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Abstract—The conduction and selectivity of calcium/sodium
ion channels are described in terms of ionic Coulomb blockade,
a phenomenon based on charge discreteness, an electrostatic
exclusion principle, and stochastic ion motion through the
channel. This novel approach provides a unified explanationof
numerous observed and modelled conductance and selectivity
phenomena, including the anomalous mole fraction effect and
discrete conduction bands. Ionic Coulomb blockade and resonant
conduction are similar to electronic Coulomb blockade and
resonant tunnelling in quantum dots. The model is equally
applicable to other nanopores.

Biological ion channels are natural nanopores providing for
the fast and highly selective permeation of physiologically
important ions (e.g. Na+, K+ and Ca2+) through cellular
membranes. [1]. The conduction and selectivity of e.g. voltage-
gated Ca2+ [2] and Na+ channels [3] are defined by the
ions’ stochastic movements and interactions inside a short,
narrow selectivity filter (SF) lined with negatively-charged
protein residues1 providing a net fixed chargeQf . Permeation
through the SF sometimes involves the concerted motion of
more than one ion [4], [5]. Mutation studies [6], [7], [8], [3]
and simulations [9], [10], [11] show thatQf is a determinant
of the channel’s conductivity and valence selectivity. It has
recently been shown that nanopores can exhibit ionic Coulomb
blockade (CB) [12], a quantized electrostatic phenomenon
equivalent to electronic CB in mesoscopic systems [13], [14],
[15].

An electrostatic theory of ionic transport in water-filled
periodically-charged nanopores revealed the phenomenon of
ion-exchange through low-barrier phase transitions as theion
concentration and fixed chargeQf were varied [16]. Compa-
rable transitions in Brownian dynamics (BD) simulations of
Ca2+ channels result in discrete conduction and selectivity
bands as functions ofQf [17], [18] consistent with earlier
speculations [19], [14] and explaining both the anomalous
mole fraction effect (AMFE) [2] and some of the puzzling
mutation-induced transformations of selectivity in Ca2+/Na+

channels [6], [3]. We have already connected the periodicity of
the pattern of conduction bands with single/multi-ion barrier-
less conduction and sequential neutralisation of the SF [18],
but the shapes of the occupancy and conduction bands and the

1The protein residues are amino acids, of which aspartate (D)and glutamate
(E) have negatively charged side chains while lysine (K) andarganine (R) have
positively charged side chains; we also mention neutral alanine (A).

Fig. 1. (Color online) (a) Electrostatic model of a Ca2+ or Na+ channel. Ions
move in single file along the channel axis. (b) Energetics of moving Ca2+

ion for fixed chargeQf = −1e. The dielectric self-energy barrierUs (full
blue line) is balanced by the site attractionUa (dashed green line) resulting
in a barrier-less energy profileUb (red solid line). See text for details.

general physical picture of the phenomena remained unclear.
Here, we reinterpret and generalize the electrostatic anal-

ysis of the multi-ion energetics of conduction bands [18]
by introducing a novel ionic CB model of conduction and
selectivity in biological ion channels thereby bringing them
into the context of mesoscopic phenomena. We show that
the experimentally-observed valence selectivity phenomena in
Ca2+/Na+ channels, including AMFE and mutation-induced
transformations of selectivity, and the simulated conduction
bandsvs. Qf , can be well-described in terms of CB conduc-
tance oscillations while the occupancy represents a Coulomb
staircase with Fermi-Dirac (FD) step shapes, so that a ion
channel can be thought as a discrete electrostatic device.

In what follows with SI unitse is the proton charge,z the
ionic valence,ǫ0 the vacuum permittivity,T the temperature,
andkB Boltzmann’s constant.

We consider the generic electrostatic model of the SF of
a Ca2+/Na+ ion channel shown in Fig. 1. It is described
as an axisymmetric, water-filled, cylindrical pore of radius
R = 0.3nm and lengthL = 1.6nm through a protein hub in
the cellular membrane. A centrally-placed, uniform, rigidring
of negative chargeQf in the range0 ≤ |Qf | ≤ 7e is embedded



in the wall at RQ = R. The left-hand bath, modeling the
extracellular space, contains non-zero concentrations ofCa2+

and/or Na+ ions. We take both the water and the protein to
be homogeneous continua with relative permittivitiesǫw = 80
and ǫp = 2, respectively, but describe the ions as discrete
chargesqi = ze within the framework of the implicit hydration
model moving in single file within the channel, with bulk
values of diffusion coefficientsDi. We take no account of
negative counterions inside the SF, which will be few on ac-
count of repulsion by the negativeQf . The implicit hydration
model [10] works well for small Ca2+ and Na+ ions both of
which have ionic radiiRi ≈ 0.1nm.

BD simulations solve the coupled 3D axisymmetrical Pois-
son electrostatic equation and 1D overdamped Langevin
stochastic equation numerically and self-consistently ateach
simulation step [9], [4], [20]. The model obviously represents
a considerable simplification of the actual electrostaticsand
dynamics of the ions and water molecules moving within
the narrow SF [21]. However, reduced models successfully
reproduce significant properties of real biological channels
[10], [9] thereby illustrating their applicability. Simple models
can be also applied to artificial nanopores [16], [12], [21].
Details of the model, its range of validity and its limitations,
have been presented and discussed elsewhere [17], [18].

Fig. 1(b) shows the potential energy profiles for a single
Ca2+ ion for the caseQf = −1e: a barrier-less effective en-
ergy profile appears due to the balance between the dielectric
self-energy barrierUs (see e.g. [16]) and and the site attraction
Ua [18]:

Us = z2e2/2Cs, Ua = zeQf/Cs. (1)

Here, Cs = 4πǫ0ǫwR
2/L stands for the geometry-depend

channel self-capacitance. The captured ion neutralizesQf and
restores the effective barrier, thereby preventing the next ion
from entering the channel. WhenUs ≫ kBT this amounts
to a single-occupancy requirement orelectrostatic exclusion
principle. It plays a significant role in ion permeation and leads
to the CB phenomenon, causing the ion channel to behave as
single-charge device [14], [15].

The single- and multi-ion conduction bands found in the BD
simulations [17], [18] are shown in Fig. 2(a),(b) which plot
the Ca2+ currentJ and channel occupancyP for pure baths
of different concentration. Fig. 2(a) shows narrow conduction
bandsM0, M1, M2 separated by stop-bands of almost zero-
conductance centred on the blockade pointsZ1, Z2, Z3.

Fig. 2(b) shows that theMn peaks inJ correspond to tran-
sition regions in channel occupancy, whereP jumps from one
integer value to the next, and that the stop-bands correspond
to saturated regions with integerP = 1, 2, 3....

BandM0 corresponds to single-ion barrier-less conduction
(see Fig. 1(b)).M1 corresponds to the double-ion knock-
on conduction, which is well-established for L–type Ca2+

channels [2]; andM2 corresponds to triple-ion conduction
which can be connected with Ryanodine receptor calcium
channels [22] (see Table I and related discussion).
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Fig. 2. (Color online) Brownian dynamics simulations of multi-ion conduction
and occupancy in a Ca2+ channel modelvs the effective fixed chargeQf ;
(a),(b) are reworked from [17]. (a) Plots of the Ca2+ current J for pure
Ca2+ baths of different concentration (20, 40 and 80mM as indicated). (b)
The occupancyP . (c) The excess self-energyUn and ground state energyUG

vs Qf for channels withn = 0, 1, 2 and 3 Ca2+ ions inside. The conduction
bandsMnand the blockade/neutralisation pointsZn are discussed in the text.

We can readily account for the pattern of bands in terms
of CB oscillations [13]. The discreteness of the ionic charge
allows to us to introduce exclusive “eigenstates”{n} of the
channel with fixed integer numbers of ions inside its SF having
total electrostatic energyUn. The transition{n}→ {n+1}
corresponds to the entry of a new ion, whereas{n}→ {n-1}
corresponds to the escape of a trapped ion. These{n}-states
form a discrete exclusive set [23] :

n = {0, 1, 2, ...}
∑

n

θn = 1; Pc =
∑

n

nθn, (2)

where θn is the occupancy of the state{n} and Pc is the
average SF occupancy. In equilibriumθm is defined by the
Boltzmann factorθn ∝ exp(−Un/(kBT )). The exact distri-
bution forθn andPc (which is FD [24], [25]) will be derived
below.

The total energyUn for a channel in state{n} can be
expressed as:

Un = Un,s + Un,attr + Un,int (3)

whereUn,s is the self-energy,Un,attr is the energy of attrac-
tion, andUn,int is the ions’ mutual interaction energy.

We approximateUn as the dielectric self-energyUn,s of the
excess chargeQn based on the assumption that both the ions
andQf are located within the central part of the SF, so that
(1) gives the standard CB equation:

Un = Q2
n/2Cs; Qn = zen+Qf . (4)

Here,Qn represents the excess charge at the SF for then ions
as function ofQf . Binomial expansion ofQ2

n in (4) gives first
approximations forUn,s, Un,attr andUn,int consistent with 1-
D Coulomb gas model [16] and with the energetics analysis
in [18].

CB appears in low-capacitance systems from quantization
of the quadratic energy form (4) at a grid of discrete states



TABLE I
IDENTIFICATION OF CA2+ RESONANT CONDUCTION POINTSMn WITH SOME KNOWN CHANNELS AND MUTANTS (EXTENDED FROM [17], [18])).

Channel Locus Nominal Qf Band / Jump ModelledQf

Non-selective OmpF [8] (K)RRRDE −1e M0 {0 → 1} −1e
Ca- selective Nav mutant [6] EEEA −3e M1 {1 → 2} −3e
Ca L-type channel [2], Ca-selective OmpF mutant [8] EEEE −4e M1 {1 → 2} −3e
Calcium RyR [22] DDDD(ED) −6e M2 {2 → 3} −5e
Calcium-selective mutants of NavAB [3] and NavChBac [7]EEEE+DDDD −8e M3 {3 → 4} −7e

(2), providing a Coulomb energy gap∆Un = Us large enough
(∆Un ≫ kBT ) to block transitions between neighbouring{n}
states. We calculateUn as a function ofQf for n = 0, 1, 2, 3
and focus on the ground state energyUG as a function ofQf :

UG(Qf ) = min
n

(Un(Qf )). (5)

Fig. 2(c) plotsUn and UG as functions ofQf . We see a
periodic pattern with two kinds ofUG singular points, marked
asMn andZn. The minima ofUG (and the blockade regions)
appear around the neutralisation pointsZn = −zen where
QG = 0 and the occupancyPc is saturated at an integer value
[16], [18]. For divalent Ca2+ ions∆Un ≈ 20kBT and hence
CB is strong. The crossover pointsMn (Un = Un+1) allow
barrier-less{n} ⇆ {n+1} transitions; they correspond to the
Pc transition regions and to the conduction peaks inJ [18].

The positions of the singularQf points in Fig. 2(c) can be
written as:

Zn = −zen± δZn, Coulomb blockade

Mn = −ze(n+ 1/2)± δMn Resonant conduction
(6)

whereδZn, δMn are possible corrections for the singular part
of the affinity and ion-ion interactions, not accounted for here.
Equation (6) is exactly the same as its counterpart in electronic
CB. We may therefore interpret the BD-simulated conduction
bands (Fig. 2(a)) as CB oscillations of conductance [13]
appearing asQf increases and the corresponding occupancy
steps (Fig. 2(b)) as a Coulomb staircase [15].

The positions of theMn andZn points in the theory (6 )
and BD simulations (Fig. 2) are consistent with an energetics
analysis [18], supporting above interpretation; the deviations
in the precise positions ofMn and Zn can be attributed to
field leaks and model simplifications.

That is our main result – that the ionic CB model
predicts a universal, valence-dependent, periodic pattern of
stop/conduction bands similar to the electronic CB oscillations
of conductance in quantum dots [13], [15]. It allows us
to identify conduction bands with real calcium-conductive
channels/mutants.

Table I shows putative identifcations of the
bands/singularities of the CB model with real channels
in the Ca2+/Na+ family, extended from [17], [18]. We
identify wild-type calcium channels and Ca2+-selective
mutants of Na-selective (Nav) channels with the Ca2+

resonant pointsM1 (L-type) and M2 (RyR). We also
identify Ca2+-selective mutants of bacterial sodium channels
NaChBac [7] and NavAB [3] with pointM3. In a similar way,
we can account for numerous mutation transformations in

Ca2+/Na+ channels family, thereby confirming the validity of
the CB-based band model. We speculate that the discrepancy
betweenQf = M1 = −3e derived from CB model and the
nominal Qf = −4e for the EEEE loci of L-type calcium
channels may be associated with protonation [26].

Derivation of the distribution ofPc in the vicinity of the
Mn points (and hence calculation of the shapes ofPc(Uc) or
Pc(Qf )) follows standard CB theory. For divalent Ca2+ ions,
the Coulomb gap∆Un ≫ kBT and (2) reduces to a simple
2-state exclusive set:

m = {n, n+ 1}; θn + θn+1 = 1; Pc = n+ θn+1. (7)

The strong electrostatic exclusion principle (7) plays thesame
role as the Pauli exclusion principle plays in quantum mechan-
ics [25], [27]. Hence the standard derivation via a partition
function, taking account of (7) leads [24] to FD statistics for
θn+1 and to an excess (fractional) occupancyP ∗

c = Pc mod 1:

P ∗

c = (1 + P−1

b exp(Uc/kBT ))
−1, Fermi-Dirac (8)

whereUc = Un+1 − Un, and Pb is a reference occupancy
related to the bulk concentration. Note, that (8) is equivalent to
the Langmuir isotherm [24] or to Michaelis-Menten saturation.
A similar Fermi function was obtained earlier [16] for the
variation ofPc with concentration.

A self-consistent calculation of the conductance can be
effected via linear response theory, leading to the standard
CB “classical” approximation [13]:

Jc/Jmax = (Uc/kBT ) sinh
−1(Uc/kBT ) (9)

whereJmax is the barrier-less diffusive current. The current
Jc from (9) exhibits a resonant peak coinciding with the
maximum in the derivative ofPc, dP/dUc (Fig. 3), similar
to that of the tunneling current in a quantum dot [13]. The
FD function (8) predicts thatU∗

c /kBT = − ln(P ∗

c /(1− P ∗

c ))
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Fig. 3. (Color online) Resonant conduction peak shapes vsUc (or equivalently
Qf ). The occupancyPc (blue, dash-dot) shows the Fermi - Dirac transition
from Pc = 0 to Pc = 1. The theoretical currentJc/Jmax (red,solid) exhibits
a resonant peak in the transitional region.
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Fig. 4. (Color online) Comparisons of the ionic Coulomb blockade model
with Brownian dynamics simulation results asQf is varied. (a) The effective
well depthU∗

c (blue point-down triangles) fitted by Fermi-Dirac function(full
red lines). (b) TheJ peaks in the“classical” approximation (red solid lines)
are compared with simulation results (blue, point-up triangles).

should be linear inUc and also (due to the relatively narrow
transition region) inQf . Fig. 4(a) plots the predicted sawtooth
dependence ofU∗

c on Qf , confirming that theP ∗

c transitions
obey the FD function (8) ofUc. Fig. 4(b) compares the CB
model with the the BD-simulated Ca2+ conduction bandsM0,
M1, M2 [17]. Theoretical CB oscillations (9) fit the BD-
simulated peak shapes and positions reasonably well, giventhe
model simplifications. Although an ion moving inside a chan-
nel or nanopore is a classical system described by Newtonian
dynamics, it exhibits some quantum-like mesoscopic features
[12]. We attribute such behavior to charge discreteness, the
electrostatic exclusion principle, and confinement effects.

In conclusion, we have shown that Ca2+ channel permeation
is analogous to mesoscopic transport in quantum dots: the
electrostatic exclusion principle leads to an FD distribution
of channel occupancy; the stop-bands correspond to block-
ade; the barrier-less conduction peaks are similar to those
in resonant tunneling and can be described by standard CB
formulæ. The ionic CB model provides a good account of
both the experimental (AMFE and valence selectivity) and
the simulated (discrete multi-ion conduction and occupancy
bands) phenomena observed in model Ca2+ channels. The
results are should be applicable to other ion channels and to
biomimetic nanopores with charged walls.
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