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Abstract. The use of large groups of robots, generally called swarms,
has gained increased attention in recent years. In this paper, we present
and experimentally validate an algorithm that allows a swarm of robots
to navigate in an environment containing unknown obstacles. A coor-
dination mechanism based on dynamic role assignment and local com-
munication is used to help robots that may get stuck in regions of local
minima. Experiments were performed using both a realistic simulator
and a group of real robots and the obtained results showed the feasibil-
ity of the proposed approach.

1 Introduction

Cooperative robotics has become an important and active research field in the
last couple of decades. Fundamentally, it consists of a group of robots working
cooperatively to execute various types of tasks in order to increase the robustness
and efficiency of task execution. The use of multi-robot teams brings several
advantages over single robot approaches. Firstly, depending on the type of the
task, multiple robots can execute it more efficiently by dividing the work among
the team. More than that, groups of simpler and less expensive robots working
cooperatively can be used instead of an expensive specialized robot. Robustness
is also increased in certain tasks by having robots with redundant capabilities
and dynamically reconfiguring the team in case of robot failures.

A natural evolution of this paradigm is the use of large groups of simpler
robots, generally called swarms. Inspired by their biological counterparts, swarms
of robots must perform in a decentralized fashion using limited communication.
Normally these groups have to work in dynamic, partially-observable environ-
ments which increase the challenges in terms of coordination and control.

In [1] we proposed an algorithm that allows a large group of robots to over-
come local minima regions while navigating to a specific goal in environments
containing unknown obstacles. A coordination mechanism, based on dynamic
role assignment and local communication was used to deal with robots stuck in
local minima. In this paper, we experimentally validate this algorithm using both
a realistic simulator and a group of real robots. We also describe and analyze the
communication chain mechanism, one of the key features of the algorithm that
is responsible for spreading feasible path information among team members.



2 Related Work

The general area of motion planning for large groups of robots has been very
active in the last few years. One of the first works to deal with the motion control
of a large number of agents was proposed for generating realistic computer ani-
mations of flocks of birds (called boids) [2]. In the robotics community, the more
classical approaches for planning the motion of groups of robots have generally
been divided into centralized and decentralized. Centralized planning consists
of planning for the entire group, considering a composite configuration space. It
normally leads to complete solutions but becomes impractical as the number of
robots increases due to the high dimensionality of the joint configuration space.
On the other hand, decentralized approaches plan for each robot individually
and later try to deal with the interactions among the trajectories. This reduces
the dimensionality of the problem, but can result in a loss of completeness.

A common decentralized approach for motion planning is the use of potential
fields [3], in which robots are individually attracted by the goal and repelled by
obstacles and other robots. In swarms, attractive forces are generally modeled
through the gradient descent of specific functions [4, 5]. Unfortunately, as in
regular potential field approaches, the presence of obstacles and local repulsion
forces among the robots may cause convergence problems in general gradient
descent approaches, mainly when robots are required to synthesize shapes. In
this context, Hsieh and Kumar [6] are able to prove convergence properties and
the absence of local minima for specific types of shapes and environments. Also,
special types of navigation functions can be used to navigate swarms in cluttered
environments [7]. But these approaches may be hard to compute in dynamic,
partially-observable environments.

Another way of avoiding the dimensionality problem is to treat groups of
robots as a single entity with a smaller number of degrees of freedom and then
perform the motion planning for this entity. In the work presented in [8], for
example, the robots can be dynamically grouped together in a hierarchical man-
ner using a sphere tree structure. Belta et al. [9] show how groups of robots can
be modeled as deformable ellipses, and presented complex decentralized con-
trollers that allowed the control of the shape and position of the ellipses. This
approach was extended in [10] with the development of a hierarchical framework
for trajectory planning and control of swarms.

Certain types of tasks may require a greater level of coordination. For ex-
ample, more sophisticated task allocation must be necessary for some tightly
coupled tasks. When dealing with swarms, coordination mechanisms have to
scale to tens or hundreds of robots. Scalable approaches for the coordination of
large groups of agents (not necessarily robots) have been proposed in [11, 12]
among others. It is important to mention that most of the works that deal with
swarms validate their approaches only through simulation. Few papers use a real
robotic infrastructure and provide experimental results, for example [7, 13, 14].

In our approach, instead of restricting the environment or developing complex
controllers and coordination mechanisms, we rely on the composition of a gradi-
ent descent controller and a simple coordination mechanism to navigate swarms



in environments containing unknown obstacles. And differently from most of the
papers that deal with robotic swarms, in this paper we perform real experiments
to validate our approach.

3 Swarm Navigation

3.1 Controller

In this paper, the robots must move towards and spread along a goal region in an
environment containing unknown obstacles. The goal region is specified by a 2D
curve S given by implicit functions of the form s(x, y) = 0. This implicit function
can be viewed as the zero isocontour of a 3D surface f = s(x, y) whose value is
less than zero for all points (x, y) that are inside the S boundary and is greater
than zero for all points outside the S boundary. By descending the gradient of
this function and applying local repulsion forces, robots are able to reach the goal
and spread along the 2D curve. Details of this controller can be found in [4]. For
obstacle avoidance, we augmented this controller using a regular potential field
approach: if an obstacle is detected by a robot, this obstacle applies a repulsive
force that is inversely proportional to the distance between them.

Thus, considering a fully actuated robot i with dynamic model given by
q̇i = vi and v̇i = ui, where qi = [xi, yi]

T is the configuration of robot i, ui is its
control input and vi is the velocity vector, the control law used by each robot is
given by:

ui = −α∇f
2(qi) − Cq̇i − β

∑

k∈Oi

1

dik

− γ
∑

j∈Ni

1

qj − qi

. (1)

Constants α, β, γ and C are positive. The first term is the inverse of the
gradient used to guide the robots towards the specified shape. The second term
is a damping force. The third term is the sum of repulsive forces applied by the
obstacles (dik is the distance vector between robot i and obstacle k). Only the
obstacles that are inside robot i sensing region, represented by the set Oi, are
considered in the computation of forces. The fourth term computes the repulsive
interaction of a robot with its neighbors, represented by the set Ni.

Unfortunately, the sum of these forces can lead to the appearance of local
minima regions. Since robots are attracted by the goal and repelled by obstacles
and other robots, they can be trapped in regions where the resultant force is
zero or where the force profile leads to repetitive movements (for example, con-
tinuous circular movements in a specific region). Therefore, there are no formal
guarantees that the robots will converge to the desired pattern. To overcome
this, we rely on swarm coordination: robots may escape from local minima with
the help of their teammates, as will be explained in the next subsection.

3.2 Coordination

Our coordination is based on a mode switching mechanism, generally known in
robotics as dynamic role assignment [15]. A robot can switch between different



modes (or roles) during the execution of the task. Each mode determines a
different behavior for the robot and will be executed while certain internal and
external conditions are satisfied.

These different modes can be better modelled by a finite state machine
(FSM), in which the states and edges represent respectively the modes and the
possible transitions between them. In the mechanism presented in this paper,
the FSM for each robot is shown in Figure 1. It is composed of five different
modes: normal, trapped, rescuer, attached and completed.

Fig. 1. Finite state machine showing the possible modes and transitions for one robot.

All robots start in the normal mode. A normal robot performs a gradient
descent according to equation 1, trying to reach the goal while avoiding obstacles.
It switches its mode to trapped, if it considers itself trapped in a local minima
region. This transition is determined by the variation in the robot’s position over
time. If its position does not change significantly during a certain amount of time,
it becomes trapped. A trapped robot may switch back to normal if its position
start changing considerably again. It is important to note that sometimes, due
to the resultant forces in the controller, robots may switch to trapped even if
they are not in a local minima region. These false-positives do not compromise
the performance of the algorithm since trapped robots are also controlled by
equation 1, as will be explained below.

A trapped robot acts similarly to a normal one, except for the following facts:
(i) a trapped robot strongly repels another trapped robot and this repulsion is
stronger than the one between two normal robots. As a local minima region tends
to attract many robots, the local interactions through these stronger repulsion
forces will help some of the robots to escape this region; (ii) a trapped robot
broadcasts messages announcing its state; (iii) trapped robots accept messages
from rescuers (or attached) robots that will help them to escape from local
minima and move towards the target. This will be better explained later in this
section. We consider that all communication is local, i.e., only messages received
from robots within a certain distance are considered.

When a robot arrives at the target it may become a rescuer. Basically, when
moving towards the goal, a robot saves a sequence of waypoints that is used
to mark its path. If it becomes a rescuer it will retrace its path backwards
looking for trapped robots. After retracing its path backwards, the robot moves
again to the goal following the path in the correct direction. The number and
frequency of rescuer robots are set empirically and may vary depending on



the total number of robots and characteristics of the environment. The method
used to determine which robots become rescuers is explained in [1]. In order
to minimize memory requirements, the robot discards redundant information in
the path stored. Therefore, if there is a straight line in the path, ideally only two
waypoints will be used.

A trapped robot keeps sending messages announcing its state. When a res-

cuer listens to one of these messages, thereby detecting a trapped robot in its
neighborhood, it broadcasts its current position and its path. Any trapped robot
will consider the message if it is within a certain distance from the rescuer and
there is a direct line of sight between them. This restriction enables the robot
to reach the rescuer’s position. After receiving the message, the trapped robot
changes its mode to attached.

An attached robot will move to the received position and then follow the
received path to the goal. An attached robot can also communicate with other
trapped robots, spreading the information about the feasible path to the goal.
Thus, for the trapped robots, an attached robot also works as a rescuer. Moreover,
when an attached robot sends a message to a trapped robot, it adds its current
position as a new waypoint in the path information. Therefore, robots that would
not have a line of sight with any rescuer can easily escape the local minima
region thanks to the extra waypoints created in this process. As will be shown
in Section 5, the attached robots create a powerful communication chain that
allows a large number of robots to be rescued from local minima.

Finally, a robot will change its mode to completed when it reaches the target.
Completed robots will not switch to trapped again but may become rescuers as
explained above.

4 Testbed

As mentioned, one of the contributions of this paper is the validation of the
proposed algorithm using both a realistic simulator and a group of real robots.
In this section we present the infrastructure used for experimentation.

In terms of simulation, we used Gazebo [16]. Gazebo is a multi-robot simu-
lator for both indoor and outdoor environments. It is capable of simulating a
population of robots, sensors and objects in a three-dimensional world. It gener-
ates both realistic sensor feedback and physically plausible interactions between
objects (it includes an accurate simulation of rigid-body physics based on ODE
– Open Dynamics Engine). Figure 2(a) shows a snapshot of a simulation running
on Gazebo.

Gazebo is used in conjunction with the Player framework [17]. Player is a
network server for robot control, that provides a clean and simple interface to the
robot’s sensors and actuators over an IP network. It is designed to be language
and platform independent, allowing the same program to run on different robotic
platforms. In fact, most of the time, the algorithms and controllers used in
simulation do not need to be changed to run in real robots. This specific feature
is very useful for experimentation in robotics.



(a) (b)

Fig. 2. Testbed used in the experiments: (a) snapshot of the gazebo simulator with 48
robots and (b) one of the 7 scarab robots used in the experiments.

In the real experiments, we used a group of 7 scarab robots, developed in the
GRASP Lab. – University of Pennsylvania (Figure 2(b)). The Scarab is a small
differential drive robot equipped with an on-board computer, a Hokuyo URG
laser range finder, wireless communication (802.11) and two stepper motors for
actuation. The sensors, actuators, and controllers are modular and connected
through the Robotics Bus (which is derived from the CAN bus protocol). A
external localization system composed by a set of overhead cameras provides
accurate pose information for the robots. More details about the scarabs and
the localization system can be found in [18].

In the simulations and experiments performed in this paper, the only infor-
mation provided a priori to the robots is the implicit function that attracts them
to the target (function f in equation 1). Each robot knows its pose in a global
reference frame, but does not have access to the pose of its teammates. This
information, when needed, is explicitly transmitted by the robots using wireless
communication. Also, there is no map of the environment and all obstacles are
locally detected using lasers.

The laser is also used to check the existence of line of sight between a trapped

and a rescuer robot. In the coordination mechanism presented in Section 3.2,
trapped robots only accept messages from a rescuer if there is a line of sight
between them, i.e., if there is a free path connecting their positions (otherwise,
it will not be able to move to the rescuer’s position and then follow the feasible
path to the goal). A simple algorithm, using the laser, enabled the robots to
estimate the existence of line of sight. When a trapped robot receives a message
from the rescuer, containing the location of the rescuer and a path to the target,
it computes the euclidean distance (δ) and the bearing between them. Then, it
turns in the direction of the rescuer and checks the distance returned by the laser.



−5 0 5 10

−6

−4

−2

0

2

4

6

x (m)

y 
(m

)

(a)

−5 0 5 10

−6

−4

−2

0

2

4

6

x (m)

y 
(m

)

(b)

−5 0 5 10

−6

−4

−2

0

2

4

6

x (m)

y 
(m

)

(c)

−5 0 5 10

−6

−4

−2

0

2

4

6

x (m)

y 
(m

)

(d)

Fig. 3. Simulation of the coordination algorithm without the communication chain.
Robots are represented by different shapes according to their states.
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Fig. 4. Simulation of the coordination algorithm using the communication chain.

If this distance is smaller than δ, it means that the laser detected something (an
obstacle or another robot) and there is no free path between them. In this case,
the trapped robot will ignore the message and wait for another rescuer.

5 Simulations

We simulated forty-eight scarabs navigating in an environment containing an
u-shaped obstacle. This is a typical local minima scenario in robotics. In these
simulations, we focus our attention on the impact of the communication chain
mechanism. Other experiments, using a simpler simulator, were executed to an-
alyze the performance of the algorithm with a varying number of robots and
communication parameters in different environments. Those were previously pre-
sented in [19].

Two versions of the algorithm were tested: one without using the communi-
cation chain and the other one with this mechanism enabled. Figures 3 and 4
respectively present graphs of these two variations. In both figures, robots are
represented by different shapes according to their states: normal (+), trapped

(△), attached (⊳), rescuer (◦), and completed (×). Robots start on the left and
the target is on the right. The u-shaped obstacle is shown in black at the middle.

In the execution without the communication chain (Figure 3), rescuer robots
successfully reached the region where many robots were trapped, but only the
ones in the border of the obstacle are able to escape. The other trapped robots
did not have a direct line of sight with the rescuers and remained stuck in the
local minima region. The execution with the communication chain (Figure 4), on



1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y 
(m

)

Fig. 5. Path information spread through the swarm. Shapes represent the number of
message hops needed to receive the information.

the other hand, was very effective, with all robots converging to the target. The
information about the feasible path easily spread through the robots stuck in
local minima, reaching even those that were closer to the bottom of the u-shaped
obstacle.

In Figure 5, we take a closer look on how the information spread through
the trapped robots when the rescuer (◦) in the upper left sent the viable path
to the goal. In this figure, shapes represent the number of message hops needed
to receive the path information: triangle received with one hop, square with
two hops and diamond with three hops. As can be seen, only a small number
of robots, that were near the border of the obstacle, could be rescued with
just one hop. Almost all robots were rescued with two hops, upon receiving a
viable path from the attached robots. Robots that were near the bottom of the
obstacle needed three hops, but could be rescued as well. As was explained,
attached robots created new waypoints in the viable path, enabling these robots
to effectively escape the local minima region.

6 Real Experiments

Real experiments are very important to show that an algorithm can effectively
work in robots acting in the real world, with all the problems caused by uncer-
tainties due to sensors and actuators errors, communication problems and real
time constraints. In order to show the effectiveness of our proposed coordination
mechanism, we performed real experiments with seven scarabs robots using a
similar scenario with an u-shaped obstacle.

The sequence of snapshots of one execution can be seen in Figure 6, where
the graphs on the bottom depict the robots’ positions and states. The robots
start in the left of the scenario and must converge to the target beyond the
u-shaped obstacle in the middle. In Figure 6(a), three robots are able to move
to the target, while four others are trapped in a local minima region, in front of
the obstacle. The trapped robots are spread in this region, because of the local
repulsion forces. Figure 6(b) shows a rescuer robot at the right of the obstacle,
sending a viable path to the target. The robots that have a direct line of sight
with the rescuer accept this message and change their status to attached. One of
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Fig. 6. Seven robots converge to the target with the proposed coordination mechanism.
Exchange of messages is shown by the arrows.

the attached robots retransmits the information to the other two trapped robots
that did not have line of sight, allowing all of them to escape the local minima
region, as can be seen in Figure 6(c). Soon the state in Figure 6(d) is achieved,
where almost all robots reached the target.

Thus, using the proposed algorithm, all robots effectively escaped the local
minima region. Only one rescuer was enough to save all four trapped robots,
thanks to the communication chain mechanism: an attached robot was able to
spread the information to the robots that did not receive it directly.

7 Conclusion

In this paper we experimentally validated a distributed coordination mechanism
for navigating a swarm of robots in environments containing unknown obstacles.
Realistic simulations and real experiments with seven robots showed the viability
of the proposed technique and the benefits of the communication chain.

Our future work is directed towards the improvement of the mechanism,
with the development of “congestion control” techniques for the swarm. We
observed that many times, when a large number of robots tried to reach the
same waypoint or robots navigated in opposite directions, congestion caused
by the local repulsion forces increased the time needed to reach convergence,
wasting time and resources.
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