλ = {0, 1}λ, SSλ =

{0, 1}λ, and HSλ = [log2 λ, λ/4]. Let O be a random oracle mapping from {0, 1}∗ to
{0, 1}m, where m ≥ λ/2. For any h ∈ HSλ, the puzzle system PuzSys described in
Figure 3 is correct, complete with Solve’s running time 2h+2 log λ, efficiently samplable,
statistically indistinguishable, and g-hard, where g(T ) = T 1/c, for any constant c > 2.
In addition, for any k that isO(2λ/8), PuzSys is (id(·), k)-amortization resistant, where
id(·) is the identity function.

Proof. See Appendix B.1.
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Define PSλ = {0, 1}λ, SSλ = {0, 1}λ, and HSλ = [log2 λ, λ/4]. Let H(·) :=
LSBλ/2(O(·)), where LSBk stands for k least significant bits.

– Sample(1λ, h): Return puz← {0, 1}λ.
– SampleSol(1λ, h): Pick random x ← {0, 1}λ and y ← {0, 1}λ/2. Return puz =

(H(x, y), y) and soln = x.
– Solve(1λ, h, puz):
• Parse puz to (z, y); set soln = ⊥ and initialize an empty set X .
• For ctr =

{
1, . . . , 2h+2 log λ

}
:

Randomly pick x ← {0, 1}λ \X , and add x to X . Set soln = x if LSBh(z) =
LSBh(H(x, y)).

• Return soln.
– Verify(1λ, h, puz, soln): Parse puz to (z, y). Return true if and only if LSBh(z) =

LSBh(H(soln, y)).

Fig. 3: The Dense Puzzle System from the Random Oracle O.

3.5 Dense Puzzle Instantiation From Complexity Assumptions

In this section, we show how to construct a puzzle system whose puzzle instance distri-
bution is statistically close to the uniform distribution (over {0, 1}m(λ)) without random
oracles. The main challenge is, given an arbitrary oneway function ψ : X 7→ Y , to build
another oneway function with uniform output distribution (on random inputs) while still
maintaining its onewayness. As an intuition, we would like to first map the output of
the given oneway function from Y to {0, 1}` using an efficient injective map (which is
usually the bit representation of y ∈ Y), and then apply a strong extractor on it. Let
Ext : {0, 1}` × {0, 1}d 7→ {0, 1}m be a strong extractor as defined at Definition 3.

Definition 3. Function Ext : {0, 1}` × {0, 1}d 7→ {0, 1}m is (t, ε)-strong extractor
if for any t-source X (over {0, 1}`), we have ∆[(S,Ext(X,S)), (S,Um)] ≤ ε, where
S ← {0, 1}d and Um ← {0, 1}m are drawn uniformly and independently of X .

The new oneway function ψU : X × {0, 1}d 7→ {0, 1}m × {0, 1}d is defined
as ψU (x, s) = (Ext(ψ(x), s), s). According to LHL [HILL93], if H∞(x) ≥ m +
2 log(1/ε), then the output of ψU is at most ε-far from the uniform distribution over
{0, 1}m+d. However, in order to maintain its onewayness, we need an extra property of
the strong extractor – Target Collision Resistance (TCR), i.e. given x and s, it is compu-
tationally infeasible to find x′ such that x 6= x′ and Ext(x, s) = Ext(x′, s). We construct
TCR strong extractors from regular universal oneway hash functions (UOWHFs), ini-
tially proposed by Naor and Yung [NY89]. Due to lack of space, we describe our TCR
strong extractor construction in Appendix B.2.

Dense Oneway Functions and Dense Puzzles from Complexity Assumptions.
We apply a TCR strong extractor for our construction. The key to the construction will
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be a “dense” oneway function: a oneway function is ε-dense oneway if its output distri-
bution is at most ε-far from Um for some m ∈ Z+. We now present a transformation
of a one-way function to a dense one-way function via the application of a TCR-strong
extractor. The TCR property will ensure that any attempt to invert the dense one-way
function will result to an inversion of the underlying one-way function. Formally we
prove the following.

Theorem 3. Let λ1, λ2 ∈ Z+ be the security parameters. Let ψλ1 : Xλ1 7→ Yλ1 be
an arbitrary oneway function, and define Hλ1 = H∞(ψλ1(X)) for random variable X
drawn uniformly from Xλ1

. Assume there exists an efficient injective map ζλ1
: Yλ1

7→
{0, 1}`(λ2). If

Extλ2
(x, (s1, s2)) : {0, 1}`(λ2) × {0, 1}λ2+2·`(λ2) 7→ {0, 1}Hλ1−2 log(1/ε)−1

is a (Hλ1
, ε)-TCR strong extractor, then

ψUλ1,λ2
(x, s1, s2) = (Extλ2

(ζλ1
(ψλ1

(x)), (s1, s2)), s2)

is an ε-dense oneway function with range {0, 1}2·`(λ2)+Hλ1−2 log(1/ε)−1 and domain
Xλ1
× {0, 1}λ2+2·`(λ2).

Proof. See Appendix B.3.

The above result paves the way for constructing dense puzzles from complexity as-
sumptions. Essentially, given a function with moderately hard characteristics making it
suitable for a puzzle, it is possible to transform it to a dense puzzle by applying a suit-
ably hard TCR extractor (“suitable” here means that breaking the TCR property should
be harder than solving the puzzle). We now illustrate this methodology by applying it to
the discrete logarithm problem. More generally this methodology transforms any puz-
zle in the sense of Definition 1 to a dense puzzle (assuming again a suitably hard TCR
extractor).

The DLP Based Puzzle and Calibrating Its Hardness.
Consider the discrete logarithm problem (DLP) as the candidate oneway function

for our puzzle. Let G = 〈G〉 be some (multiplicative) cyclic group where the DLP is
hard, and G is a generator with order p, which is a λ1-bit prime. The oneway function
ψG : Zp 7→ G is defined as ψG(x) = Gx. It is shown by Shoup [Sho97] that any
probabilistic algorithm takes Ω(

√
p) steps to solve the DLP over generic groups. Anal-

ogously, [GJKY13] shows any probabilistic algorithm must take at least
√
2pε steps

to solve DLP with probability ε in the generic group model. To build a puzzle, we
would like to calibrate the hardness of the DLP by revealing the most significant bits
of the pre-image. For example, for a puzzle with hardness factorh ≤ bλ1−1

2 c, we pick
x ∈ {0, 1}h and y ∈ {0, 1}b(λ1−1)/2c uniformly at random, and set the puzzle as
(Extλ2

(ψG(x + 2h · y), (s1, s2)), s2, y). We assume the calibrated DLP is still moder-
ately hard with respect to the min-entropy of x. Note that similar assumption was used
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Define PSλ = {0, 1}7λ/2+log4 λ, SSλ = {0, 1}log
4 λ, and HSλ = [log4 λ + log2 λ +

1, log5 λ]. For the given λ, select a pre-defined Extλ : {0, 1}λ × {0, 1}3λ 7→ {0, 1}λ+log4 λ.
Set the DLP ψG : Zp 7→ G over the pre-defined elliptic curve, where p is λ-bit prime such that
there exists an efficient injective map ζ : G 7→ {0, 1}λ. (We will omit this map ζ in the rest of
the description for notation simplicity.)

– Sample(1λ, h): Return puz← {0, 1}7λ/2+log4 λ.
– SampleSol(1λ, h):
• Pick random s1 ← {0, 1}λ, s2 ← {0, 1}2λ, x← {0, 1}h and y ← {0, 1}λ/2.
• Return puz = (Extλ(ψG(x+ 2h · y), (s1, s2)), s2, y) and soln = x.

– Solve(1λ, h, puz):
• Parse puz to (z, s1, s2, y); set soln = ⊥ and initialize an empty set X .
• For ctr =

{
1, . . . , 2h

}
:

◦ Randomly pick x← {0, 1}h \X , and add x to X .
◦ Set soln = x if z = Extλ(ψG(x+ 2h · y), (s1, s2)).

• Return soln.
– Verify(1λ, h, puz, soln): Parse puz to (z, s1, s2, y). Return true if and only if z =

Extλ(ψG(soln+ 2h · y), (s1, s2)).

Fig. 4: The Dense Puzzle System From DLP.

by Gennaro to construct a more efficient pseudo-random generator [Gen00]. It is easy
to see that this assumption holds for DLP in generic groups, i.e. given ψG(x + 2h · y)
and y, the best generic algorithm must take at least

√
2h+1ε steps to solve DLP with

probability ε. We note that this problem is closely related to leakage-resilient cryptog-
raphy [AM11, ADVW13], but due to space limitation we omit the detailed discussion
here.

On the other hand, due to the out-layer extractor, we cannot directly adopt any
known (generic) DLP algorithms, such as [GTY07, GPR13]. Instead, our puzzle solver
just exhaustively searches for a valid solution. There is a subtle caveat, namely the
expected running time of solving a puzzle with hardness factorh, i.e. x ← {0, 1}h is
designed to be 2h, whereas the TCR property of UOWHF is only guaranteed against
PPT adversaries with respect to λ2 (the security parameter of the UOWHF). To address
this issue, we introduce an additional assumption, that is the expected running time of
any adversary A (in number of steps) can break the TCR property of the underlying
UOWHF with non-negligible probability on x ← {0, 1}h is ω(2h/2), (i.e. breaking
TCR is expected to happen after the birthday paradox bound). The dense puzzle system
from DLP (combining with TCR strong extractors) is depicted in Figure 4.

Theorem 4. Let λ ∈ Z+ be the security parameter and h ∈ [log4 λ+log2 λ+1, log5 λ]

be the hardness factor. Let Extλ : {0, 1}λ × {0, 1}3λ 7→ {0, 1}λ+log4 λ be a TCR
strong extractor such that the expected running time of any adversary A that breaks
its TCR property with non-negligible probability on x ← {0, 1}h is ω(2h/2). Assume
ψG : Zp 7→ G is a hard DLP in generic groups such that the best generic algo-
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rithm must take at least
√
2h+1ε steps to solve it with probability ε. The puzzle system

PuzSys = (Sample,SampleSol,Solve,Verify) described in Figure 4 is correct, com-
plete with Solve’s running time 2h, efficiently samplable, statistically indistinguishable,
and g-hard, where g(T ) = T 1/c for any constant c > 2. In addition, for any k that is
O(2log

3 λ), PuzSys is (id(·), k)-amortization resistant, where id(·) is the identity func-
tion.

Proof. See Appendix B.4.

Remark. For notation simplicity, we let the puzzle space “independent” of the hardness
factor h, therefore we have to limit h within a small interval to ensure (i) ψG(x+2h ·y)
has enough entropy and (ii) it is infeasible to break the TCR property of the underlying
UOWHF within 2h/2 steps. In practice, for any desired h, we can always pick a suitable
Extλ : {0, 1}λ × {0, 1}3λ 7→ {0, 1}λ+h−log

2 λ−1.

3.6 Instantiation of the Dense Puzzle Based PoWorK

We instantiate our PoWorK protocol as described in Figure 1 by building it upon the
Schnorr identification scheme [Sch89] and the dense puzzle system instantiation in the
RO model5 (see Section 3.4). The description of our instantiation is presented in Ap-
pendix B.5.

4 Applications

Below we present some practical and theoretical applications of our PoWorK. When
using PoWorK in practice we must ensure that the verifier cannot distinguish between
the two types of provers based on their response time. In Section 2.2 we argued that for
our indistinguishability proofs, P(w) (i.e. the prover who knows the witness) should
perform some idle steps so that his running time will be lower bounded by the time that
one would need to solve the puzzle. However, enforcing a real user to wait is not ideal.
Luckily though, the time needed for a prover who solves a puzzle (i.e., does not know
the witness) depends on his total computational power and on whether the puzzle is
parallelizable or not. Provers who own specialized hardware (e.g., based on ASICs) or
that have access to powerful computer clusters (in case that a puzzle is parallelizable)
might be able to solve the puzzle very fast – paying of course the relevant computation
cost. Thus, when applying PoWorK in practice, the time that takes a prover to respond
to a challenge is not a distinguishing factor: the prover might have as well solved the
puzzle in constant time by fully parallelizing its computation or alternatively, for the
case of non-interactive PoWorK’s the receiver may not know when the prover started
proof computation. Finally note that in any case, we do care that the prover has paid the
corresponding computational cost and he is not able to amortize a previous solution of
a puzzle to solve a new one.

5 The construction using the DLP based puzzle system is similar. We chose to employ the RO
instantiation for simplicity in presentation.
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4.1 Email Spam Application

Using proofs of work to reduce the amount of spam email was suggested back in 1992
by Dwork and Naor [DN92]. Their idea can be summarized in the following:

“If I don’t know you and you want to send me a message, then you must prove that you
spent, say, ten seconds of CPU time, just for me and just for this message” [DN92].

In their proposal there exists some special software6 that operates on behalf of the re-
ceiver and checks whether the sender has properly computed the proof of work or the
sender is an approved (by the receiver) contact. The reason that this approach helps to
reduce spam is mainly economic: in order for spammers to send high volumes of emails
they would have to invest in powerful computational resources which makes spamming
non cost-effective.

A disadvantage of the method described above is that the list of the approved con-
tacts (i.e. email addresses) of the receiver has to be given to this special software/mail
server in order to check whether the sender belongs in this list or not - in which case
she will have to perform additional computation. This violates the privacy of the re-
ceiver who needs to reveal which of her contacts she considers to be approved and thus
allows them to send emails “for free”. Adopting our PoWorK protocol would give a
privacy preserving solution to the spam problem: given the indistinguishability feature
of PoWorK, the software/verifier does not need to know the approved list of contacts,
in fact it does not even need to know whether the incoming email is from an approved
contact or a non-approved user who successfully fulfilled the computational work.

Non-interactive PoWorKs. Sending an email should not require any extra communica-
tion between the sender and the mail server. Our 3-move PoWorK is public-coin, thus
can be turned into non-interactive by applying the Fiat-Shamir transformation [FS86].
Namely, the prover, instead of receiving a challenge from the verifier, hashes the first
move message a together with the context of the email and the email address of the re-
ceiver into c, and provides the verifier with the whole proof, π, which includes (a, c, r)
and the context of the email, in one round.

Multi-witness hard relation. In order for a user to approve a list of contacts she will have
to provide each one of them with a unique witness for the same statement (in order to
ensure indistinguishability). LetRL be a multi-witness hard relation with a trapdoor for
a language {x | ∃w : (x,w) ∈ RL}. A relation is said to be hard if for (x,w) ∈ RL, a
PPT adversary given x can only output w′ s.t. (x,w′) ∈ RL with negligible probability.
A multi-witness hard relation with a trapdoor is described by the following algorithms:
(a) a trapdoor generation algorithm sets a pair of a statement x and associated trapdoor
t: (x, t) ←GenT(RL), (b) an efficient algorithm GenW that on input x ∈ L and a
trapdoor t outputs a witness w such that (x,w) ∈ RL and, (c) a verification algorithm
1/0← Ver(RL, x, w) outputs 1 if (x,w) ∈ RL and 0 otherwise 7.

6 This special software could for example run on the receiver’s mail server or be an independent
program running on the receiver’s side.

7 Examples of multi-witness hard relations with trapdoors are (a) the DL representation prob-
lem [Bra94, BF99] over prime order groups, (b) the representation problem in composite mod-
ular groups [ACJT00] which has constant size parameters in the number of adversarial parties.
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PoWorK based spam reducing system. Consider a PoWorK scheme as presented in
Figure 1 for a security parameter λ, a puzzle system PuzSys and a multi-witness hard
relation with a trapdoor RL as described above. A spam reducing system SRS consists
of the following algorithms:

– MailServerSetup(1λ): the mail server Smail on input the security parameter, λ, se-
lects the hardness of the puzzle system h ∈ HSλ.

– ReceiverSetup(1λ, h): user R (i.e. the receiver) runs (x, t)←GenT(RL and sends
x and her email address adR to the mail server (potentially signed together). The
trapdoor t is secretly stored byR.

– ApproveContact (t, x): in order for R to approve a sender S, it will run w ←
GenW(t, x) and will give w ∈ RL(x) to the sender (unique witnesses allow for
revocation as discussed in Appendix E). From now on, S can use w to send emails
toR.

– SendEMail(w, h, x): a sender S with input the public parameters v, statement x ∈
L and with a private input w ∈ RL(x) ∪ {⊥}, prepares a PoWorK proof π =
(a, c, r). If S is an approved contact of R, then she will use the witness w to
perform the PoK side of PoWorK, while if R is not an approved contact (i.e. w =
⊥) she will have to execute the PoW side. To compute π non-interactively she will
fix c to beH(a,m), where a is the first message of PoWorK,m stands for the body
of the email8, andH is a hash function. The rest of PoWorK is computed as before.

– ApproveEMail(h, x, π): is run by the mail server Smail who verifies π and outputs
0/1. If proof is π valid, then Smail forwards the enclosed email toR.

Note that our proposal, similar to [DN92, DGN03], requires to implement additional
protocols between the sender and the recipient (i.e. a change in the internet mail stan-
dards would be required). Finally, in Appendix E we discuss some interesting exten-
sions of our protocol that address revocation, prevention of witness sharing and solving
“useful” puzzles.

Security. Although a formal definition and description of properties of an email system
is out of the scope of this paper, we do define and prove spam resistance and privacy.
Briefly, spam resistance guarantees that the mail server will allow an email message
to reach the recipient if and only if a valid proof (of work or knowledge) has been
attached. At the same time for a non-approved contact the number of valid proofs of
work prepared should not affect the time required to prepare a new one (similar to
puzzle amortization property). Privacy implies that the mail server cannot distinguish
whether the sender of a message is an approved contact of the recipient or not.

Definition 4. Let SRS be a spam reducing system built upon a PoWorK (P,V) for a
language L ∈ NP and a puzzle system PuzSys = (Sample,Solve,Verify). We define
spam resistance and privacy of SRS as follows:

8 We can assume that the email body also contains a time-stamp (or that the time-stamp is added
later by the mail server) and also includes (adS , adR) which are the sender/receiver email
addresses
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(i). (σ, k)-Spam Resistance: We say that SRS is (σ, k)-spam resistant if there exists
a PPT witness-extraction algorithm K, such that for every hardness factor h ∈
HSλ, auxiliary tape z ∈ {0, 1}∗ and every adversary A, if for non-negligible
functions α1(·), α2(·):

Pr


(t, x)← ReceiverSetup(1λ, h);∀1 ≤ i ≤ k : puzi ← Sample(1λ, h);
{πi = (ai, ci, ri)}i∈[k] ← A(z, 1λ, h, x) :(
∀1 ≤ i ≤ k : ApproveEMail(h, x, πi) = 1

)
∧

∧(∀i 6= j ∈ [k] : πi 6= πj)∧
∧
(
StepsA(z, 1

λ, h, x) ≤ σ
(∑k

i=1 StepsSolve(1
λ, h, puzi)

))

 = α1(λ) ,

then Pr[KA(z, 1λ, h, x) ∈ RL(x)] = α2(λ) .
(ii). Privacy: We say that SRS is private, if for every hardness factor h ∈ HSλ, aux-

iliary tape z ∈ {0, 1}∗ and every adversarial mail server A, it holds that:∣∣∣∣∣Pr
[
(t, x)← ReceiverSetup(1λ, h);w ← ApproveContact(t, x);

π ← SendEMail(w, h, x) : A(z, h, x, π) = 1

]
−

− Pr

[
(t, x)← ReceiverSetup(1λ, h);

π ← SendEMail(⊥, h, x) : A(z, h, x, π) = 1

] ∣∣∣∣∣ = negl(λ) .

We prove the following theorem for a private spam reducing email system:

Theorem 5. Let SRS be a spam reducing system built upon dense puzzle-based PoWorK
(P,V) for a g-hard and (τ, k)-amortization resistant dense puzzle system PuzSys =
(Sample,Solve,Verify), where k is polynomial in λ, τ is an increasing function and g is
a subadditive function. LetH be a hash function with output domain equal to challenge
sampling space CSλ modeled as a random oracle. Assume that the worst-case running
time of Solve(1λ, ·, ·) is o(|CSλ|) and that (

√
τ ◦ g(Solve(1λ, ·, ·)) is super-polynomial

in λ. Then, the email system described above is private and (
√
τ ◦ g, k)-spam resistant.

Proof. See Appendix D.

Intuitively, the privacy holds because of the indistinguishability of PoWorK (we
can use the adversary of SRS privacy to build an adversary that breaks the indistin-
guishability of PoWorK). The (

√
τ ◦ g, k)-spam resistance property holds because of

the soundness of PoWorK and the amortization resistance of the underlying PuzSys.

4.2 PoWorK-based Cryptocurrencies

Proofs of work is the basic primitive used in achieving the type of distributed consensus
required in cryptocurrencies, notably Bitcoin [Nak08] and many others that use the
same approach. The main idea is that a proof of work operation can be used to calibrate
the ability of parties to build a hash chain that contains transaction records, commonly
referred to as the blockchain.

An important feature of a blockchain is its decentralized nature. Given the view of a
participant (commonly referred to as a miner) that includes its view of the blockchain,
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a fresh instance of a puzzle of a specified difficulty is created (which itself may depend
on the blockchain) and has to be solved in order to add another block in the chain.
Formally, the operation of a PoW-based miner as used in Bitcoin and numerous other
cryptocurrencies (such as Litecoin, Namecoin, Dogecoin) is as shown in Figure 5.

Let 〈B1, . . . , Bn〉 be the current blockchain where Bi is a tuple (ti, Ti, ui, πi) with ti a time-
stamp, Ti a set of transactions, ui = H(Bi−1) (for a hash function H) and πi is such that
Verify(1λ, hi, H(Bi), πi) = true. The hardness hi is calculated via a function operating on
the time-stamps as follows hi = HC(t1, . . . , ti−1). A new block Bn+1 is created as follows.

1. Collect transactions into a vector Tn+1.
2. Calculate hn+1 = HC(t1, . . . , tn).
3. Set puz = H(tn+1, Tn+1) where tn+1 is a current timestamp and run Solve(1λ, h, puz)

to produce a soln = πn+1.
4. If the above step is successful, broadcast Bn+1 = (tn+1, Tn+1, un+1, πn+1).

Fig. 5: Miner operation in a puzzle-based cryptocurrency (using a puzzle PuzSys =
(Sample,Solve,Verify) that is dense). The function HC(·) is the puzzle hardness
calculation function which depends on the timestamps of the blocks of the current
blockchain.

Under certain assumptions about the network synchronicity and the hardness of the
proof, the above mechanism has been shown to be robust in the sense of satisfying
two properties, persistence (transactions remain stable in the “ledger”) and liveness
(all transactions are eventually inserted in the ledger) assuming that the honest parties
are above majority [GKL15]. Puzzle-based cryptocurrencies have also drawn a lot of
criticism due to the fact that they require a lot of natural resources (e.g., in [OM14] it is
reported that Bitcoin mining in 2014 already consumed as much energy as the needs of
the country of Ireland for electricity).

This lead to the development of a number of systems that circumvent puzzles (in-
cluding, [DM16, BLMR14, Maz15] as well as Peercoin, DasHCoin, NXT, Nushares,
ACHCoin, Faircoin and others). These systems maintain a blockchain as well, however
they rely on a different mechanisms for producing blocks. We call them, generically,
“knowledge-based cryptocurrencies” since the production of a block is associated with
the production of a witness for a public-relation relation R which parameterizes the
system. Formally, we present the miner9 operation in Figure 6.

A trivial way to construct a knowledge-based cryptocurrency would be to have a
a single trusted authority with a public and secret key pair, (pk, sk), acting as the sole

9 Note that we use the term “miner” for symmetry. Miners are associated with puzzle based cryp-
tocurrencies and thus different terminology has been introduced in knowledge-based systems
including “mintettes”, “forgers” and others.
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Let 〈B1, . . . , Bn〉 be the current blockchain where Bi is a tuple (ti, Ti, ui, πi), for ti, Ti, ui
defined as in Figure 5 and πi being a NIZK that shows xi ∈ {x | ∃w : (x,w) ∈ R}, where
xi = V (B1, . . . , Bi−1, ti, Ti) for i = 1, . . . , n. The miner, equipped with secret-key sk,
produces the next block as follows.

1. Collect transactions into a vector Tn+1.
2. Calculate the pair (xn+1, aux) ← V (B1, . . . , Bn, tn+1, Tn+1) where tn+1 is the cur-

rent time. Then calculate Wsk(xn+1, aux) = wn+1. If wn+1 6= ⊥ it holds that
(xn+1, wn+1) ∈ R.

3. If the above step is successful, compute a NIZK proof πn+1 for xn+1 using witnesswn+1.
4. Broadcast Bn+1 = (tn+1, Tn+1, un+1, πn+1).

Fig. 6: Miner operation in a knowledge-based cryptocurrency parameterized by relation
R. The function V (·), given the blockchain information, the current set of transactions
and the time-stamp produces a statement x, while the functionWsk(·) given a statement
produces a witness w so that (x,w) ∈ R.

miner.10 At a time-step n+1, the function V (·) would set simply xn+1 = (tn+1, Tn+1,
un+1) and Wsk(xn+1) would produce a signature on xn+1 that would serve as πn+1

(there is no need for a NIZK). Another example of a knowledge-based cryptocur-
rency is NXT. On a high level, in this system each miner (called forger) has a digi-
tal signature public and secret key, (pk, sk), associated with her account. The function
V (B1, . . . , Bn, tn+1, Tn+1) (run by each miner), operates as follows: it parses Tn+1

to recover the public pk of the miner (note that it is always present in the transaction
collecting the fees). Then, based on the public-key pk and the blockchain B1, . . . , Bn
it determines how much currency is associated with the account that corresponds to
the public-key pk; this results in a time-window d ∈ R+ whose expectation is pro-
portionate to the amount of currency in the account (the more currency, the shorter the
expectation of d is; we omit the exact dependency in this high level description). The
function V (·) returns (xn+1, aux) with xn+1 = (tn+1, Tn+1, un) and aux = d. The
procedure Wsk(xn+1, d), will produce a signature w on the message (tn+1, Tn+1, un)
if if tn+1 ≥ tn + d; otherwise it produces ⊥. Note that in this system no NIZK is em-
ployed, one may just set πn+1 = w; nevertheless, the system would operate in the same
way if a NIZK was employed to establish knowledge of a signature w on the message
(tn+1, Tn+1, un).

We now show how to construct a PoWorK-based cryptocurrency derived from a
knowledge-based cryptocurrency C1 and a puzzle-based cryptocurrency C2 for a dense
puzzle, see Figure 7. The construction is straightforward: a new block can be added to
the blockchain by someone who can efficiently compute a proof πi using some secret
key or by someone who is computing a πi by performing computational work.

The properties of the composition are informally stated in the following (meta)-
theorem; the proof of the theorem follows from the properties of PoWorK and is similar
in spirit to the proof of Theorem 5. The formal statement and proof of the theorem

10 For instance, this would be a single “mintette” instantiation of [DM16].
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(that should also include a formalization of all relevant underlying properties of cryp-
tocurrencies, both in the puzzle-based and knowledge-based setting, e.g., in the sense
of [GKL15]) is out of scope for the present exposition.

Let 〈B1, . . . , Bn〉 be the current blockchain where Bi is a tuple (ti, Ti, ui, πi), for ti, Ti,
ui defined as in Figure 5 and πi being a non-interactive PoWorKthat demonstrates either the
solution of the puzzle puz = H(ti, Ti) with hardness hi = R(t1, . . . , ti−1) or that xi ∈ {x |
∃w : (x,w) ∈ R} where xi = V (B1, . . . , Bi−1, ti, Ti).

1. Collect transactions into a vector Tn+1.
2. If a secret-key sk is available, perform steps 2-3 of Figure 6 and follow the PoK direction

of PoWorK(cf. Figure 1), using the H(·) to compute the challenge of the verifier.
3. Else, perform steps 2-3 of Figure 5 and follow the PoW direction of PoWorK(cf. Figure 1)

using the H(·) to compute the challenge of the verifier.
4. Broadcast Bn+1 = (tn+1, Tn+1, un+1, πn+1).

Fig. 7: Miner operation in a PoWorK-based cryptocurrency parameterized by relation
R and PuzSys = (Sample,Solve,Verify). The functions V (·),Wsk(·) are as in Figure 5
and the function C(·) is as in Figure 6.

Theorem 6. (informally stated) The cryptocurrency C of Figure 7 is the composition
of a knowledge-based cryptocurrency C1 and a puzzle-based cryptocurrency C2 so that
(i) the population of miners of C1, C2 becomes a single set that is indistinguishable to
any adversary that controls a subset of miners of C, (ii) the persistence property of C is
upheld as long as the conditions for persistence of C1, C2 hold in conjunction. (iii) the
liveness property of C is upheld as long as the conditions for liveness of C1, C2 hold in
disjunction.

4.3 PoWorKs as 3-move Straight-line Concurrent Simulatable Arguments of
Knowledge

In this section, we present a theoretical application of PoWorKs. Namely, we show that
any PoWorK protocol that satisfies a couple of reasonable assumptions, implies straight-
line concurrent (λpoly(log λ))-simulatable arguments of knowledge. Our application is
described at length in Appendix F. Here, we provide the statement of our main result.

Theorem 7. Let L be a language inNP and let PuzSys be a puzzle system. Let (P,V)
be a 3-move f -sound PoWorK for L and PuzSys with statistical indistinguishability
such that for every hardness factor h ∈ HSλ, it holds that:

(i). Pr[puz← Sample(1λ, h) : f(StepsSolve(1
λ, h, puz)) ≤ λlog λ] = negl(λ).

(ii). The worst-case running time of Solve(1λ, h, ·) is λpoly(log λ) and P is a polyno-
mial time algorithm that makes oracle calls to Solve(1λ, h, ·).

Then, (P,V) is a 3-move straight-line concurrent statistically λpoly(log λ)-simulatable
argument of knowledge.
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Remark. In practice, we can instantiate the dense puzzle with a DL function over a
dense elliptic curve [BHKL13] (without the need of an extractor). This means that we
can transform a 3-move proof/argument of knowledge to a concurrent one with min-
imal computational overhead – 1 exponentiation for the prover and 1 exponentiation
for the verifier. (cf. Fig. 1(a).) Note that a similar result in terms of rounds and with
similar assumptions (i.e. DL) can be obtained via the efficient OR composition with
an input-delayed Σ-protocol as recently observed in [CPS+16], however the resulting
complexity overhead would be at least 3 exponentiations for the prover and 2 exponen-
tiations for the verifier when the underlying Chameleon Σ-protocol is instantiated from
Schnorr’s protocol.
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A 3-move Special-sound HVZK (SS-HVZK) protocols

SS-HVZK protocols are a class of interactive proofs between a prover, P , and a verifier,
V , who have a common input x and P proves in zero-knowledge that he knows a
witness w such that (x,w) ∈ RL, where RL is a witness relation for lagnuage L ∈
NP . In a 3-move public coin SS-HVZK protocol Π = (P1Π ,P2Π ,VerΠ), (i) the
prover first runs (a, φ) ← P1Π(w, x) and sends the first message a to the verifier; (ii)
the verifier picks a challenge c uniformly at random from some challenge space CSΠ
and sends the challenge c to the prover; (iii) the prover then runs r ← P2Π(φ, c) and
sends the second message r to the verifier. The verifier accepts the proof if and only if
VerΠ(x, a, c, r) = 1.

We say that the protocol satisfies the computational (resp. statistical) honest-verifier
zero knowledge (HVZK) property, if there exists a polynomial-time simulator SimΠ ,
which on input x ∈ L outputs an accepting transcript of the form (a, c, r) which distri-
bution is computationally (resp. statistically) indistinguishable from an actual transcript
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generated by the interaction of the prover and the honest verifier. A stronger prop-
erty named special HVZK (sHVZK) requires that there exists a simulator that produces
indistinguishable transscripts on input x ∈ L and a (possibly maliciously sampled)
challenge c. When we allow the simulator to obtain an auxiliary input, we say that
the protocol satisifies the auxiliary input (s)HVZK property. It is straightforward that
statistical (s)HVZK is also statistical auxiliary input (s)HVZK.

Finally, we say that a 3-move public coin HVZK protocol is special-sound if there
exists a polynomial-time knowledge extractor KΠ that on input x and any pair of ac-
cepting transcripts, (a, c, r), (a, c′, r′) for x where c 6= c′, can output a witness w such
that (x,w) ∈ RL.

B Appendices of Sections 3.4, 3.5 and 3.6

B.1 Proof of Theorem 2

Proof. Correctness and efficient samplability. The correctness and efficient sampla-
bility is straightforward.

Completeness. We now show the completeness, namely the probability that Pr[puz←
{0, 1}λ ;⊥ ← Solve(1λ, h, puz)] is negligible in λ. We can view each H(·, y) oracle
query as an independent random variable Aj ∈ {0, 1}, with E[Aj ] = p = 2−h, where
Aj = 1 if and only if LSBh(H(x∗j , y)) = LSBh(z). Let µ denote the expected value

of A =
∑2h+2 log λ

j=1 Aj , so we have µ = E[
∑2h+2 log λ

j=1 Aj ] =
∑2h+2 log λ

j=1 E[Aj ] =

p · 2h+2 log λ = 22 log λ = λ2. Hence, let δ = 1 − 1
λ2 , by the generalized Chernoff

bound, the probability Solve outputs ⊥ for a given puz is

Pr[A < 1] = Pr[A < (1− δ)µ] ≤ e
−δ2µ

2 = e−
(1−1/λ2)2

2 ·λ2

= negl(λ) .

Statistically indistinguishability. To show ∆[Ds,λ,h, Dp,λ,h] = negl(λ), we first need
to show that for all λ and h ∈ HSλ, the distribution of sampled puzzle, P (λ, h) ={
puz|(puz, soln)← SampleSol(1λ, h)

}
is statistically close to a uniform distribution

over the PSλ = {0, 1}λ. Recall that puz consists of H(x, y) and y, where x,y are
chosen independently and uniformly at random. Analogous to the leftover hash lemma
(LHL) [HILL93], we can show that ∆[P (λ, h),Uλ] ≤ 2−λ/4+1 as follows. We define
the collision probability as CP (H(x, y), y) = Pr[(H(x, y), y), (H(x′, y′), y′)], where
(x′, y′) is independent of and identically distributed to (x, y), i.e. Uλ ×Uλ/2. Since O
is a random oracle, we have

CP (H(x, y), y) = CP (y) · (CP (x) + Pr[H(x, y) = H(x′, y)|x = x′])

≤ 2−λ/2 · (2−λ + 2−λ/2) = (1 + 2−λ/2) · 2−λ .

Meanwhile, we have

(‖(H(x, y), y)−Uλ/2 ×Uλ/2‖2)2 = CP (H(x, y), y)− CP (Uλ/2 ×Uλ/2)

≤ (1 + 2−λ/2) · 2−λ − 2−λ = 2−3λ/2 .
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Therefore,

∆[P (λ, h),Uλ] =
1

2
‖(H(x, y), y)−Uλ/2 ×Uλ/2‖1

≤ 2λ/2−1 · ‖(H(x, y), y)−Uλ/2 ×Uλ/2‖2

≤ 2λ/2−1 ·
√
2−3λ/2 = 2−λ/4+1 .

Secondly, due to that fact that O is a random oracle, the distribution of puz and soln
are independent. Moreover, the Solve is probabilistic algorithm that tests the uniform
randomly selected solution candidates, and thus it is obvious that Solve(1λ, h, puz))
outputs a random soln from the solution set of puz, which is identically distributed to
the solution soln in (puz, soln) ← SampleSol(1λ, h). Therefore, we have the distance
∆[Ds,λ,h, Dp,λ,h] = negl(λ) as claimed.

g-hardness. First of all, although the adversary’s auxiliary input is z ∈ {0, 1}∗ can be
arbitrarily long, the adversary is only able to read O(g(2h+2 log λ)) ≤ O(2λ/4) content
of z under its running time limitation. Since y ← {0, 1}λ/2, the probability that the
read content of z contains a H(∗, y) oracle query is at most pw = 2λ/4

2λ/2
= negl(λ).

In the rest case, we assume that each random oracle query takes 1 unit steps. Due to
the property of random oracle, we expect 2λ−h solutions in the solution space {0, 1}λ
for any given puzzle instance puz. The probability the adversary cannot find a solution
within 2(h+2 log λ)/c trials is

pl =

(
2λ−2λ−h

2(h+2 log λ)/c

)(
2λ

2(h+2 log λ)/c

) > (1− 1

2h−(h+2 log λ)/c
)2

(h+2 log λ)/c

≥ 1− 2−(1−
2
c )h+

4
c log λ .

Since c > 2 and h ≥ log2 λ, we have the probability the adversaryA can find a solution
is

pw + (1− pw)(1− pl) = negl(λ).

(id(·), k)-amortization resistance. LetA be an adversary that runs inO(k2(h+2 log λ)/c)
steps and is given a set of k sampled puzzles puz1, . . . , puzk = (z1, y1), . . . , (zk, yk).
By the construction of the algorithm SampleSol, we have that the probability that all k
values y1, . . . , yk are distinct is

pd = 1 · (1− 2−λ/2) · · · (1− (k − 1)2−λ/2) > (1− k2−λ/2)k ≥ 1− k22−λ/2 ≥
≥ 1− (2λ/8)2 · 2−λ/2 = 1− 2−λ/4 = 1− negl(λ).

Assume that k values y1, . . . , yk are distinct. As in the proof of g-hardness, sinceA
runs in O(k2(h+2 log λ)/c) = O(2(λ/8+h+2 log λ)/c) = O(2λ/4), for every i ∈ [k], the
probability thatA reads an oracle query H(·, yi) from the auxiliary tape is pi ≤ 2−λ/4.
By the union bound, the probability thatA reads any oracle queryH(·, y1) . . . , H(·, yk)
from the auxiliary tape is pw ≤

∏k
i=1 pi ≤ k2−λ/4 ≤ 2−λ/8 · 2−λ/4 ≤ 2−λ/8 =

negl(λ).
Let q1, . . . , qk be the number of oracle queriesH(·, y1), . . . ,H(·, yk) thatAmakes.

By the restriction on the running time ofA, we have that
∑k
i=1 qi ≤ k2(h+2 log λ)/c. By
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an averaging argument, there is an i∗ ∈ [k] such that A makes at most 2(h+2 log λ)/c or-
acle queries H(·, yi∗). Due to the property of random oracle, we expect 2λ−h solutions
in the solution space {0, 1}λ for puzi∗ . As previously, the probability thatA cannot find
a solution of puzi∗ within 2(h+2 log λ)/c trials is more than 1− 2−(1−

2
c )h+

4
c log λ. Since

c > 2 and h ≥ log2 λ, the probability that A can find a solution for all puz1, . . . , puzk
is negl(λ).

ut

B.2 TCR Strong Extractors from Regular UOWHFs.

We first formally define the TCR property for a strong extractor in Definition 5.

Definition 5. Let Ext : {0, 1}`(λ) × {0, 1}d(λ) 7→ {0, 1}m(λ) be a strong extractor. We
say Ext is target collision resistant if for all PPT adversaryA, the following probability:

Pr

[
x← A(1λ); s← {0, 1}d(λ) : x′ ← A(s) :
x, x′ ∈ {0, 1}`(λ) ∧ x 6= x′ ∧ Ext(x, s) = Ext(x′, s)

]
= negl(λ).

A stronger notion, collision resistant extractors, was introduced by Dodis [Dod05].
Collision resistant extractors were applied to construct perfectly oneway probabilistic
hash functions proposed [CMR98] in 2005. The construction of such collision resistant
extractors relies on a variant of leftover hash lemma proved by Dodis and Smith [DS05]
that we recap, for completeness, in Lemma 1.

Lemma 1 ([DS05]). Let f : {0, 1}N 7→ {0, 1}m be an arbitrary function. Let H =
{Hi|i ∈ I} be a pairwise independent hash function family with key space I, domain
{0, 1}n and range {0, 1}N . IfX is a t-source over {0, 1}n with t ≥ m+2 log(1/ε)+1,
then we have

∆[
(
I, f(HI(X))

)
,
(
I, f(UN )

)
] ≤ ε

where I ← I and UN ← {0, 1}N are drawn uniformly and independently of X .

Our observation is that in the same way that [Dod05] employ regular collision re-
sistant hash functions (CRHF) to derive collision resistant strong extractors, we can use
regular universal oneway hash function (UOWHF), to obtain TCR strong extractor. The
notion of UOWHF was initially proposed by Naor and Yung [NY89] where they showed
that UOWHFs can be constructed by composing oneway permutations with (weakly)
pairwise independent hash functions. Since then, many constructions of UOWHFs have
been proposed, assuming the existence of regular oneway functions [SY90] or any
oneway functions [Rom90, HHR+10].11 We recall the definition of UOWHF as Defini-
tion 6.

Definition 6. A family of functionsFλ =
{
Fi : {0, 1}`1(λ) 7→ {0, 1}`2(λ) |∀i ∈ {0, 1}λ

}
is a family of universal oneway hash functions if it satisfies:
11 We note that, on the contrary, CR strong extractors cannot be built from arbitrary oneway

functions, since Simon [Sim98] gave a black-box separation between CRHFs and oneway
functions.
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– Efficiency: Given i ∈ {0, 1}λ and x ∈ {0, 1}`1(λ), Fi(x) can be evaluated in time
poly(`1(λ), λ).

– Compressing: `2(λ) < `1(λ).
– Target Collision Resistance: For all PPT A, the following is negligible in λ:

Pr[x← A(1λ);i← {0, 1}λ ;x′ ← A(i) :(
x, x′ ∈ {0, 1}`1(λ)

)
∧ (x 6= x′) ∧

(
Fi(x) = Fi(x

′)
)
] .

(5)

We would like to use H2n =
{
H(a,b)(x) = ax+ b|∀a 6= 0, a, b ∈ GF(2n)

}
as the

family of pairwise independent permutations and a regular UOWHF family Fλ to con-
struct our TCR strong extractors. Define F̂i(·) := (Fi(·), i), where Fi ∈ Fλ. Our TCR
strong extractor is constructed as Ext(x, (i, s)) = F̂i ◦ Hs(x). Note that regularity of
the UOWHFs is important to ensure that the output distribution of such strong extrac-
tors is close to the uniform distribution, as Fi(U`1(λ)) ≡ U`2(λ). On the other hand,
some UOWHF constructions give regular UOWHFs by default (i.e., the UOWHFs con-
structed by the oneway permutation based approach [NY89]).

Theorem 8. Let `(λ),m(λ) be polynomials. Let

H2·`(λ) =
{
Hs : {0, 1}`(λ) 7→ {0, 1}`(λ) |∀s ∈ {0, 1}2·`(λ)

}
be a pairwise independent permutation family. Assume that

Fλ =
{
Fi : {0, 1}`(λ) 7→ {0, 1}m(λ) |∀i ∈ {0, 1}λ

}
is a regular UOWHF family. Then, Extλ(x, (i, s)) = (Fi(Hs(x)), i) is a (t, ε)-TCR
strong extractor from {0, 1}`(λ) ×{0, 1}λ+2·`(λ) to {0, 1}λ+m(λ), for any constant t ≥
m(λ) + λ+ 2 log(1/ε) + 1.

Proof. Let F̂i(·) := (Fi(·), i). If H∞(x) = t ≥ m(λ) + λ + 2 log(1/ε) + 1, by
Lemma 1, we have ∆[(s, F̂i ◦Hs(x)), (s, F̂i(U`(λ)))] ≤ ε. In addition, i is drawn uni-
formly from {0, 1}λ, and Fi is a regular function; hence Fi(U`(λ)) ≡ Um(λ), and thus
F̂i ◦Hs(x) is statistically indistinguishable from Um(λ) ×Uλ. Therefore, weconclude
that Extλ(x, (i, s)) = (Fi ◦ Hs(x), i) is a (t, ε)-strong extractor. In terms of the TCR
property, we show that if there exists an adversary A who can break the TCR of Extλ,
then we can build an adversary B who can break the TCR of Fλ as follows. B is play-
ing the UOWHF TCR game, meanwhile B interacts with A as the challenger in the
strong extractor TCR game. Up on A outputs x ∈ {0, 1}`(λ), then B randomly picks
s ∈ {0, 1}2·`(λ) and outputs x̂ := Hs(x) ∈ {0, 1}`(λ) to its challenger. Up on receiving
i ∈ {0, 1}λ from its challenger, B sends (i, s) to A. Up on A outputs x′ ∈ {0, 1}`(λ),
B outputs x̂′ := Hs(x

′) ∈ {0, 1}`(λ). Since Hs(·) is a permutation, x 6= x′ implies
Hs(x) 6= Hs(x

′). Clearly, B’s probability of breaking UOWHF TCR property is ex-
actly equal to A’s probability of breaking strong extractor TCR property.

ut
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B.3 Proof of Theorem 3

Proof. The ε-density of ψUλ1,λ2
follows directly from the underlying (Hλ1

, ε)-strong
extractors, and by Theorem 8,

∆[(Extλ2
(ζλ1

(ψλ1
(x)), (s1, s2)), s2), (UHλ1−2 log(1/ε)−1, s2)] ≤ ε .

We now show ψUλ1,λ2
is oneway by reduction. Namely, if there exists an adversary A

who can break the onewayness of ψUλ1,λ2
then we can construct an adversary B who can

either break the onewayness of ψλ1
or break the TCR of Extλ2

. During the reduction,
B plays the ψλ1

onewayness game with the environment C1 and the Extλ2
TCR game

with the environment C2 simultaneously. B receives y = ψλ1(x) for some x ∈ Xλ1

from C1, and then B outputs ζλ1
(y) to C2. Upon receiving (s1, s2) ∈ {0, 1}λ2 ×

{0, 1}2·`(λ2) from the environment C2, B sends A the image ψUλ1,λ2
(x, (s1, s2)) =

(Extλ2
(ζλ1

(y), (s1, s2)), s2). A will then output (x′, (s′1, s
′
2)) ∈ Xλ1

× {0, 1}2·`(λ2),
and B halts if (s1, s2) 6= (s′1, s

′
2), as A fails. Otherwise, if ψλ1

(x′) = y, B sends x′

to the environment C1; else B sends ζλ1
(ψλ1

(x′)) to the environment C2. Since ζλ1
is

injective, ψλ1(x
′) = y implies ζλ1(ψλ1(x

′)) = ζλ1(y); hence, if A wins, B can win
either one of her games.

ut

B.4 Proof of Theorem 4

Proof. Correctness and efficient samplability. Correctness and efficient samplability
is straightforward.

Statistically indistinguishability. We now show that the puzzle system is statistically
indistinguishable. Recall that puz consists of Extλ(ψG(x+2h ·y), (s1, s2)), s2, y, where
s1, s2, y are chosen independently and uniformly at random. Hence (s1, s2, y) is identi-
cally distributed to Uλ×U2λ×Uλ/2. SinceH∞(x) = h ≥ log4 λ+log2 λ+1 and ψG
is a bijective function, by Theorem 3, the puz = (Extλ(ψG(x+2h · y), (s1, s2)), s2, y)
is at most ε = 2−(log

2 λ−1)/2 = negl(λ) far from Uλ+log4 λ × U2λ × Uλ/2, where
(s1, s2) ← {0, 1}3λ and y ← {0, 1}λ/2 are drawn uniformly random and independent
to x. On the other hand, as shown in the paragraph below, the puzzle system is com-
plete. Notice that the solver is probabilistic, so Solve(1λ, h, puz)) outputs a random
soln from the solution set of puz, which is identically distributed to the solution soln in
(puz, soln)← SampleSol(1λ, h). Therefore, ∆[Ds,λ,h, Dp,λ,h] = negl(λ) as claimed.

Completeness. Since the puzzle instance is statistically indistinguishable from uniform
random, with probability at most ε = 2−(log

2 λ−1)/2 = negl(λ) a puzzle puz← {0, 1}h
is unsolvable; otherwise, the Solve can be used to distinguish the puzzle instance from
uniform random. It is easy to see that the solver’s running time is 2h.

g-hardness. In terms of g-hardness, the adversary is able to read at mostO(2log
5 λ) con-

tent of its auxiliary tape z within its running time, whereas (s1, s2)← {0, 1}3λ and y ←
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{0, 1}λ/2; therefore, the probability that z contains a Extλ(ψG(x
∗ + 2h · y), (s1, s2))

query for some x∗ is negligible in λ. In the rest case, recall that we assume breaking
the TCR property of strong extractor is always harder than solving the generic DLP.
The best generic algorithm must take at least

√
2h+1ε steps to solve a hard generic DLP

with probability ε. Therefore, given 2h/c, c > 2, the adversary can successfully solve
the generic DLP with probability at most ε = 2−(1−

2
c )h−1 = negl(λ).

(τ, k)-amortization resistance. Define the set of k sampled puzzles as puz1, . . . , puzk =
(z1, y1), . . . , (zk, yk). By the construction of the algorithm SampleSol, we have that the
probability that all y1, . . . , yk are distinct is

pd = 1·(1−2−λ/2) · · · (1−(k−1)2−λ/2) > (1−k2−λ/2)k ≥ 1−k2·2−λ/2 = 1−negl(λ).

Assume that k values y1, . . . , yk are distinct. As shown in [Yun15], the probability
that an adversaryA can solve the k puzzles with less than Θ(

√
k · 2h) group operations

is negligible. Hence, there exists a constant α > 0 such that, with 1− negl(λ) probabil-
ity, we have StepsA(z, 1

λ, h, {puz1}ki=1) ≥ α · (k · 2h)1/2. Let τ(x) = x. When c > 2,
k = O(2log

3λ) and h > log4 λ, we have for sufficiently large λ ∈ N:

τ
( k∑
i=1

g(StepsSolve(1
λ, h, puzi))

)
= k · 2h/c < α · (k · 2h)1/2 .

Therefore, the probability that

StepsA(z, 1
λ, h, {puz1}ki=1) ≤ τ

( k∑
i=1

g(StepsSolve(1
λ, h, puzi))

)
is negl(λ).

ut

B.5 Instantiation of the Dense Puzzle Based PoWorK

An example of a 3-move SS-sHVZK protocol that we use in our instantiation is the
Schnorr identification scheme [Sch89]. This scheme is essentially a proof of knowl-
edge of a discrete logarithm. For completeness, we provide a description of the Schnorr
protocol in Figure 8. Let G be a group of prime order q with generator g, and let Zq
denote the field of integers modulo q. Schnorr’s identification scheme works as follows:

We denote our instantiation by Π∗. We fix a security parameter λ and a hardness
factor h ∈ [log2 λ, λ/4]. The challenge and puzzle spaces are all set to CSλ = CSΠ =
PSλ = {0, 1}λ. We choose a random prime q s.t. 2λ ≤ q. We select the parameters
and the statement of the Schnorr protocol to be (q, g, x = gw). We pick a hash function
Hλ : {0, 1}∗ −→ {0, 1}λ. The group operator ⊕ is the bitwise XOR operation. The
PoWorK protocol Π∗ consists of the two following stages:

1. Protocol execution: The two modes of Π∗ are:
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Prover(q, g, x = gw) Verifier(q, g, x)

t
$← Zq , a = gt a−−→

c←−− c
$← Zq

r = t+ cw mod q r−−→ gr
?
= axc

Fig. 8: The Schnorr identification scheme

– PoK mode. 1st move:P(w) selects a random ρ in Zq and sends ã to V . 2nd move:
V sends a challenge c selected uniformly at random to P . 3rd move: P chooses
random s← {0, 1}λ and y ← {0, 1}λ/2; it computes t = (LSBλ/2(H(s, y)), y)
and c̃ = c⊕ t. It sends (c̃, r̃, s, t) to V , where r̃ = ρ+ c̃w.

– PoW mode. 1st move: P runs (ã, c̃, r̃) ← SimΠ(x, c̃) and sends ã = gρ to
V . 2nd move: V sends a random challenge c to P . 3rd move: P computes t =
(−c) ⊕ c̃ and runs Solve(1λ, h, t); if the puzzle solver outputs a value s, then
P sends (c̃, r̃, s, t) to V , otherwise it aborts the protocol.

2. Verification: The verifier checks that (1) c̃ = c ⊕ t; (2) gr̃ = ãxc̃; (3) parses t as
(t1, t2), where t1, t2 ∈ {0, 1}λ/2 and checks that LSBh(t1) = LSBh(H(s, t2)).

We observe that since (a) the RO puzzle instantiation is correct and complete and
(b) all spaces are set to {0, 1}λ, Π∗ achieves completeness. Moreover, the puzzle sam-
pling distribution is close to uniform {0, 1}λ, which is also the challenge distribution
in Π∗. Therefore, assumptions (A), (B) in Figure 2 hold. In addition, the running time
of the puzzle solver is 2h+2 log λ ≥ 2log

2 λ+2 log λ which strongly dominates the linear
time complexity of performing ⊕ operations or sampling uniformly at random, i.e. as-
sumption (C) in Figure 2 also holds. Thus, by Theorems 1 and 2, we have that Π∗ is
ν
√

(·)-sound, for any ν > 2. The (statistical) indistinguishability of Π∗ is achieved by
the perfect ZK simulation of the Schnorr protocol and the assumptions (A), (B).

C The Lapidot-Shamir Based PoWorK Construction

In this section, we describe our second PoWorK construction which is less efficient than
the dense-puzzle based construction but can be constructed from any arbitrary puzzle
system12. We stress that this construction is not black-box on the puzzle verification
algorithm and does not retain the public-coin aspect (since the verifier will be send-
ing an actual puzzle in the second move) without any additional assumption about the
puzzle system. In Section C.1, we provide a detailed description of the Lapidot-Shamir
(LS) protocol and the properties it satifies. In Section C.2, we present a 3-move proto-
col that compiles any 3-move special sound and computationally auxiliary input special
HVZK (sHVZK) protocol (like the LS protocol) into a PoWorK that, as we prove in

12 The authors are grateful to an anonymous reviewer for suggesting the possibility of using this
approach for constructing PoWorKs.
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Section C.3, is Θ(g)-sound and computationally indistinguishable, where g is the hard-
ness scaling function of the underlying puzzle system.

C.1 The Lapidot-Shamir SS -sHVZK protocol

We recap the 3-move Lapidot-Shamir (LS) special sound computational auxiliary input
sHVZK protocol [LS90] in this section. The LS protocol is an SS-sHVZK protocol
(see Appendix A) for Hamiltonian Cycle, and thus it can support any NP language.
In the LS protocol, the prover only needs to know the size of the statement in order to
produce the first move, while the actual statement is only needed for the third move.
This property is crucial for our construction. In the following description, we run `(λ)
instances of the original LS protocol in a parallel. Denote P1LS ,P2LS ,VerLS as the
first move prover, third move prover and the verification algorithm respectively. The
common input of the prover and verifier is a graph G with N vertices, represented by
its adjacency matrix. In addition, the prover takes a Hamiltonian cycle of G (denoted as
C) as its private input.

– P1LS(N): For i ∈ {1, 2, . . . , `(λ)}, do:
• Pick a random cycle Ri with N vertices.
• Commit to every element of the adjacency matrix of Ri, denoted as Com(Ri),

using a statistically binding commitment scheme.
– P1LS → VerLS : Com(R1), . . . ,Com(R`(λ))

– P2LS ← VerLS : c = c1 · · · c`(λ) ← {0, 1}
`(λ)

– P2LS(G, c): For i ∈ {1, 2, . . . , `(λ)}, do:
• If ci = 0, then define zi as the openings of the entire committed adjacency

matrix, Com(Ri).
• IF ci = 1, then define zi as (πi, di), where πi is a permutation from the ver-

tices of Ri to the vertices of G and di is the openings of all adjacency matrix
elements of Ri that correspond to non-edges of G.

– P2LS → VerLS : z1, . . . , z`(λ).

– VerLS
(
G, {Com(Ri)}i∈[`(λ)] , c, {zi}i∈[`(λ)]

)
: return 1 if and only if for every i ∈

{1, 2, . . . , `(λ)}:
• if ci = 0, all the openings of the commitments verify and the openings of
Com(Ri) form indeed a random cycle.

• if ci = 1, the openings of all adjacency matrix elements of Ri that correspond
to non-edges of G are 0 (i.e. Ri is a subgraph of G up to permutation).

Properties of the LS protocol.

– Special soundness: Given two accepting transcripts with c 6= c′, there exists a
knowledge extractor that can output a Hamiltonian cycle of G. Indeed, if c 6= c′,
then ∃i ∈ [`(λ)] s.t. ci 6= c′i. Therefore, from the i-th instance, we obtain (i) the
random cycle Ri when ci = 0 and (ii) the permutation that maps Ri to the actual
Hamiltonian cycle C of G when c′i = 1.
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– Auxiliary input sHVZK: There exists a simulator SimLS = (Sim1LS ,Sim2LS)
s.t. for any challenge c, SimLS can simulate a transcript that is computationally in-
distinguishable from the real one. Observe that the LS protocol achieves this prop-
erty, for any auxiliary input because in each execution, the prover sends a fresh
commitment key in the first move. Therefore, the verifier has negligible probability
of gaining significant information about the table of messages and corresponding
commitments by reading a polynomial size part of the auxiliary input. Finally, the
sHVZK is computational, as an unbounded algorithm may break the hiding prop-
erty of the statistically binding scheme.

– First move independence: The selection of R and the commitments to the ele-
ments of its adjacency matrix are performed independently of G and C. We em-
phasize that Sim1LS can simulate the first move without knowing the statement as
well, namely it commits to a random cycle if ci = 0; commits to a zero adjacency
matrix if ci = 1.

C.2 The Lapidot-Shamir Based Compiler.

The compiler is designed with black-box access to any 3-move special sound auxiliary
input sHVZK protocolΠ for some language L ∈ NP . W.l.o.g., the challenge sampling
distribution of Π is uniform in the challenge space. The properties of the LS protocol
imply that there exists such a protocol for every language inNP . Let P1Π ,P2Π ,VerΠ ,
and SimΠ be the first move prover, third move prover, verification algorithms, and simu-
lator ofΠ , respectively. The challenge space of (P,V),Π and the LS protocol coincide
and are set as {0, 1}`(λ,h), where `(·, ·) is a function that depends on λ and the hardness
factor h, so that the size of the challenge space is superpolynomial in λ.

Let SimLS be the simulator of the aforementioned LS protocol. Here, we need to ex-
ploit the feature that SimLS can simulate the first move without knowing the statement,
i.e. it commits to either a random cycle or a zero matrix depending on the challenge bit.
Hence, we denote SimLS = (Sim1LS ,Sim2LS) such that (a, st)← Sim1LS(c,N) and
r ← Sim2LS(G, c, st), where G is the statement of size N , c is the challenge and st is
the simulator’s state. For fixed security parameter λ and hardness factor h, we define
the language

Lλ,h =
{
t ∈ PSλ | ∃s ∈ HSλ : Verify(1λ, h, t, s) = true

}
.

We reduce Lλ,h to the Hamiltonian Cycle via the generic deterministic algorithms G
and C that will encode a statement (puzzle) t and a witness (solution) s ∈ RLλ,h(t) to a
graph Gt and a hamiltonian cycle Hs of Gt respectively. Note that the size of Gt, Nλ,h
depends only on λ, h, which enables the application of the first move of LS protocol
before receiving the puzzle statement at the second move of our construction.

The protocol (P,V) can be executed in either of the two following modes:

1. Proof of Knowledge (PoK) mode. P has a witness w ∈ RL(x) as private input.
In order to prove knowledge of w to V , in the first move, P follows the first move
of Π and simulates the first move of the LS protocol by providing Sim1LS with a
random challenge c. The verifier responds with a challenge ĉ and a sampled puzzle
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puz. Then, P executes the third move of Π by running P2Π with the challenge
c̃ = ĉ⊕ c and simulates the third move of the LS protocol.

2. Proof of Work (PoW) mode.P has no private input and convinces V by “working”
for at least some expected amount of time. To achieve this,P simulates an execution
of Π with a sampled challenge c̃ and follows the first move of the LS protocol.
Then, it receives (ĉ, puz) from V as before and runs the puzzle solver to obtain a
solution soln of puz, which encodes as a cycle Csoln of the graph Gpuz. Finally, it
proves the knowledge of soln via reduction to the third move of the LS protocol
with challenge c = ĉ−1 ⊕ c̃.

As in the dense puzzle based construction, the verification mechanism must be the
same for both modes. Namely, the verifier computes the encodingGpuz of the challenge
puzzle puz and checks that: (i) the relation c̃ = ĉ ⊕ c holds, (ii) the Π-protocol’s tran-
script is accepting and (iii) the LS protocol’s transcript for statement Gpuz is accepting.
The protocol (P,V) is presented in detail in Figure 9.

C.3 Security of the Lapidot-Shamir PoWorK Construction

We denote by CInv : Hamiltonian Cycle −→ SSλ the inverse of the cycle encoding
algorithm C that decodes an encoded witness (solution of a puzzle-statement). The al-
gorithm CInv is deterministic and runs in polynomial time. In addition, we denote by
KLS the PPT witness extractor of the LS protocol. As in Section 3 (Figure 2 Assump-
tion (C)), we assume that the running time of Solve dominates the running time of all
algorithms associated with the construction.

Theorem 9. Let L be a language in NP and let Π = (P1Π ,P2Π ,VerΠ) be a special
sound 3-move computational auxiliary input sHVZK protocol for L, where the chal-
lenge sampling distribution is uniform. Let PuzSys = (Sample,Solve,Verify) be a puz-
zle system that satisfies g-hardness for some function g. Define (P,V) as the protocol
described in Figure 9 when built upon Π and PuzSys.

Assume that there exists a constant κ < 1 and a negligible function ε(·) s.t. for every
hardness factor h ∈ HSλ:

Pr[puz← Sample(1λ, h) : κ · g(StepsSolve(1λ, h, puz)) >
> 2 · StepsChSampler(1

λ, h) + StepsKLS (trλ,h, tr
′
λ,h) + StepsCInv(1

λ, h)] ≥ 1− ε(λ),

where CInv is the inverse of the cycle encoding algorithm C and KLS is the witness ex-
tractor for the LS protocol on input two protocol transcripts trλ,h, tr′λ,h. Then, (P,V) is
a
(
(1− κ)/2

)
· g-sound PoWorK for L and PuzSys with computational indistinguisha-

bility.

Proof. Completeness. By the completeness of PuzSys, we have that with overwhelm-
ing probability, soln, as computed in the PoW mode of (P,V), is a solution of the
sampled puz, i.e. soln ∈ RLλ,h(puz). This implies that with overwhelming probability,
the reduction of Lλ,h to the Hamiltonian Cycle maps (puz, soln) to a graph Gpuz that
has Csoln as hamiltonian cycle. Moreover, the completeness of the LS and Π protocols
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Statement: x ∈ L ∩ {0, 1}poly(λ).
Prover’s private input: w ∈ RL(x).

P : • pick c $← {0, 1}`(λ,h);
• (a, st)← Sim1LS(c,Nλ,h);
• (ã, φΠ)← P1Π(x,w);

P → V: a, ã.

V: • pick ĉ $← {0, 1}`(λ,h);
• puz← Sample(1λ, h);

P ← V: ĉ, puz.

P : • c̃ = ĉ⊕ c;
• Gpuz ← G(1λ, h, puz);
• r̃ ← P2Π(φΠ , c̃, x, w);
• r ← Sim2LS(Gpuz, c, st);

P → V: c, c̃, r, r̃.

Verification:
1. c̃ = ĉ⊕ c.
2. VerΠ(x, ã, c̃, r̃) = 1.
3. VerLS(1

λ,G(1λ, h, puz), a, c, r) = 1.

(a) Knowing the witness (PoK)

Statement: x ∈ L ∩ {0, 1}poly(λ).
Prover’s private input: −

P : • pick c̃ $← {0, 1}`(λ,h);
• (a, φLS)← P1LS(Nλ,h);
• (ã, c̃, r̃)← SimΠ(c̃);

P → V: a, ã.

V: • pick ĉ $← {0, 1}`(λ,h);
• puz← Sample(1λ, h);

P ← V: ĉ, puz.

P : • c = ĉ−1 ⊕ c̃;
• soln← Solve(1λ, h, puz);
• Gpuz ← G(1λ, h, puz);
• Csoln ← C(1λ, h, soln);
• r ← P2LS(φLS , c, Gpuz, Csoln);

P → V: c, c̃, r, r̃.

Verification:
1. c̃ = ĉ⊕ c.
2. VerΠ(x, ã, c̃, r̃) = 1.
3. VerLS(1

λ,G(1λ, h, puz), a, c, r) = 1.

(b) Doing work (PoW)

Fig. 9: The LS PoWorK construction for fixed security parameter λ and hardness factor
h ∈ HSλ, given a 3-move-SS-sHVZK protocol Π for language L, an LS protocol and
a puzzle system PuzSys; the challenge space of (P,V),Π and the LS protocol coincide
and are set as {0, 1}`(λ,h); φΠ , φLS and st are states of the prover of Π , the prover of
the LS protocol and the simulator of the LS protocol, respectively.

implies that the simulated transcripts in both PoK and PoW mode of (P,V) must be ac-
cepting with overwhelming probability. Therefore, verification will be accepting with
overwhelming probability for any honest execution of (P,V).(
(1− κ)/2

)
· g-Soundness. First, we make use of the special soundness PPT extractor

KΠ of Π to construct a PPT knowledge extractor K that on input (x, y, z) and given
the code of an arbitrary prover P̂ , executes the following steps:

1. K samples (honestly) a puzzle, puz and two challenges, ĉ1, ĉ2.
2. Using standard rewinding,K(x, y, z, h) interacts with P̂(y) by submitting the chal-

lenges (ĉ1, puz), (ĉ2, puz). It receives two protocol transcripts from P̂ , denoted as
〈(a, ã), (ĉ1, puz), (c1, c̃1, r1, r̃1)〉 and 〈(a, ã), (ĉ2, puz), (c2, c̃2, r2, r̃2)〉.

3. It runs the witness extractorKΠ of the protocolΠ on input (x, 〈ã, c̃1, r̃1〉, 〈ã, c̃2, r̃2〉).
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4. It returns the output of KΠ .

Assume that for some x ∈ {0, 1}poly(λ), y ∈ {0, 1}∗, z ∈ {0, 1}∗, h ∈ HSλ, there
exists a prover P∗ and a non-negligible function s(·) s.t

Pr[puz← Sample(1λ, h); outV ← 〈P∗(y)↔ V〉(x, z, h) : (outV = accept
)

∧ StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤
(
(1− κ)/2

)
· g(StepsSolve(1λ, h, puz))] ≥ s(λ).

We will prove that
(
(1 − κ)/2

)
· g-soundness of (P,V) is satisifed, unless we can

use P∗ to construct an algorithmW that breaks the g-hardness of PuzSys.
Let Y ⊆ Pλ be the set of puzzles, such that when the challenge (ĉ, puz) of V

satisfies puz ∈ Y , then

Pr[outV ← 〈P∗(y)↔ V〉(x, z, h) : (outV = accept
)

∧ StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤
(
(1− κ)/2

)
· g(StepsSolve(1λ, h, puz))] ≥ s(λ)/2.

By the assumption for P∗ and a standard counting argument, we have that Pr[puz ∈
Y ] ≥ s(λ)/2.

Suppose that we perform rewinding onP∗, by fixing the same puzzle puz in the veri-
fier’s challenge. Let 〈(a, ã), (ĉ1, puz), (c1, c̃1, r1, r̃1)〉 and 〈(a, ã), (ĉ2, puz), (c2, c̃2, r2, r̃2)〉
be the two protocol transcripts. If puz ∈ Y , then by the splitting Lemma, both tran-
scripts are accepting with at least (s(λ)/4)2 = s(λ)2/16 probability.

The challenge space of (P,V) (i.e. the challenge space of Π) has superpolynomial
size, so the probability that the two uniformly sampled challenges ĉ1, ĉ2 are equal is
no more than some negligible function δ(λ). If the verification for both transcripts is
accepting and ĉ1 6= ĉ2, then it holds that

(c̃1 = ĉ1 ⊕ c1) ∧ (c̃2 = ĉ2 ⊕ c2) ∧ (ĉ1 6= ĉ2)⇒ (c1 6= c2) ∨ (c̃1 6= c̃2). (6)

Let D be the event that P∗, when rewinded as above, outputs two accepting tran-
scripts and ĉ1 6= ĉ2, c1 6= c2 occur. Let D̃ be the event thatP∗, when rewinded as above,
outputs two accepting transcripts and ĉ1 6= ĉ2, c̃1 6= c̃2 occur. By the assumption for
P∗ and eq. (6), we have that if puz ∈ Y , then one of the probabilities Pr[D|puz ∈ Y ],
Pr[D̃|puz ∈ Y ] must be at least s(λ)2/32− δ(λ). We analyze both cases:

I. Pr[D|puz ∈ Y ] ≥ s(λ)2/32− δ(λ) holds. In this case, we can construct an al-
gorithm W that breaks the g-hardness of PuzSys. The input that W receives is (1λ,
(x, y, z), h, puz), where (x, y, z) is the auxiliary input and puz is sampled from algo-
rithm Sample(1λ, h). Then,W works as follows:

1. It invokes P∗ for statement x, private input y and auxiliary input z.
2. Using standard rewinding,W interacts with P∗(y) with two challenges (ĉ1, puz),

(ĉ2, puz), where ĉ1, ĉ2 are uniformly sampled from {0, 1}`(λ,h). It receives two
transcripts, 〈(a, ã), (ĉ1, puz), (c1, c̃1, r1, r̃1)〉 and 〈(a, ã), (ĉ2, puz), (c2, c̃2, r2, r̃2)〉.

3. It runs the witness extractor KLS of the LS protocol on input (Gpuz, 〈a1, c1, r1〉,
〈a2, c2, r2〉). It receives an output C from KLS .
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4. It runs the inverse of the cycle encoding algorithm C, CInv on input C and receives
a value soln ∈ SSλ.

5. It returns soln.

By definition of Y and D and the special soundness property of the LS proto-
col, we have that if puz ∈ Y and D occurs, then W’s output soln is verified, i.e.
Verify(1λ, h, puz, soln) = true. By the previous analysis, the probability that the lat-
ter happens is at least

Pr[(puz ∈ Y ) ∧D] ≥ s(λ)

2
· s(λ)

2

32
− δ(λ) ≥ s(λ)3

64
− δ(λ).

By the assumption in the statement of the theorem and the assumption for P∗, there
is a constant κ < 1 s.t. the probability that Verify(1λ, h, puz, soln) = true and

StepsW(x, y, z, 1λ, h, puz) ≤
≤ 2 · StepsP∗(〈P∗(y)↔ V〉(x, z, 1λ, h)) + 2 · (StepsSample(1

λ, h, puz))+

+ StepsKLS ((Gpuz, a1, c1, r1), (Gpuz, a2, c2, r2)) + StepsCInv(1
λ, h, C) ≤

≤ 2
(
(1− κ)/2

)
· g(StepsSolve(1λ, h, puz)) + κ · g(StepsSolve(1λ, h, puz)) =

= g(StepsSolve(1
λ, h, puz))

i.e., the running time ofW in number of steps is bounded by g(StepsSolve(1
λ, h, puz))

is at least s(λ)3/64−δ(λ)−ε(λ) which is a non-negligible function. Therefore, for aux-
iliary tape (x, y, z) and hardness factor h,W breaks the g-hardness of PuzSys, which
contradicts to the security of the said puzzle system.

II. Pr[D̃|puz ∈ Y ] ≥ s(λ)2/32− δ(λ) holds. In this case, we have that c̃1 6= c̃2.
By the special soundness property of Π , when the knowledge extractor K invokes KΠ
on two accepting transcripts with two different challenges, it will return a witness for
x. Define q(λ) = s(λ)3/64− δ(λ). The probability that K extracts a witness is at least

Pr[D̃] = Pr[puz ∈ Y ] · Pr[D̃|puz ∈ Y ] ≥ q(λ).

Thus, we conclude that our protocol is (
(
(1− κ)/2

)
· g)-sound.

Computational indistinguishability. We will show that (P,V) is computationally
indistinguishable, if Π and the LS protocol achieve HVZK for any auxiliary input
z ∈ {0, 1}∗. To do this, we will make use of a “hybrid” protocol (P̃,V) where the
prover P̃ follows both underlying protocols, Π and LS, of (P,V) and the verifier V
behaves as before. For fixed λ, h, the description of (P̃,V) is as follows:

Statement: x ∈ L ∩ {0, 1}poly(λ).
Prover’s private input: w ∈ RL(x).
First move: P̃ samples a random challenge c and executes (ã, φΠ) ← P1Π(x,w),
(a, φLS)← P1LS(Nλ,h). It sends a, ã to V .

Second move: V samples a pair c, puz and sends it to P̃ .
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Third move: P̃ computes c̃ = ĉ ⊕ c. It runs Solve(1λ, h, puz) and receives a solution
soln. Then, it encodes puz and soln as Gpuz and Csoln respectively. Finally, it executes
r̃ ← P2Π(φΠ , c̃, x, w) and r ← P2LS(φLS , c, Gpuz, Csoln) and sends r, r̃ to V .
Verification: as in the (P,V) protocol.

Let V∗ be a PPT verifier. W.l.o.g., we assume that V∗ returns a single bit. Let D̃V
∗

be
the distribution determined by the view of V∗ when interacting with P . We will show
that the distributions DV

∗

PoK , DV
∗

PoW determined by the view of V∗ when interacting
with P in the PoK and PoW mode of (P,V∗) are computationally indistinguishable
because (I) DV

∗

PoK , D̃ are computationally indistinguishable and (II) DV
∗

PoW , D̃V
∗

are
computationally indistinguishable.

I. DV
∗

PoK , D̃
V∗ are computationally indistinguishable. We observe that in the PoK

mode of (P,V∗) and (P̃,V∗) the values c, ã, ĉ, puz, c̃, r̃ are identically distributed. So,
for every statement x ∈ L, auxiliary input z ∈ {0, 1}∗, and hardness factor h∣∣Pr[V∗(x, z, h, c, a, ã, ĉ, puz, c̃, r, r̃) = 1]

(c,a,ã,ĉ,puz,c̃,r,r̃)←DV
∗

PoK

− Pr[V∗(x, z, h, c, a, ã, ĉ, puz, c̃, r, r̃) = 1]
(c,a,ã,ĉ,puz,c̃,r,r̃)←D̃V∗

∣∣ =
=

∑
(c,ã,ĉ,puz,c̃,r̃)

Pr[c, ã, ĉ, puz, c̃, r̃]·

·
(
Pr[(a, st)← Sim1LS(c,Nλ,h); r ← Sim2LS(Gpuz, c, st);

V∗(x, z, h, c, a, ã, ĉ, puz, c̃, r, r̃) = 1 | c, ã, ĉ, puz, c̃, r̃]−
− Pr[(a, φLS)← P1LS(Nλ,h); r ← P2LS(φLS , c, Gpuz, Csoln);

V∗(x, z, h, c, a, ã, ĉ, puz, c̃, r, r̃) = 1 | c, ã, ĉ, puz, c̃, r̃]
)
.

(7)

By the computational auxiliary input sHVZK property of the LS protocol, we have that
for any challenge c and auxiliary input (z, ã, ĉ, puz, c̃, r̃), the PPT verifier V∗ cannot
distinguish between the actual and the simulated view of the LS protocol. Therefore, by
eq. (7), we have that for some negligible function δ(·),∣∣Pr[V∗(x, z, h, c, a, ã, ĉ, puz, c̃, r, r̃) = 1]

(c,a,ã,ĉ,puz,c̃,r,r̃)←DV
∗

PoK

− Pr[V∗(x, z, h, c, a, ã, ĉ, puz, c̃, r, r̃) = 1]
(c,a,ã,ĉ,puz,c̃,r,r̃)←D̃V∗

∣∣ ≤
≤

∑
(c,ã,ĉ,puz,c̃,r̃)

Pr[c, ã, ĉ, puz, c̃, r̃] · δ(λ) = δ(λ).

II. DV
∗

PoW , D̃V
∗

are computationally indistinguishable. When running in the PoW
mode of (P,V∗), the challenge c for the LS protocol is computed by the group oper-
ation of a value ĉ provided by V∗ and a value c uniformly sampled from {0, 1}`(λ,h).
Thus, in the PoW mode of (P,V∗), c follows the same (uniform) distribution that c fol-
lows in (P̃,V∗). This implies that the distribution of c, a, ĉ, puz, c̃, r in the PoW mode of
(P,V∗) is identical with the distribution in (P̃,V∗). We continue as in case I in a “sym-
metric” way, i.e. we now show the computational indistinguishability of DV

∗

PoW , D̃V
∗

by taking advantage of the computational auxiliary input sHVZK property of Π .
ut
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D Proof of Theorem 5

Proof. Spam Resistance. We start by constructing a knowledge extractor K which on
input (z, 1λ, h, x) and given access to a prover A, uses the special soundness PPT ex-
tractor KΠ of Π to extract a witness. Our K works similarly to the soundness extractor
of PoWorK (see proof of Theorem 1), but can now rewind A at any point and give
it two different challenges ci, c

′
i (as it controls the random oracle), to receive tuples

(ai, ci, ri), and (a′i, c
′
i, r
′
i) on which it runs KΠ . Note that since KΠ is a PPT algo-

rithm, K also runs in polynomial time.
Now assume that for some z ∈ {0, 1}∗, h ∈ HSλ, there exists an adversary A and

a non-negligible function α1(·) s.t.

Pr


(t, x)← ReceiverSetup(1λ, h);∀1 ≤ i ≤ k : puzi ← Sample(1λ, h);
{πi = ((ai, ci, ri)}i∈[k] ← A(z, 1λ, h, x) :(
∀1 ≤ i ≤ k : ApproveEMail(h, x, πi) = 1

)
∧ (∀i 6= j ∈ [k] : πi 6= πj)

∧
(
StepsA(z, 1

λ, h, x) ≤ √τ ◦ g
(∑k

i=1 StepsSolve(1
λ, h, puzi)

))
 = α1(λ).

By an averaging argument, there exist a statement x and and public parameters v s.t.

Pr


∀1 ≤ i ≤ k : puzi ← Sample(1λ, h);
{πi = ((ai, ci, ri)}i∈[k] ← A(z, 1λ, h, x) :(
∀1 ≤ i ≤ k : ApproveEMail(h, x, πi) = 1

)
∧ (∀i 6= j ∈ [k] : πi 6= πj)

∧
(
StepsA(z, 1

λ, h, x) ≤ √τ ◦ g
(∑k

i=1 StepsSolve(1
λ, h, puzi)

))
 ≥ α1(λ).

Using A we will construct an algorithm W to break the (τ, k)-amortization resis-
tance of PuzSys. We recall that in the non-interactive variant of our dense puzzle based
PoWorK construction the format of a proof π is (a, c, r) = (ã, c, (c̃, r̃, puz, soln)).
W is given as input (x, v), 1λ, h, {puz1, . . . , puzk}, where ∀1 ≤ i ≤ k : puzi ←

Sample(1λ, h). ThenW , who also controls the random oracle, runs as follows:

1. Invoke A with input (1λ, h, x).
2. For every i-th RO query of A ((a)i,mi) respond by a challenge ci which can be

honestly generated by asking H (thus, ci ∈ CSλ ). W stores all c1, . . . , ck′ in a
table T along with the corresponding query of A. Note that k′ ≥ k.

3. ReceiveA’s output π1, . . . , πk = (ã1, c1, (c̃1, r̃1, puz1, soln1)), . . . , (ãk, ck, (c̃k, r̃k, puzk, solnk)).
4. Look at the first proof π1 of A, locate the corresponding c1 in table T (let r be the

row in which found), and rewind A just before the point it made that query, i.e. at
its r − 1 query. With high probability A will start making the same RO queries.
For every query from 1 to r − 1 return the same c as before. However, when A
makes its r-th query return cr = c̃1 ⊕ puz1. For the rest of the queries (from r + 1
and on) return a random challenge as in Step 2 and update table T with the fresh
values. When A outputs its second set of proofs π(2)

1 , . . . , π
(2)
k

13 check that puz1 is
included in π(2)

1 and store the corresponding solution.

13 From now on the superscript x(·) denotes in which rewinding of A we are.
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5. Proceed until all k solutions have been found, i.e. in the i-th rewind the new chal-
lenges are c(i)1 , . . . , c

(i)
k′ , where c(i)i = c̃i ⊕ puz−1i , ∀r < i : c

(i)
r = c

(i−1)
r and all

the rest of the challenges c(i)i+1, . . . , c
(i)
k′ are honestly sampled. When A outputs its

i-th set of new proofs π(i)
1 , . . . , π

(i)
k check that the corresponding puzzle included

in the proof π(i)
i is equal to puzi and store its solution solni.

6. Output soln1, . . . , solnk.

We follow the reasoning of the proof of Theorem 1. For each rewinding i of A, we
have that when it received honestly selected sequences c(i−1)1 , . . . , c

(i−1)
i−1 , c

(i−1)
i . . . , c

(i−1)
k′

(in its i− 1-th run) and c(i)1 , . . . , c
(i)
i−1, c

(i)
i . . . , c

(i)
k′ in its i-th run (where c(i)1 , . . . , c(i) =

c
(i−1)
1 , . . . , c

(i−1)
i−1 ), it outputs accepting transcripts in no more than

[
(
√
τ ◦ g)

( k∑
i=1

(StepsSolve(1
λ, h, puzi))

)]
steps and with probability α1(λ)

2/4. Similar to the PoWorK soundness proof, we de-
note by Equali, the event that this happens and c̃(i−1)i = c̃

(i)
i holds (again for each

rewinding i). Obviously, either Equali, or ¬Equali will occur with at least α1(λ)
2/8

probability. We distinguish the following cases:

Case I. ∀i ∈ [k] : Pr[Equali] ≥ α1(λ)
2/8: in this case, as in the soundness proof

of Theorem 1, with probability α1(λ)
2/8− negl(λ) it holds that:

1. ∀i ∈ [k] : Verify(1λ, h, puzi, solni) = true.
2. The running time ofW in number of steps is no more than

k ·
[
(
√
τ ◦ g)

( k∑
i=1

(StepsSolve(1
λ, h, puzi))

)]
steps.

Since k is polynomial we have that w.h.p. k ≤ (
√
τ ◦ g)

(∑k
i=1(StepsSolve(1

λ, h, puzi))
)
.

In addition, τ is an increasing function and g is a subadditive function, hence we have
that

k ·
[
(
√
τ ◦ g)

( k∑
i=1

(StepsSolve(1
λ, h, puzi))

)]
≤
[
(
√
τ ◦ g)

( k∑
i=1

(StepsSolve(1
λ, h, puzi))

)]2
≤

(τ ◦ g)
( k∑
i=1

(StepsSolve(1
λ, h, puzi))

)
≤ τ

( k∑
i=1

g(StepsSolve(1
λ, h, puzi)).

Therefore,W breaks the (τ, k)-amortization resistance property of PuzSys.

Case II. ∃i∗ ∈ [k] : Pr[¬Equali∗ ] ≥ α1(λ)
2/8: in this case, we set the knowledge

extractor to guess a priori an i ∈ [k] to rewind A expecting to invoke KΠ with two
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different challenges c̃ii = c̃i. We stress that this setting is black-box and independent
of A, thus consistent with the definition of spam resistance. By the soundness property
of Π , if K guesses i∗ correctly, then it will return a witness for x. Therefore, K is
succesfully returns a witness with at least α2(λ) = α1(λ)

2/(8k) probability.

Privacy. Let h ∈ HSλ, z ∈ {0, 1}∗ and an adversary A that breaks SRC privacy with
non-negligible advantage α(λ). By an averaging argument, there exist a statement x, a
witness w ∈ RL(x) and public parameters v s.t.∣∣Pr[π ← SendEMail(w, h, x) : A(z, h, x, π) = 1]−

− Pr[π ← SendEMail(⊥, h, x) : A(z, h, x, π) = 1]
∣∣ ≥ α(λ).

Given A we construct an adversary B against PoWorK statistical indistinguishability
that on input a statement x, auxiliary input z, h and a PoWorK proof π (i.e. the view of
B either in PoK mode on witness w or PoW mode), invokes A on input (z, h, x, π) and
returns A’s output. It is straightforward that B distinguishes the mode of the PoWorK
prover with advantage α(λ).

ut

E Spam Email Extensions

Here we discuss some interesting extensions of our spam reducing application:

Revocation. We could possibly use standard anonymous revocation schemes [CL02,
LPY12] on top of our email construction. The idea is similar to group signatures autho-
rization: whenever a receiver approves a user (i.e. adds the user to the group of approved
contacts) she also provides her with a membership credential. The receiver has to pe-
riodically update a public list of revoked (or unrevoked) users and, whenever a sender
wishes to send an email, she will also have to include a proof of non-revocation to-
gether with π (which can be done anonymously to preserve the privacy against the mail
server).

Preventing witness sharing (transferability). Another possible extension would be to
guarantee that a user/receiver is not sharing her witness with more users. A possible
way to address this problem is to use the techniques that were proposed by Kiayias and
Tang [KT13] and construct a leakage-deterring cryptographic function F that on input
a user’s witness it outputs some private information associated with it. Whenever a user
obtains a witness, this is associated with some private information of the user (e.g.. a
credit card number). F is constructed in such a way that when it receives w as input,
outputs the information associated to it. Thus, when a malicious user shares his unique
witness, anyone who receives it can find the user’s private information.

Performing useful work. It would be very appealing if the computational power con-
sumed by a PoW user to solve a puzzle, was actually used towards some sort of use-
ful work. A possible idea would be to use a volunteer computing service 14 as a work
14 Like the the Berkeley BOINC system http://boinc.berkeley.edu/ that contributes

to scientific research.
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provider, WP , that generates the puzzles to be solved. Then, one could use our Lapidot-
Shamir based PoWorK that requests that the PoK prover solves a puzzle selected by the
verifier (refer to Appendix C). The verifier can pick a random puzzle from the work
provider, WP , and once the prover has the solution can submit it back to WP . Assum-
ing that the verifier and the work provider are not colluding, the privacy of the prover is
maintained.

F PoWorKs as 3-move Straight-line Concurrent Simulatable
Arguments of Knowledge

To prove that any PoWorK protocol that satisfies a couple of reasonable assumptions,
implies straight-line concurrent (λpoly(log λ))-simulatable arguments of knowledge, we
use the results of Pass [Pas03, Pas04]. In these results, Pass has shown that protocols sat-
isfying straight-line simulatability are also straight-line concurrent simulatable. More
specifically, it is shown that protocols satisfying straight-line strong T (λ)-simulatability
(where T (λ) is a class of functions closed under composition with any polynomial) are
also concurrent T (λ)-strongly simulatable. Given this proof, we conclude that our 3-
move dense puzzle based PoWorK construction, when instantiated with an appropriate
puzzle system, is a 3-move straight-line concurrent λpoly(log λ)- statistically simulatable
argument of knowledge.

We start by recalling the straight-line T (λ)-simulatability definitions introduced
in [Pas03, Pas04].

Definition 7 ([Pas04]). Let T (λ) be a class of functions that is closed under composi-
tion with any polynomial. We say that an interactive argument (P,V) for the language
L ∈ NP with witness relation RL, is straight-line strongly T (λ)-simulatable, if for
every probabilistic verifier V ∗ with running time bounded by T (λ), there exists a prob-
abilistic simulator S with running time bounded by T (λ) such that the following two
ensembles are strongly T (λ)-indistinguishable:

(i). {viewV∗ ← 〈P(w)↔ V∗〉(x, z)}x∈L, w∈RL(x),z∈{0,1}∗
(ii). {〈S ↔ V∗〉(x, z)}x∈L,z∈{0,1}∗

That is, for every probabilistic algorithm D running in time T (·) in the length of
its first input, all sufficiently long x ∈ L, all w ∈ RL(x) and all auxiliary inputs
z, z′ ∈ {0, 1}∗, it holds that

|Pr[D(x, z′, viewV∗ ← 〈P(w)↔ V∗〉(x, z)) = 1]−Pr[D(x, z′, S(x, z)) = 1]| < 1

T (|x|)
.

The notion of perfect (resp. statistical) T (λ)-simulatability is defined similarly, by
requiring that the two ensembles in Definition 7 are identically (resp, statistically close
distributed) for every (computationally unbounded) verifier V ∗. The notion above could
be further restricted to guarantee security under concurrent executions. Pass in [Pas04]
provides the following definition.
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Definition 8 ([Pas04]). Let T (λ) be a class of functions that is closed under composi-
tion with any polynomial. We say that an interactive argument (P,V) for the language
L ∈ NP with witness relation RL, is straight-line concurrent T (λ)-simulatable, if for
every PPT oracle machine A that is not allowed to restart of rewind the oracle it has
access to, and every polynomial p(λ), there exists a probabilistic simulator S(i, x) with
running time bounded by T (λ) such that the following two ensembles are computation-
ally indistinguishable:

(i).
{
AP (x1,w1),··· ,P (xp(λ),wp(λ))(z, x1, . . . , xp(λ))

}
z∈{0,1}∗,x1,...,xp(λ)∈L,{wi∈RL(xi)}[p(λ)]

(ii).
{
AS(1,w1),··· ,S(p(λ),wgpλ))(z, x1, . . . , xp(λ))

}
z∈{0,1}∗,x1,...,xp(λ)∈L

The concurrent self-composition Lemma in [Pas04] states that protocols which are
straight-line strongly T (λ)-simulatable (resp. perfectly simulatable) are also straight-
line concurrent strongly T (λ)-simulatable (resp. perfectly simulatable). In the Lemma
below, we also consider the case of statistical T (λ)-simulatability.

Lemma 2 (Concurrent Self-Composition [Pas04]). Let T (λ) be a class of functions
closed under composition with any polynomial, and let (P,V) be an interactive ar-
gument of knowledge with efficient provers15. If (P,V) is straight-line strongly (resp.
statistically) (resp. perfectly) T (λ)-simulatable, then it is also straight-line concurrent
strongly (resp. statistically) (resp. perfectly) T (λ)-simulatable.

In the following theorem, we apply Lemma 2 to prove that any 3-move PoWorK is
straight-line concurrent statistically λpoly(log λ)-simulatable argument of knowledge,
when two additional time complexity assumptions hold. These assumptions are plausi-
ble and can be easily met by our dense puzzle based construction when built upon both
of our puzzle instantiations, for an appropriate choice of hardness factor.

Theorem 10. LetL be a language inNP and let PuzSys be a puzzle system. Let (P,V)
be a 3-move f -sound PoWorK for L and PuzSys with statistical indistinguishability
such that for every hardness factor h ∈ HSλ, it holds that:

(i). Pr[puz← Sample(1λ, h) : f(StepsSolve(1
λ, h, puz)) ≤ λlog λ] = negl(λ).

(ii). The worst-case running time of Solve(1λ, h, ·) is λpoly(log λ) and P is a polyno-
mial time algorithm that makes oracle calls to Solve(1λ, h, ·).

Then, (P,V) is a 3-move straight-line concurrent statistically λpoly(log λ)-simulatable
argument of knowledge.

Proof. (sketch) First, we show that (P,V) is a 3-move straight-line statistically λpoly(log λ)-
simulatable argument of knowledge. Namely, that (P,V) satisfies the following prop-
erties:
Completeness. Follows directly from the completeness of (P,V).
Argument of Knowledge. Consider the PPT witness-extraction algorithm K as in the
f -soundness of (P,V). Assume that for some x ∈ L ∩ {0, 1}poly(λ) , y ∈ {0, 1}∗,
15 I.e., PPT provers that satisfy completeness.
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z ∈ {0, 1}∗ and hardness factor h ∈ HSλ there exists a PPT prover P∗ and a non-
negligible function s(·) s.t

Pr[outV ← 〈P∗(y)↔ V〉(x, z, h) : outV = accept] ≥ s(λ).

Since the PPT prover P∗ runs in o
(
λlog λ

)
time and by assumption (i) of the statement

of the theorem, we have that for some negligible function δ(·)

Pr[puz← Sample(1λ, h); outV ← 〈P∗(y)↔ V〉(x, z, h) : (outV = accept
)

∧ StepsP∗(〈P∗(y)↔ V〉(x, z, h)) ≤ f(StepsSolve(1λ, h, puz))] ≥ s(λ)− δ(λ).

Since s(λ) − δ(λ) is a non-negligible function, by the f -soundness of (P,V), the al-
gorithm K, given oracle access to P∗, returns a witness for x with some non-negligible
probability.

Straight-line λpoly(log λ)-statistical simulatability. Let V∗ be an arbitrary verifier. We
construct a simulator S that runs in λpoly(log λ) time, such that the distributions

{viewV∗ ← 〈P(w)↔ V∗〉(x, z, h)}x∈L, w∈RL(x),z∈{0,1}∗,h∈HSλ and
{viewV∗ ← 〈S ↔ V∗〉(x, z, h)}x∈L,z∈{0,1}∗,h∈HSλ

are statistically indistinguishable. Namely, S encompasses the prover P and the puzzle
solving algorithm Solve and emulates the PoW mode of (P,V). By assumption (ii) in
the statement of the theorem, P runs in polynomial time and makes oracle calls to Solve
with worst case complexity λpoly(log λ). Since the complexity class λpoly(log λ) is closed
under polynomial composition, the running time of S is bounded by p(λ)·λpoly(log λ) =
λpoly(log λ), where p(·) is some polynomial. By the construction of S, the distributions

{viewV∗ ← 〈S ↔ V∗〉(x, z, h)}x∈L,z∈{0,1}∗,h∈HSλ and{
viewV∗ ← 〈PSolve(1λ,h,·) ↔ V∗〉(x, z, h)

}
x∈L,z∈{0,1}∗,h∈HSλ

≡ DV
∗

PoW

are identical. Thus, the straight-line λpoly(log λ)-statistical simulatability follows from
the statistical indistinguishability of (P,V).

By applying the concurrent self-composition Lemma 2, we conclude that (P,V)
is a 3-move straight-line concurrent statistically λpoly(log λ)-simulatable argument of
knowledge for language L.

ut
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