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Abstract

This thesis considers the application of changepoint detection methodology for the

analysis of acoustic sensing signals. In the first part, we propose a detection procedure

for changes in the second-order structure of a univariate time series. This utilises a

penalised likelihood based on Whittle’s approximation and allows for a non-linear

penalty function. This procedure is subsequently used to detect changes in acoustic

sensing data which correspond to external disturbances of the measuring cable.

The second part shifts focus to multivariate time series, and considers the detection

of changes which occur in only a subset of the variables. We introduce the concept of

changepoint vectors which we use to model such changes. A dynamic programming

scheme is proposed which obtains the optimal configuration of changepoint vectors

for a given multivariate series. Consideration of pruning techniques suggests that

these are not practically viable for this setting. We therefore introduce approxima-

tions which vastly improve computational speed with negligible detrimental impact

on accuracy. This approximated procedure is applied to multivariate acoustic sensing

data.
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Chapter 1

Introduction

The abundance of sensors within contemporary devices and systems means that data is

now being collected through time at an unprecedented scale. Consider, for example,

an oil well. Modern techniques used to monitor oil flow involve the placement of

acoustic sensors at various depths throughout the well. These record vibrations at

very high resolutions (up to 10000 observations a second) so that this data can later

be used to optimise the production of the well. An example of such data can be seen

in Figure 1.1.1. Note in particular how the complex autocorrelated and multivariate

structure is punctuated by changes. The times at which such changes occur are known

as changepoints. The main theme of this thesis is the development of new methods

to search for and detect such features.

The area of changepoint analysis has seen a resurgence of interest during the last

five years, with many seminal contributions being made, such as the PELT method of

Killick et al. (2012) and the WBS method of Fryzlewicz (2014). Historically, much of

the work in changepoint detection has focused on the scenario where the observations

are univariate and assumed to be independent and identically distributed (i.i.d.). Re-

cent developments have considered more sophisticated models, such as those where

the data is multivariate, or where there may be serial dependence between the obser-

vations. These models often provide a better reflection of the characteristics found

in modern data sets. In particular, data obtained using acoustic sensing cannot be

suitably modelled using the traditional univariate i.i.d. framework.

1
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Figure 1.1.1: An example of acoustic sensing data observed at various depths in an
oil well.

Within this thesis we consider two separate generalisations of the univariate i.i.d.

changepoint problem: (i) the univariate setting with autocorrelation (and the search

for changes in this dependence), and (ii) the changepoint problem in the multivariate

i.i.d. setting. We begin in Chapter 2 by providing a review of the literature for both

univariate and multivariate changepoint detection, examining the problem formula-

tions and different detection methods which have been proposed. In addition, we

explore various techniques which have been used to model autocorrelated time series.

A novel method for detecting changes in the dependence structure of a univari-

ate autocorrelated time series is presented in Chapter 3. This method is based on

Whittle’s likelihood, an approximation to the exact likelihood of autocorrelated obser-

vations which allows for a faster computation with only a mild reduction in accuracy.

We compare and contrast our approach with other leading procedures through appli-

cation to univariate acoustic sensing data sets.

The focus of the thesis then shifts to the multivariate changepoint setting in Chap-

ter 4. Here we introduce the concept of changepoint vectors which we use to model

multivariate changepoints. These allow not only for the specification of the loca-
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tions of any changes, but also the subsets of the variables in the series which are

affected by a given change. A dynamic programming procedure which obtains the op-

timal configuration of changepoint vectors for a given multivariate series is presented.

However, due to the large number of possible configurations, this procedure has a

computational complexity of O(pn2p) for a p-variate series of length n. To reduce this

computation time, in Chapter 5 we introduce an approximated version of the proce-

dure which considers only the time-points and subsets of variables which are likely to

be true changepoints and corresponding affected variable subsets. Application to both

simulated time series and multivariate acoustic sensing data demonstrates that this

approach vastly improves computational speed with negligible detrimental impact on

accuracy. We conclude by presenting avenues for future research in Chapter 6.



Chapter 2

Changepoint Detection and Time

Series Models

The term changepoint refers to a time-point at which a change occurs in one or

more of the statistical properties of a time series. Knowledge of the presence of any

changepoints within a time series is critical when forecasting or drawing inferences

from the series. Due to this practical significance, the development of methodology

capable of detecting such changepoints has received an increasing amount of attention

throughout the previous half-century.

Since the first consideration by Page (1954) within the quality control literature,

the problem of detecting changepoints has been considered across a wide array of

scientific fields. These range from the long-established areas such as finance and

economics (Andreou and Ghysels, 2009; Fryzlewicz and Subba Rao, 2014) and cli-

matology (Reeves et al., 2007; Ruggieri et al., 2009), to more modern applications

such as geophysical sciences (Velis, 2007; Gallagher et al., 2011), molecular biology

(Braun et al., 2000; Xing et al., 2012), genetics (Olshen et al., 2004; Picard et al.,

2005), network analysis (Lévy-Leduc and Roueff, 2009; Tartakovsky et al., 2013) and

neuroscience (Aston and Kirch, 2012; Cribben et al., 2013).

This chapter examines and discusses various approaches which have been proposed

for the detection of changepoints within observed time series. Due to the vast nature

of the literature, the focus will largely be on the retrospective, also known as ‘offline’,

4
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changepoint detection problem rather than the sequential or ‘online’ equivalent prob-

lem. For an introduction to the sequential changepoint detection problem, we refer

the reader to Lai (1995) and Polunchenko and Tartakovsky (2012). The work of Chen

and Gupta (2000) also provides a review of changepoint detection methods in general.

The aim of this chapter is to provide an overview of three key areas:

• an introduction to both univariate and multivariate changepoint analysis,

• a review of time series models for autocorrelated observations,

• an insight into how changepoints can be modelled within these dependent time

series models.

Together these three components form the foundations of the work presented in this

thesis.

The first part of this chapter reviews methods for detecting changes in univariate

(i.e. one-dimensional) series, covering a range of different paradigms with a focus on

the penalised cost function approach. Discussions of typically-used cost functions,

penalties and search algorithms are provided in Sections 2.1.3 and 2.1.4. The second

part examines the multivariate changepoint detection problem, with a discourse of the

fully-multivariate and subset-multivariate changepoint models (definitions of which

are given in Section 2.2.1). Popular fully-multivariate changepoint detection methods

are examined in Sections 2.2.2 and 2.2.3, with a treatment of subset-multivariate

methods deferred to Chapter 4. Finally, we present a background to the modelling

of autocorrelated time series in Section 2.3 to aid the understanding of methodology

introduced in Chapter 3.

2.1 Univariate Changepoint Detection

Within this section we examine many aspects of univariate changepoint detection,

including the various different paradigms adopted by methods in the literature. Par-

ticular concentration is given to the penalised cost function approach. We begin our

review with an introduction to the univariate changepoint model.
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2.1.1(a): Change in mean. 2.1.1(b): Change in variance. 2.1.1(c): Change in multiple sta-
tistical properties.

Figure 2.1.1: An example of how various univariate changes may arise in time series.

2.1.1 Univariate Changepoint Model

Suppose that X1:n = {X1, X2, . . . , Xn} denotes a univariate series of time-ordered

observations of length n. The changepoint detection problem aims to identify the

possible existence of m locations within the time series at which one or more of its

statistical properties change. These locations are denoted by τ = (τ1, τ2, . . . , τm),

with τ0 = 0 and τm+1 = n. The changepoint detection problem generally consists of

three main tasks:

• estimating the number of possible changepoints m within the time series,

• identifying the most suitable locations (τ1, . . . , τm) of the m changepoints,

• determining the best-fitting model for each of the m+ 1 segments.

An additional aim which has received an increasing amount of attention in recent

years is the quantification of the uncertainty in estimated changepoint locations via

confidence intervals (Hušková and Kirch, 2008; Frick et al., 2014; Nam et al., 2015).

The types of statistical property which may change include, but are not limited to,

the mean, variance and regression parameters. More subtle changes such as alterations

in the dependence structure of the time series may also occur, as well as changes

being exhibited in multiple properties simultaneously. Figure 2.1.1 demonstrates some

examples of how univariate changes in these properties may arise.
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There exists a range of methodologies which have been designed for the detection

of univariate changepoints. Arguably the most comprehensive approach to solving

the changepoint detection problem is through the minimisation of a penalised cost

function:

m+1∑
i=1

[
C(X(τi−1+1):τi)

]
+ βf(m), (2.1.1)

where C(·) denotes a generic cost function which assigns a value to a given sequence

of data, β is a constant greater than 0 and f(m) is some increasing function of the

number of changepoints, so that βf(m) penalises the over-fitting of changepoints. The

concept behind the consideration of (2.1.1) is that the best-fitting changepoint model

will have the minimum penalised cost across all possible changepoint models. Hence,

minimising (2.1.1) allows for the simultaneous acquisition of the optimal number

and locations of changepoints and optimal parameter values for each segment. This

simultaneous optimisation has meant that the technique has been widely adopted

within the literature. Hence, this is the main approach which we describe throughout

the thesis.

We continue this section with an examination of three eminent approaches to

changepoint detection which are not based on minimising a penalised cost: Likeli-

hood Ratio testing, Bayesian methods, and Hidden Markov Model methods. A care-

ful discussion of how a penalised cost function can be formulated from its constituent

components, as well as highlighting some common forms of cost functions and penal-

ties will then follow. Finally, we conclude with a consideration of popular methods

which are used to minimise a penalised cost function in the context of changepoint

detection.

2.1.2 Changepoint Detection Paradigms

Aside from the minimisation of a penalised cost function, there are three main paradigms

which are popular within the changepoint detection literature. These are summarised

below.



CHAPTER 2. CHANGEPOINT DETECTION AND TIME SERIES MODELS 8

Likelihood Ratio Testing

The testing of a likelihood ratio is a natural approach to the single changepoint

detection problem, since it is essentially the comparison of two nested models: one

with a changepoint, and one without. However, it is not possible to form the multiple

changepoint problem as a single hypothesis test unless the number of changepoints is

known. Therefore, this approach is typically only used for the detection of a possible

single changepoint within a time series. As discussed by Eckley et al. (2011), the

general pair of hypothesis considered is:

H0 : No changepoint in the series.

H1 : A single changepoint at location τ.

The log-likelihood of the i.i.d. time series X = {X1, X2, . . . , Xn} under H0 is given by

lH0(θ0|X) = log f(X1, X2, . . . , Xn|θ0),

where f is the probability density function of the distribution of the observations and

θ0 is the parameter vector of the data under H0. Assuming that the data across the

two segments is independent, the log-likelihood of X under H1 is given by

lH1(θ1, θ2, τ |X) = log f(X1, . . . , Xτ |θ1) + log f(Xτ+1, . . . , Xn|θ2),

where τ denotes the changepoint location and θ1 and θ2 denote the parameter vectors

for the segments before and after the changepoint, respectively. Denote the maximum

likelihood estimate of a parameter vector θ by θ̂. The log-likelihood ratio test for a

single changepoint within the time series X is therefore given by

λ = 2
[

max
1<τ<n

lH1(θ̂1, θ̂2, τ |X)− lH0(θ̂0|X)
]
.

This ratio, λ, is then tested against the pre-specified threshold c. If λ > c, then

the null hypothesis H0 is rejected and the changepoint is estimated at the location
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τ̂ = arg max1<τ<n lH1(θ̂1, θ̂2, τ |X). Otherwise, it is taken that there is no changepoint

in the series.

This likelihood ratio testing approach is common in the earlier works which con-

sider the fixed-sample changepoint detection problem. Hinkley (1970) first utilised

this approach for the detection of a change in mean within a sequence of Normally

distributed observations, with generalisations to other distributional forms coming

later (e.g. exponential data (Haccou et al., 1987)) as well as the detection of changes

in other properties (e.g. change in variance of Normal data (Chen and Gupta, 1997)).

However, it is important to note that this approach identifies at most one change. We

postpone a discussion of how this may be extended to a multiple changepoint setting

until Section 2.1.4.

Bayesian Methods

The Bayesian paradigm is also commonly adopted within the changepoint detection

literature. Typically this involves placing a prior on the number of changepoints

within the series, and another prior on the locations. For example, the number of

changepoints m may be drawn from a Poisson(λ) distribution, and their corresponding

locations can then be independently drawn from a dU(1, n − 1) distribution, where

dU(·, ·) denotes the discrete uniform distribution. While this specification of priors

may seem intuitive, Fearnhead (2006) describes how the prior for both the number

and locations of changepoints can be jointly specified indirectly via the specification

of a prior on the length of a segment, and that such an approach has computational

advantages over the specification of two separate priors.

To illustrate the Bayesian approach, we outline the core of the idea for the case

where individual priors are placed on the number and locations of changepoints

separately. Let θk denote the parameter vector for the kth segment of the series

(k = 1, . . . ,m + 1), and ψk denote the hyperparameter for the prior distribution

of θk. Then the posterior probability of the set of m changepoints at locations
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τ = (τ1, τ2, . . . , τm) (with τ0 = 0 and τm+1 = n) is given by

P (m, τ , θ1, . . . , θm+1|X,λ, ψ1, . . . , ψk+1)

∝ P (m|λ)P (τ |m)P (θ1, . . . , θm+1|ψ1, . . . , ψm+1)P (X|m, τ , θ1, . . . , θm+1)

= P (m|λ)
(

m∏
k=1

P (τk)
)
P (θ1, . . . , θm+1|ψ1, . . . , ψm+1)

m+1∏
k=1

τk∏
t=τk−1+1

P (Xt|θk)
 .

(2.1.2)

Here the P (θ1, . . . , θm+1|ψ1, . . . , ψm+1) term denotes the joint prior of the parameter

vectors and

P (X|m, τ , θ1, . . . , θm+1) =
m+1∏
k=1

τk∏
t=τk−1+1

P (Xt|θk)

represents the likelihood of the given time series.

Popular Bayesian techniques such as MCMC and its variants can be used with

(2.1.2) to estimate the true values of τ and θ1, . . . , θm+1. In traditional MCMC ap-

proaches, the value of m is assumed to be known and is fixed throughout the algo-

rithm. The MCMC algorithm then iteratively updates its estimates of (τ1, τ2, . . . , τm)

and (θ1, θ2, . . . , θm+1), with the values of both the changepoint locations and the pa-

rameter vectors (where possible) each being centred on their corresponding values at

the previous iteration.

The assumption of a known m within traditional MCMC algorithms is often pro-

hibitive for application in practical settings. Green (1995) introduces the ‘reversible

jump MCMC’ (RJMCMC) method which mitigates this issue. The RJMCMC algo-

rithm specifies an initial estimate of m, denoted m0, and then allows for perturbation

of this value via the performance of a birth-death step at each iteration. Such a birth-

death step occurs after the potential new locations of changepoints currently in the

model are proposed. This birth-death step proposes the possible execution of three

distinct operations:

• a ‘birth’ operation, which introduces a changepoint into the model;
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• a ‘death’ operation, with removes changepoint from the model;

• neither a ‘birth’ nor a ‘death’ operation, which leaves the number of change-

points in the model unchanged.

During this step, a non-negative number of births, a non-negative number of deaths,

or a mixture of both birth and death operations may be proposed (and hence may

occur). This includes the situation where an equal number of births and deaths

are performed during the same birth-death step, thereby leaving the overall number

of changepoints in the model unchanged, but perturbing the locations of some (or

potentially all) of these changepoints.

Since a birth operation adds a changepoint into the model, this is equivalent to

’splitting’ a single segment into two smaller consecutive segments. Hence, in addition

to proposing the location of the new changepoint, it is necessary to remove the param-

eter vector corresponding to the split segment from the model and propose two new

parameter vectors corresponding to the two new segments. Typically, the parameter

values for these segments are centred on the parameter values corresponding to the

split segment. For example, if the changes are occurring in the mean of the series, and

at the (i+1)th iteration a birth operation has proposed a changepoint which splits the

kth segment, then the means values for the new kth and (k + 1)th segments, denoted

by µ(i+1)
k and µ

(i+1)
k+1 , may (for example) be imputed as

µ
(i+1)
k = µ

(i)
k + uk

µ
(i+1)
k+1 = µ

(i)
k + uk+1,

where µ(i)
k is the mean of the kth segment at the ith (i.e. previous) iteration, and uk and

uk+1 are distinct realisations of some symmetrical random variable centred around 0

(for example, Uniform(−1, 1)).

Conversely, if a death operation is being performed at the (i + 1)th iteration, the

parameter vectors of the kth and (k+ 1)th segments at the ith iteration are ‘combined’

to form the parameter vector for the kth segment at iteration (i+1). Continuing with

the example above where the changes are occurring in the mean, one approach for
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imputing the new mean value for the kth at iteration (i+ 1) may be by

µ
(i+1)
k = µ

(i)
k + µ

(i)
k+1

2 .

For the case when neither a birth nor death operation are performed, only the lo-

cations of the changepoints currently in the model and the corresponding parameter

vectors for each of the segment are updated. The decision of what quantity of birth

and/or death operations are proposed at each iteration is made randomly, with some

probability being assigned to each quantity. Typically, a larger probability is assigned

to zero birth and death operations, so that such operations are not performed too

frequently. Green shows that this RJMCMC approach can work well for multiple

changepoint models.

More recently, Bayesian methods for the detection of multiple changepoints in

univariate time series have been proposed by Fearnhead (2006), Fearnhead and Liu

(2007), Adams and MacKay (2007) and Wyse et al. (2011).

Hidden Markov Model Methods

Hidden Markov Models (HMMs) have also been used to facilitate the detection of

multiple changepoints within time series. A HMM is a Markov model which assumes

that the system of interest contains unobserved ‘hidden’ states. In the changepoint

setting, these hidden underlying states are the segment labels. The locations of any

changepoints can hence be inferred given these segment labels. The likelihood of a

time series X = {X1, X2, . . . , Xn} modelled as a HMM with hidden segment labels

S = {S1, S2, . . . , Sn} is formulated as the sum of the joint distribution of X and S

over the unknown labels S:

∑
S

P (X,S) =
∑
S

n∏
i=1

P (Xi, Si|Si−1, X1),

where X is assumed to have the first-order Markov property. A HMM can be fitted

using either a classical (frequentist) or Bayesian framework, and the distribution of
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the segment labels S (i.e. the hidden states) given the series X, P (S|X), can be

inferred using (for example) the Viterbi algorithm (Viterbi, 1967) or the Expectation-

Maximisation algorithm (Dempster et al., 1977).

Luong et al. (2012) provide an illustrative review of HMM methods used for

changepoint detection. Specific recent contributions to the changepoint literature

which utilise HMMs include Nam et al. (2012), who use finite Markov chain imbed-

ding within a HMM framework to detect changes in fMRI data, and Nam et al. (2015)

who use the Locally Stationary Wavelet framework of Nason et al. (2000) within a

HMM framework to detect changes in the autocovariance of a time series and quantify

the uncertainty in such changepoints.

We now turn out attention to the penalised cost function approach, which is

arguably one of the most popular approaches to changepoint detection. We first

consider how such a penalised cost function can be formulated.

2.1.3 Formulating Penalised Cost Functions

The penalised cost function approach is one of the most widely-used approaches to

the univariate multiple changepoint problem. An important characteristic of this

problem is that the addition of a further changepoint into a model will always reduce

the model’s cost. Therefore, to regulate the trade-off between a reduced cost and

a parsimonious model, a penalty value can be added to the cost for each time a

changepoint is introduced. This means that the overall ‘best’ model will provide a

good fit using a reasonable amount of changepoints. This is the foundation of the

penalised cost function approach.

Recall the form of a penalised cost function for a time series X = {X1, . . . , Xn}

with changepoints τ = {τ1, . . . , τm}, originally presented in equation (2.1.1) of Section

2.1.1:

m+1∑
i=1

[
C(X(τi−1+1):τi)

]
+ βf(m).

There are two key components to such a function: the cost function C(·), which
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provides a measure of fit for a given segment of data, and a penalty term βf(m)

which is used to penalise (i.e. increase) the cost of a segment for each additional

changepoint which is included in the segment. We now discuss some cost functions

and penalty types which have been utilised within the changepoint literature.

Cost Functions

Traditionally a property of any cost function to be used as part of a penalised approach

is that it should be additive, so that costs for multiple segments can be summed easily

as in equation (2.1.1). The types of cost functions which are used for changepoint

detection largely fall into two categories: those which are based upon the likelihood of

the data, and are hence parametric, and those which are non-parametric and do not

assume a model form. Typically, likelihood-based cost functions are a scaled version

of the negative log-likelihood:

− logL(θ|X(τi−1+1):τi),

where θ is the vector of the model parameters (see, for example, Chen and Gupta

(2000) and Eckley et al. (2011)).

The most common non-parametric cost function which has been considered in the

literature is the quadratic loss function:

τi∑
t=τi−1+1

(Xt − µ̂i)2,

where µ̂i is the sample mean of the segment of data between τi−1 + 1 and τi. For

illustrative examples, see Inclan and Tiao (1994) and Rigaill (2010). Of course, any

well-defined non-parametric function can be used within the penalised cost function.

The differences between using a likelihood-based approach and a non-parametric ap-

proach boil down to the traditional arguments. A likelihood-based cost function can

be more powerful, but it imposes the assumption that the observed data follows a

certain parametric model; such an assumption may not be true in practice. Con-
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versely, a non-parametric approach means that no assumptions regarding the form of

the data are necessary, but the power of the method is reduced in comparison to a

likelihood-based approach.

From herein, it is assumed that any cost function considered is such that a better-

fitting model results in a lower cost, and so the aim is to minimise the value of the

penalised cost function.

Penalty Types

The penalty term βf(m) from the penalised cost function in equation (2.1.1) can be

decomposed into two parts: (i) the function f(m), which is increasing with the number

of changepoints m, and (ii) the constant β. The most common approach is to set f(·)

as a linear function, so that f(m) = m (see, for example, Killick et al. (2012)).

The value of β, on the other hand, has received much wider attention. Popular

values used for β within the literature include the Schwarz information criterion (SIC)

(Schwarz, 1978), also known as the Bayesian information criterion (BIC), and the

Akaike information criterion (AIC) (Akaike, 1974):

SIC / BIC : β = v log(n)

AIC : β = 2v,

where v is the number of additional parameters introduced in the model by adding

an additional changepoint. Yao (1988) was the first to use the SIC in the context

of estimating changepoints, establishing the consistency of estimation for the num-

ber of changepoints in the case of Normally distributed data. The Hannan-Quinn

information criterion (HQIC) (Hannan and Quinn, 1979) is another possible penalty

value:

HQIC : β = 2 log log n,
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although it has received comparatively little attention within the changepoint litera-

ture. This is likely due to the value of log log n being very small even for large n, a

point supported by Burnham and Anderson (2002). Such a small penalty value would

likely lead to the over-fitting of changepoints. More complicated penalty forms have

also been considered within the literature. Often, these correspond to setting a more

sophisticated function for f(m) and β = 1. For example, Lebarbier (2005) presents

a penalty which is quadratic in m and Zhang and Siegmund (2007) have proposed

a modified version of the SIC, both of which incorporate the length of the current

segment of interest.

Another possible penalty choice, arising from information theory, is the Minimum

Description Length (MDL). First proposed by Rissanen (1989), the essence of the

MDL is based on the principle that the best-fitting model is the one that gives the

best compression of the data; in other words, the one which requires the lowest com-

putational cost to encode the data. The main premise on which the calculation of the

MDL is based is that for an unbounded integer I, roughly log2 I bits are required for

it to be encoded. A more complex model implies a larger encoding cost, and therefore

a larger penalty. For a model with parameter set θ, the MDL can be summarised as

MDL(θ) = cost(encoding θ) + cost(assessing quality of fit of model θ).

As demonstrated by Rissanen (1989), the cost of assessing the quality of fit of a

certain model is equal to the negative log-likelihood of that model. As such, the

penalty term for the MDL is equal to the cost of encoding θ, and this penalty value

is only applicable to likelihood-based cost functions. The MDL has been used in the

changepoint setting by Davis et al. (2006) and Li and Lund (2012) for the detection

of changes in autocorrelation.

2.1.4 Searching for Multiple Changepoints

An important aspect of changepoint detection is the search for multiple changepoints.

In this section, we maintain our focus on the penalised cost approach and consider
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how multiple changepoints can be obtained within this framework.

Once a penalised cost function has been formed, the optimal changepoint loca-

tions are obtained by minimising the function over all possible number and locations

of changepoints, and all possible parameter values (conditional on the changepoints).

A wide range of optimisation and heuristic methods can be used to obtain this min-

imum. The most widely used search methods within the literature fall into three

main categories: binary segmentation (and its related variants), dynamic program-

ming methods, and those based on genetic algorithms. We briefly introduce these

univariate search approaches below.

Binary Segmentation and Related Variants

Binary segmentation is a generic search method which allows for the estimation of

both the number and location of changepoints. It operates by recursively applying

any single changepoint detection method, thereby allowing for the detection of mul-

tiple changepoints. Initially, the single changepoint method is applied to the the

entire dataset. If a changepoint is detected then this location is fixed as an estimated

changepoint, and the single changepoint method is applied again to the segments of

data either side of the estimated changepoint. Such a process is repeated until no

more changepoints are detected in any of the data segments. For the penalised cost

approach, the single changepoint method used is the likelihood ratio test (described

in Section 2.1.2) or a non-parametric equivalent. If, at a given stage of the procedure,

m0 and m1 represent the total number of changepoints under the null and alter-

native hypotheses, respectively, then the threshold c for the likelihood ratio test is

c = −β
(
f(m1)−f(m0)

)
. This procedure is able to run very quickly, and consequently

binary segmentation can obtain a segmentation of a dataset with a typical compu-

tational cost of O(n log n) (Eckley et al., 2011). However, the local nature of the

estimation (with changepoint locations being fixed mid-way through the procedure)

means that binary segmentation is an approximate search, and cannot guarantee to

produce the optimal changepoint locations.

First implemented by Scott and Knott (1974), binary segmentation has been used
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to detect changes in independent Normal observations by Venkatraman (1993) and

Chen and Gupta (1997). Cho and Fryzlewicz (2012) and Killick et al. (2013) use

the method to detect changes in the second order structure of univariate time series,

based on a wavelet approach. Venkatraman (1993) and Cho and Fryzlewicz (2012)

prove consistency of the procedure for unknown changepoints with additive and mul-

tiplicative errors, respectively.

A consequence of binary segmentation’s approximate nature is that if a series

contains changepoints which are relatively close together, then standard binary seg-

mentation may not be able to detect both changepoints. Such a problem has been

noted by Killick et al. (2013) and Fryzlewicz (2014). To demonstrate this, we con-

sider a sequence of 200 Normally distributed observations containing changes in mean

at times 100 and 115, presented in Figure 2.1.2(a). The changepoints detected by

performing binary segmentation and an exact univariate detection method PELT

(discussed in more detail below) are shown in Figure 2.1.2(b). It can be seen that
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2.1.2(a): A sequence of 200 Normally dis-
tributed observations containing
changes in mean at times 100 and

115, shown by the red lines.
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2.1.2(b): The changepoint locations estimated
by binary segmentation (blue dashed)
and PELT (green dashed), along with

the true changepoints (red solid).

Figure 2.1.2: An example demonstrating the weakness of binary segmentation in
cases of small segments.

binary segmentation detects the changepoint at time 100, but misses the changepoint

after the short segment at time 115. In contrast, the exact method detects both

changepoints (with only a small amount of error in location). In an effort to alleviate
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this small segment issue, Fryzlewicz (2014) have proposed a modified version of the

method known as ‘wild binary segmentation’ (WBS). This maximises the test statis-

tic calculated on random intervals, thereby using more information to inform about

possible changepoint locations. This sacrifices computation time for an increase in

accuracy.

The ‘circular binary segmentation’ (CBS) algorithm of Olshen et al. (2004) adapts

standard binary segmentation to allow for the detection of 1 or 2 changes at each stage

of the algorithm. This change is motivated by the detection of variations in DNA copy

number, which typically appear as pairs of changepoints.

Dynamic Programming Based Approaches

The concept of dynamic programming is to provide the globally optimal solution of any

problem which can be formulated as a ‘shortest path’ problem. Changepoint detection

can be viewed as a problem of this type. In this context, a dynamic programming

method works by algorithmically finding the lowest cost from the beginning of the

series to each time-point as if it were the end of the series. Once the algorithm reaches

the end of the data, every possible changepoint segmentation has been considered, and

so the globally optimal configuration of changepoints can be output. This therefore

means that dynamic programming is an exact search procedure. This realisation

has led to the development of numerous changepoint detection methods which utilise

dynamic programming techniques.

Perhaps the earliest example of dynamic programming in the changepoint setting

is the Segment Neighbourhood Search approach of Auger and Lawrence (1989). This

assumes a maximum number of changepoints M , and for each m = 1, . . . ,M performs

a dynamic program to obtain the configuration of m changepoints which best parti-

tions the series. This provides the user with a wide range of possible segmentations.

Each individual program requires O(n2) calculations, so the total order of computa-

tion of segment neighbourhood search is O(Mn2). The drawback of this procedure is

that the true maximum number of changepoints may not often be known in practice.

Therefore, it is difficult to guarantee that the globally optimal set of changepoint loca-
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tions has been obtained. Further, since a range of segmentations are returned, it may

be difficult to determine which segmentation is the best overall. This may be done via

the addition of a penalty for each additional changepoint, or by the consideration of

an elbow plot that demonstrates which model provides the biggest relative reduction

in cost (Lavielle and Teyssiere, 2006).

Jackson et al. (2005) improve upon segment neighbourhood search with their sem-

inal Optimal Partitioning (OP) methodology. This produces the optimal segmenta-

tion of a series in a single pass and requires no assumption on the maximum num-

ber of changepoints. However, it can only be applied to linear penalty functions,

i.e. f(m) = m. Similar to segment neighbourhood search, OP works by recursively

calculating the minimum cost F (t) up to each time-point t = 1, 2, . . . , n using the

formula

F (t) = min
0≤τ<t

{
F (τ) + C(X(τ+1):t) + β

}
,

where β is the changepoint penalty and C(·) is the cost function. Using t∗ to denote

the optimal changepoint prior to t, we have

t∗ = arg min
0≤τ<t

{
F (τ) + C(X(τ+1):t) + β

}
.

Setting τ0 = 0 and τm+1 = n, then the ith element of the optimal configuration of

changepoints τ is denoted by τi, with τi = τ ∗i+1 for i = 0, . . . ,m. Therefore, we have

τ = (τ0 = τ ∗1 , τ1 = τ ∗2 , . . . , τm = τ ∗m+1, τm+1) = (0, τ1, . . . , τm, n).

This configuration is optimal over all possible number and locations of changepoints.

Since OP can be performed with one pass of the data, it requires O(n2) calculations.

However, for larger values of n, even this reduced order of computation can become

practically infeasible.

To reduce this computation time whilst maintaining an exact search, Rigaill (2010),

Killick et al. (2012) and Maidstone et al. (2014) each utilise the concept of pruning to
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remove unnecessary calculations from these dynamic programming procedures. Each

consider a different combination of search method and pruning type. Rigaill’s pDPA

(‘pruned Dynamic Programming Algorithm’) implements functional pruning within

the SNS method. This reduces the range of values to be considered for the parameter

of interest.

The PELT (‘Pruned Exact Linear Time’) method of Killick et al. (2012) adapts

optimal partitioning to include an inequality-based pruning step. This allows the

method to run in O(n2/m) time, where m is the estimated number of changepoints.

Hence, if the number of changepoints in the series is O(n) then under certain con-

ditions the method is able to run in O(n2/n) = O(n) time. The pivotal theorem

introduced by Killick et al. (2012) states that if there exists some non-negative con-

stant K such that the following holds for some time-point r:

F (r) + C(X(r+1):s) +K > F (s), (2.1.3)

then at a future time t > s, r can never be the optimal last changepoint prior to t.

Typically, the vast majority of cost functions used in practice satisfy this condition.

Killick et al. (2012) provide full details on the value of K, but if C(·) is the negative

log-likelihood then K = 0. If condition (2.1.3) holds, then r does not need to be

considered in the calculations for a future time greater than t within the remainder of

the dynamic program. To illustrate the full form of PELT, pseudocode adapted from

Killick et al. (2012) is presented in Algorithm 1.

Maidstone et al. (2014) present two self-explanatory methods: FPOP (‘Functional

Pruning in Optimal Partitioning’) and SNIP (‘Segment Neighbourhood with Inequal-

ity Pruning’). The authors show that FPOP has strong performance whilst SNIP

performs poorly. FPOP works in a similar manner to PELT, with a functional prun-

ing step performed in place of inequality pruning. It is also shown that FPOP will

always prune more than PELT. This means that performances of FPOP can result

in computation times which are competitive with (or even faster than) binary seg-

mentation. In contrast to PELT, this computation time increases with the number of
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Algorithm 1: PELT (Pruned Exact Linear Time)
Input : A set of observations (X1, X2, . . . , Xn), a function C(·) which

assigns a cost to a contiguous set of data and satisfies condition
(2.1.3) for some non-negative constant K, and a penalty constant β
which is independent of the number and location of changepoints.

Initialise: Let n be the length of the observation sequence. Set F (0) = −β,
cp = ∅, R1 = {0}.

1 begin
2 for τ ∗ = 1, . . . , n do
3 Calculate F (τ ∗) = minτ∈Rτ∗

[
F (τ) + C(X(τ+1):τ∗) + β

]
4 Set τ ′ = arg minτ∈Rτ∗

[
F (τ) + C(X(τ+1):τ∗) + β

]
5 Set cp(τ ∗) = τ ′

6 Set Rτ∗+1 =
{
τ ∗ ∩ {τ ∈ Rτ∗ : F (τ) + C(X(τ+1):τ∗) +K < F (τ ∗)}

}
7 Set τm+1 = n
8 for k = m+ 1,m, . . . , 1 do
9 Set τk−1 = cp(τk)

Output : The vector (τ0, τ1, . . . , τm, τm+1) which contains the optimal
changepoints within the time series (including the start- and
end-points of the data).

changepoints in the series.

However, FPOP is less-widely applicable than PELT, as functional pruning re-

quires a stronger condition than inequality-based pruning. Further, functional prun-

ing methods can only be used to detect changes in a single parameter, whereas PELT

can detect changes in multiple parameters simultaneously.

The removal of unnecessary calculations means that under certain conditions,

PELT and FPOP each require only O(n) calculations. Similarly, under certain (but

different) conditions pDPA only requires O(Kn) calculations to obtain the optimal

segmentation containing k changepoints for each k = 1, . . . , K. Killick et al. (2012)

prove this for PELT, whereas Rigaill (2010) and Maidstone et al. (2014) demonstrate

the run-times empirically for pDPA and FPOP, respectively. If such conditions are

not met, then the order of computation is not necessarily linear in n. In the worst

cases, no pruning is performed, in which case PELT and FPOP are equivalent to

optimal partitioning and pDPA is equivalent to segment neighbourhood search, with
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the respective computational costs therefore being O(n2) and O(Kn2).

SMUCE (‘Simultaneous Multiscale Changepoint Estimator’) is a novel method

which has been recently presented by Frick et al. (2014). SMUCE enables the esti-

mation of the number and location of changes in regression for univariate time series

where piecewise-constant distributions of the observations arise from the exponential

family. The authors provide theory which demonstrates that the proposed approach

maximises the probability of correctly estimating the correct number of changepoints.

In addition to the estimation of the number and locations of changepoints, SMUCE

is able to estimate confidence bands for the step function representing the underlying

signal as well as provide confidence intervals for the estimated changepoint locations

{τk}.

SMUCE uses dynamic programming to minimise a multiscale test statistic rep-

resenting the likelihood across a range of possible step functions. Inequality-based

pruning is also performed, allowing for an improvement in the computational perfor-

mance. The main disadvantage of SMUCE is that, similar to FPOP, it only allows

for the detection of changes in a single parameter within a single performance. This

can therefore limit its practical applicability.

Genetic Algorithms

A genetic algorithm is an approximate search procedure which allows for the syn-

chronous estimation of the number and location of changepoints, as well as the model

parameters for each segment. Such an algorithm functions by encoding every possible

solution as a ‘gene’ (or ‘chromosome’). Throughout the procedure, a set of solutions is

held in memory, known as the ‘population’. These solutions are then allowed to evolve

over time through the application of a series of operations designed to randomly make

changes to their characteristics whilst retaining the best-performing solutions at each

stage. The underlying principle is that such a procedure exhibits natural selection,

with the continual evolution resulting in a solution which is close (or equal) to the

global optimum.

Genetic algorithms have seen successful application in changepoint detection. In
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particular, Davis et al. (2006) utilise a bespoke genetic algorithm to minimise the

minimum description length (MDL) to obtain the optimal piecewise autoregressive

models for a univariate time series. They call their procedure Auto-PARM (Au-

tomatic Piecewise AutoRegressive Models). More recently, Polushina and Sofronov

(2011) introduce a genetic algorithm approach to detect multiple changepoints in

DNA sequences, and Li and Lund (2012) follow the example of Davis et al. (2006)

and use a genetic algorithm with the MDL to detect multiple changepoints in the

mean of climatic time series.

The advantage of a genetic algorithm is that the procedure can rapidly obtain mul-

tiple changepoint segmentations of high quality. However, since this is an approximate

search, there is no guarantee that the process will obtain the optimal configuration of

changepoints. Furthermore, the random nature of the algorithm means that repeated

runs may not consistently produce the same solution.

2.2 Multivariate Changepoint Detection

The problem of detecting changepoints in multivariate time series is conceptually

similar to that of the univariate setting. However, a key difference is that the changes

sought can occur in the multidimensional parameters of the series. We formalise this

difference by considering the multivariate changepoint model.

2.2.1 Multivariate Changepoint Model

Suppose that X1:n = {X1,X2, . . . ,Xn} denotes a multivariate time series containing

observations from p variables, such that X t = (X1
t , X

2
t , . . . , X

p
t ) for t = 1, . . . , n. In

addition, suppose that the series contains m distinct changepoints, the locations of

which are denoted by τ = {τ1, τ2, . . . , τm}, where τi < τj for i < j. The definitions

τ0 = 0 and τm+1 = n are made as before.

At any given changepoint location either some or all of the variables may alter.

This gives rise to two different settings for the multivariate changepoint problem: the

fully-multivariate changepoint model and the subset-multivariate changepoint model.
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For the ith changepoint τi, denote the subset of variables affected by the change

by Si. Under the fully-multivariate changepoint model, the value of Si is fixed as

Si = {1, . . . , p} for each i = 1, . . . ,m. Conversely, under the subset-multivariate

changepoint model, Si is able to be any possible subset of the observed variables, so

that Si ⊆ {1, . . . , p} for each i = 1, . . . ,m. Therefore, while the fully-multivariate

changepoint problem aims to find only the optimal set of changepoint locations τ =

{τ1, . . . , τm}, the objective of the subset-multivariate changepoint problem is to obtain

both the optimal values of τ = {τ1, . . . , τm} as well as the optimal associated subsets of

affected variables, S = {S1, . . . ,Sm}. Note that S0 and Sm+1 are fixed such that S0 =

Sm+1 = {1, . . . , p}. Using the same nomenclature as above, we refer to changepoints

which occur in all variables as fully-multivariate changepoints, and those which occur

in only a subset of the variables as subset-multivariate changepoints. Due to its

formulation, the subset-multivariate changepoint model is capable of detecting both

subset-multivariate and fully-multivariate changepoints (where the ‘subset’ for a fully-

multivariate changepoint is the improper subset).

To illustrate the difference between fully- and subset-multivariate changepoints,

we display an example of each in Figure 2.2.1. In Figure 2.2.1(a), the two changepoints

occur in all variables and are hence fully-multivariate. Conversely, in Figure 2.2.1(b)

the two changepoints occur in (different) subsets of the variables.

The vast majority of multivariate detection methods assume that any changepoints

present in a series are fully-multivariate. See, for example, Lavielle and Teyssiere

(2006) or Matteson and James (2014). Such an assumption is often implicit, and

is likely made in many cases due to the difficulty of explicitly identifying changes

which are restricted to only a subset of variables. However, assuming the fully-

multivariate changepoint model in scenarios where subset-multivariate changepoints

may be present could lead to fallacious inference.

Due to these differences between the fully-multivariate and subset-multivariate

changepoint models, we provide a separate treatment to detection methods which as-

sume each. We forthwith consider fully-multivariate changepoint detection methods,

and postpone examination of subset-multivariate changepoint methods to Chapter 4.
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2.2.1(a): Fully-multivariate changes. 2.2.1(b): Subset-multivariate changes.

Figure 2.2.1: Two examples highlighting the differences between fully-multivariate
changes and subset-multivariate changes.

Contributions in the area of fully-multivariate changepoint detection can be di-

vided into methods which identify at most one changepoint and multiple changepoint

methods. We begin by considering the former (Section 2.2.2) before describing recent

multiple changepoint contributions (Section 2.2.3).

2.2.2 At Most One Changepoint (AMOC) Methods

One of the earliest contributions in the AMOC setting is provided by Srivastava and

Worsley (1986), who consider the detection of a single change in the mean vector of

a series of multivariate Normal observations. A likelihood-ratio testing approach is

used to search for such a change, and such a likelihood-ratio statistic corresponds to

the maximum Hotelling T 2 statistic. An approximation to this statistic is given which

provides a theoretically-supported value for the threshold of the test.

Since it is assumed that the change is in the mean, the effect of the variance is

neutralised by standardising the observations on either side of the potential change-

point being considered. Such an approach means that the sample mean values either

side of the possible changepoint can be fairly compared, and allows for the develop-

ment of the theory. This use of standardisation within the test statistic remains a

core component of many modern multivariate changepoint methods. However, this
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approach is limited to the detection of a change in mean only, and so if the change in

mean was accompanied by a substantial change in variance at another location, then

the performance of this approach may deteriorate.

Other methods which take a parametric approach are those of Horváth and Hušková

(2012) and Batsidis et al. (2013), who consider the detection of a single change in the

mean of panel data and in the probability vectors of a sequence of multinomial obser-

vations, respectively. The statistics used in each of these methods are based on scaled

divergences of the observations before and after the proposed changepoint. These

approaches are useful for practitioners wishing to detect a change in these types of

data, but otherwise they do not generalise to data arising from other distributions

and hence have a relatively limited applicability in general.

Conversely, Aue et al. (2009) take a non-parametric approach for the detection of

a single change in the covariance structure of a zero-mean multivariate time series.

They propose two separate test statistics which can be used to detect sudden changes

and more gradual changes in covariance, respectively. The advantage of such a non-

parametric approach is that it does not assume a distributional form, and so it can

be applied to largely any type of time-ordered discrete data.

2.2.3 Multiple Changepoint Methods

We now turn to consider methods which are capable of detecting multiple changes in

multivariate series. Recent contributions in the literature can be categorised into those

which utilise binary segmentation, dynamic programming methods and alternative

techniques. We examine methods from each category in turn.

Binary Segmentation Methods

Due to its fast computational performance, binary segmentation has been adapted to

the case of multivariate changepoint detection. However, as in the univariate setting,

it remains an approximate search method.

Commonly, multivariate binary segmentation changepoint methods appear within

the literature as extensions to single multivariate changepoint detection methods. Sri-
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vastava and Worsley (1986) and Aue et al. (2009) are archetypal examples of such

cases. Srivastava and Worsley (1986) justify the application of such a binary segmen-

tation process to their likelihood-ratio testing procedure using the result of Vostrikova

(1981), who shows that such a procedure consistently estimates all of the changepoints

in a multivariate time series in the case of a known covariance matrix Σ. Aue et al.

(2009) develop asymptotic theory for the utilisation of each of their proposed non-

parametric test statistics within a binary segmentation mechanism, which justifies

the usage of such a procedure for the detection of multiple changes in the variance-

covariance structure of a multivariate time series.

Modern methods utilising binary segmentation often structure it as the core of

their approach, rather than being an extension of a single changepoint detection

method. The work of Matteson and James (2014) is a remarkable example of such

methodologies.

The method proposed by Matteson and James (2014), termed ‘E-Divisive’, pro-

vides a non-parametric procedure for the estimation of the number and locations

of any changepoints in a set of multivariate observations, subject to the condition

that the observations are piecewise i.i.d. and the αth absolute moment exists for all

α ∈ (0, 2). This means that the method is unable to detect changes in the second-

order structure (i.e. auto-covariance and cross-covariance) of the series. The approach

taken is based upon the concept of hierarchical clustering, and combines the calcu-

lation of Euclidean distances between the multivariate observations with the use of

a binary segmentation technique. The premise is that the most likely changepoint

location will maximise the ‘distance’ between the two sub-segments.

An attempt is made to mitigate the weakness of binary segmentation where a

slight misspecification of the estimated changepoint location can have a compounding

effect as the binary segmentation algorithm proceeds. This is done by perturbing

the end-point of the sub-segment being considered. This reduces the effect of the

misspecified changepoint location which may erroneously influence the cost of the

segment by introducing ‘noise’ at the end of the segment. Perturbing the end-point

means that this noise is disregarded.
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Since the underlying distribution of the observations is unknown, a permutation

test is used to generate an approximate p-value to test the significance of the resulting

changepoint configuration. While this is intuitive, it is not theoretically justified and

producing an exact p-value in this manner is computationally intractable. In addition,

the non-parametric nature of the method means that it suffers from the trade-off of

wide applicability against the loss of power compared with parametric methods.

Dynamic Programming Methods

The exact nature of the search provided by dynamic programming has meant that

such methods remain popular in the multivariate literature. As in the univariate

setting, such dynamic program formulations require the problem to be structured as

the minimisation of a penalised cost function. For the multivariate problem, these are

typically of the form

cost(X, τ ) + pen(τ ),

where cost(X, τ ) provides a cost for a multivariate time series X segmented by the

changepoint configuration τ , and pen(τ ) is a penalisation function which adds a

penalty to the cost, the value of which depends on the changepoint configuration τ

being considered. Typically, a larger number of changepoints leads to a larger penalty

value. Commonly, this penalisation function can be decomposed such that

pen(τ ) = βf(m),

where β and f(m) are exactly as in the univariate case. Prominent examples of works

which have utilised such a dynamic programming approach include that of Lavielle

and Teyssiere (2006), Maboudou and Hawkins (2009), Lung-Yut-Fong et al. (2011b)

and James and Matteson (2015).

Lavielle and Teyssiere (2006) use dynamic programming within a penalised cost

function framework to detect multiple changes in the covariance structure of a mul-

tivariate time series. Such series may be i.i.d., weakly or strongly dependent. Two
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separate cost functions are considered for detecting changes in the covariance ma-

trix only, and changes in the mean vector and/or covariance matrix. These costs are

proportional to the negative log-likelihood for each case.

The penalised cost function is minimised in a similar manner to that of segment

neighbourhood search (discussed in Section 2.1.4) by calculating the optimal change-

point locations for a fixed number of changepoints m for each m = 1, . . . ,M , where M

is a pre-defined upper bound on the total number of changepoints. The cost assuming

no changepoints in the series is also calculated. Performing this dynamic program for

a fixed m works in exactly the same manner as the univariate setting. Assuming

the calculation of the multivariate cost for a single changepoint configuration requires

O(p) calculations (where p is the number of variables in the series), then a single

program requires O(pn2) calculations. Hence, the overall order of computation of the

algorithm is O(Mpn2). This computational cost means that, when M is large, the

method performs slowly even for series of relatively modest length.

An important contribution of this method is a procedure for adaptively choosing

the value of the penalisation parameter β for a given cost function and given penalty

function. Such a data-driven approach is favourable as it removes the requirement of

the practitioner having to choose the value of the penalisation parameter β.

James and Matteson (2015) utilise the dynamic programming approach of Lavielle

and Teyssiere (2006), but instead they use it to maximise the non-parametric test

statistic used in E-Divisive (Matteson and James, 2014). To improve the compu-

tation time of this statistic, they instead use an approximated statistic which only

incorporates the data around the possible changepoint in consideration, rather than

the whole time series. Therefore, this approach (known as E-CP3O) is an exact search

with an approximate test statistic, whereas E-Divisive has an approximate search with

an exact test statistic. As such, despite its use of an exact search, E-CP3O is an ap-

proximate method and therefore cannot guarantee to produce the optimal changepoint

locations in a multivariate series.

Maboudou and Hawkins (2009) use a penalised cost function within a dynamic

programming algorithm to detect changes in the mean vector and covariance matrix
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of multivariate Normal observations. Due to this modelling assumption, the cost

function used is twice the negative log-likelihood of the multivariate Normal data

across all segments. The penalty term is taken to be the SIC (Schwarz Information

Criterion) for multivariate Normal data proposed by Chen and Gupta (2000), so that

within the penalised cost function,

βf(m) = p(p+ 3) log(n)
2 m.

In the same manner as Lavielle and Teyssiere (2006), Maboudou and Hawkins (2009)

use a segment neighbourhood search approach to minimise the penalised likelihood for

each m = 1, . . . ,M . Hence, the computational cost of this approach is also O(Mpn2).

This approach can therefore perform slowly in practice. In addition, while the choice

of the SIC penalty is theoretically supported, it does not have the adaptive nature of

that of Lavielle and Teyssiere (2006).

The previous three methods all assume that the observations follow a multivariate

Normal distribution. While such an assumption allows for ease of modelling, it is

not necessarily always true in practice. Lung-Yut-Fong et al. (2011b) avoid this issue

with their MultiRank procedure by utilising a non-parametric rank statistic within a

segment neighbourhood search framework to detect any general statistical change in

the series. This means it can be applied to a much wider class of processes, however

it loses the power of the parametric methods in detecting changes, and hence the

magnitude of change needs to be comparatively much larger before it is detected.

As for the univariate problem, the benefit of dynamic programming approaches is

that they are exact searches and hence guarantee to obtain the optimal configuration

of changepoints for the given penalised cost function. This is provided a high enough

maximum number of changepoints M is used for the segment neighbourhood search

based procedures. However, this comes with the price of a high computational cost

compared to the fast approximate search procedures based on binary segmentation.
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Other Multiple Changepoint Methods

While techniques based on dynamic programming and binary segmentation form a

large body of the multivariate changepoint detection literature, there are also var-

ious methods available which utilise alternative methods for detecting multivariate

changes. Examples of these methods which have received considerable attention are

the SLEX method proposed by Ombao et al. (2005) and the work of Vert and Bleak-

ley (2010) who utilise the group LASSO to minimise the considered penalised cost

function.

Ombao et al. (2005) utilise the SLEX (smooth localised complex exponentials)

collection of bases for the segmentation of multivariate time series. These series are

segmented such that each segment within the series is ‘stationary’, which means that

the auto- and cross-correlation is constant within a single segment and piecewise

constant across the whole series. Therefore, the method is designed strictly for the

detection of changes in auto- and cross-correlation. The optimal changepoints are

found by minimising a penalised cost function across all possible changepoint locations

and the SLEX collection of bases.

A major disadvantage of this SLEX approach is that the bases within the SLEX

library are all of dyadic length. Hence, the method is only capable of detecting changes

which occur at dyadic time-points within the series. For practical application, such

an assumption is highly restrictive, and so such an approach is likely to be unsuitable

for usage in a wide range of scenarios.

Vert and Bleakley (2010) consider the problem of detecting multiple changes in

the mean vector of a multivariate data series. However, rather than considering

the optimisation of a cost function which is penalised by the (non-convex) number

of changepoints, they consider penalising by the total variation instead (which is

convex). This penalisation takes the form of the l1 norm of increments of the different

segments of the data series. Structuring the problem in this manner allows it to be

formulated as a group LASSO and can hence be solved approximately using a group

LARS procedure (Yuan and Lin, 2006). This approximate solution can be obtained

in O(mnp) calculations, where m is the number of changepoints and n and p are
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the length and dimension of the series, respectively. However, since this approach is

approximate it cannot guarantee to provide the globally-optimal set of changepoint

locations.

2.3 Modelling Dependent Time Series

In this section, we break from considering changepoint detection methods and instead

turn to consider common techniques used within the literature to model time series

that contain dependence between their observations. The focus will be on univariate

time series only, and hence the dependence that will be studied in this section will

be autoregressive in nature (i.e. autocorrelation and autocovariance). We will also

briefly explore methods which have been proposed for the detection of changes in

such dependence structure.

Note that only methodology relating to stationary time series will be examined

in this section. For a review of non-stationary time series methods based upon the

wavelet paradigm, see Nason (2008).

2.3.1 Stationary Time Series Models

We begin our exploration of stationary time series by examining the concept of sta-

tionarity and introducing the autocovariance function. We then move on to consider

some popular stationary time series models utilised in the time series literature.

Stationarity and the Autocovariance Function

Stationarity is one of the core concepts of time series analysis. A stationary time

series is one whose dependence structure does not vary over time. This implies that if

a time series X = {X1, X2, . . . , Xn} is stationary, then the relationships between the

values within the subset of observations

{Xt1 , Xt2 , . . . , Xti}
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is the same as the time-shifted subset of observations

{Xt1+h, Xt2+h, . . . , Xti+h}.

This can be expressed in terms of probability as follows:

P (Xt1 ≤ c1, . . . , Xti ≤ ci) = P (Xt1+h ≤ c1, . . . , Xti+h ≤ ci),

for all i = 1, 2, . . ., all time points t1, t2, . . . , ti, all time shifts h = 0,±1,±2, . . ., and

all constants c1, c2, . . . , ci (Shumway and Stoffer, 2000).

This form of stationarity is often referred to as strict stationarity, as its require-

ments are often too strong for certain applications. In practice, a series is said to be

stationary if and only if it is weakly stationary. A weakly stationary series has finite

variance and satisfies the following two conditions:

1. The mean value of the time series, defined for probability mass function pt by

µt = E(Xt) =
∞∑

t=−∞
Xtpt(Xt),

is constant and does not depend on time t; and

2. the autocovariance function γ(s, t), defined in Equation (2.3.1) below, depends

only on the difference of s and t, |s− t|.

A strictly stationary time series is necessarily weakly stationary, however the con-

verse is not true. Note that herein through this thesis, the use of the terms ‘station-

arity’ and ‘stationary time series’ will be referring to weak stationarity and weakly

stationary time series, respectively. A time series which is not stationary is referred

to as ‘non-stationary’.

As hinted by the definition of weak stationarity, the autocovariance function of a

time series plays an important role in characterising its features. For two time-points

s and t on a time series X (which is not necessarily stationary), the autocovariance
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function is denoted by γ(s, t) and defined as

γ(s, t) = E[(Xs − µs)(Xt − µt)]. (2.3.1)

If X is stationary, then the autocovariance function can be simplified to a function of

the difference between the time-points of interest, h:

γh = γ(t, t+ h) = E[(Xt+h − µ)(Xt − µ)],

where µ is the time-invariant mean of the process. This value quantifies the amount

of dependence between two observations within a time series which are separated by h

time-steps. Due to the second-moment nature of the definition of the autocovariance,

the dependence of a time series is also referred to as the second-order structure of the

series. For a stationary time series, the autocovariance is independent of the location

of the time-points within the series.

Another measure of dependence which is closely related to the autocovariance

function is the autocorrelation function (ACF) of a time series. For two observations

which are h time-points apart, this is denoted by ρh for some lag h and defined as

ρh = γ(t, t+ h)√
γ(t+ h, t+ h)γ(t, t)

= γh
γ0
.

Hence, the ACF is essentially the normalised autocovariance function. Note that

−1 ≤ ρh ≤ 1 for all h, with ρh = 1 and ρh = −1 implying perfect positive and

negative autocorrelations, respectively, and ρh = 0 implying complete independence

between observations.

Popular Time Series Models

There exist many models which have been proposed to characterise the dependence

structure of such stationary series. Being able to quantify the dependence of a time

series using such models is often of interest, since it allows the modeller to gain an

understanding of how the observed values of a given process may fluctuate over some
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time window. Such stationary time series models can be broadly classified into three

main categories:

• moving-average (MA) processes,

• autoregressive (AR) processes, and

• generalised autoregressive conditional heteroskedasticity (GARCH) processes.

A qth-order moving average process is a process where each observation is a

weighted aggregation of the q previous innovation terms, plus the innovation term

for the current time-point. The tth observation Xt of such a process is given by

Xt = µ+ εt + φ1εt−1 + φ2εt−2 + . . .+ φqεt−q, (2.3.2)

where εt ∼ N(0, σ2) for some σ2 for all 1 ≤ t ≤ n. Such a process is denoted by

MA(q). The set of coefficients of the innovation terms {φ1, . . . , φq} are referred to as

the MA coefficients of the process, and the value of µ represents the mean value of

the series. Typically, µ is assumed to be zero; if it is non-zero, it can be estimated

via traditional methods and subtracted from the original series. Such moving average

processes were first introduced by Yule (1909). Later, Yule (1927) also presented

autoregressive processes.

In a similar manner to MA(q) processes, a zero-mean autoregressive process of

order p is denoted AR(p), the tth observation Xt of which is given by

Xt = ϕ1Xt−1 + ϕ2Xt−2 + . . .+ ϕpXt−p + εt, (2.3.3)

where εt ∼ N(0, σ2) for some σ2 for all 1 ≤ t ≤ n. Here {ϕ1, . . . , ϕp} is referred to as

the set of AR coefficients of the process. Note that the value of Xt given by Equation

(2.3.3) is now dependent upon the weighted values of the previous observations rather

than the innovations.

Whittle (1951) combines the concepts of MA and AR processes to form ‘autore-

gressive moving average’ (ARMA) processes. These are denoted by ARMA(p, q),
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where p and q are the AR and MA orders, respectively. The tth observation of such a

process is given by

Xt = ϕ1Xt−1 + ϕ2Xt−2 + . . .+ ϕpXt−p + εt + φ1εt−1 + φ2εt−2 + . . .+ φqεt−q, (2.3.4)

where εt ∼ N(0, σ2) for some σ2 for all 1 ≤ t ≤ n.

The stationary nature, or otherwise, of an AR process is determined solely by the

value of the AR coefficients of the process. The relationship is defined through the

equation

zp − ϕ1z
p−1 − ϕ2z

p−2 − . . .− ϕp−1z − ϕp = 0. (2.3.5)

If the roots of Equation (2.3.5), denoted z1, . . . , zp, each lie within the unit circle so

that |zi| < 1 for each i = 1, . . . , p, then the given AR process is stationary. Note that

an MA process is always stationary since it consists of the sum of stationary white

noise terms (Cowpertwait and Metcalfe, 2009). Therefore, since an ARMA process is

essentially the sum of an AR process and an MA process (which is always stationary),

then an ARMA is also stationary whenever the AR part of the process is stationary,

i.e. when the roots of (2.3.5) lie within the unit circle.

Example To gain an understanding of these processes, we consider the following

ARMA(2, 2) process:

Xt = 0.7Xt−1 − 0.5Xt−2 + εt + 0.4εt−1 − 0.4εt−2.

Figure 2.3.1 presents a series of 1000 observations from such a process.

ARMA processes themselves can be generalised to autoregressive integrated mov-

ing average processes, denoted by ARIMA(p, d, q). The key difference between ARIMA

and ARMA processes is the dth differences of an ARIMA process are modelled as an

ARMA process. Hence, an ARIMA(p, 0, q) process is equivalent to an ARMA(p, q)

process. The term ‘integrated’ refers to this prior differencing, which is performed to
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Figure 2.3.1: A series of 1000 observations of an ARMA(2, 2) process.

ensure that the model is stationary.

Linear dependent time series models with independent Gaussian noise such as the

models considered above are generalised by discrete Gaussian processes (dGP’s). A

dGP is a process for which every subset of observations is modelled as a multivariate

Normal distribution. Hence, if a dGP has a parameter vector θ and autocovariance

matrix Γθ, then the likelihood of the process can be written as

L(θ|X) = 1√
(2π)n|Γθ|

exp
(
−1

2X
TΓ−1

θ X
)
,

where

Γθ =



γ0,θ γ1,θ · · · γn−1,θ

γ1,θ γ0,θ · · · γn−2,θ

γ2,θ γ1,θ
. . . ...

... . . . γ1,θ

γn−1,θ γn−2,θ · · · γ0,θ


.

Another form of time series model popular within the literature is the generalised
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autoregressive conditional heteroskedasticity (GARCH) process, first introduced by

Bollerslev (1986). The GARCH model differs from the models considered in this

section in that the GARCH process models each observation as a non-linear function

of previous observations. Such non-linear models are not of interest in this thesis, and

hence these models will not be considered in any greater detail.

2.3.2 Spectral Density and the Periodogram

We now consider two quantities which are widely used within time series modelling

and will prove to be useful in this thesis: the spectral density and periodogram of a

time series.

Intuitively, the spectral density of a time series quantifies the amount of ‘power’ in

the underlying signal at a given frequency. More formally, the spectral density f(ω)

of a stationary process X is defined as the Fourier transform of the autocovariances

of the process, {γh}h∈(−∞,∞):

d(ω) =
∞∑

h=−∞
γhe

i2πhω, ω ∈ [0, 1], (2.3.6)

where ω denotes a Fourier frequency (Shumway and Stoffer, 2000).

Hence, the autocovariances themselves have the following representation as the

inverse Fourier transform of f :

γh =
∫ 1

0
f(ω)e−i2πhω dω, h = 0,±1,±2, . . . . (2.3.7)

In practice, it can sometimes be difficult to obtain the exact value of the spectral den-

sity due to the sum over every single possible h. Fortunately, the spectral density can

be approximated using a quantity known as the periodogram of the process (Shumway

and Stoffer, 2000). The periodogram of a stationary process X is given by

I(ω|X) = |b(ω|X)|2, (2.3.8)
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where

b(ω|X) = n−1/2
n−1∑
j=0

Xje
−i2πωj (2.3.9)

is the discrete Fourier transform of X. Hence,

I(ω) = |b(ω)|2

=
∣∣∣∣∣∣n−1/2

n−1∑
j=0

Xje
−i2πωj

∣∣∣∣∣∣
2

= n−1

n−1∑
j=0

Xje
−i2πωj

(n−1∑
r=0

Xre
i2πωr

)
since zz = |z|2 and eix = e−ix

= n−1
n−1∑
j=0

n−1∑
r=0

XjXre
−i2πωjei2πωr

= n−1
n−1∑
j=0

n−1∑
r=0

XjXre
i2πω(r−j).

Therefore, the periodogram can be used as a data-based estimate of the spectral

density. However, note that the periodogram is biased and unsmoothed, and so a bias

correction and smoothing procedure should be applied if it is being used to directly

estimate the spectrum (Cowpertwait and Metcalfe, 2009).

2.3.3 Changes in Dependence Structure

As discussed in Section 2.1, traditional univariate changepoint models typically as-

sume that the observations of a time series occur independently over time. However,

modern changepoint detection methodology has been providing more consideration to

cases where there is dependence between observations. Indeed, changepoint methods

have been developed which can not only incorporate dependence into the model, but

are actively aiming to detect changes within the second-order structure of the series.

Popular approaches adopted by such methods include: (i) a time-domain treat-

ment involving the traditional likelihood of the series, (ii) utilising an approximation

to the traditional likelihood called ‘Whittle’s likelihood’ which allows for a frequency-



CHAPTER 2. CHANGEPOINT DETECTION AND TIME SERIES MODELS 41

domain analysis, or (iii) considering non-parametric statistics. We consider methods

which employ each of these approaches in turn.

A likelihood-based approach is arguably the most common approach to detect-

ing changes in second-order structure. Davis et al. (2006), Gombay (2008), Killick

et al. (2010) and Fryzlewicz and Subba Rao (2014) all propose procedures based

on calculating the traditional likelihood of dependent time series. The Auto-PARM

method of Davis et al. (2006) uses the traditional likelihood-based minimum descrip-

tion length (MDL) of an AR(p) process as a penalised cost function, and use a genetic

algorithm to estimate the number and locations of changes in the autoregressive struc-

ture. Similarly, Gombay (2008) considers the detection of changes in any combination

of parameters of a p-order autoregressive process via a hypothesis testing procedure,

where the test statistics are based on the likelihood of the process. Killick et al.

(2013) also utilise the traditional likelihood, but instead model the observations as

a Locally Stationary Wavelet (LSW) process (Nason et al., 2000), referring to this

as the Wavelet Likelihood. They use this likelihood as a test statistic in a binary

segmentation framework, and use a graphical data-driven method to determine the

number of changepoints (rather than a specific penalty). Fryzlewicz and Subba Rao

(2014) also use binary segmentation with a likelihood-based framework, but instead

detect multiple changes in ARCH and GARCH processes.

Whittle’s likelihood approximates the traditional likelihood in terms of the spectral

density of the series. Therefore, this quantity has allowed for the detection of changes

in the second-order structure of univariate time series. We provide an in-depth exami-

nation of Whittle’s likelihood and its application to changepoint detection in Chapter

3. Notable works within the changepoint literature which employ Whittle’s likelihood

include those of Lavielle and Ludeña (2000), Hsu and Kuan (2001), Yamaguchi (2011)

and Yau and Davis (2012).

Lavielle and Ludeña (2000) utilises Whittle’s likelihood in a penalised cost func-

tion framework to detect changes in the spectral density of a time series. However,

the penalty function assumed in their model is required to be linear in the number

of changepoints. While this is theoretically interesting, this requirement does not
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allow for the usage of popular non-linear penalties such as the Minimum Description

Length (see Chapter 3 for more details). Hsu and Kuan (2001), Yamaguchi (2011)

and Yau and Davis (2012) all consider the context of changes where long-memory

may be present. In the case of Hsu and Kuan and Yau and Davis, interest lies in

distinguishing whether a given series follows a long-memory model or whether it is

a short-memory process with an abrupt change in the dependence structure. The

problem considered by Yamaguchi (2011) is the estimation of a changepoint in the

long-memory parameter of an Autoregressive Fractionally Integrated Moving Average

(ARFIMA) process. Such a process is a generalisation of an ARMA process which

allows for fractional differencing, see Hosking (1981) for more details. In each case,

Whittle’s likelihood approximation is used to evaluate the suitability of a given model.

Giraitis et al. (1996), Ombao et al. (2001) and Cho and Fryzlewicz (2012) detect

second-order changepoints using non-parametric approaches. Giraitis et al. (1996)

use Kolmogorov-Smirnov-type statistics to test for changes in the distribution of de-

pendent data. Ombao et al. (2001) propose a new set of bases which can be used to

decompose a time series, with this decomposition then being used in a non-parametric

test statistic to detect second-order changes. However, this suffers from its require-

ment that changes must occur at dyadic time-points. In a similar manner to Killick

et al. (2013), Cho and Fryzlewicz (2012) model observations using the Locally Sta-

tionary Wavelet framework, but instead search for changes in the mean of the wavelet

coefficients using a non-parametric test statistic in a binary segmentation procedure.

These changes in mean in the wavelet coefficients correspond to changes in the second-

order structure of the original series.

Killick et al. (2013) demonstrate that their approach (termed ‘WL’) out-performs

the method of Cho and Fryzlewicz (2012) in terms of quality of solutions. This may be

due to the assumption made by Cho and Fryzlewicz that the variance of the summary

statistic is constant across different segments, which can be difficult to establish in

practice. They also show that while the Auto-PARM method of Davis et al. (2006)

estimates the correct number of changepoints more often than WL, the changepoint

locations estimated by WL are more accurate than those estimated by Auto-PARM.
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As has been seen, there exists a range of methods for detecting second-order

changes. While there are a number of methods which utilise Whittle’s likelihood,

the majority of these consider long-memory models, and the method available for

short-memory models is impractical. Therefore, in Chapter 3 we propose methodol-

ogy which employs Whittle’s likelihood to detect changes in short-memory time series

models which can be easily implemented in practice. This practicality is demon-

strated through application to a substantive dataset arising from acoustic sensing

observations.



Chapter 3

Detecting Changes in

Second-Order Structure: An

Application to Acoustic Sensing

Data

3.1 Introduction to Acoustic Sensing Data

In the previous chapter, we highlighted the development of various approaches to

detecting changes within piecewise second-order stationary time series. Simulation

studies reported by Davis et al. (2006), Cho and Fryzlewicz (2012) and Killick et al.

(2013) have shown that many of these approaches have broadly good performance

across a wide range of different scenarios. However, it is well-known that several

of these methods are also computationally intensive. Consider, for example, the

wavelet-likelihood approach of Killick et al. (2013) which (as we shall see later) is

O
(
n4(log n)2

)
. Such significant computation can prove prohibitive for even moder-

ately long time series or applications where many time series need to be processed

on a regular basis. Acoustic sensing signals, such as those becoming commonly ob-

tained in the oil and gas industry, provide an example of such an application. Within

44
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this chapter we therefore seek to explore which approach, of the various available in

the literature, provides the best combination of changepoint detection accuracy and

speed, and investigate the potential for their application to acoustic sensing data.

Acoustic sensing is the practice of measuring and quantifying the vibrations which

are travelling through some medium, typically the ground. Within oil exploration

and production, such vibrations are measured by lining the well with a fibre-optic

cable. When vibrations occur in the medium they pass through the fibre-optic cable,

inducing a change in the intensity of the reflection of the pulses of light being passed

through the cable. These pulses of light are produced at a very high rate, often as

high as 10kHz, allowing for the ‘real-time’ monitoring of these vibrations to identify

features of interest in the well (e.g. the composition of the oil and gas, or areas

where the gradient of the piping changes), or mapping of the geology of the local

environment. The characteristics of such vibrations means that the observations are

generally dependent in time. For further discussion of acoustic sensing in the oil and

gas industry see, for example, Van der Horst et al. (2014) and Silkina (2014).

In addition to physical features being visible within these vibration measurements,

there occasionally exists error features within the series. Such errors may be due

to an external disturbance of the fibre-optic cable or some other (unknown) factor.

We are advised by engineers that such error features manifest as sudden changes

in the second-order structure of the time series. Typically, error features induced

by these disturbances occur at all observed locations of the well. The magnitude

of the disturbances relative to the true features is such that it is only necessary for

a single channel to be analysed in order to detect the disturbance. Figure 3.1.1

presents three examples of acoustic sensing time series from one particular type of

well. Figure 3.1.1(a) shows data without any error effects, as demonstrated by the

visibly stationary nature of the series. Conversely, Figures 3.1.1(b) and 3.1.1(c) both

demonstrate instances of disturbance, which are clearly illustrated by the abrupt

increases in vibration, followed by a period of increased activity, before returning to

a low level of vibrations.

The aim of this chapter is to introduce changepoint detection methodology that
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3.1.1(a): Acoustic sensing time series without
error features.
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3.1.1(b): Acoustic sensing time series contain-
ing error features caused by an exter-

nal disturbance.
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3.1.1(c): Acoustic sensing time series contain-
ing error features caused by an exter-

nal disturbance.

Figure 3.1.1: Three examples of acoustic sensing time series obtained from one
particular type of well. The error features are present in the second

and third series.

is capable of identifying second-order changes, such as the error features described,

through the utilisation of Whittle’s likelihood approximation. This is a popular tool

for analysing time series in the stationary context. We demonstrate that our method

is pragmatically appropriate and draw comparisons with other leading second-order

changepoint methods. The presented methodology is applied to substantive acoustic

sensing data where it is shown that the locations of detected changepoints correspond

with occurrences of error features.

The remainder of this chapter is structured as follows: Section 3.2 introduces



CHAPTER 3. DETECTING CHANGES IN SECOND-ORDER STRUCTURE 47

Whittle’s likelihood approximation and examines how it can be used in a penalised

likelihood framework for detecting changes in second-order structure. Section 3.3 com-

pares the performance of a second-order changepoint detection method using Whit-

tle’s (approximate) likelihood against different approaches which use exact likelihood

based formulations. A selection of acoustic sensing data is analysed using the pro-

posed Whittle likelihood based method in Section 3.4, and concluding remarks are

presented in Section 3.5.

3.2 Whittle’s Likelihood and its Application to

Changepoints

The changepoint detection methodology proposed in this chapter is based on a quan-

tity known as Whittle’s likelihood. Within this section we introduce Whittle’s like-

lihood, observe how it is related to the traditional likelihood, and show how it can

be utilised for the purposes of changepoint detection. Our explanation of Whittle’s

likelihood given below generally follows those of Hurvich (2002) and Gray (2005).

3.2.1 Whittle’s Likelihood Approximation

Suppose that we observe a sequence of univariate observations X1:n = {Xt}nt=1. This

series is assumed to follow a discrete Gaussian Process (dGP) which is zero-mean and

second-order stationary, and has a set of unknown model parameters denoted by θ

with an associated set of autocovariances γθ = {γh,θ}h=0,...,p. Traditionally, obtaining

the best-fitting set of model parameters is performed through maximum likelihood

estimation (see, for example, Section 2.2 of Shumway and Stoffer (2000); Chapter 7

of Box et al. (2011)).

Given the time-dependent (i.e. non-i.i.d.) nature of the observations X1:n, the

joint density of the observations is determined directly through the autocovariances

of the process. Using the fact that every subset of dGP observations are multivariate
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Normally distributed, the likelihood of the series is given by

L(θ|X1:n) ≡ L(γθ|X1:n) = 1√
(2π)n|Γθ|

exp
(
−1

2X
T
1:nΓ−1

θ X1:n

)
, (3.2.1)

where Γθ is the autocovariance matrix of the process.

As discussed in Section 2.3.2, the autocovariances can be expressed as the inverse

discrete Fourier transform of the spectral density:

γh,θ =
n−1∑
j=0

dθ(ωj)e−i2πhωj , h = 0, 1, 2, . . . . (3.2.2)

Therefore, expressing the likelihood directly in terms of the autocovariances allows it

to be easily evaluated under any time series model with a known spectrum (as long as

the model lies in the class of discrete Gaussian Processes). This is advantageous as it

provides a more holistic measure of fit by assessing the fit of the given model spectrum

to the periodogram of the data, rather than assessing the fit of the parameters to

the individual points, as is the case in traditional time-domain maximum likelihood

estimation. Using (3.2.2), the autocovariance matrix Γθ can be rewritten in terms of

the spectral density dθ. To emphasise the dependence of this covariance matrix on

the spectral density, rather than θ directly, we use Γdθ
to denote this re-expressed

matrix. This leads to the expression of the likelihood of X1:n in terms of the spectral

density:

L(dθ|X1:n) = 1√
(2π)n|Γdθ

|
exp

(
−1

2X
T
1:nΓ−1

dθ
X1:n

)
, (3.2.3)

with the negative log-likelihood given by

− log(L(dθ|X1:n)) = n

2 log(2π) + 1
2 log |Γd,θ|+XT

1:nΓ−1
d,θX1:n. (3.2.4)

The best-fitting spectrum d̂θ for the process X1:n can now be found by maximising

(3.2.3) (or equivalently minimising (3.2.4)) over all dθ ∈ F , where F is the set of all

possible spectrums.



CHAPTER 3. DETECTING CHANGES IN SECOND-ORDER STRUCTURE 49

Using traditional matrix methods, the inversion of Γdθ
can be computed using

O(n3) operations. For increasingly large n, the calculation of these operations can be-

come prohibitively expensive. Therefore, it is often preferable to consider a quantity

which is an approximately equivalent to the exact likelihood but has a reduced com-

putation time. Whittle’s likelihood approximation (Whittle, 1951) represents such a

quantity.

Definition 3.2.1. For a given time series X1:n and set of model parameters θ with

corresponding spectral density dθ, Whittle’s likelihood approximation of the negative

log-likelihood (3.2.4) is denoted by W (dθ|X1:n) and defined as

W (dθ|X1:n) := n

2 log(2π) + 1
2

n−1∑
j=0

(
log(dθ(ωj)) + I(ωj|X1:n)

dθ(ωj)

)
. (3.2.5)

The I(·) term denotes the periodogram of the series and {ωj = j/n}j=1,...,n denotes

the discrete Fourier frequencies.

Arguably, the greatest computational benefit which arises from approximating

with the Whittle likelihood is that it does not require the inversion of the covariance

matrix, but instead requires the calculation of the periodogram of the data. This

can be calculated in O(n log n) time through the use of the Fast Fourier Transform.

Hence, the use of Whittle’s likelihood in place of the exact likelihood may be more

appealing in scenarios where the number of data points can increase rapidly. However,

this comes at the expense of being an approximation to the likelihood, rather than

the exact value.

In a similar manner to the exact negative log-likelihood shown in (3.2.4), Whit-

tle’s likelihood can be minimised over all possible dθ ∈ F to obtain the best-fitting

model spectrum for W (·|X1:n), denoted d̂θ,W . Choudhuri et al. (2004) show that any

estimator based on Whittle’s likelihood has the same consistency and rate of conver-

gence as the equivalent estimator based on the exact likelihood. Since it is well-known

that the MLE under the exact likelihood is consistent and has a rate of convergence

of O(n−1/2) (Wald, 1949), the Whittle MLE is therefore also consistent and has a

rate of convergence of O(n−1/2). Hence, its use in the maximum likelihood setting is
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theoretically justified.

Due to its reduction in computational complexity over the traditional calculation

of the likelihood, we wish to utilise Whittle’s likelihood for the detection of changes

in second-order structure, and consequently the detection of error effects in acoustic

sensing data. In the next section we will consider a framework for detecting changes

in second-order structure, leading to our proposed method which uses Whittle’s like-

lihood as part of such a detection procedure.

3.2.2 Detecting Changes in Second-Order Structure using

Whittle’s Likelihood

In the previous section we described how Whittle’s likelihood can be used to ap-

proximate the negative log-likelihood of a discrete Gaussian process with a reduced

computation time. Our aim in this section is to explore how Whittle’s likelihood can

be utilised within a penalised cost function approach to detect changes in second-order

structure. As such, this work is similar in spirit to that of Lavielle and Ludeña (2000).

However, our approach differs in that it can be used with any penalty function that

is non-linear in the number of changepoints m. The method of Lavielle and Ludeña

(2000) requires the penalty to be linear in m.

We introduce our approach below prior to comparing it against an exact likelihood

equivalent and the contemporary methods of Davis et al. (2006) and Killick et al.

(2013) in Section 3.3. As discussed in Section 2.3.3, these methods represent the

forefront of second-order changepoint detection. This comparison is done through a

simulation study and application to an acoustic sensing dataset to identify the various

benefits and side-effects which occur from using this approximation approach.

We tackle the problem of detecting second-order changes in a time series {X1, X2,

. . . , Xn} using a model selection framework. The aim is to select the best-fitting m

changepoints τ = (τ1, τ2, . . . , τm) such that the spectral density of the time series d is

given by

d = dθk for τk−1 + 1 ≤ Xt ≤ τk, (3.2.6)
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where k = 1, . . .m + 1, τ0 = 0, τm+1 = n, dθk 6= dθk+1 and m is unknown. Here

dθk represents the best-fitting spectral density for the kth segment, where θk is the

corresponding set of parameter values.

To obtain these best-fitting values of m, τ and dθ1 , . . . , dθm+1 , we consider the

minimisation of the following penalised cost function:

m+1∑
k=1

W (dθk |X(τk−1+1):τk) + βf(m), (3.2.7)

where W (·|·) is Whittle’s likelihood as described in equation (3.2.5), β is a constant

and f(m) is the penalty function. The only restriction on this function is that it

is a concave function of m. There is no requirement that it is linear in m, and so

any non-linear concave function can be used. In particular, this allows for the use

of popular non-linear penalties such as the minimum description length (Rissanen,

1989) and Lebarbier’s penalty (Lebarbier, 2005).

The adoption of Whittle’s likelihood approximation in the penalised cost function

(3.2.7) means that this approach reaps the benefits over using traditional likelihood.

In particular, its ability to be calculated in O(n log n) time, compared to the O(n3)

time required for the traditional likelihood.

Due to the exact nature of its search, we wish to use a dynamic programming

procedure to minimise the penalised cost function (3.2.7). However, because of the

potentially non-linear nature of the penalty function f(m), the now well-established

optimal partitioning or PELT methods cannot be used due to their reliance on the

linearity of the penalty function. Equally, we do not wish to use segment neighbour-

hood search due to its requirement of specifying a maximum number of changepoints.

Instead we use a modified version of PELT described by Killick et al. (2012, Section

4.3.1) called iterative PELT which can accommodate concave penalty functions.

Iterative PELT works by iteratively performing PELT with a different number

of assumed changepoints for each run. Once the number of changepoints output by

PELT matches the value of m used in the penalty then the algorithm terminates.

An important consequence of this modification is that the algorithm can no longer
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guarantee to produce the optimal solution. However, the resulting configuration of

changepoints still represents a very high quality solution which is obtained without

specification of the bounds on the number of changepoints.

For comparison purposes, we note that a penalised cost function that is equivalent

to (3.2.7) can be formulated using the exact likelihood:

m+1∑
k=1

[
− log(L(dθk |X(τk−1+1):τk))

]
+ βf(m). (3.2.8)

This can also be minimised in the same manner using iterative PELT. We refer to

these two approaches as WHIP (Whittle Iterative PELT) and EXIP (Exact Iterative

PELT) respectively. We illustrate both algorithms in Algorithm 2.

Algorithm 2: WHIP / EXIP

1. Fix the number of changepoints as m0.

2. For WHIP Use PELT to obtain the following minimum:

min
m,τ ,dθ1 ,...,dθm+1

{
m+1∑
k=1

W (dθk |X(τk−1+1):τk) + βf(m0)
}

For EXIP Use PELT to obtain the following minimum:

min
m,τ ,dθ1 ,...,dθm+1

{
m+1∑
k=1

[
− log(L(dθk |X(τk−1+1):τk))

]
+ βf(m0)

}

3. • If PELT outputs m = m0 changepoints, stop and output the changepoint
locations τ̂ 1:m0 .

• Else, set m0 = m and repeat from step 1.

To investigate the performance of WHIP and assess the level of approximation

made by Whittle’s likelihood, we compare WHIP with EXIP and two approaches

representing the current state of the art in second-order changepoint detection: the

Wavelet Likelihood (WL) method of Killick et al. (2013) and the Auto-PARM (AP)

method of Davis et al. (2006). These two methods are described in Section 2.3.3.

Comparisons are made through a simulation competition and a study of the methods’
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theoretical computational complexities.

3.3 Comparison of Second-Order Changepoint

Methods

We compare the four methods of WHIP, EXIP, WL and AP on the accuracy of

their predicted changepoints, in terms of the number of estimated changepoints and

their predicted locations. The details of this comparison are given in Section 3.3.1. A

comparison of the computational complexity of the four methods is detailed in Section

3.3.2. Comparing the methods on these two aspects allows for a holistic understanding

of the effectiveness of WHIP, and its relative performance against the cutting-edge of

second-order changepoint detection methods.

3.3.1 Accuracy of Estimation

To assess the accuracy of estimation of the WHIP, EXIP, WL and AP methods,

their performance in a range of scenarios is investigated. Simulations from thirteen

different models, of which all but one were considered by Killick et al. (2013), are

used to assess the quality of the changepoints estimated by the methods in terms of

both the number of changepoints detected and their locations. The benefits of using

both of these measures as criteria for assessing the quality of a changepoint detection

method are noted by both Killick et al. (2013) and Eckley et al. (2011).

We note that the WL method uses the exact likelihood formulated using wavelet

coefficients, and AP uses an approximation to the likelihood for AR processes based

on the Yule-Walker estimate for the variance of the innovations (Davis et al., 2006).

The details of the models considered are discussed in Section 3.3.1 and the results

obtained are summarised and discussed in Section 3.3.1.
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Model Details

The models considered include autoregressive (AR) processes and moving-average

(MA) processes, which represent a range of different types of behaviour which occur

in time series models. All of the models examined are second-order stationary within

their segments, and assume a white noise term εt ∼ N(0, 1) for all t, unless otherwise

stated. For each model, 100 replications are considered. Full details of the models are

outlined below.

Models 1–6: AR(1) processes containing no changepoints Each of these

models are discrete Gaussian processes {Xt}nt=1 of the form

Xt = aXt−1 + εt for 1 ≤ t ≤ 1024, (3.3.1)

where the value of the AR(1) coefficient a is equal to one of (−0.7,−0.4,−0.1, 0.1, 0.4,

0.7), depending on the model being considered. This range of values is considered to

investigate the false-positive rate of the algorithm across a range of different types of

autocorrelation.

Model 7: Piecewise AR process with two clearly observable changes The

data for this model are simulated from

Xt =


0.9Xt−1 + εt if 1 ≤ t ≤ 512,

1.68Xt−1 − 0.81Xt−2 + εt if 513 ≤ t ≤ 768,

1.32Xt−1 − 0.81Xt−2 + εt if 769 ≤ t ≤ 1024.

(3.3.2)

In this case, the AR coefficients are relatively large in magnitude whilst keeping the

model stationary within each segment.
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Model 8: Piecewise AR process with two less clearly observable changes

The data for this model are simulated from

Xt =


0.4Xt−1 + εt if 1 ≤ t ≤ 400,

−0.6Xt−1 + εt if 401 ≤ t ≤ 612,

0.5Xt−1 + εt if 613 ≤ t ≤ 1024.

(3.3.3)

The magnitude of the AR coefficients are smaller compared to those in Model 7, and

the changepoint locations are no longer at dyadic time points.

Model 9: Piecewise AR process with one change, one short segment The

data for this model are simulated from

Xt =

 0.75Xt−1 + εt if 1 ≤ t ≤ 50,

−0.5Xt−1 + εt if 51 ≤ t ≤ 1024.
(3.3.4)

In this model, the single changepoint occurs after a relatively short period of time,

leading to a short initial segment followed by a longer segment.

Model 10: Piecewise AR process with two changes and high autocorrela-

tion The data for this model are simulated from

Xt =


1.399Xt−1 − 0.4Xt−2 + εt, εt ∼ N(0, 0.82) if 1 ≤ t ≤ 400,

0.999Xt−1 + εt, εt ∼ N(0, 1.22) if 401 ≤ t ≤ 750,

0.699Xt−1 + 0.3Xt−2 + εt, εt ∼ N(0, 1) if 751 ≤ t ≤ 1024.

(3.3.5)

The magnitude of the AR coefficients in this model are very large, with each of

the segments being only on the verge of stationarity. Note that the variance of the

white noise term is also changing between the segments in this example, a feature not

replicated in any of the other models.
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Model 11: Piecewise ARMA(1,1) process with three changes The data for

this model are simulated from

Xt =



0.7Xt−1 + εt + 0.6εt−1 if 1 ≤ t ≤ 125,

0.3Xt−1 + εt + 0.3εt−1 if 126 ≤ t ≤ 352,

0.9Xt−1 + εt if 353 ≤ t ≤ 704,

0.1Xt−1 + εt − 0.5εt−1 if 705 ≤ t ≤ 1024.

(3.3.6)

This is the only model considered which contains both autoregressive and moving-

average terms. Such a feature is of interest since the AP method is designed only for

fitting AR models, not MA. It also contains the most changepoints of all the models

considered.

Model 12: Piecewise MA process with a clearly observable change The

data for this model are simulated from

Xt =

 εt + 0.8εt−1 if 1 ≤ t ≤ 128,

εt + 1.68εt−1 − 0.81εt−2 if 129 ≤ t ≤ 256.
(3.3.7)

Similarly, this model is the only one which contains exclusively moving-average terms.

As with Model 11, this is of interest due to AP being constructed for AR-only models.

The time series in this case are also shorter in length compared to the previous models.

Model 13: Piecewise MA process with a less clearly observable change

The data for this model are simulated from

Xt =

 εt + 0.1εt−1 − 0.2εt−2 if 1 ≤ t ≤ 180

εt − 0.7εt−1 − 0.2εt−2 if 181 ≤ t ≤ 256.
(3.3.8)

This model also contains exclusively moving-average terms, but the change is now

only in a single coefficient and is smaller in magnitude compared to Model 12. This

model is also of a shorter length compared to Models 1–11.

For each of the models considered, the WHIP and EXIP methods are applied as
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described in Algorithm 2, with the possible spectral densities considered limited to

those of ARMA processes. The spectral density of an ARMA(p, q) process with AR

coefficients ϕ1, . . . , ϕp, MA coefficients φ1, . . . , φq and innovation variance σ2 is given

by

d(ω) = σ2
∣∣∣∣∣1 +∑q

k=1 φk exp(−2πiωk)
1−∑p

j=1 ϕj exp(−2πiωj)

∣∣∣∣∣
2

. (3.3.9)

The penalty function f(m) is set such that the penalised cost functions are equivalent

to Minimum Description Length (MDL) of the data (see Rissanen (1989) for full de-

tails). For a piecewise ARMA process containing m changepoints with orders (pk, qk)

and length nk for the kth segment, this penalty function is given by

h(m) = log(m) + (m+ 1) log(n) +
m+1∑
k=1

[
log(pk) + log(qk) + pk + qk + 1

2 log nk
]
.

(3.3.10)

Similarly, the AP method uses the MDL as its penalised cost function, except the

authors only consider AR models (with no MA component). This choice of penalty

function for WHIP and EXIP is motivated by the positive results shown from its use

in Davis et al. (2006).

In addition, some realistic constraints are incorporated into WHIP and EXIP to

aide computation time.

1. Maximum values are imposed for the autoregressive order pj and moving-average

order qj for each segment. For all thirteen models the maximum AR order is set

to 5. For Models 1–10 which are known to contain only autoregressive terms,

the maximum MA order is fixed as 0. For Models 11, 12 and 13, which contain

MA terms, the maximum MA order is set to 3.

2. The minimum distance between any two changepoints is fixed at 20 time points.

3. For the iterative PELT algorithm, the maximum number of iterations for the

algorithm is set to 10. If the algorithm has not converged by this stage, then
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the penalised cost for the best segmentation of the data at each iteration is

calculated and the segmentation corresponding to the lowest of these is output.

Note that throughout all of these simulations, each run of WHIP and EXIP converged

before reaching the maximum number of iterations. Also note that code for the WL

algorithm is not available, and so no results for WL are provided for Model 13.

Results and Discussion

Tables 3.3.1, 3.3.2 and 3.3.3 present the estimated number of changepoints across all

replications for each model. The true number of changepoints for a given model are

highlighted in bold. The densities of the locations of detected changepoints found by

WHIP are shown in Figures 3.3.1(a) – 3.3.1(g) for models where there is at least one

true changepoint (i.e. models 7–13).

Model 1 Model 2
a = -0.7 a = -0.4

No cpts WHIP EXIP WL AP WHIP EXIP WL AP
0 100 100 100 100 100 100 100 100
1 0 0 0 0 0 0 0 0
≥2 0 0 0 0 0 0 0 0

Model 3 Model 4
a = -0.1 a = 0.1

No cpts WHIP EXIP WL AP WHIP EXIP WL AP
0 100 100 100 100 100 100 100 100
1 0 0 0 0 0 0 0 0
≥2 0 0 0 0 0 0 0 0

Model 5 Model 6
a = 0.4 a = 0.7

No cpts WHIP EXIP WL AP WHIP EXIP WL AP
0 100 100 100 100 99 100 91 100
1 0 0 0 0 1 0 9 0
≥2 0 0 0 0 0 0 0 0

Table 3.3.1: Percentage of repetitions which identified a certain number of
changepoints for Models 1–6. True number of changepoints for each

model shown in bold.

Table 3.3.1 contains the results for Models 1–6, which each contain no changepoints
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3.3.1(a): Model 7
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3.3.1(b): Model 8
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3.3.1(c): Model 9
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3.3.1(d): Model 10
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3.3.1(e): Model 11
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3.3.1(f): Model 12
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3.3.1(g): Model 13

Figure 3.3.1: Plots showing the densities of changepoint locations detected by
WHIP for Models 7–13. True changepoint locations are shown by red

vertical lines.
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Model 7 Model 8
No cpts WHIP EXIP WL AP WHIP EXIP WL AP

0 0 0 0 0 0 0 0 0
1 1 0 0 0 11 8 0 0
2 86 99 98 94 89 92 94 100
3 12 1 2 6 0 0 6 0
4 1 0 0 0 0 0 0 0
≥5 0 0 0 0 0 0 0 0

Model 9
No cpts WHIP EXIP WL AP

0 2 0 4 0
1 98 100 94 100
2 0 0 2 0
3 0 0 0 0
4 0 0 0 0
≥5 0 0 0 0

Table 3.3.2: Percentage of repetitions which identified a certain number of
changepoints for Models 7–9. True number of changepoints for each

model shown in bold.

and can hence be viewed as assessments for the false-positive case. It can be seen

that WHIP has at most a 1% false-positive rate, and achieves a 0% false-positive rate

for half of these models. These results are on par with the performances of EXIP and

AP, which each have a 0% false-positive rate in each of the models. WL performs

slightly worse, giving a 9% false-positive rate when there is reasonably large positive

autocorrelation.

The results for Models 7–9 and 10–13, presented in Tables 3.3.2 and 3.3.3 re-

spectively, show that the performances of WHIP, EXIP, AP and WL are generally

comparable for most cases. For each of these models, the percentages of cases where

each method identified the correct number of changepoints are within at least 13% of

the equivalent percentages for the other methods. Interestingly, for Model 9 (where

there is a short segment) and Model 12 (where there is a clearly observable change in

an MA process) WHIP out-performs WL. This result occurs even though WHIP uses

an approximate cost function whereas the WL method uses an exact formulation of

the likelihood. Clearly the binary segmentation search method of WL contributes to
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Model 10 Model 11
No cpts WHIP EXIP WL AP WHIP EXIP WL AP

0 0 0 0 0 0 0 0 0
1 0 10 26 9 68 55 20 51
2 8 72 45 33 18 23 22 33
3 28 16 26 32 13 22 35 16
4 32 2 3 15 1 0 22 0
5 32 0 0 12 0 0 1 0

Model 12 Model 13
No cpts WHIP EXIP WL AP WHIP EXIP AP

0 0 0 0 0 69 68 66
1 100 100 99 100 31 32 34
2 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0

Table 3.3.3: Percentage of repetitions which identified a certain number of
changepoints for models 10–13. True number of changepoints for each

model shown in bold.

this reduction in quality.

Models 10 and 11 cause substantial difficulty for WHIP in detecting the correct

number of changepoints compared to the other methods. This suggests that in sit-

uations where the autocorrelation in the series is very high (as in Model 10) or the

change in dependence is small and at a higher order (as in Model 11), then the quality

of the approximation made by Whittle’s likelihood is reduced, thereby making it more

difficult for WHIP to accurately detect changes. High autocorrelation causes the se-

ries to appear non-stationary in certain areas (since the series is only on the edge of

stationarity), which then causes WHIP to attempt to induce stationarity in the data

by segmenting it into more stationary segments. This leads to an overestimation of

the number of changepoints, demonstrated in Table 3.3.3 for Model 10.

WL and AP are also affected in a similar manner. EXIP, on the other hand, does

not suffer as much from this drawback since it directly calculates the exact likelihood

of the process (based on the autocovariances). Hence, no approximations are made

and there are relatively fewer parameters to estimate (ARMA model parameters in
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EXIP versus the multiple wavelet coefficients of WL).

Conversely, smaller changes in dependence at higher orders (as in Model 11), are

more difficult to detect using parametric methods such as WHIP, EXIP and AP. In

these cases such methods are more likely to give an underestimation of changepoints,

as observed for Model 11. Non- or semi-parametric methods such as WL are less

affected since they do not assume a parametric form of the data, and consider a wide

range of frequencies or scales instead of a small number of parameters.

Across all models, the results of WHIP at best match those of EXIP and AP. This

is to be expected for EXIP, since EXIP is precisely the same algorithm as WHIP

with the likelihood used in place of Whittle’s likelihood. Therefore, theoretically the

results of WHIP can at best match those of EXIP. However, for AP this result is

not as theoretically obvious since AP also approximates the exact likelihood (albeit

in a different way) and uses an approximate search method in the form of a genetic

algorithm to estimate changepoint locations. Killick et al. (2012) have demonstrated

that iterative PELT with the MDL for AR models as the penalised cost function out-

performs AP, and so this suggests that the reduction in quality of the changepoint

estimates due to the approximation made by Whittle’s likelihood is greater than the

increase in quality due to the use of iterative PELT.

The density of changepoints detected by WHIP for each model, shown in Figure

3.3.1, demonstrate that in general WHIP detects changes at their correct locations.

The only model where the detected locations appear to diverge from the true locations

is Model 13, shown in Figure 3.3.1(g). This difficulty in detecting the correct location

is likely due to the change being small in magnitude. This difficulty is also reflected

in the detection percentages, where WHIP, EXIP and AP all only detect the change

in just over 30% of cases.

Overall, we have seen that WHIP is an improvement over WL, and in some as-

pects comparable with AP. Therefore, WHIP represents a pragmatically appropriate

method for utilisation in the context of detecting changes in the second-order struc-

ture of acoustic sensing time series. Note that we do not compare the running times

of the different algorithms, as in this case they are each implemented in different pro-
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gramming languages which have varying architectures and efficiencies. Hence, these

discrepancies can result in vast differences in running times which are not necessarily

a result of the methods themselves (but rather their implementations), and so com-

paring such values would not provide a fair comparison. Instead, we examine the

computational complexities of the algorithms, which allow for unprejudiced compari-

son of the computational speed of the methods.

3.3.2 Computational Complexity

Changepoint detection in practical applications often favours methods which can be

executed with a faster computational speed. Therefore, the computational complexity

of each of the four approaches examined forms an important consideration when

assessing their overall performance. The complexities of the WHIP, EXIP, WL and

AP algorithms are each considered in turn.

The order of computation of the four methods can be summarised as follows:

Complexity(method)

= O
(
O(calculating penalised cost function)

×O(optimising penalised cost function | number and location of changepoints)

×O(optimising number and location of changepoints)
)
.

For WHIP and EXIP, the complexity of the optimisations is exactly the same. The

only difference is the order of computation for the penalised cost calculation. We

use the limited-memory BFGS algorithm (Liu and Nocedal, 1989) to perform the

non-linear optimisation of the penalised cost function given the number and location

of changepoints. This requires a computation time which is linear in the number

of model parameters (Byrd et al., 1995), not including the changepoint locations,

and therefore does not depend on the length of the data. In practice, we place a

maximum possible order on the ARMA models which are considered. Denoting the

maximum AR and MA orders considered by R and Q respectively, then optimising

the penalised cost function given the number and locations of changepoints requires
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O(R +Q) operations (and is hence independent of n).

For these two methods, the cost of optimising the number and locations of change-

points is equal to the cost of performing iterative PELT. Since the maximum number

of iterations is bounded, this reduces to the computational cost of PELT. Killick et al.

(2012) show that under certain conditions this is equal to Ln, where L is some con-

stant. This makes use of the assumption that the number of changepoints increases

linearly as the length of the time series increases, which is not particularly restrictive

in this instance. As discussed in Section 3.2, Whittle’s likelihood can be calculated

in O(n log n) time, whereas the exact likelihood used in EXIP can be calculated in

O(n3) time. Hence, the computational complexity of WHIP is

Complexity(WHIP) = O
(
n log n× (R +Q)× Ln

)
= O(n2 log n),

since R and Q are constant and do not depend on n. In a similar manner, the

computational complexity of EXIP is

Complexity(EXIP) = O
(
n3 × (R +Q)× Ln

)
= O(n4).

For Auto-PARM, the optimisation of both the penalised cost function and the

number and location of changepoints is performed simultaneously through a genetic

algorithm (GA). These optimisations depend on two components: the size of the

population of solutions (P ) and the number of generations considered (G). Stark

and Spall (2002) describe how the total number of evaluations of the penalised cost

function required for a given P and G is
(
P + (G − 1)(P − 1)

)
. It is not clear how

these values depend on n, therefore we do not simplify them further. Since Auto-

PARM uses the approximation to the likelihood based on the Yule-Walker estimate

of the innovations variance, its penalised cost can be calculated in O(n) time using

the innovations algorithm (see Sections 5.2 and 8.7 of Brockwell and Davis (2009)).
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Therefore, the computational complexity of Auto-PARM is

Complexity(Auto-PARM) = O
(
n×

(
P + (G− 1)× (P − 1)

))
.

For WL, the optimal value of the wavelet likelihood given the number and loca-

tions of changepoints can be obtained using a closed-form expression which requires

O(n3 log n) operations to calculate (see Section 3.1.2 of Killick et al. (2013) for more

details). Optimising the number and locations of changepoints is performed using

the binary segmentation algorithm, which requires O(n log n) operations (Vostrikova,

1981). Hence, the overall computational complexity of the WL procedure is

Complexity(WL) = O(n3 log n× n log n)

= O
(
n4(log n)2

)
.

Therefore, the complexity of WHIP is lower than both EXIP and WL, at least.

Hence, motivated by this along with its relatively strong performance in its accuracy

of estimation, we consider the application of WHIP (as well as other methods) for the

analysis of acoustic sensing data.

3.4 Analysis of Acoustic Sensing Data

As discussed in Section 3.1, acoustic sensing is used within the oil industry for the

monitoring of vibrations in wells. Interest lies in the detection of error features within

such acoustic sensing time series, since these reflect the locations in time where the

fibre-optic cable may have been disturbed externally (for example, at the surface

of the well). Recall that engineers advise that such features manifest as sudden

changes in the second-order structure of the time series, and that the influence of

these disturbances is large enough that it is only necessary to analyse a single channel

to detect them.

It is important to remove such error effects to allow for the effective analysis of

acoustic sensing data. Ideally, this would be done without human intervention or use
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of ‘expert knowledge’. Therefore, changepoint detection methodology offers a useful

approach for this context.

The aim of this section is to use changepoint methodology to identify the location

of error features within the examples of acoustic sensing data presented in Figures

3.1.1(b) (‘Series 1’) and 3.1.1(c) (‘Series 2’) above, via the detection of changes in

the second-order structure of the series. To achieve this aim, the WHIP, EXIP and

Auto-PARM methods are each independently applied to these acoustic sensing series.

The changepoint locations detected by each of these methods for the series in Figures

3.1.1(b) and 3.1.1(c) are presented in Figures 3.4.1(a) and 3.4.1(b), respectively.

Examination of the results for Series 1 (Figure 3.4.1(a)) and Series 2 (Figure

3.4.1(b)) shows that all three methods provide sensible segmentations of the data.

The detected changepoints illustrate that these error features caused by disturbances

are categorised by a ‘double burst’ effect. There is an initial short powerful burst of

vibration activity, with another longer less-powerful burst shortly after, followed by a

period of activity before returning to its normal state.

The changepoints estimated by WHIP and EXIP are very similar in both their

number and location. The main exception is in Series 1, where the final changepoint

detected by WHIP (and Auto-PARM) is not detected by EXIP. The estimates of AP

are also similar to WHIP, with a small amount of variation in their location (particu-

larly in Series 2). This is likely due to the stochastic nature of the genetic algorithm

used in AP. Hence, since WHIP has a lower computational complexity than the exact

likelihood approach of EXIP, and performs similarly to a method representing the

cutting-edge of second-order changepoint detection, the WHIP method represents a

sensible choice for the analysis of data possibly containing changes in the second-order

structure.

3.5 Concluding Remarks

The detection of changes in dependence structure is an important aspect of analysing

many real-world time series, in particular acoustic sensing data. We consider a pe-
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nalised cost function approach for estimating the number and locations of second-order

changepoints. Due to its reduced computational complexity and its success in mod-

elling stationary time series, we utilise Whittle’s likelihood approximation within the

penalised cost. The use of a concave penalty function in our formulation is novel in

this context and allows for the use of popular non-linear penalties such as the mini-

mum description length. An iterative version of the PELT algorithm (Killick et al.,

2012) allows us to obtain a high-quality solution to the optimisation problem.

To establish the difference in performance between our approach (WHIP) and

similar likelihood-based methods, a simulated competition is performed. Comparisons

and contrasts are draw between WHIP, an exact likelihood equivalent (EXIP), and

two methods which represent the cutting-edge: Auto-PARM (Davis et al., 2006) and

the Wavelet Likelihood approach (Killick et al., 2013). The results of this study

demonstrate that WHIP is generally an improvement over the Wavelet Likelihood

method, and reasonably comparable with EXIP and Auto-PARM.

Given these results, we apply WHIP, along with EXIP and Auto-PARM to two

examples of acoustic sensing time series. This application illustrates how WHIP

can be used to identify error features within the series, which correspond to time-

points where the fibre-optic cable has been disturbed externally. As before, the three

methods perform similarly. Therefore, given its computational benefit over EXIP,

WHIP represents a pragmatically appropriate method for the detection of changes in

the second-order structure of a time series.
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3.4.1(a): Series 1 estimates
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3.4.1(b): Series 2 estimates

Figure 3.4.1: Estimated locations of changes in spectral density for the two acoustic
sensing time series from Figures 3.1.1(b) and 3.1.1(c) (Series 1 and

Series 2), respectively. WHIP estimates are solid red, EXIP estimates
are dotted blue, and Auto-PARM estimates are dashed green.



Chapter 4

Multivariate Changepoint

Detection with Subsets

4.1 Introduction

Historically much of the research on changepoint analysis has focused on the uni-

variate setting. However, increasingly data found in contemporary scientific fields

are multivariate in nature, with each observation in a sequence containing the values

of multiple variables which have been observed simultaneously. Such a shift has re-

sulted in escalating interest in the problem of detecting changes which occur within

multiple observed variables. The locations in time of such changes are referred to

as changepoints. Areas in which such multivariate changepoints are important range

from finance (Cho and Fryzlewicz, 2015) and geology (Srivastava and Worsley, 1986)

to network analysis (Lung-Yut-Fong et al., 2011a) and genetics (Zhang et al., 2010;

Jeng et al., 2013).

The multivariate changepoints which may be observed within such time series can

be categorised as either fully-multivariate or subset-multivariate. Fully-multivariate

changepoints refer to those changes in structure which occur simultaneously in all

variables. Conversely, subset-multivariate changepoints refer to those which occur

in only a subset of the observed variables. Such a situation is not uncommon in

practice. Consider, for example, the finance setting. Here an event may induce a

69
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sudden change in the stock prices of companies within one industrial sector but not

in those of companies within a different sector.

Traditionally, multivariate changepoint detection methods typically assume that

all changes within a series are fully-multivariate. Popular approaches within such

methods include the minimisation of a penalised cost function via dynamic program-

ming (Lavielle and Teyssiere, 2006; Lung-Yut-Fong et al., 2011b), and the utilisation

of binary segmentation techniques (Aue et al., 2009; Matteson and James, 2014).

However, since these methods adopt the fully-multivariate changepoint model, they

are making the assumption that any observed changes occur in all variables. This

means that they are not able to accurately capture the ‘subset’ nature of multivariate

changes often observed in practice.

More recently, increasing attention has been focused on the detection of subset-

multivariate changes. A selection of methods which detect such changes are examined

in Section 4.2.2. As will be discussed, many of the methods which have been proposed

do not explicitly output the subsets of variables affected by the changes. They merely

take into account the fact that not all of the variables may be changing. In addi-

tion, at the time of writing, all subset-multivariate changepoint detection methods

are approximate in nature. That is, they cannot guarantee to produce the optimal

segmentation of a multivariate time series under the subset-multivariate changepoint

model.

The work presented in this chapter considers a novel approach to subset-multivariate

changepoint detection in the general context. In particular, an exact search method

is introduced which identifies both the locations of changes and the corresponding

subsets of affected variables within a multivariate time series. These subsets are ex-

plicitly output in addition to the changepoint locations. The method is based upon a

dynamic programming approach. Due to its exact nature, the resulting segmentation

of the time series given by these changepoint locations and corresponding subsets is

guaranteed to be optimal with respect to the goodness-of-fit criterion used. However,

as we shall see later, obtaining such results under this model is an NP-hard problem.

Hence, the methodology presented has limited ability to scale to scenarios with higher
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dimensions.

The remainder of this chapter is structured as follows. Section 4.2 introduces

the multivariate changepoint detection problem in general, and formally details the

difference between the fully-multivariate and subset-multivariate models. Section 4.3

outlines the presented formulation of the subset-multivariate changepoint detection

problem and discusses how the problem can be tackled using a penalised cost function

approach. Section 4.4 provides full details of the algorithm developed for the detection

of subset-multivariate changepoints. Section 4.5 presents a simulation study used to

demonstrate the characteristics of this methodology, with a discussion of the results

given in Section 4.5.1. An analysis of the annual river flows of four rivers in Quebec is

performed using the method is presented in Section 4.6 to demonstrate its potential for

practical usage. The possibility of using inequality-based pruning within the proposed

algorithm to improve computation time is then considered in Section 4.7.

4.2 The Multivariate Changepoint Detection

Problem

The multivariate changepoint detection problem can be summarised as the search

for potentially multiple changes in the statistical properties of a multivariate time-

ordered data sequence. Such changes often manifest as shifts in the values of the

mean or variance parameters of the observed variables, though more subtle changes

such as alterations in the auto- or cross-correlation structure of the time series may

also occur. The set of affected variables may differ for each change within the series.

More formally, suppose that X1:n = {X1,X2, . . . ,Xn} denotes a multivariate

time series containing observations from p variables, such thatX t = (X1
t , X

2
t , . . . , X

p
t )

for t = 1, . . . , n. Suppose further that the series contains m distinct changepoints, the

locations of which are denoted by τ = {τ1, τ2, . . . , τm}, where τi < τj for i < j. For

notational convenience, the definitions τ0 = 0 and τm+1 = n are made. Each of these m

changepoints has a corresponding subset of variables which are affected by the change.

For the ith changepoint τi, this subset is denoted by Si. Under the fully-multivariate
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changepoint model, the value of Si is fixed as Si = {1, . . . , p} for each i = 1, . . . ,m.

Conversely, under the subset-multivariate changepoint model, Si could contain any

possible subset of the observed variables, so that Si ⊆ {1, . . . , p} for each i = 1, . . . ,m.

Therefore, while the fully-multivariate changepoint problem aims to find only the

optimal set of changepoint locations τ = {τ1, . . . , τm}, the objective of the subset-

multivariate changepoint problem is to obtain the optimal values of τ = {τ1, . . . , τm}

as well as the optimal associated subsets of affected variables, S = {S1, . . . ,Sm}. Note

that S0 and Sm+1 are fixed such that S0 = Sm+1 = {1, . . . , p}. We emphasise that

fully-multivariate changepoints (i.e. the changepoints for which Si = {1, . . . , p}) are

simply special cases of subset-multivariate changepoints, and can hence be detected

under the subset-multivariate changepoint model.

To obtain the optimal changepoint locations and associated affected variable sub-

sets under the subset-multivariate changepoint model, we consider the minimisation

of a penalised cost function of the form:

cost(X1:n, τ ,S) + pen(τ ,S). (4.2.1)

The concept of minimising a penalised cost function for changepoint detection has

been used with success in the univariate setting and in the fully-multivariate context,

see Chapter 2 for more details. Here cost(X1:n, τ ,S) provides a cost for a multivariate

time series X1:n segmented by the changepoint configuration specified by τ and S.

The pen(τ ,S) term is a penalty function selected to prevent the over-estimation of the

number of changepoints and size of the affected variable subsets. A lower value of the

cost function means that the corresponding τ and S provide a better fit to the data,

while pen(τ ,S) increases with each additional changepoint included in the model,

and each additional variable added to the affected subset for a given changepoint. We

note that our use of the word optimal is in the sense that they minimise our penalised

cost function.
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4.2.1 Fully-Multivariate vs Subset-Multivariate

To emphasise the difference between fully-multivariate and subset-multivariate change-

point models, consider the example of a multivariate time series presented in Figure

4.2.1(a). This series X1:300 contains n = 300 observations of p = 3 variables (num-

bered in ascending order from top to bottom in Figure 4.2.1(a)). There are two

changes in the mean vector within the series at times τ1 = 75 and τ2 = 200, with the

corresponding subsets of affected variables being S1 = {1, 2} and S2 = {2, 3}. The

data are i.i.d. within the segments, each segment is independent of the others, and

the variables have zero cross-correlation.
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4.2.1(a): Series containing two
multivariate changes.
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4.2.1(b): Fully-multivariate
model.
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4.2.1(c): Subset-multivariate
model.

Figure 4.2.1: An example of a multivariate time series with changes in subsets of
variables. Here the changes are in mean, but in practice they can be in

any statistical property. The plots shows the changepoints placed
under the fully-multivariate and subset-multivariate models,

respectively.

Under the fully-multivariate changepoint model, such as that proposed by Matte-

son and James (2014), a detection method would place two changepoints in the series

across all variables, as demonstrated in Figure 4.2.1(b). It is clear that this does not

accurately reflect the true nature of the changes, since variable 3 does not change

at τ1 and variable 1 does not change at τ2. Rather it would be desirable to have a

detection method which adopts the subset-multivariate changepoint model. Under

the subset-multivariate model, a detection method identifies and utilises information

regarding the subset-multivariate nature of the changepoints in order to assist in their

detection.
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More generally, the use of a fully-multivariate detection method in scenarios where

subset-multivariate changepoints are present may lead to a reduction in the quality of

estimation. This is due to the inherent overestimation of the number of affected vari-

ables for a given subset-multivariate changepoint when a fully-multivariate method

is used. If this overestimation is large (which will be the case when the true number

of affected variables is small), then this may in turn lead to a poor estimation of the

changepoint location(s) in the series. This is due to the fully-multivariate method at-

tempting to ‘correct’ for its overestimation of the subset size (which it cannot control)

by shifting the changepoint locations or adding additional changepoints (which it is

able to control). It is this attempt at compensation for the intrinsic fully-multivariate

assumption which is likely to lead to poor segmentations.

If the fully-multivariate method is based on a penalised cost approach, then a larger

penalty value could be used in an effort to potentially reduce this overestimation of the

number of changepoints (which has been induced by the intrinsic fully-multivariate

assumption). However, this could potentially result in an underestimation of the

number of changepoints. This is because true subset-multivariate changepoints are

only affecting a subset of the variables and therefore likely to have less impact on

the value of the fully-multivariate test statistic. Hence, if a larger penalty a used,

this would increase the threshold for which the test statistic value would need to

exceed, therefore making it even more difficult for the subset-multivariate changes to

be detected (compared to the true fully-multivariate changes, where each variable is

contributing to the test statistic).

Ideally, a subset-multivariate detection method would be able to place change-

points in only the correct set of affected variables, as shown in Figure 4.2.1(c). How-

ever, as we discuss in Section 4.2.2 below, the majority of subset-multivariate change-

point detection methods available in the literature do not possess such a feature.

4.2.2 Current Subset-Multivariate Approaches

Recent methods tackling the multivariate changepoint problem have been proposed

which consider the detection of subset-multivariate changes. Such methods can be
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subdivided into two categories: those which do not output the set of affected variables

within the series for each detected changepoint, and those which do output such

subsets. Examples from the former include Zhang et al. (2010), Siegmund et al.

(2011), Xie and Siegmund (2013), Jeng et al. (2013), Bardwell and Fearnhead (2014)

and Cho and Fryzlewicz (2015).

Zhang et al. (2010), Siegmund et al. (2011) and Jeng et al. (2013) all introduce

methods within the genomics literature for the detection of multiple intervals of altered

mean within multivariate DNA copy number profiles. Often the DNA variations

will occur in only a proportion of the samples, so subset-multivariate changepoint

detection techniques are necessary. These methods all search for pairs of changepoints

which correspond to the altered-mean intervals. The observations are modelled as

multivariate Normal with diagonal covariance matrices. The test statistics used by

the methods are based on the scaled Normal log-likelihood under the assumption

of a segment of altered mean. Each of these methods promote the utilisation of

modified binary segmentation procedures. However, they differ in the nature of the

changes they detect. Zhang et al. (2010) detects changes which have a relatively large

number of affected variables (referred to as ‘common’ changes), whereas Siegmund

et al. (2011) detects those changes which have a relatively small number of affected

variables (referred to as ‘rare’ changes). Jeng et al. (2013) detects both rare and

common changes.

Other methods for detecting changes in DNA copy number profiles are proposed

by Xie and Siegmund (2013) and Bardwell and Fearnhead (2014), but in contrast Xie

and Siegmund (2013) use the test statistic of Siegmund et al. (2011) to detect rare

changes in sequentially-observed data and Bardwell and Fearnhead (2014) adopt a

Bayesian approach which utilises a hidden state model. In other literature, Cho and

Fryzlewicz (2015) use a binary segmentation approach for the detection of changes

in the auto- and cross-covariance of multivariate time series. They use a wavelet-

based test statistic which aggregates information across variables with thresholding,

reducing the effect of variables not affected by the change.

In contrast to the approaches considered above, Maboudou-Tchao and Hawkins
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(2013) and Preuß et al. (2015) each present methods which explicitly output both

the locations of subset-multivariate changepoints and their corresponding sets of af-

fected variables. The method of Maboudou-Tchao and Hawkins (2013) works by first

performing the dynamic program from Maboudou and Hawkins (2009) (discussed

in Chapter 2) under the fully-multivariate changepoint model, and then performing

variable-specific hypothesis tests for each estimated changepoint to determine its af-

fected variable subset.

Similar to Cho and Fryzlewicz (2015), Preuß et al. (2015) deviate from the setting

of i.i.d. data and detect multiple changes in autocovariance through the consideration

of raw periodograms. A three-step procedure is used: testing for the structural breaks,

identifying the variables affected by each changepoint, and the localisation of the

changes.

As discussed, each of the methods considered are approximate in their nature

and hence cannot guarantee to provide the optimal configuration of changepoints and

affected variable subsets. In addition, only a small number of the available methods

explicitly output the set of affected variables for the changepoints. Motivated by this,

the aim of our work in this chapter is to develop methodology which obtains exactly

the optimal changepoint locations and corresponding subsets of affected variables, and

explicitly output both these locations and subsets. The problem we consider is similar

to the i.i.d. setting considered by Maboudou-Tchao and Hawkins (2013), rather than

the scenario examined by Preuß et al. (2015) where auto- and cross-correlation may

be present.

4.3 Modelling Subset-Multivariate Changepoints

We now consider how the subset-multivariate changepoint problem can be formulated

with a view to producing an optimal solution for the piecewise i.i.d. setting. To begin,

we introduce changepoint vectors, a quantity that will prove useful as it permits us to

specify the most recent changepoints locations in each variable of a series at a given

time-point. There then follows a discussion of how subset-multivariate changepoints
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can be modelled via the penalised cost paradigm using these changepoint vectors as

a building block.

4.3.1 Changepoint Vectors

Traditionally, changepoints in the multivariate setting are modelled as the time-points

at which all variables change. However, this approach can suffer in scenarios where

only some of the variables are changing. We therefore propose an alternative approach

using the concept of changepoint vectors. This idea is introduced to allow for the

segmentation of a time series under the subset-multivariate model. This in turn

allows for the costing of a multivariate time series under this model.

Let cjt denote the location of the most recently observed changepoint in variable j

prior to, and including, time t. Hence, if a changepoint occurs at time u in variable

j, we have cju = u. The changepoint vector corresponding to time t is defined as the

vector of these most recently observed changepoints for all variables at time t. For

a p-variate series of length n, this is denoted by ct = (c1
t , c

2
t , . . . , c

p
t ). If there are m

known changes in this series at τ1, τ2, . . . , τm (with τ0 = 0 and τm+1 = n) that have

affected variables subsets S1, . . . ,Sm, then for each k = 0, . . . ,m+ 1 we have cjτk = τk

for all j ∈ Sk. Also note that the changepoint vectors are only updated when a

changepoint occurs, so that ct = ct−1 for all τk + 1 ≤ t < τk+1 (k = 1, . . . ,m). For

notational simplicity, we define c0 = (0, 0, . . . , 0) and cn = (n, n, . . . , n).

Consideration will be given to various sets of these changepoint vectors throughout

the proposed methodology. The most important of these is the set Ct, which denotes

the set of all possible previous changepoint vectors ct up to and including a given time

t. For example, if p = 2 and t = 2, then we have

Ct = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}.

We fix C0 = {c0} and Cn = {Cn−1, cn}. As we shall see later, this construct will be

pivotal for the segmentation of a multivariate time series under the subset-multivariate

model. Further, for a given t, we define C̄t to be the set of all possible ct such that
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cjt = t for at least one j, so that at least one variable is changing at time t. For the

same example of p = 2 and t = 2, we have

C̄t = {(0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}.

We note that C̄0 = {c0} and C̄n = {cn}. Also, since for each cs ∈ C̄s we have s ∈ cs,

and so for some t 6= s by the definition of C̄s and C̄t we must have ct 6∈ C̄s for each

ct ∈ C̄t. Therefore, we have C̄s ∩ C̄t = ∅ for each s, t such that s 6= t. Consequently,

we can write

Ct = {C̄0, C̄1, . . . , C̄t−1, C̄t}.

Finally, suppose we have a p-variate series with r changepoints before some time t, at

locations τ1, . . . , τr. Then for some given changepoint vector ct ∈ C̄t, we define c(ct) =

(cτ0 , cτ1 , . . . , cτr , ct)′, where τ0 = 0. This means that c(ct) represents a (r+2)×p matrix

containing the unique changepoint vectors occurring prior to and including ct. This is

conceptually similar to the set of true changepoint locations in the traditional fully-

multivariate or univariate changepoint models. Where clear, we simply use c = c(cn)

to denote the set of all unique true changepoint vectors in a series. Hence, c contains

the equivalent information about the changes in the series as (τ ,S).

Example To illustrate the outlined notation, we refer back to the example time se-

ries X1:300 presented in Figure 4.2.1(a). The changepoint locations and corresponding

subsets of affected variables are known. These are highlighted once again in Figure

4.3.1(a). Since we have τ1 = 75, τ2 = 200 and S1 = {1, 2} and S = {2, 3}, then

the changepoint vectors corresponding to τ1 and τ2 are given by cτ1 = (τ1, τ1, τ0) =

(75, 75, 0) and cτ2 = (τ1, τ2, τ2) = (75, 200, 200). Note that, by convention, cτ0 = c0 =

(0, 0, 0) and cτ3 = c300 = (300, 300, 300). Also, for 1 ≤ r < τ1, τ1 ≤ s < τ2 and

τ2 ≤ t < 300, we have cr = (0, 0, 0), cs = (75, 75, 0) and ct = (75, 200, 200). Figure

4.3.1(b) presents a visualisation of the segmentation provided by these changepoint

vectors. Each different shading represents a different segment.
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4.3.1(a): Multivariate time series with known
changepoints and affected variable sub-

sets.
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4.3.1(b): One possible visualisation of the seg-
mentation of the example time series
using the changepoint vector concept.

Figure 4.3.1: An example of a subset-multivariate time series and its segmentation
using the changepoint vector concept.

Note that this concept of changepoint vectors is only one possibility for segmenting

a time series under the subset-multivariate model. Other segmentations are conceiv-

able and equally valid. The proposed segmentation is preferred because the right-hand

side of each segment is ‘flat’, meaning that the segment can then be thought of as

‘closed-off’ for any following time-points.

4.3.2 Formulating a Penalised Cost Function

We now consider how a cost can be assigned to a multivariate time series under the

subset-multivariate model. In particular we focus on a scenario where the number

and locations of changepoints and affected variable subsets are unknown.

Suppose we have a p-variate series X which contains an unknown number of

changepoints (potentially zero), and the locations of these possible changepoints and

the subsets of variables in which they occur are unknown. As before, suppose that the

variables are uncorrelated and that the observations within the segments are i.i.d. and

independent of the those in other segments. We define Dj(·) as a generic additive cost

function for each variable j = 1, . . . , p which assigns a cost to a set of contiguous

i.i.d. univariate observations, and use I(·) to denote the indicator function.
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Since the changepoints’ number, locations and affected variables are unknown, we

might typically calculate the cost of this multivariate series under a range of different

potential segmentations. This permits us to decide which segmentations are most

suitable for the data. As the introduction of a changepoint into the model generally

provides a reduction in cost, it is possible to over-fit to the data. Hence, to avoid the

over-fitting of changepoints, it is necessary to penalise the addition of a changepoint

in the model through the addition of a penalty term.

We begin the presentation of this penalised approach by defining the size of a given

subset of variables. Define qτk to be the total number of elements of the changepoint

vector cτk which are equal to τk, so that

qτk :=
p∑
j=1

I(cjτk = τk).

Then qτk can be interpreted as the number of variables changing at τk, and are hence

affected by the change at τk. We can therefore define the penalised cost of X for the

case of unknown changepoint vectors c = (cτ0 , cτ1 , . . . , cτm , cτm+1) by

cost(X, c) + pen(c) =
m+1∑
k=1

 p∑
j=1

[
I(cjτk = τk)Dj(Xj

(cjτk−1+1):cjτk
)
]

+ αg(qτk)
+ βf(m)

(4.3.1)

Here the αg(qτk) term is a penalty to guard against over-fitting the number of variables

affected by the kth changepoint, and the βf(m) penalty term is to guard against over-

fitting the number of changepoints in the series. We assume that these two aspects

behave independently of one another. The functions g and f are increasing functions

of their respective parameters, and both α and β are positive constants which are

referred to as the penalty constants. We adopt this approach to explicitly allow for

a greater degree of control regarding how the addition of changepoints is penalised

within the model.

The choice of the functions to use for g and f is itself an open question. However,

as is common in the literature, we take g(qτk) = qτk and f(m) = m. Informally, this
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value of f means that for every changepoint included in the model an extra β is added

to the cost function. In the case of no true changepoints, a single β is present due to

the ‘changepoint’ at the end of the data. Similarly, this value of g means that for a

given changepoint τk, an additional α is added to the cost function for each additional

variable which is said to contain the change at τk (in addition to the original β which

is added for initially detecting change). Equation (4.3.1) becomes

cost(X, c) + pen(c)

=
m+1∑
k=1

 p∑
j=1

[
I(cjτk = τk)Dj(Xj

(cjτk−1+1):cjτk
)
]

+ αqτk

+ β(m+ 1),

=
m+1∑
k=1

 p∑
j=1

[
I(cjτk = τk)Dj(Xj

(cjτk−1+1):cjτk
)
]

+ α
p∑
j=1

I(cjτk = τk)
+ β(m+ 1),

=
m+1∑
k=1


p∑
j=1

[
I(cjτk = τk)

(
Dj(Xj

(cjτk−1+1):cjτk
) + α

)]
+ β

 . (4.3.2)

The optimal changepoint vectors for the given multivariate time seriesX are those

which minimise cost(X, c) + pen(c). Therefore, the detection of changepoints (and

corresponding subsets) in the subset-multivariate changepoint model corresponds to

the minimisation of (4.3.2). In the next section we introduce methodology which is

capable of performing this minimisation exactly.

4.4 Detecting Subset-Multivariate Changepoints

Suppose we wish to identify the subset-multivariate changepoint model for a given

multivariate time series which is optimal with respect to the cost function Dj being

used. We therefore need to minimise the penalised cost function (4.3.2) over all

possible changepoints and all possible subsets of variables for each changepoint. With

a view to utilising the dynamic programming techniques which have been successfully

applied in other multivariate changepoint detection methods (Lavielle and Teyssiere

(2006), Maboudou-Tchao and Hawkins (2013)), we propose a method which we call

Subset Multivariate Optimal Partitioning (SMOP).



CHAPTER 4. MULTIVARIATE CHANGEPOINT DETECTION 82

The aim of the proposed method is to relate the optimal (i.e. minimum) penalised

cost of the series up to the current changepoint vector, to the optimal penalised cost

of the series up to the most recent distinctly-different changepoint vector. To this

end, consider a p-variate dataset Xcu = (X1
1:c1

u
, X2

1:c2
u
, . . . , Xp

1:cpu)′, where cu ∈ C̄u is

the vector of most recent changepoints in each variable up to (and including) time

u. This implies that the individual series for each of the variables may have differing

lengths. We assume that each variable is independent of the others (i.e. there is zero

cross-correlation), the observations are i.i.d. within each segment and the observations

in one segment are independent of those in all the other segments. Define F (cu) to be

the minimisation of the penalised cost (4.3.2) for Xcu . Also define Hcu to be the set

Hcu =


c(cu) = (cτ0 , cτ1 , . . . , cτm , cτm+1 = cu)′ :

0 = τ0 < τ1 < . . . < τm < τm+1 = u;

cτk ∈ C̄τk ∀ 1 ≤ k ≤ m+ 1;

cjτi ≤ cjτk ∀ i < k, j ∈ {1, . . . , p}


.

By construction, Hcu is the set of all possible matrices of the most recently observed

changepoints for each variable at each distinct τk up to and including τm+1 = u. In

addition, we make the following definitions for changepoint vectors c ∈ Cn, cr ∈ Cr
and cs ∈ Cs (with r < s ≤ n and cjr ≤ cjs for all j = 1, . . . , p):

• L(c) is the set of all previous changepoint locations occurring in any variable

prior to and including the corresponding c ∈ Cn; and

• M(c) = |L(c)| is the number of changepoint locations occurring in any variable

up to and including those in c ∈ Cn; and

• m(cr, cs) = |cs \ L(cr)|, so that m(cr, cs) represents the number of additional

changepoints which have occurred between cr and cs (including the changes

occurring at cs, but not those at cr).

Proposition 4.4.1 now demonstrates how the minimum cost of Xcu can be calculated

in terms of the minimum cost of Xct , where t < u and cjt ≤ cju for all j = 1, . . . , p.
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Proposition 4.4.1. For a given changepoint vector cu ∈ Cn (where u = max(cu)),

we have

F (cu) = min
0≤t<u

 min
ct∈{C̄t : cjt≤c

j
u ∀ j}

F (ct) +
p∑
j=1

[
I(cjt 6= cju)

(
Dj(Xj

(cjt+1):cju
) + α

)]

+m(ct, cu)β
. (4.4.1)

Proof. See Appendix A.1 for a full proof.

Hence, finding the minimum value of the penalised cost function (4.3.2) for the

whole time series X = (X1,X2, . . . ,Xn) over all possible changepoints and all pos-

sible subsets is equivalent to finding F (cn), recalling that cn = (n, n, . . . , n). This is

obtained by recursively calculating F (cu) for every possible cu ∈ C̄u in turn for each

u = 1, 2, . . . , n.

Suppose we have some time-point t ∈ [1, n − 1], a corresponding changepoint

vector ct ∈ C̄t, and some previous changepoint vector c ∈ Ct such that cj ≤ cjτ∗ for all

variables j ∈ [1, p]. Then we define hct(c) as

hct(c) = F (c) +
p∑
j=1

[
I(cj 6= cjt)

(
Dj(Xj

(cj+1):cjt
) + α

)]
+m(c, ct)β. (4.4.2)

Intuitively, hct(c) denotes the minimum cost to ct under the assumption that c is the

vector of the optimal most-recent changepoints prior to ct. In order to calculate the

minimum penalised cost of the whole series, it is necessary to calculate hct(c) for every

c ∈ Ct for every t ∈ [1, n− 1] and ct ∈ C̄t. It is readily shown that if p > 1, then for a

given t ∈ [1, n− 1] there are (t+ 1)p − tp elements of C̄t and (t+ 1)p elements of Ct.

Therefore, this is an O
(∑n−1

t=1 [((t+ 1)p − tp)× (t)p × p]
)

= O (pn2p) calculation.

We introduce an algorithm for solving this recursion which takes a similar approach

to the Optimal Partitioning method of Jackson et al. (2005). We refer to our algorithm

as Subset Multivariate Optimal Partitioning (SMOP). To describe this algorithm,

we first define the following set for a given τ ∗ ∈ {1, . . . , n}, cτ∗ ∈ C̄τ∗ and τ ∈
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{1, . . . , τ ∗ − 1}:

Cτ (cτ∗) =
{
c ∈ Cτ : cj < cjτ∗ ∀ j ∈ [1, p]

}
, (4.4.3)

so that Cτ (cτ∗) contains all changepoint vectors in Cτ which are ‘before’ cτ∗ . Steps

for the implementation of SMOP are given in Algorithm 3.

Algorithm 3: Subset Multivariate Optimal Partitioning (SMOP)
Input : A multivariate time series X = (X1,X2, . . . ,Xn) containing p

variables, a univariate cost function Dj(·) for each variable j, and
penalty constants α and β.

Initialise: Set F (c0) = 0, L(c0) = ∅ and c(c0) = ∅.
1 begin
2 for τ ∗ ∈ {1, . . . , n} do
3 for cτ∗ ∈ C̄τ∗ do
4 for c ∈ Cτ∗−1(cτ∗) do

5 Set hcτ∗ (c) = F (c) +
p∑
j=1

[
I(cj 6= cjτ∗)

(
Dj(Xj

(cj+1):cj
τ∗

) + α
)]

6 +m(c, cτ∗)β

7 Set F (cτ∗) = minc∈Cτ∗−1(cτ∗ ){hcτ∗ (c)}
8 Set c′ = arg minc∈Cτ∗−1(cτ∗ ){hcτ∗ (c)}
9 Set L(cτ∗) = L(c′) ∪ {c1

τ∗ , c
2
τ∗ , . . . , c

p
τ∗}

10 Set c(cτ∗) =
(
c(c′), cτ∗

)

Output : The sequence of most-recent changepoint vectors recorded in
c
(
(n, n, . . . , n)

)
.

The strength of the SMOP algorithm is its ability to obtain exactly the subset-

multivariate segmentation of a series which is optimal with respect to the cost function

and penalty values used, in terms of both the locations in time at which any changes

occur and the subset of variables which are affected. This is possible as no assump-

tions are made regarding whether or not certain variables (or a certain number or

proportion of variables) contain a change. However, due to the exploding size of the

Ct and C̄t sets, particularly for large t, execution of the method becomes increasingly
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computationally intensive even for relatively small n.

We note that if one wishes to consider only fully-multivariate changepoints within

the SMOP algorithm, so that only changepoint vectors of the form (τ ∗, τ ∗, . . . , τ ∗) are

considered, then the SMOP algorithm becomes equivalent to performing the PELT

algorithm of Killick et al. (2012) using a multivariate cost function (instead of a

univariate) with a penalty of pα + β (where α and β are the penalty constants used

within SMOP). Hence, in such a case the computational burden of SMOP would be

equivalent to that of PELT.

4.5 Simulation Study

We examine SMOP through the execution of a simulation study, the aim of which

is to demonstrate the characteristics of the method and its performance in a range

of different scenarios. Six different scenarios are considered, each of which has been

constructed to reflect a certain situation that illustrates interesting features of SMOP

or allows for interesting comparisons with other leading changepoint detection meth-

ods. We note that due to the computational intensity of the approach, in general we

consider time series of length n = 100 containing p = 3 variables.

In each scenario we assume that the individual variables are piecewise Normally

distributed (except in indicated cases), i.i.d. within their segments, that each segment

is independent of the others and that there is zero cross-correlation between the

variables. All changes are either in mean, variance, or both, with the appropriate

cost functions being used in each case. For each changepoint, only a certain subset

of variables in the series change. A total of 100 replications are simulated for each

scenario. Full details of the scenarios considered and their corresponding results are

outlined in Section 4.5.1 below.

For each application of SMOP, the number and locations of the detected change-

points are recorded along with the corresponding subsets of affected variables. To

assess the performance of SMOP on each scenario, we consider three different met-

rics:



CHAPTER 4. MULTIVARIATE CHANGEPOINT DETECTION 86

• the average number of changepoints estimated;

• the average V-measure (Rosenberg and Hirschberg, 2007) of the segmentations

produced;

• the density of estimated changepoints at each time-point in each variable.

The V-measure, proposed by Rosenberg and Hirschberg (2007), is a quality-of-fit

measure which rates the quality of a given segmentation (compared to the true seg-

mentation) on the [0, 1] scale. This rating depends on how successful the segmentation

is in satisfying the criteria of homogeneity and completeness. These criteria assess

how well a segmentation assigns those, and only those, observations from a certain

true segment to a single estimated segment. A larger value indicates higher accuracy,

with a value of 1 indicating a perfect segmentation.

More specifically, V-measure can be calculated in the following manner. Suppose

that the true segmentation of a time series is denoted byRtrue = {r1
true, r

2
true, . . . , r

Ntrue
true },

so that ritrue denotes the ith true segment andNest denotes the number of true segments.

Similarly, suppose Rest = {r1
est, r

2
est, . . . , r

Nest
est } denotes some estimated segmentation

of the same series, with riest and Nest defined as equivalent for the true segment. De-

fine the set A = {aij : i = 1, . . . , Ntrue, j = 1, . . . , Nest} where aij is the number of

observations which lie in the true segment ritrue and the estimated segment rjest. Then

homogeneity U can be defined as

U =

 1 if H(Rtrue) = 0

1− H(Rtrue|Rest)
H(Rtrue) otherwise

, (4.5.1)

where

H(Rtrue|Rest) = −
Nest∑
j=1

Nest∑
i=1

aij
n

log aij∑Ntrue
i=1 aij

H(Rtrue) = −
Ntrue∑
i=1

∑Nest
j=1 aij

Ntrue
log

∑Nest
j=1 aij

Ntrue
.
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Similarly, completeness W can be defined as

W =

 1 if H(Rest) = 0

1− H(Rest|Rtrue)
H(Rest) otherwise

, (4.5.2)

where

H(Rest|Rtrue) = −
Ntrue∑
i=1

Nest∑
j=1

aij
n

log aij∑Nest
j=1 aij

H(Rest) = −
Nest∑
j=1

∑Ntrue
i=1 aij
Ntrue

log
∑Ntrue
j=1 aij

Ntrue
.

V-measure V is then calculated as the harmonic mean of homogeneity and complete-

ness:

V = U ×W
U +W .

The consideration of V-measure is useful since it takes into account both the

number and locations of changepoints, and the corresponding variables which are

affected. The measure is increasingly being used within the changepoint literature,

see for example Li et al. (2014).

Use of these measures provides a systematic measure of the quality of the segmen-

tations estimated by the method. In the next section we detail the seven different

scenarios examined and summarise the results of application of our procedure to each.

4.5.1 Scenario Details and Results

Details of the six scenarios considered are given below. For each scenario we present an

example time series, and illustrate the different segments under the subset-multivariate

changepoint model (a different colour indicates a different segment). The changepoint

locations are also highlighted: a red line indicates a change in mean, blue is a change

in variance and green is a change in both mean and variance.

The SMOP algorithm is applied to each of the seven scenarios. In each case, we



CHAPTER 4. MULTIVARIATE CHANGEPOINT DETECTION 88

use penalty values of α = 20 and β = 40, as these values demonstrated promising

results in initial testing. Other choices of α and β are equally valid. Across all

scenarios, we set the minimum distance between two consecutive changepoints to be

two time-points.

To illustrate the advantage of using SMOP to detect subset-multivariate change-

points, we also consider the application of a repeated-univariate approach and a fully-

multivariate approach. For the repeated-univariate approach, we apply the univariate

detection method PELT (Killick et al., 2012) independently to each variable in a se-

ries. For the fully-multivariate approach, we apply the E-Divisive method of Matteson

and James (2014). Chapter 2 discusses both PELT and E-Divisive in more detail.

For univariate PELT, we set the penalty to be our variable-specific penalty α+ 1
p
β,

where p is the number of variables in the series. This particular penalty is chosen to

be comparable with the penalisation within SMOP. For E-Divisive, the minimum

distance between any two changepoints is set to two. Otherwise, all parameters for

both methods are set to their default values. Both methods are implemented using

R (R Development Core Team, 2011). PELT is implemented using the changepoint

package (Killick et al., 2015) and E-Divisive is implemented using the ecp package

(James and Matteson, 2014).

For each simulation scenario, we record the average number of estimated change-

points and corresponding affected variable subsets, together with the average V-

measure of the resulting segmentations. These results are displayed in Table 4.5.1

for each model. The values in parentheses denote the standard errors of the corre-

sponding averages.

Below we describe each scenario in turn, also providing a brief discussion of the

results which we obtain after applying SMOP, the repeated-PELT approach and the

fully-multivariate E-Divisive method.

Scenario 1: Univariate Series A univariate series (i.e. p = 1) with a single change

in mean at the mid-point of the series, see Figure 4.5.1. The data for this scenario is
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Figure 4.5.2: An example of a replication of the data from Scenario 2.

simulated using the following model:

X1:50 ∼ N (0, 1), X51:100 ∼ N (20, 1).
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Figure 4.5.1: An example of a replication
of the data from Scenario 1.

The scenario is included to show that

SMOP can be applied in a univariate

context, and in this case the method

works in the same manner as PELT (Kil-

lick et al., 2012). Note Table 4.5.1 where

both SMOP and PELT produce the cor-

rect segmentation of the series for all

replications.

Scenario 2: Fully-Multivariate Series A single change which occurs in all vari-

ables at the same time, as in Figure 4.5.2. The data are simulated using:

X1:50 ∼ N




0

0

0

 ,


1 0 0

0 1 0

0 0 1



 , X51:100 ∼ N




20

20

20

 ,


1 0 0

0 1 0

0 0 1



 .

The results of this scenario (Table 4.5.1) demonstrate that SMOP performs as

expected for the traditional fully-multivariate changepoint scenario, with the segmen-

tations produced by the method being comparable to those of the fully-multivariate



CHAPTER 4. MULTIVARIATE CHANGEPOINT DETECTION 90

E-Divisive method.

Scenario 3: Changes with different affected variable subsets Changes in

both mean and variance (separately and together) which occur with differing affected

variable subsets. In this case the series consists of n = 500 observations from p = 2

variables. Figure 4.5.3 shows an example series for this scenario. The model is given

by:

X1:100 ∼ N


 0

0

 ,
 1 0

0 1


 , X101:150 ∼ N


 0

0

 ,
 100 0

0 1


 ,

X151:200 ∼ N


 0

20

 ,
 100 0

0 1


 , X201:300 ∼ N


 20

20

 ,
 100 0

0 1


 ,

X301:320 ∼ N


 20

20

 ,
 1 0

0 1


 , X321:420 ∼ N


 20

20

 ,
 1 0

0 100


 ,

X421:500 ∼ N


 0

0

 ,
 100 0

0 1


 .
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Figure 4.5.3: An example of a replication
of the data from Scenario 3.

This scenario investigates the per-

formance of SMOP for series where

subset-multivariate changes are present,

with differing affected variable subsets

for each change. Table 4.5.1 shows

that SMOP provides an excellent seg-

mentation across all replications. This

highlights the additional benefit of the

subset-multivariate approach adopted by

SMOP, which not only detects univariate and fully-multivariate changepoints, but

also allows for changes occurring in subsets of the variables within the series. Con-

versely, E-Divisive performs poorly due to its assumption that all changes occur in

all variables, and repeated-univariate PELT has reduced accuracy due to the lack
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of multivariate consideration. This is because repeated-univariate PELT only itera-

tively applies PELT to single variables independently, and hence does not contain a

penalisation component which takes into account multiple variables simultaneously.

Scenario 4: Changes of different magnitude This scenario considers series

containing three variables. In the first variable, no change occurs. In the second and

third variables, single changes in variance occur with relatively small and relatively

large magnitudes, respectively. An example of this scenario is given in Figure 4.5.4.

Specifically, the data are simulated using:

X1:50 ∼ N




0

0

0

 ,


1 0 0

0 1 0

0 0 1



 , X51:100 ∼ N




0

0

0

 ,


1 0 0

0 15 0

0 0 100



 .
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Figure 4.5.4: An example of a replication
of the data from Scenario 4.

This scenario is considered to high-

light the advantage of using SMOP to

detect subset-multivariate changepoints

over the repeated application of univari-

ate methods or the application of a fully-

multivariate method.

As expected, Table 4.5.1 and Figure

4.5.5 shows that SMOP provides the best

segmentations on average out of the three methods. Repeated application of PELT

generally over-estimates the number and changepoints and has less certainty in their

locations, because such an approach is unable to utilise the multivariate nature of the

changes. In particular, there is less certainty for the more subtle change in variable

2. However, this approach does not detect spurious changes in variable 1, where no

change in occurring. This is not true for the fully-multivariate E-Divisive method,

which estimates many such spurious changes due to its assumption of changes occur-

ring in all variables. In other words, whilst this approach does capitalise on multivari-

ate structure, it can lead to poor segmentations, particularly in scenarios where only
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4.5.5(a): SMOP
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4.5.5(b): Repeated univariate PELT
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4.5.5(c): Fully-Multivariate PELT

Figure 4.5.5: Figures showing the frequency of changepoints estimated at each
time-point by three different methods applied to Scenario 4.

a small number of the variables are changing. SMOP is able to harness multivariate

power without a fully-multivariate assumption.

Scenario 5: Changes in different properties at a single time-point This

scenario is simulated using:

X1:50 ∼ N




0

0

0

 ,


1 0 0

0 1 0

0 0 1



 , X51:100 ∼ N




20

0

0

 ,


1 0 0

0 1 0

0 0 100



 .

This case is considered to investigate the situation where different properties are

changing in different variables.
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Figure 4.5.6: An example of a replication
of the data from Scenario 5.

The superior performance of SMOP

in this scenario, exhibited in Table 4.5.1,

highlights its ability to detect changes

occurring in multiple different properties

in different variables at the same time.

Such a feature is especially useful for

practical situations where the variables are related but may react differently to

changes.

Scenario 6: Variables with differing distributional forms Here we consider a

situation where the variables within the series have different distributional forms. In

this case, two of the variables (1 and 3) follow a Normal distribution, and the second

variable follows a Gamma(k, θ) distribution. This is reflected in the cost function

used. The data for this model is simulated as follows:

X1
1:30 ∼ N (0, 1), X1

31:100 ∼ N (10, 20),

X2
1:30 ∼ Gamma(1, 1), X2

31:70 ∼ Gamma(10, 1), X2
71:100 ∼ Gamma(1, 1),

X3
1:70 ∼ N (0, 1), X3

71:100 ∼ N (10, 20).

Figure 4.5.7 illustrates a realisation of a time series produced under this scenario.
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Figure 4.5.7: An example of a replication
of the data from Scenario 6.

Note that, following Chen and Gupta

(2000), we fix the scale parameter of the

Gamma distributions, denoted by θ, as

θ = 1 as this is necessary to perform

changepoint detection for a Gamma dis-

tribution. Further, we note that the

mean and variance of a Gamma distri-

bution are given by kθ and kθ2, respec-

tively. Hence, since both the mean and

variance terms contain the shape param-

eter k, then any distributional changes in a Gamma distribution must be in both
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mean and variance.

The results for this scenario in Table 4.5.1 illustrate that whilst SMOP is able to

perform reasonably well in this scenario, other methods cannot cope so easily.

The application of SMOP in these six scenarios demonstrates that it can be applied

to a wide range of situations, and is not limited to any particular distribution. The

results also reiterate the advantage of using SMOP for detecting subset-multivariate

changepoints over application of repeated-univariate or fully-multivariate methods.

Metric Scenario SMOP PELT E-Divisive

Average
V-Measure

1 1 (0) 1 (0) 0.99 (0.00457)
2 1 (0) 1 (0) 0.988 (0.00503)
3 0.996 (0.000199) 0.993 (0.000533) 0.762 (0.000532)
4 0.991 (0.00231) 0.893 (0.0103) 0.464 (0.00302)
5 1 (0) 0.944 (0.00842) 0.469 (0.00297)
6 0.919 (0.0117) 0.912 (0.00719) 0.565 (0.000883)

Average
Number of

Changepoints

1 1 (0) 1 (0) 1.06 (0.00278)
2 1 (0) 1 (0) 1.09 (0.00404)
3 6 (0) 6.07 (0.00256) 5.01 (0.00522)
4 1 (0) 1.51 (0.00502) 1.06 (0.00239)
5 1 (0) 1.31 (0.00465) 1.12 (0.00383)
6 2.01 (0.001) 2.93 (0.00807) 2.02 (0.002)

Table 4.5.1: The average V-measure of the segmentations and the average number of
changepoints estimated by SMOP for each model. The values in

parentheses denote the standard error of the corresponding average
V-measure and average number of changepoints.

Given the positive results of SMOP demonstrated in this simulation study, its

application is now considered to a dataset consisting of annual river flows to search

for any possible changes in these flows.

4.6 Analysis of Quebec River Flows

The SMOP algorithm is now applied to a dataset containing the annual January to

June steamflow amounts for four rivers in Quebec (Baleine, Churchill Falls, Manicoua-

gan and Romaine) from 1972 to 1994. The flow measurements have been recorded

in litres per kilometre-squared per second (L/km2s). This dataset has previously
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been analysed by Perreault et al. (2000) and was originally published by the Centre

d’Expertise Hydrique Quebec. The dataset has been made available in the bcp pack-

age (Erdman and Emerson, 2007), from which the data has been obtained. A plot of

this data is shown in Figure ??.
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Figure 4.6.1: The annual January to June streamflow amounts for four rivers in
Quebec from 1972 to 1994, measured in L/(km2s).

Interest lies in detecting changes in the streamflow of the rivers. Whilst Per-

reault et al. (2000) search only for shifts in the mean level, visual inspection of the

data suggests that changes may be occurring in the mean and/or variance of the

flow. Therefore, we consider changes in both properties. Inspection of the series for

Churchill Falls may lead to the interpretation that it could be non-stationary near

the beginning. If this is believed to be the case, then a non-stationary analysis of

this univariate series could be performed, for example using the Locally Stationary

Wavelet process (see Nason et al. (2000) for more details). The low-frequency compo-

nents could then be filtered out to remove this behaviour and leave the information

regarding the mean and variance relatively unaffected. However, in this instance we

take the view that this apparent behaviour is simply due to the stochastic nature of

the observations, and that the series will be segmented appropriately by a changepoint



CHAPTER 4. MULTIVARIATE CHANGEPOINT DETECTION 96

detection procedure.

Since it is feasible that some rivers may be affected by a change whilst others

may not, it is prudent to search for subset-multivariate (rather than strictly fully-

multivariate) changes. Therefore, the SMOP algorithm is applied to the data in

an effort to detect such changes. To draw further comparisons with the repeated-

univariate and fully-multivariate approaches, we apply the univariate PELT algorithm

independently to each channel, as well as performing fully-multivariate PELT on

the series. For each of the three methods we use a cost function which assumes a

Normal likelihood with changes occurring in both mean and variance. For SMOP,

we set penalty values α = 2 log n and β = 2 log p log n. For these values of α and β,

repeated-univariate PELT is applied with a variable-specific penalty of α + 1
p
β, and

fully-multivariate PELT is applied with penalty pα + β. These penalty choices are

made for similar reasons to those discussed in Section 4.5.

The results of applying SMOP, repeated-univariate PELT and fully-multivariate

PELT to these Quebec river flows are presented in Figures 4.6.2, 4.6.3(a) and 4.6.3(b)

respectively.
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Figure 4.6.2: The results of applying SMOP to the Quebec river flows. The blue
vertical lines represent changepoint locations, and the red horizontal

lines represent the corresponding means of those segments.

We see from Figure 4.6.2 that SMOP estimates two changepoints in the series, at

the years 1975 and 1984. These two changes affect Churchill Falls and Romaine, and
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4.6.3(a): Repeated-univariate PELT results.
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4.6.3(b): Fully-multivariate PELT results.

Figure 4.6.3: The results of applying repeated-univariate PELT and
fully-multivariate PELT to the Quebec river flows. The blue vertical

lines represent changepoint locations, and the red horizontal lines
represent the corresponding means of those segments.

no changepoints are estimated in the river flows of Baleine and Manicouagan. We note

that the detected locations correspond to the findings of Perreault et al. (2000), who

search for a single changepoint and estimate one at 1984. The multiple changepoint

approach of SMOP allows the detection of the additional changepoint.

Comparatively, as can be seen in Figure 4.6.3(a), repeated-univariate PELT also

detects a change at 1984, but it detects the change in Baleine, Manicouagan and

Romaine, and not Churchill Falls. In addition, the method does not detect a change

at 1975 in Churchill Falls or Romaine, and instead detects additional changepoints at

varying locations in the flows of the four rivers. These differing locations of changes

in the rivers compared to those detected by SMOP is due to the lack of a multivariate

consideration, and so multivariate power cannot be harnessed across the four series.

Hence, the changes are detected independently.

Similar to SMOP, fully-multivariate PELT detects a changepoint at 1984, but due

to the fully-multivariate assumption the change is detected across all rivers. A change-

point is also detected at 1976 across all rivers. This is near to the 1975 changepoint

detected by SMOP, but has likely been placed slightly different by fully-multivariate

PELT due to the necessity of estimating the changepoints in all variables.

Therefore, the results of performing SMOP, repeated-univariate PELT and fully-
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multivariate PELT reflect the results of Scenario 5 from the simulation study in Sec-

tion 4.5. Repeated-univariate PELT seems to overestimate the number of change-

points (which can lead to poor estimation of the true change locations), and fully-

multivariate PELT generally estimates the correct locations but overestimates the

number of affected variables (which, if severe, could begin to affect the location esti-

mates).

Given the positive results of SMOP in this applied context, the next section gives

consideration to techniques which have the potential to reduce the computational cost

of the procedure.
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4.7 Pruning Changepoint Vectors

While the simulation study in Section 4.5 and the practical application to Quebec

River data in Section 4.6 demonstrates the good performance of SMOP in terms

of accuracy, the method is limited by the fact that its computational cost is non-

polynomial. Specifically, as discussed in Section 4.4, for p-variate series (with p > 1)

of length n SMOP has a computational complexity of O(pn2p). Therefore, it would be

desirable if we could reduce the computational cost of the SMOP algorithm without

sacrificing its exactness. To this end, there are two possible avenues of exploration:

1. Utilise pruning techniques which remove only the changepoint vectors that are

guaranteed to not lie in the optimal solution under the subset-multivariate

changepoint model. This is the approach taken by Killick et al. (2012) in the

univariate setting. Here the search remains exact.

2. Use approximation techniques which reduce the amount of changepoint vectors

considered by the algorithm. These are likely to result in a significant improve-

ment in speed, but at the expense of the search no longer being exact.

In this section we focus on the former and postpone treatment of the latter to Chapter

5. Our aim is to utilise the concept of inequality-based pruning introduced by Killick

et al. (2012) in an attempt to reduce the number of changepoint vectors required to be

considered within the calculations of the method, whilst still retaining the optimality

of the final set of changepoint locations and affected variables subsets produced.

We propose two types of inequality-based pruning in an effort to achieve this:

retrospective pruning, which prunes changepoint vectors which have been considered

previously but no longer need to be considered for future time-points t > τ ∗; and sub-

set pruning, which prunes the changepoint vectors which do not need to be considered

at the current time-point τ ∗ being investigated.
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4.7.1 Retrospective Pruning

As discussed in Section 4.3.2, a key assumption within SMOP is that the addition

of a changepoint into a model will reduce the cost of the model. In order to make

this assumption more formal, we generalise our notation so that Xcr:ct denotes the

sequence of multivariate data between the changepoint vectors cr and ct, including

ct but not including cr. The cost for the multivariate data segment Xcr:ct is then

defined by

cost(Xcr:ct , c) =
p∑
j=1

[
I(cjr 6= cjt)Dj(Xj

(cjr+1):cjt
)
]
. (4.7.1)

Henceforth, for ease of notation, we will drop the dependence of cost(·) on c, although

it is obviously still implicit.

For the time-points u < v < w, suppose we have the three changepoint vectors

cu ∈ C̄u, cv ∈ C̄v and cw ∈ C̄w such that cju ≤ cjv ≤ cjw for each j ∈ [1, p], and cju < cjv

and cjv < cjw for at least one j ∈ [1, p]. Analogous to Killick et al. (2012) in the

univariate setting, we assume that there exists a constant K such that for all cu, cv
and cw as described we have

cost(Xcu:cv) + cost(Xcv :cw) +K ≤ cost(Xcu:cw). (4.7.2)

We wish to establish whether it is possible to identify circumstances within which

elements of C̄τ can be ‘pruned’ from consideration when finding the optimal last

changepoint vector prior to some changepoint vector cτ∗ , for a given τ ∗. Indeed, such

circumstances exists and this is demonstrated in Proposition 4.7.1.

Proposition 4.7.1. Suppose that assumption (4.7.2) holds and that there exists an-

other constant k such that

k = K − (α + β)p. (4.7.3)
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Suppose further that

F (cu) + cost(Xcu:cv) + k ≥ F (cv) (4.7.4)

holds for some cu ∈ C̄u and cv ∈ C̄v for time-points u < v with cju ≤ cjv for all j. Then

at a changepoint vector cw for some future time w (such that cjw ≥ cjv ≥ cju ∀ j), cu
can never be the optimal last changepoint vector prior to cw.

Proof. See Appendix A.2 for a full proof.

Proposition 4.7.1 implies that if equation (4.7.4) holds, then for some changepoint

vector cw (as described), the best segmentation with the most recent changepoint

vector prior to cw occurring at cv will be better than any segmentation that has its

most recent changepoint vector (prior to cw) at cu.

Many commonly used cost functions will satisfy assumption (4.7.2). For example,

if the cost function is the negative log-likelihood, then we can take K = 0. To make

use of calculations already performed in the SMOP algorithm, in practice we prune

the cu which satisfy the following equivalent condition:

F (cu) + cost(Xcu:cv) + α
p∑
j=1

I(cju 6= cjv) +m(cu, cv)β + k

≥ F (cv) + α
p∑
j=1

I(cju 6= cjv) +m(cu, cv)β. (4.7.5)

Such a pruning condition is important as it allows certain candidate changepoint

vectors to be discarded, thereby removing computations which are not required in

order to obtain the final set of optimal changepoint vectors. Since this pruning removes

changepoint vectors which have previously been considered, then we refer to this type

of pruning as retrospective pruning.

4.7.2 Subset Pruning

We have seen how retrospective pruning can be used to remove previous changepoint

vectors from future considerations. However, supposing we are at some current time-
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point τ ∗ within the algorithm, this method of pruning does not prune any of the

cτ∗ ∈ C̄τ∗ which each have to be considered at τ ∗. Pruning these vectors would

reduce the amount of vectors cτ∗ ∈ C̄τ∗ for which hcτ∗ (c) has to be calculated for

each c ∈ Cτ∗−1(cτ∗). Within this section we introduce further theory which allows for

the pruning of such vectors at each time-point τ ∗, which we refer to herein as subset

pruning.

Before continuing, we define some new notation in order to accommodate this

theory. We use fj(t) to denote the minimum cost from time 0 up to time t in variable

j, including the α penalties but not the β penalties. We exclude these because fj(t)

represents a univariate cost, whereas β represents a multivariate penalty. Also, recall

that for some changepoint vector c ∈ Cn, M(c) is the number of changepoint locations

occurring in any variable up to and including those in c. Hence, for some changepoint

vector (t1, t2, . . . , tp), we can decompose F (·) as follows:

F
(

(t1, t2, . . . , tp)
)

=
p∑
j=1

fj(tj) + βM
(

(t1, t2, . . . , tp)
)
.

Further, for a given J ∈ {1, . . . , p}, we use C̄J
τ∗ to denote the distinct subsets of C̄τ∗

such that C̄J
τ∗ contains only the cτ∗ ∈ C̄τ∗ which have J variables changing at time

τ ∗, so that ∑p
j=1 I(c

j
τ∗ = τ ∗) = J . This can be expressed by

C̄J
τ∗ =

cτ∗ ∈ C̄τ∗ :
p∑
j=1

I(cjτ∗ = τ ∗) = J

 . (4.7.6)

Note that C̄p
τ∗ = {(τ ∗, τ ∗, . . . , τ ∗)}. For ease of notation, we define P to be the set of

all variables, so that P = {1, . . . , p}.

The motivation behind subset pruning is the consideration of the following sce-

nario. Suppose that we have some p-variate series X of length n, time-points w and

τ ∗ such that τ ∗ < w, and some cw ∈ C̄w. Suppose further that we make the assump-

tion that the minimum cost to cw from the changepoint vector (τ ∗, τ ∗, . . . , τ ∗) is lower

than the minimum cost from all changepoint vectors cJ ∈ C̄J
τ∗ , for some J ∈ P with

J < p. Given this, our aim is to determine whether or not the minimum cost from
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(τ ∗, τ ∗, . . . , τ ∗) to cw is lower that the minimum cost from all ci ∈ C̄i
τ∗ , for i < J , to

cw. If such a property holds true, then this would allow for the pruning of different

subsets of affected variables, depending on the number of variables they contain which

are changing at τ ∗.

We will see in the following proposition that this characteristic does indeed hold

under certain conditions. Before examining this result, it is necessary to introduce

some further notation. For a given time-point τ ∗ and changepoint vector cτ∗ , define

Pτ∗(cτ∗) to be the set of variable indices of cτ∗ such that cjτ∗ = τ ∗, so that |Pτ∗(cJ)| = J

for each cJ ∈ C̄J
τ∗ . That is,

Pτ∗(cτ∗) =
{
j ∈ P : cjτ∗ = τ ∗

}
. (4.7.7)

Finally, for a given cτ∗ ∈ C̄J∗
τ∗ , for J < J∗ define the following set:

EJ
τ∗(cτ∗) =

{
c ∈ C̄J

τ∗ : cj ≤ cjτ∗ ∀ j ∈ P
}
, (4.7.8)

so that EJ
τ∗(cτ∗) is the set of previous time-point vectors which are ‘viable’ for being

changepoint vectors prior to cτ∗ . Proposition 4.7.2 establishes that, under certain

conditions regarding the changepoint vectors with one variable changing at some time-

point τ ∗, then we can prune the changepoint vectors which have i variables changing

at τ ∗.

Proposition 4.7.2. Suppose that for some J ∈ {1, . . . , p} and each cJ ∈ C̄J
τ∗, we

have for every cJ−1 ∈
{
EJ−1
τ∗ (cJ) : cjJ−1 = cjJ ∀ j ∈ P \ Pτ∗(cJ)} that

hcw(cJ) < hcw(cJ−1) (4.7.9)

for some future vector cw ∈ C̄w, where w > τ ∗.

Suppose further that we have changepoint vectors {cJ−1,j∗1 , cJ−1,j∗2 , . . . , cJ−1,j∗i } ∈

EJ−1
τ∗ (cJ) such that for each x = 1, . . . , i, we have c

j∗x
J−1,j∗x = tj∗x and c

j∗x
J = τ ∗ (with

tj∗x < τ ∗), and cjJ−1,j∗x = cjJ for all j ∈ {P \ Pτ∗(cJ)}.
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Then if it holds that (i− 1)M(cJ) ≥ ∑i
x=1M(cJ−1,j∗x), we have

hcw(cJ) < hcw(cJ−i) (4.7.10)

for every cJ−i ∈ {EJ−i
τ∗ (cJ) : cjJ−i = cjJ ∀ j ∈ P \ Pτ∗(cJ)}, i = 2, . . . , J − 1.

Proof. See Appendix A.3 for a full proof.

Proposition 4.7.2 implies that we do not need to calculate any of the hcw(cJ−i) for

any cJ−i. Hence, these cJ−i can be ‘pruned’ from our considerations for cw. Otherwise,

it is not necessarily true that hcw(cJ) < hcw(cJ−i), and so we are not able to use such

an inequality for pruning purposes.

4.7.3 Practical Applicability of Pruning

The practical applicability of the pruning techniques presented in Sections 4.7.1 and

4.7.2 is not as straightforward as it may first appear. In fact, as we establish below,

the computational complexity introduced by the implementation of pruning outweighs

the benefits provided.

Retrospective Pruning While retrospective pruning allows for a potential reduc-

tion in the number of previous changepoint vectors to be considered at each iteration

of the algorithm, both additional calculations and additional storage are required to

perform the pruning in practice. The cost of these additional calculations and storage

outweigh the benefits of retrospective pruning.

This effect is due to two main factors. Firstly, for the storage costs, practically

implementing the retrospective pruning requires the creation of a boolean matrix

which holds the information about which previous changepoint vectors are pruned for

each possible changepoint vector. This matrix requiresO
(
(np+1)×(np+1)

)
= O(n2p)

storage, which is potentially much larger than the O
(
(p + n)np

)
storage required

without pruning.

Secondly, for the computation costs, for every iteration of SMOP (that is, each

cτ∗ ∈ C̄τ∗ for each τ ∗ ∈ {1, . . . , n}) each changepoint vector being considered has
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different ‘valid’ prior changepoint vectors. Therefore, when using retrospective prun-

ing, in addition to checking which prior vectors are valid it is necessary to perform

an additional check to determine which of these vectors have been pruned previously.

Such checking requires an additional O(pn2p−1) calculations. Therefore, since the

computational complexity of SMOP without any pruning is O(pn2p) (for n > p), then

even for moderate values of p the use of retrospective pruning has minimal effect on

reducing the number of calculations in practice. Combined with the vastly increased

storage required to prune, this implies that these additional computation and storage

costs outweigh the advantages of retrospective pruning.

Subset Pruning For subset pruning to be applicable to the cJ−i ∈
{
EJ−i
τ∗ (cJ) :

cjJ−i = cjJ ∀ j ∈ P \ Pτ∗(cJ)
}

, the condition that

(i− 1)M(cJ) ≥
i∑

x=1
M(cJ−1,j∗x)

is required to be true for the cJ and cJ−1,j∗x as described in Section 4.7.2. In practice,

this condition needs to be performed for each set of changepoint vectors {cJ−1,j∗1 ,

cJ−1,j∗2 , . . . , cJ−1,j∗i } which correspond to each of the cJ−i. Determining this set of

corresponding vectors for each cJ−i is itself time consuming, and this needs to be

done for all cJ−i for each i = 2, 3, . . . , J − 1. This can result in a very large number of

additional considerations, particularly as cJ moves towards the end of the multivariate

series. In terms of the comparison itself, it is not intuitively clear as to how often

pruning will be performed, and the condition is highly dependent on the cJ−i vector of

interest (and hence the corresponding {cJ−1,j∗x}ix=1 vectors). Due to this obscurity and

the seemingly very large number of additional calculations likely required to perform

subset pruning, for potentially little or no improvement, we do not implement it in

the SMOP algorithm.
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4.8 Concluding Remarks

We have considered the problem of detecting changes which occur in subsets of the

observed variables within a multivariate time series. Our aim has been to obtain both

the changepoint locations and the corresponding subsets of affected variables. To

this end, we have formalised the concept of ‘changepoint vectors’, which encapsulate

information regarding both of these entities. A novel exact search method has been

proposed which obtains the optimal changepoint vectors for a given multivariate time

series, via the minimisation of a penalised cost function. No other method in the

changepoint detection literature currently provides such an exact search under this

model. Simulation results demonstrate the advantages of using SMOP over other

possible approaches to this problem, and illustrate how it can be applied to a wide

range of scenarios.

Producing such optimal estimates is an NP-hard problem. In an attempt to reduce

the computational complexity of the SMOP algorithm, we have tried to emulate the

success of Killick et al. (2012) in the univariate context and utilize inequality-based

pruning techniques to reduce the amount of changepoint vectors which need to be

considered in the procedure. However, we have demonstrated that such pruning is

not practically viable and so do not implement it in the algorithm. Therefore, in

Chapter 5 we will focus our attention on the use of approximation techniques which

allow the algorithm to consider only those changepoint vectors which are likely to be

present in the optimal set of changepoint vectors.



Chapter 5

Approximate Segmentation of

Multivariate Time Series

5.1 Introduction and Motivation

The Subset Multivariate Optimal Partitioning (SMOP) algorithm, proposed in Chap-

ter 4, is a multivariate changepoint detection procedure which obtains the locations

of changes and identifies the corresponding affected variable subsets. This is achieved

through the optimisation of a penalised cost function using an exact search. While

the exact nature of this search method is of theoretical interest, the large volume of

calculations required by SMOP means that it is computationally too expensive to be

used in many practical applications. This is particularly true in cases where datasets

contain a large number of observations from many different variables, such as in the

analysis of electroencephalograms (EEG) (Kirch et al., 2015) and the detection of

DDoS attacks in network traffic data (Lung-Yut-Fong et al., 2011a). These scenarios

require a method which is capable of segmenting a multivariate time series within

reasonable computational time. Therefore, in this chapter we focus on introducing

an approximation of the SMOP algorithm that substantially reduces the search space

within the dynamic program, and seek to consider the impact which this has on the

accuracy of the resulting estimates.

As examined in Chapter 2, we are not the first to use approximations when esti-

107



CHAPTER 5. APPROX. SEGMENTATION OF MULTIVAR. TIME SERIES 108

mating the changepoint locations under the subset-multivariate model. In particular,

the binary segmentation approach of Jeng et al. (2013) uses a global test statistic

which only accepts contributions from variables whose variable-specific statistics ex-

ceed some threshold. Not only does this reduce the spurious influence from unaffected

variables, but also shortens the computation time by removing unnecessary calcula-

tions. Similarly, Maboudou-Tchao and Hawkins (2013) reduce the search space of

their dynamic program. They initially assume that any considered change affects all

variables, then use post-processing hypothesis tests to identify which variables are

actually affected for each estimated changepoint. The work presented in this chapter

demonstrates how equivalent ideas can be used in this setting.

We propose two stages of pre-processing which allow for a substantial reduction

in the size of the search space considered by SMOP. The first of these involves a

reduction in the number of time-points considered as possible changepoints. This is

performed by preliminarily identifying ‘likely’ changepoint locations in each variable,

and considering only these such time-points as possible changepoint locations within

the SMOP algorithm. The second stage reduces the number of affected variable

subsets to be considered for each possible changepoint.

The remainder of this chapter is organised as follows. Section 5.2 provides detail

on how both the number of potential changepoints and affected variable subsets to be

considered within SMOP can be reduced, and presents a new version of the SMOP

algorithm which includes these approximation steps. Section 5.3 summarises the re-

sults of a simulation study which illustrates the behaviour of this approximate SMOP

algorithm, and compares its performance when using each of the two different approx-

imation mechanisms for obtaining possible affected variable subsets. The scalability

of the algorithm for datasets of increasing size is also investigated. The performance of

this computationally tractable algorithm is also demonstrated on an acoustic sensing

data set in Section 5.4. This approximate SMOP is then compared and contrasted

with the original SMOP method through an application of both to the annual flow

measurements of four rivers in Quebec (this dataset was first considered in Section

4.6). Finally, the possibility of incorporating additional computation-saving logic into
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the algorithm when certain structure is present in the changepoints is discussed, along

with the benefits and shortcomings of such an implementation.

5.2 Search Space Reduction

In order to improve the practical applicability of SMOP, it is necessary to reduce the

size of the search space considered. This can be achieved by considering the change-

point vectors which are likely to be optimal under the subset-multivariate model. This

translates into considering only candidate changepoint locations and affected variable

subsets which are in some sense plausible.

5.2.1 Reducing Possible Changepoint Locations and Affected

Variables

To reduce the number of possible changepoint locations considered by the SMOP

algorithm, and the number of corresponding subsets of affected variables, we aim to

consider only changepoints and affected variable subsets which are likely to appear

in the final segmentation provided by SMOP. To obtain these values, we apply the

univariate changepoint detection method PELT (Killick et al., 2012) to each individ-

ual variable of the series. Since PELT is an exact (univariate) search method, the

changepoint locations it estimates in a given variable have a good possibility of being

estimated as changepoints in that variable by SMOP under the subset-multivariate

changepoint model. The penalty used within PELT is set to α, the variable-specific

penalty used in the multivariate penalised cost function (4.3.1). This choice is made

because α represents the minimum reduction in the cost function necessary to have a

chance of being detected as a changepoint in a given variable by SMOP.

More formally, suppose that PELT with penalty α has been applied to the p dis-

tinct univariate series constituting the multivariate series X1:n = {X1,X2, . . . ,Xn},

defined in Section 4.2. For each variable j (where ‘variable’ refers to a single chan-

nel of the multivariate series), denote the set of changepoint locations estimated by

PELT in that variable by τ j = (τ j1 , τ j2 , . . . , τ jmj), where mj represents the number of
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changepoints detected in j. Then the set of possible changepoint locations considered

by SMOP is given by

τ =
p⋃
j=1
τ j.

Forming the set of possible changepoint locations in this manner means that the re-

peated application of PELT results in the removal of time-points which are unlikely

to be estimated as changepoint locations by SMOP. In comparison, the original ex-

haustive version of SMOP considers all time-points as possible changepoint locations.

Therefore, in many practical settings, the collection of possible changepoint locations

τ considered is likely to be vastly reduced in size compared to the number of locations

considered by exhaustive SMOP.

The repeated application of PELT can also be used to potentially reduce the

number of variables considered when forming the set of possible affected variable

subsets for a given possible changepoint. As described in Proposition 5.2.1, if PELT

does not detect any changepoints in variable j∗ using penalty α, then no changepoints

would be detected in j∗ using SMOP.

Proposition 5.2.1. Suppose PELT is performed on a variable j∗ in a multivariate

time series X1:n using a penalty of α, where α is the variable-specific penalty used in

the penalised cost function (4.3.2) in Chapter 4. Then if this results in no changepoints

being detected in j∗, then no changepoints will be present in j∗ in the optimal configu-

ration of changepoints detected under the subset-multivariate changepoint model using

SMOP.

Proof. See Appendix B.1 for proof.

Intuitively, the result of Proposition 5.2.1 holds because α is the univariate penalty

in SMOP, and so if a change in a given variable does not improve the likelihood by

more than α, then it will not be detected by SMOP. Since performing PELT with

penalty α has a similar outcome, then we can use this fact to inform the possible

changepoint locations to be considered by SMOP.
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An obvious consequence of Proposition 5.2.1 is that if no changepoints are detected

in some variable j∗, then j∗ does not need to be considered further for the remainder

of the method. In some scenarios this could lead to a great reduction in the number

of variables which need to be considered in the algorithm. In particular, this is useful

for high-dimensional time series which contain many ‘noisy’ variables that do not

contribute to any change in the series.

In the next section we propose two procedures which allow for a further reduc-

tion the number of possible affected variable subsets considered for a given possible

changepoint within SMOP.

5.2.2 Further Subset Reduction

To further reduce the search space of changepoint vectors considered by SMOP, we

introduce two additional procedures which reduce the number of possible subsets

of affected variables for each of the candidate changepoint locations in τ . These

are based on a windowing argument, and are referred to as ‘hard subset restriction’

and ‘soft subset restriction’ respectively. Before considering each procedure in turn,

we introduce some notation. Let sτ = (s1
τ , s

2
τ , . . . , s

p
τ ) denote a possible subset of

affected variables for a given changepoint location τ , with sjτ being a binary indicator

denoting whether or not variable j is affected by the (potential) change occurring at

τ . Let Sτ denote the set of all such possible affected variable subsets for a given τ ,

i.e. Sτ = {sτ,(1), sτ,(2), . . . , sτ,(|Sτ |)} (where sτ,(i) denotes the ith element of Sτ ).

Hard Subset Restriction

The intuition behind this procedure is that if two potential changepoints in different

variables (detected using independent applications of univariate PELT) are ‘close’ in

time, as defined by some window size w, then it is likely that these possible locations

both correspond to the same underlying change. Hence, it is reasonable to assume

that both variables can be classified as ‘affected’ for the changepoints under consid-

eration. We therefore wish to use this information to reduce the number of possible

affected variable subsets considered for the potential changepoints, thereby reducing
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the computation required by the method.

More formally, this procedure restricts the set of all potentially affected variable

subsets Sτ to a single subset for a given changepoint τ , denoted Sτ . The approach can

be implemented as follows. For a given variable j∗ and each corresponding possible

changepoint location τ j
∗ ∈ τ j∗ , we specify a window around τ j

∗ , denoted by [τ j∗ −

w, τ j
∗+w], where w is referred to as the window size. The affected variable subset for

τ j
∗ is given by Sτ j∗ , with Sj

∗

τ j∗
= 1. Then, if for any j ∈ {1, . . . , p \ j∗} there exists a

τ j ∈ τ j such that τ j ∈ [τ j∗ −w, τ j∗ +w], we set Sj
τ j∗

= 1. Otherwise, we set Sj
τ j∗

= 0.

This procedure is repeated for each τ j∗ ∈ τ j∗ for all j∗ = {1, . . . , p}. This is presented

in algorithmic form in Algorithm 4, where I(·) denotes the indicator function.

Algorithm 4: Hard Subset Restriction
Input : A set of variables j∗ = 1, . . . , p corresponding to a multivariate time

series X, a set of possible changepoint locations τ j∗ for each
j∗ = 1, . . . , p,

and a window size w.
Initialise: Set τ = ⋃p

j=1 τ
j, and Sτ = NULL for all τ ∈ τ .

1 begin
2 for j∗ ∈ {1, . . . , p} do
3 for τ j∗ ∈ τ j∗ do
4 for j ∈ {1, . . . , p} do
5 Set Sj

τ j∗
= I(∃ τ j ∈ τ j s.t. τ j ∈ [τ j∗ − w, τ j∗ + w])

6 Set Sτ j∗ = {Sτ j∗}

Output : The set of affected variable subsets Sτ for each τ ∈ τ .

Herein, we use hard(τ 1, . . . , τ p, w) to denote the resulting set of affected vari-

able subsets produced by applying hard subset restriction to the sets of changepoint

locations (τ 1, . . . , τ p) with window size w. This procedure is referred to as ‘hard’

subset restriction due to the enforced ‘cut-off’ nature of the windowing: if a given

variable does not contain a changepoint within the given window for τ j∗ , then it is

not considered to be affected by the possible change at τ j∗ .

It is important to note that the choice of the window size w is context dependent.
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Informally, its value can be thought of as a tolerance for the slight misestimation of

multivariate changepoint locations within PELT. A larger value means that estimated

changepoints across different variables that are ‘close’ (in time) are more likely to be

treated as the same changepoint across those variables. For example, for data observed

at high frequency it may be prudent to use a larger w.

In contrast to hard subset restriction, the second procedure considers additional

permutations of affected variables within its restriction.

Soft Subset Restriction

Soft subset restriction allows for more than one possible affected variable subset for

a given changepoint τ . The procedure works by initially performing hard subset

restriction to obtain the single affected variable subset for each τ ∈ τ . Denote this

specific affected variable subset for a given τ by Sτ . Next, the set Jτ = {j = 1, . . . , p :

Sjτ = 0, τ j 6= ∅} is defined for each τ . Note that this excludes the variables with

τ j 6= ∅ since Proposition 5.2.1 demonstrates that no changepoints will be present in

these variables in the optimal configuration obtained by SMOP. Then, the remaining

elements of Sτ for each τ are generated by fixing sjτ = 1 for the j ∈ {1, . . . , p : Sjτ =

1} and permuting the values of sjτ for all j ∈ Jτ . Each permutation represents a

different affected variable subset for τ . Hence, this gives a total of 2|Jτ | elements of

Sτ for each τ ∈ τ . Algorithm 5 presents this procedure in algorithmic form. We

use Bk to denote the set of all binary permutations of length k, so if k = 2 then

Bk = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Similar to hard restriction, we use soft(τ 1, . . . , τ p, w) to denote the set of affected

variable subsets produced by applying soft subset restriction to (τ 1, . . . , τ p) with

window size w. Since soft subset restriction considers more affected variable subsets

for each τ ∈ τ than hard subset restriction, this procedure leads to a comparatively

larger search space for SMOP, and hence has a relatively longer computation time.

However, the advantage of this procedure is that it considers additional permutations

of variables which might be affected by a given changepoint. Therefore, given that soft

subset restriction is essentially a relaxation of hard subset restriction, soft restriction
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Algorithm 5: Soft Subset Restriction
Input : A set of variables j∗ = 1, . . . , p corresponding to a multivariate time

series X, a set of possible changepoint locations τ j∗ for each
j∗ = 1, . . . , p,

and a window size w.
Initialise: Set τ = ⋃p

j=1 τ
j.

1 begin
2 Set {Sτ}τ∈τ = hard(τ 1, . . . , τ p, w)
3 for τ ∈ τ do
4 Set Sτ = {Sτ}
5 Set Jτ = {j = 1, . . . , p : Sjτ = 0, τ j 6= ∅}
6 Set J∗τ = {j = 1, . . . , p : Sjτ = 1}
7 for b ∈ B|Jτ | do
8 Set sJ∗ττ = 1
9 Set sJττ = b

10 Set Sτ = {Sτ , sτ}

Output : The set of affected variable subsets Sτ for each τ ∈ τ .

will always result in estimates that are more accurate than (or, at worst, as accurate

as) those produced by hard restriction. We formalise this in Proposition 5.2.2.

Proposition 5.2.2. For a multivariate time series X1:n, suppose csoft and chard de-

note the optimal configurations of changepoint vectors obtained using the approximate

SMOP algorithm with soft and hard subset restriction, respectively. If the correspond-

ing optimal costs are denoted by F soft and F hard respectively, then we have

F soft ≤ F hard.

Proof. A proof is presented in Appendix B.2.

In other words, the segmentation produced by soft restriction always has a cost

which is lower than, or the same as, the cost of the segmentation produced by hard

restriction. The price of this improved accuracy is the increased computation time.
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5.2.3 Approximate SMOP

We now turn to consider how the restriction techniques proposed above can be in-

corporated into the SMOP algorithm. We refer to this version of the algorithm as

Approximate SMOP (A-SMOP), and this is presented in Algorithm 6.

Within Algorithm 6, we make use of notation which generalises some of the

definitions introduced in Chapter 4. Recall that we define the changepoint vector

ct = (c1
t , c

2
t , . . . , c

p
t ) to be the vector of most recently observed changepoints in each

variable, prior to and including some time-point t. We use CN,S,t to denote the set

of all possible prior changepoint vectors ct defined by the set of time-points N and

the set of corresponding sets of affected variable subsets S = {Sτ : τ ∈ N}, up to

and including the given time-point t. The natural extensions to the corresponding

definitions of C̄τ and Cτ (cτ∗) from Chapter 4 are also made:

C̄N,S,t = {ct ∈ CN,S,t : ∃ j s.t. cjt = t}

CN,S,τ (cτ∗) =
{
c ∈ CN,S,τ : cj ≤ cjτ∗ ∀ j ∈ [1, p]

}
.

Finally, we define α-PELT(X1:n) to be the set of changepoints detected by performing

PELT with penalty α on the univariate set of observations X1:n, including the end-

point n.

The trade-off for implementing the proposed techniques within SMOP is that the

final segmentation produced is no longer exact. Consequently, the algorithm is no

longer guaranteed to identify the changepoint locations and corresponding subsets

which are optimal for the penalised cost function. For example, it is feasible that

the performance of univariate PELT on the individual channels may not yield the

true changepoint locations, and hence the true locations would not be present in the

search space considered by SMOP. Similarly, even if the true changepoints are output

by PELT, both the hard and soft subset restriction procedures could potentially fail

to produce the true affected variable subset for a given true changepoint. Therefore,

this modified SMOP algorithm is approximate in nature, and hence leads to the name

Approximate SMOP.
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5.3 Simulation Study

We now consider the performance of A-SMOP on a range of simulated time series.

This assessment is divided into two separate studies. The aim of the first study

is to illustrate the differences between the characteristics of hard and soft subset

restriction, and demonstrate how implementing the proposed approximations vastly

improves the computation time of SMOP whilst only mildly compromising on quality.

Comparisons are also drawn with leading repeated-univariate and fully-multivariate

approaches. The aim of the second study is to investigate the scalability of A-SMOP

with both hard and soft restriction for increasing n, p and m.

Across these two simulation studies, we consider a range of series with differing

values of n, p and m. We consider 100 replicate time series for each scenario inves-

tigated. These time series are assumed to follow a multivariate Normal distribution

with no cross-correlation, unless otherwise stated. The changes may occur in the mean

or variance parameters, depending on the scenario. For change in mean examples,

the variance is fixed as σ2
j = 1 for each variable j. When the variance is changing, we

fix µj = 0 for each j. The magnitude and direction of the shifts are randomly chosen

so that the parameter values for the ith segment can be generated as follows:

• for clearly observable changes in mean: µj,i = µj,i−1 ±N (2, 0.05);

• for less-clearly observable changes in mean: µj,i = µj,i−1 ±N (1.2, 0.05);

• for changes in variance: σ2
j,i = σ2

j,i−1 ×N (5, 0.05), or σ2
j,i = σ2

j,i−1/N (5, 0.05).

Here µj,i and σ2
j,i denote the mean and variance, respectively, for the ith segment of

variable j. In each case we have µj,1 = 0 and σ2
j,1 = 1. These changes are linearly

spaced through the data; the variables which are affected differ for each scenario.

As in the simulation study for SMOP (Section 4.5), to assess the performance of

A-SMOP we calculate the average V-measure and the average number of estimated

changepoints in all of the scenarios considered. In addition, we measure the average

computation time for each case. These metrics are used to provide a holistic picture

of the performance of A-SMOP, with the average computation time being particularly
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important when assessing the scalability of A-SMOP. Unfortunately, due to the com-

putational cost of the exact SMOP algorithm we have not been able to compare these

results against the exact approach, and so instead we compare against the truth.

5.3.1 Comparison of Methodology

We consider eleven different scenarios which highlight the differences in the behaviour

of A-SMOP when using hard subset restriction compared to soft subset restriction.

Unless stated otherwise, each scenario has n = 500 observations of p = 4 variables

containing m = 4 changepoints. The following two sub-sections outline the details of

this study and present the corresponding results.

Simulation Study Details

The details for each scenario are as follows:

Scenarios 1 and 2 These scenarios contain clearly observable changes in the mean

parameter, which affect all of the variables in Scenario 1 and only single variables

in Scenario 2. These scenarios are examined to investigate the performances of hard

and soft subset restrictions in the ‘extremes’ of the affected variable subsets. In

particular, Scenario 2 represents the case where hard and soft restriction have the

greatest difference in terms of required computation.

Scenarios 3 and 4 These contain less-clearly observable changes in mean, affecting

three and two of the p = 4 variables respectively. These scenarios are designed to

represent ‘typical’ series containing subset-multivariate changes, with differing pro-

portions of variables affected to further investigate the difference in performance of

hard and soft subset restriction.

Scenario 5 Here the changes are in variance, affecting two of the variables in the

series. This scenario is considered in addition to Scenarios 3 and 4 to show that they
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have similar performance, therefore demonstrating that the behaviour of algorithm is

(in general) not influenced by the property which is changing.

Scenario 6 This scenario is identical to Scenario 5, except the individual series

exhibit serial correlation. Rather than being Normally distributed, each individual

variable follows an AR(2) process given by

Xt = 0.9Xt−1 − 0.3Xt−2 + εt,

where εt ∼ N(0, σ2), with the variance σ2 being the parameter which is changing.

This scenario is examined to draw comparisons with the performance of Scenario 5 and

demonstrate that A-SMOP is reasonably robust to the presence of autocorrelation.

Scenarios 7–10 These scenarios all contain more subtle changes in mean which

affect two of the four variables, similar to those in Scenario 4. However, each scenario

has a different combination of n andm in order to demonstrate how A-SMOP performs

in relation to these values, in terms of both accuracy and running times. See the

captions within Figure 5.3.1 for details.

Scenario 11 This is identical to Scenario 4, except the series contains cross-correlation

between the different variables. The correlation matrix stays constant throughout the

series and is given by



1.0 0.9 -0.9 -0.9

0.9 1.0 -0.9 -0.9

-0.9 -0.9 1.0 0.9

-0.9 -0.9 0.9 1.0


.

This scenario is investigated to highlight how A-SMOP is robust to the presence

of cross-correlation, despite the assumption of independence between the different

variables.

Figure 5.3.1 illustrates realisations of the time series arising from each of these
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scenarios. Throughout our simulations, we set the cost function as twice the negative

log-likelihood for changes in mean only or variance only (depending on the scenario

in consideration). We set α to be the modified Bayes Information Criterion (mBIC).

If the associated univariate cost function is twice the negative log-likelihood of the

observations, then the mBIC (proposed by Zhang and Siegmund (2007)) is defined as

mBIC :=
m+1∑
i=1

log(ni) + (2m− 1) log(n),

where ni denotes the number of observations in the ith segment. Hence, this penalty

scales with the number of observations and considers the length of the segments as

part of its penalisation. Both Zhang and Siegmund (2007) and Hocking et al. (2013)

demonstrate good results for the mBIC in general for univariate time series.
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5.3.1(a): Scenario 1
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5.3.1(b): Scenario 2
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5.3.1(c): Scenario 3
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5.3.1(d): Scenario 4
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5.3.1(e): Scenario 5
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5.3.1(f): Scenario 6
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5.3.1(g): Scenario 7 (n = 1000,
m = 4)
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5.3.1(h): Scenario 8 (n = 1000,
m = 9)
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5.3.1(i): Scenario 9 (n = 2000,
m = 9)
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5.3.1(j): Scenario 10 (n = 4000,
m = 9)
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5.3.1(k): Scenario 11

Figure 5.3.1: Examples of time series arising from the different scenarios considered.

Similarly, the value of β is set as β = 2 log(p) log(n). The usage of the 2 log(n)

factor in this β value is based on the BIC, and the log(p) factor has been selected

by applying similar logic to the number of variables. This particular value of β was
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selected after demonstrating good performance in initial simulation trials. Different

values of β, such as those with different multiplicative constants or a factor of p instead

of log(p), are equally valid. Note that the original mBIC is not an appropriate choice

for β as the mBIC is a univariate penalty, and since the role of β is a multivariate

penalty it is prudent that it scales with both the number of observations and the

number of variables.

The exception to our choice of α is in Scenario 6. Initial testing revealed that use

of the mBIC will likely to lead to additional spurious changepoints being detected.

This is due to our assumption of independence between observations within the cost

function when in reality serial correlation is present. Therefore, to investigate the

effect of using an increased penalty to reduce these spurious changepoints, we also

consider an increased value of α which demonstrated good results in testing:

α =
m+1∑
i=1

log(ni) + (6m− 1) log(n).

This is examined in addition to the case where α is the mBIC. This case with the in-

creased penalty is referred to as Scenario 6a. Across all scenarios, we set the minimum

distance between changepoints to be 2, and the window size w = 5.

To draw comparisons with a repeated-univariate approach and a fully-multivariate

approach, for each scenario we ran univariate PELT on each variable separately,

and the fully-multivariate methods E-Divisive (Matteson and James, 2014) and E-

CP3O (James and Matteson, 2015). E-Divisive and E-CP3O are both non-parametric

changepoint methods. To ensure fair comparability of results, we set the penalty value

used within PELT to be α + (1/p)β. Such a choice means that for the case a fully-

multivariate change, repeated PELT has exactly the same penalisation as A-SMOP.

PELT is implemented using the changepoint package (Killick et al., 2015).

For E-Divisive and E-CP3O, we use the default settings with the exception of the

minimum distance between changepoints, which was set to 2 for E-Divisive and to 15

for E-CP3O using the ecp package (James and Matteson, 2014). The difference in

these minimum distances between changepoints is due to the behaviour of the different
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test statistics. In E-Divisive, the whole dataset is always used to formulate the test

statistic, whereas in E-CP3O the minimum distance value is used in determining the

amount of data utilised in the test statistic calculation. For a potential changepoint

location τ and minimum changepoint distance d, E-CP3O considers only the observa-

tions corresponding to the time-points in [τ − d, τ + d]. Consequently, the minimum

changepoint distance can be set as low as possible for E-Divisive, whereas the choice

for E-CP3O has a more complex effect on accuracy, and its value was selected after

initial testing to ensure reasonable results.

Results and Discussion

Table 5.3.1 presents the average V-measure and average number of estimated change-

points across all replications for the resulting segmentations produced by A-SMOP

for both restrictions in each scenario, as well as those for PELT, E-Divisive and E-

CP3O. As can be seen from the table, hard and soft subset restriction provide similar

accuracy for scenarios containing clearly observable changes. However, for scenarios

with less-clearly observable changes, soft restriction gives better accuracy than hard.

Nevertheless, hard restriction still has reasonable performance in such cases. Such

behaviour is due to the hard restriction being able to more easily identify the correct

affected variable subset when changes are prominent, and less so when changes are

subtle. Hence, the fact that soft restriction considers more subsets gives it an accuracy

advantage in situations containing subtle changes. Table 5.3.2 shows the mean run

times for each scenario. These demonstrate that computationally the soft restriction

approach is somewhat more intensive than the hard restriction. In particular we note

from the run times of Scenarios 3 and 4 that the relative run time of soft-restricted A-

SMOP increases as the number of non-affected variables for a given change increases

(provided those variables contain at least one other change).

As expected, the results of Scenario 6 show that A-SMOP overestimates the num-

ber of changepoint in the series. The is due to the algorithm overcompensating for

the autocorrelation in the series by attempting to fit more independent segments. In-

terestingly, while the increased α penalty used in Scenario 6a does reduce the number
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of spurious changepoints estimated, the average V-measure is lower in comparison to

Scenario 6. This is likely due to the difficulty of correctly identifying the true change-

point locations in the presence of the autocorrelation. While this is also an issue

for Scenario 6, it is somewhat mitigated by the additional estimated changepoints.

Nevertheless, the reasonable V-measure values for Scenario 6 suggest that A-SMOP

is relatively robust to misspecification with respect to serial dependence, provided an

increased penalty is used.

Similarly, the results of Scenario 11 demonstrate that A-SMOP is robust to the

presence of cross-correlation between the variables, without any necessary increase in

penalty. The results for this scenario are comparable with those of Scenario 4, the

equivalent scenario without cross-correlation.

Scenarios 7–10 illustrate two noteworthy points. Firstly, as one might expect,

a decrease in the ratio of the number of changepoints (m) to sequence length (n)

improves accuracy. Secondly, the relative running time increases sharply with an

increase in m, and exhibits a less-sharp increase when n increases. This is due to

two distinct but related reasons. The first is that an increase in the true number of

changepoints means that α-PELT (defined in Section 5.2.3) will likely detect more

changepoints in the initial state of the algorithm. The second is that an increase in n

means that there is a greater chance of α-PELT detecting spurious changes, though

the number of additional changes detected will likely be relatively lower than those

found with an increase in m. Both of these scenarios mean that the search space

considered within the SMOP stage of the algorithm is increased in size, and hence

the algorithm requires a longer computation time.

The results of PELT in Table 5.3.1 show that while reasonably good segmenta-

tions are obtained (as indicated by the V-measures), it generally overestimates the

number of changepoints. This is due to its lack of multivariate power: it is unable

to determine whether two ‘close’ changepoints occurring in two separate variables

actually correspond to the same change. Conversely, while E-Divisive and E-CP3O

often estimate the correct number of changes, their assumption of fully-multivariate

changes often results in segmentations which are erroneous. This is especially true
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when a smaller amount of variables are affected by the changes, shown by the lower V-

measure values. In addition, Table 5.3.1 shows E-CP3O consistently underestimates

the number of changepoints across all scenarios. This is likely due to the test statistic

used by E-CP3O only incorporating the data around the possible changepoint in con-

sideration, rather than the whole time series (as discussed in Section 2.2.3). This local

consideration of data means that E-CP3O likely has less power in detecting changes

compared to the other methods considered, which utilise all of the data available.

We note that hard-restricted A-SMOP is in general both faster and more accurate

than E-Divisive and E-CP3O, whilst soft-restricted A-SMOP is always more accurate.

Therefore, if a faster runtime is preferred whilst maintaining a good level of accuracy,

we would recommend the use of A-SMOP with hard restriction over E-Divisive and

E-CP3O for series of moderate length and dimension.

Scenarios similar to 1–5 containing p = 6 variables instead of p = 4 were also con-

sidered. Performance of A-SMOP (using both hard and soft restriction) gave similar

results, with the exception of an increased running time for soft subset restriction.

This is because an increase in the number of variables leads to an exponential in-

crease in the number of affected variable subsets being considered. This suggests that

increasing the number of variables does not compromise the accuracy of the algorithm.

5.3.2 Scalability of A-SMOP

We now consider a range of different scenarios which have increasing numbers of

observations (n), variables (p) and changepoints (m), respectively. The aim of this

study is to identify how the computation time of A-SMOP scales with increases in such

values. The details of the study and the scenarios investigated are first introduced,

followed by the corresponding results and discussion.

Simulation Study Details

Three sets of scenarios are considered in the study. For each set, two of the values of

n, p and m are fixed, and the third is increased along some scale. The details of these

three sets of scenarios are given below.
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Increasing Number of Observations For these scenarios, the number of obser-

vations n is increased with the number of variables and changepoints fixed as p = 4

and m = 10. The scenario numbers and the corresponding values of n considered are

given in Table 5.3.3.

Scenario 1.1 1.2 1.3 1.4 1.5 1.6 1.7
n 1000 5000 10000 50000 100000 250000 500000

Table 5.3.3: Scenarios with differing values of n considered for assessing the
scalability of A-SMOP, with fixed values of p = 4 and m = 10.

Increasing Number of Variables For these scenarios, the number of variables

p is increased while fixing the number of observations n = 50000 and number of

changepoints m = 10. The different values of p considered are shown in Table 5.3.4.

Scenario 2.1 2.2 2.3
p 4 6 8

Table 5.3.4: Scenarios with differing values of p considered for assessing the
scalability of A-SMOP, with fixed values of n = 50000 and m = 10.

Increasing Number of Changepoints For these scenarios, the number of change-

points m is increased with fixed n = 50000 and p = 4. The values of m investigated

are given in Table 5.3.5.

Scenario 3.1 3.2 3.3 3.4 3.5
m 10 12 15 20 30

Table 5.3.5: Scenarios with differing values of m considered for assessing the
scalability of A-SMOP, with fixed values of n = 50000 and p = 4.

The subsets of variables affected by the changes generally differ between the sce-

narios. Figures 5.3.2, 5.3.3 and 5.3.4 present plots for the scenarios with increasing

n, p and m, respectively, and these show the subsets of affected variables for each

change. These subsets remain constant over all replicates for a given scenario. Note

that for those scenarios with increasing n, each scenario has the same set of affected

variable subsets for the changes. Hence, for the scenarios with increasing n only the

plots for Scenarios 1.1, 1.2 and 1.3 are presented as an illustration.
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5.3.2(a): Scenario 1.1
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5.3.2(b): Scenario 1.2

−
6

−
4

−
2

0
2

4
6

S
er

ie
s 

1

−
6

−
4

−
2

0
2

4
6

S
er

ie
s 

2

−
6

−
4

−
2

0
2

4
6

S
er

ie
s 

3

Time

−
6

−
4

−
2

0
2

4
6

S
er

ie
s 

4

0 2000 4000 6000 8000 10000

5.3.2(c): Scenario 1.3

Figure 5.3.2: Example time series of the scenarios with increasing values of n and
fixed p = 4, m = 10.
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5.3.3(a): Scenario 2.1
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5.3.3(b): Scenario 2.2
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5.3.3(c): Scenario 2.3

Figure 5.3.3: Example time series of the scenarios with increasing values of p and
fixed n = 50000, m = 10.

We note that some of these scenarios are equivalent due to the values of n, p

and m and the subsets of affected variables considered. Specifically, Scenarios 1.4,

2.1 and 3.1 all consider the case of n = 50000, p = 4 and m = 10, with identical

affected variable subsets for the changes across the scenarios. Since the A-SMOP

algorithm (using either hard or soft restriction) is deterministic for a given dataset,

cost function, penalty values and window size, then application of the method to

these three scenarios will always produce identical results. As in the methodology

comparison study in Section 5.3, we set penalty values of α = ∑m+1
i=1 log(ni) + (2m−

1) log n and β = 2 log p log n, the minimum distance between changepoints to be 2,

and the window size w = 5. To assess the scalability of the A-SMOP algorithm as a

whole, we apply A-SMOP using both hard and soft restriction to each scenario. The

average computation times of these applications are recorded in each case to analyse

the scalability of the algorithm. In addition, the average V-measures and average
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number of detected changepoints are recorded to observe how the accuracy of the

algorithm is affected (if at all) as the scale of the data increases.
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5.3.4(c): Scenario 3.3
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5.3.4(d): Scenario 3.3
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5.3.4(e): Scenario 3.3

Figure 5.3.4: Example time series of the scenarios with increasing values of m and
fixed n = 50000, p = 4.

Results and Discussion

Tables 5.3.6, 5.3.7 and 5.3.8 present results from the application of A-SMOP using

both hard and soft restriction to the scenarios with increasing n, increasing p and

increasing m, respectively. The results contain the average V-measures, average num-

ber of estimated changepoints and average computation times (in minutes) of the

segmentations produced by the algorithm. For some scenarios in these tables, the re-

sults for soft-restricted A-SMOP as listed as N/A. This is because in these scenarios

soft-restricted A-SMOP has been applied, but either the computation time or memory

required is significantly increased such that its performance is not viable given the

resources available, and so they are not considered further here.



CHAPTER 5. APPROX. SEGMENTATION OF MULTIVAR. TIME SERIES 128

Metric (Average) Scenario 1.1 1.2 1.3 1.4
n = 1000 n = 5000 n = 10000 n = 50000

V-Measure Hard 0.9380.00278 0.9720.00158 0.9710.00157 0.9750.00128
Soft 0.9660.00198 0.9910.00103 0.9950.000558 0.9950.0009

Number of
Changepoints

Hard 11.80.111 12.20.133 12.40.14 12.30.117
Soft 10.10.0403 10.10.0338 10.20.0386 10.20.0386

Computation
Time (Mins.)

Hard 0.03390.00153 0.1460.00904 0.320.0176 1.720.124
Soft 0.9770.0854 4.550.575 11.21.24 58.36.2

Metric (Average) Scenario 1.5 1.6 1.7
n = 100000 n = 250000 n = 500000

V-Measure Hard 0.9770.00155 0.9750.00134 0.9760.00141
Soft 0.9970.000787 0.9970.000642 0.9980.000634

Number of
Changepoints

Hard 12.10.138 12.30.127 12.30.131
Soft 10.10.0273 10.10.0367 10.10.0239

Computation
Time (Mins.)

Hard 4.360.391 12.40.799 21.11.44
Soft 14618 52474.3 82790.9

Table 5.3.6: The average V-measures, average number of changepoints and average
computation time (in minutes) of the segmentations produced by

A-SMOP using both hard and soft restrictions for the scenarios with
increasing values of n. The values p = 4 and m = 10 are fixed across

the scenarios.

Metric (Average) Scenario 2.1 2.2 2.3
p = 4 p = 6 p = 8

V-Measure Hard 0.9750.00128 0.9650.00175 0.960.00172
Soft 0.9950.0009 N/A N/A

Number of
Changepoints

Hard 12.30.117 13.30.164 14.10.164
Soft 10.20.0386 N/A N/A

Computation
Time (Mins.)

Hard 1.720.124 29.93.41 33553.1
Soft 58.36.2 N/A N/A

Table 5.3.7: The average V-measures, average number of changepoints and average
computation time (in minutes) of the segmentations produced by

A-SMOP using both hard and soft restrictions for the scenarios with
increasing values of p. The values n = 50000 and m = 10 are fixed

across the scenarios.
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Metric (Average) Scenario 3.1 3.2 3.3
m = 10 m = 12 m = 15

V-Measure Hard 0.9750.00128 0.9770.0013 0.980.000957
Soft 0.9950.0009 0.9980.000454 0.9980.000334

Number of
Changepoints

Hard 12.30.117 14.70.155 18.20.152
Soft 10.20.0386 120.0171 15.10.0314

Computation
Time (Secs.)

Hard 1.720.124 3.380.261 12.70.769
Soft 58.36.2 14221.2 48650.7

Metric (Average) Scenario 3.4 3.5
m = 20 m = 30

V-Measure Hard 0.9780.000887 0.980.000548
Soft N/A N/A

Number of
Changepoints

Hard 24.80.189 36.80.193
Soft N/A N/A

Computation
Time (Mins.)

Hard 88.15.98 134091.2
Soft N/A N/A

Table 5.3.8: The average V-measures, average number of changepoints and average
computation time (in minutes) of the segmentations produced by

A-SMOP using both hard and soft restrictions for the scenarios with
increasing values of m. The values n = 50000 and p = 4 are fixed across

the scenarios.

From Tables 5.3.6, 5.3.7 and 5.3.8 it can be seen that, as might be expected,

an increase in the scale of the data leads to an increase in the computation time of

the algorithm. As observed in the comparison study in Section 5.3, and as would

be expected given the differences in the restrictions, hard restriction always has a

vastly reduced computation time compared to soft restriction. As the scale of the

data increases, this difference (in real terms) in the computation time between the

restrictions widens. In general, it appears from the tables that both hard- and soft-

restricted A-SMOP scale at the same rate. This implies that if in some scenario

hard restriction has a 100% increase in computation time (for example), then soft

restriction also has a 100% increase in computation time. In terms of accuracy, we

note that the results here reflect the results on accuracy presented in Section 5.3,

which show that soft-restricted A-SMOP is always more accurate than (or, at least,

as accurate as) hard-restricted A-SMOP.

For the case of increasing n, Table 5.3.6 shows that even in the largest case con-
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sidered with n = 500000, hard-restricted A-SMOP requires less than 25 minutes for

a single replicate. In contrast, for the same scenario soft-restricted A-SMOP requires

over 13 hours of computation for a single replicate. Even for Scenario 1.5, where

n = 100000, soft-restricted A-SMOP requires overs 2 hours, compared to the 4 min-

utes required when using hard restriction. Therefore, for practical application in

situations with large n (especially those with n > 250000) it is recommended to use

A-SMOP with hard restriction rather than soft-restriction. This is due to the signifi-

cantly increased computation time of soft-restricted A-SMOP which is likely to make

application of the method impractical (or even infeasible for the resources provided

for cases of very large n).

Considering the cases with increasing p, it can be seen from Table 5.3.7 that even

for p = 6, soft-restricted A-SMOP is infeasible for the resources available. Compara-

tively, hard-restricted A-SMOP is still able to perform with a reasonable computation

time of approximately 30 minutes per replicate. However, adding only two variables to

the series (so that p = 8) increases the computation time of hard-restricted A-SMOP

to over 5 hours for a single replicate. Additional scenarios containing larger numbers

of variables were also considered (for example, with p = 10), however the performance

of even hard-restricted A-SMOP was infeasible for these scenarios given the resources

available. These results demonstrate that A-SMOP has difficulty in scaling even to

moderate values of p for these given values of n = 50000 and m = 10. This reflects

the discussion regarding the computational complexity of the SMOP algorithm (on

which A-SMOP is based) in Section 4.7, which illustrates that the computational cost

increases exponentially with an increase in p.

Similarly, the results for increasing m in Table 5.3.8 show that for m ≥ 20 (with

fixed n = 50000 and p = 4), soft-restricted A-SMOP is infeasible for the resources

available. For m = 15, while soft-restricted A-SMOP is feasible, it requires over 8

hours for a single replicate compared to the 12 minutes required for hard-restricted.

When m is increased to 30 in Scenario 3.5, computation time for hard-restricted A-

SMOP rises to over 22 hours on average. This significantly increased computation

time with increased m is due to the additional changepoint locations being detected
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by PELT in the initial stages of A-SMOP, which are then fed into SMOP within the

latter stage, thereby increasing the number of necessary calculations. Such a large

computation time is likely to be impractical for substantive problems, and so any

further scenarios with increased m are not considered here.

In general, these results demonstrate that increasing p and m have the greatest

influence on the scalability of A-SMOP, with even small increases p in particular sig-

nificantly increasing the computation time of the algorithm. While it is possible that

these computation times could be improved with the implementation of modifications

such as parallel programming, more efficient architecture or more powerful computer

machinery, the observed results suggest that the scalability of the A-SMOP algorithm

has been explored as much as possible for the resources available.

5.4 Application to Acoustic Sensing Data

Given the strong performance of A-SMOP on a range of simulated data, we now

consider its application to a dataset arising from acoustic sensing. As discussed in

Chapter 3, the use of acoustic sensing technology is becoming increasingly prominent

within the oil and gas industry. Such technology uses fibre-optic cables to record

the vibrations along pipelines in oil and gas wells. The behaviour of the vibration

measurements recorded by these sensors provide information regarding the nature of

the flowing oil or gas in the well.

Changes in these vibration measurements often correspond to the presence of

certain features within the well. We consider acoustic sensing measurements from an

oil and gas extraction well. This dataset represents Fourier-transformed observations

from multiple depths within the well over time. The Fourier-transformed data is

examined as this is the form of the data analysed by the engineers. Due to the very

high measuring frequency of the fibre-optics cables (up to 10kHz), we were provided

with data which had been sub-sampled by a factor of 100. Figure 5.4.1 shows an

example of 3159 observations from ten consecutive depths in the well where vibrations

were recorded.
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Figure 5.4.1: Example of ten consecutive channels of Fourier-transformed acoustic
sensing data. Blue arrows indicate known slug events, red arrows

indicate known striping events.

For this dataset, interest lies in the detection of two particular features. The first

of these is the presence of ‘slugs’ in the well. These occur when the gas and oil in the

multiphase flow separate into different bands, so that the flow becomes alternating

single-phase between liquid (oil) and gas. These slug bands are characterised by

irregular flows and sudden surges, which correspond to sudden changes in the recorded

vibrations. The fast rate of flow and the sub-sampling of the data mean that these

appear as changepoints. Since slugs can both form and disperse naturally (although

they may persist as they flow up the well), these sudden changes in vibration generally

only affect a subset of series which represent different depths. Identifying the presence

of slugs is important as they can reduce the pressure in the well and hence cause

blockages. Determining which subset of depths is affected can provide information on

the size and location of the slug, which can in turn allow for the necessary action to

be taken to return to multiphase flow.
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The second feature of interest is a type of error feature referred to as ‘striping’.

This occurs when there is an error in the measuring equipment which means that no

observations are recorded by the equipment over any channels for a certain period.

Note that this is different to the error features discussed previously in Chapter 3,

which manifest as changes in second-order structure.

The signals provided for analysis are sub-sampled Fourier transformed acoustic

signals. For such signals, one can identify both slugs and stripes as changes in variation

within the de-trended acoustic sensing signal. To identify such changes, we perform

the A-SMOP algorithm using hard subset restriction on the ten channels presented in

Figure 5.4.1. The penalty values α = 12 log n and β = 4 log p log n have been used, as

these demonstrated promising results in initial tests on sub-segments of the data. We

also compare the performance of A-SMOP with the segmentations obtained via other

multivariate changepoint methods described in Section 2.2.3 (E-Divisive, E-CP3O and

repeated application of univariate PELT). The locations estimated by hard-restricted

A-SMOP, E-Divisive, E-CP3O and PELT are shown in red, blue, orange and green

respectively.

The results in Figures 5.4.2 and 5.4.3 show that A-SMOP clearly identifies both

cases of striping (shown by changes occurring in all variables) and changes in vibration

(shown by changes occurring in only subsets of variables). For example, it has detected

the change in vibration at event A in variables 1–7, and the four striping-related events

at E, F, G and H. In comparison, E-Divisive and E-CP3O identify the events A-H (and

more), since these generally have a large number of affected variables. However, their

fully-multivariate assumptions mean that they are unable to distinguish between those

changes which correspond to striping (E, F, G and H), and those which correspond

to true vibration changes (A, B, C and D). Repeated-univariate PELT identifies the

same changepoint locations with the same variables as A-SMOP (events A–H, and

more), but it also estimates additional changepoint locations which do not appear

to correspond to any particular features (events i–viii). This is likely due to the

lack of a multivariate consideration and the presence of the serial dependence within

the data. Increasing the penalty value could reduce these additional changepoints,
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however this may also mean that true changes are not detected. Consequently such

a repeated-univariate approach is not as flexible as A-SMOP, which identifies these

features without such overestimation.

5.5 SMOP vs A-SMOP: Application to Quebec River

Flows

To highlight the differences in performance between SMOP and A-SMOP in a prac-

tical setting, we consider application of both methods to the set of annual river flow

measurements of four rivers in Quebec. The application of SMOP to this dataset has

been considered in Section 4.6. In this section, we will also consider the application

of A-SMOP, and in addition to the detected changepoint locations and affected vari-

able subsets we assess the parameter estimates for each segment and the methods’

computation times.

For both SMOP and A-SMOP, similar to the analysis in Section 4.6 we use the

multivariate Normal likelihood as a cost function and assume changes are occurring

in both mean and variance. However, deviating from Section 4.6 and following the

penalty adopted in the simulation study in Section 5.3, we set α to be the modified

Bayesian information criterion:

α =
m+1∑
i=1

log(ni) + (2m− 1) log(n). (5.5.1)

As before, we set β = 2 log n log p. For A-SMOP, soft restriction is used with a window

size of 3. The results of applying SMOP and A-SMOP to these river flow measure-

ments are presented in Figures 5.5.1(a) and 5.5.1(b), respectively. In particular, these

show the detected changepoint locations, the affected variables and the mean values

of each segment. In addition, Table 5.5.1 provides the estimated mean and standard

deviation parameter values for each segment in each variable.

From Figures 5.5.1(a) and 5.5.1(a), it can be seen that A-SMOP detects change-

point locations in 1975 and 1984, which are similar to the changes detected at 1974
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5.5.1(a): SMOP results.
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5.5.1(b): A-SMOP results.

Figure 5.5.1: The results of applying SMOP and A-SMOP to the Quebec river flows.
The blue vertical lines represent changepoint locations, and the red

horizontal lines represent the corresponding means of those segments.

and 1984 by SMOP. However, the affected variables detected by A-SMOP are slightly

different to those detected by SMOP (which are guaranteed optimal for the given

cost function and penalties). This represents the downside of A-SMOP, even when

using soft-restriction, in that it does not guarantee to estimate the optimal set of

changepoints and corresponding affected variables. Although, as demonstrated in the

plots, these estimates are similar to those of SMOP. This similarity is also reflected in

the mean and standard deviation estimates in Table 5.5.1, which are similar generally

and are identical in Romaine where the same changepoint is estimated by SMOP and

A-SMOP.

This lack of a guarantee of optimality by A-SMOP is also demonstrated in the cor-

responding likelihood values of the two segmentations: the negative log-likelihood of

the A-SMOP segmentation is 545.66, whereas the corresponding value for the SMOP

segmentation is 533.09 (note that since this is negative log-likelihood, a lower value in-

dicates a better model fit). However, the benefit of A-SMOP over SMOP is its vastly

reduced computation time. For this dataset an application of SMOP required 130

minutes, whereas A-SMOP required 0.05 seconds. Therefore, in this case A-SMOP

is over 156,000 times faster than SMOP; such behaviour is typical of the algorithms.

Combined with the good quality of segmentations, this emphasises how A-SMOP is
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the superior choice over SMOP for usage in practical settings.

SMOP A-SMOP
Mean Standard Deviation Mean Standard Deviation

Baleine
(Variable 1)

Segment 1 17.9 4.29 19.5 4.48
Segment 2 N/A N/A 15.8 3.16

Churchill Falls
(Variable 2)

Segment 1 9.93 5.29 12.2 6.23
Segment 2 22.8 2.27 21.2 2.82
Segment 3 19.3 2.16 N/A N/A

Manicouagan
(Variable 3)

Segment 1 23.2 3.94 24.2 4.31
Segment 2 N/A N/A 22.0 3.18

Romaine
(Variable 4)

Segment 1 28.0 4.26 28.0 4.26
Segment 2 18.8 3.59 18.8 3.59

Table 5.5.1: The estimated values of the mean and standard deviation parameters
for each of the detected segments in each river. Values of N/A reflect

cases where there is no such segment in that variable. Note that
Segment i in Variable j may be at different locations and a different

length between SMOP and A-SMOP

5.6 A-SMOP for Structured Data

The properties of the acoustic sensing dataset considered in Section 5.4 suggests that

the changepoints present may be ‘structured’ in some manner. In particular, it may

be that in a given scenario, only adjacent variables in the multivariate series may

be affected by a changepoint. Hence, in such a scenario, instead of considering all

possible subsets of affected variables for a potential changepoint, the set could be

restricted to subsets with only contiguous variables being affected. Restricting the

subsets of affected variables in this way has the potential to significantly reduce the

computation time of the algorithm.

If this assumption of structured changepoints is made while using hard-restricted

A-SMOP, there is not likely to be a significant change in computation time. This is

because hard-restricted A-SMOP considers only a single affected variable subset per

potential changepoint, and so no improvement can be made in terms of the number

of subsets considered, although the structured changepoint assumption may change

the actual subset considered. However, if the structured changepoint assumption is
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applied while using soft-restricted A-SMOP, then this is likely to lead to improvements

in computation speed. This is because such an assumption drastically reduces the

number of different affected variable subsets to consider within the soft-restricted

algorithm, since only the subset with contiguous affected variables are considered.

The magnitude of the computation speed improvements depends on the number of

variables which are affected by the true change.

In general, if the structured changepoint assumption is valid for the problem be-

ing considered, then imposing this assumption would not alter the final subset of

affected variables which would have otherwise been detected if the assumption had

not been imposed. While imposing the assumption of structured changepoints may

potentially reduce the computation time, there are some important issues which need

to be considered before making such an assumption. One such issue is that additional

information would be required regarding the ‘closeness’ of the multiple variables. This

may be possible in cases such as the acoustic sensing dataset considered in Section 5.4

(since the different variables are different depths in the oil well), but in general such

information is not likely to be available or indeed exist. For example, for financial

or stock market data specifying a measure of ‘closeness’ could be challenging due to

their non-physical nature. However, even for variables where such a measure is pos-

sible (for example, geographical locations), it may not be sensible to impose a linear

ordering. For example, three-dimensional spatial locations do not necessarily have a

natural two-dimensional ordering.

In addition, the SMOP and A-SMOP algorithms make the assumption of inde-

pendence between the multiple variables, but incorporating information regarding the

structure of the changepoints implies that the variables are dependent in some man-

ner. Therefore, this could imply that it is necessary to also model this dependence

within the penalised cost function approach (in addition to restricting the subsets of

affected variables which are considered). This represents a considerable modification

to the SMOP and A-SMOP approaches. Hence, for this reason and the difficulty of

specifying a closeness measure for the variables in practice, we do not implement a

restricted approach for structured changepoints.
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5.7 Conclusion

Within this Chapter, we have demonstrated how the computation time of the SMOP

algorithm (introduced in Chapter 4) can be vastly reduced via two stages of approx-

imation. The first stage reduces the number of possible changepoint locations to

be considered, whilst the second stage reduces the amount of possible affected vari-

able subsets considered for each possible changepoint. Two procedures are proposed

for the second stage: hard restriction, and soft restriction. The resulting algorithm

implementing these approximations is termed Approximate SMOP (A-SMOP).

Empirical results from the simulation study demonstrate that hard restriction

favours a shorter computation time at the expense of some accuracy, whilst soft

restriction provides greater accuracy but requires slightly longer computation time.

More generally, simulation results show that the reduction in accuracy is dependent

on the relative magnitude of the changes: the larger the magnitude, the smaller the

reduction in accuracy. Similarly, a smaller number of true changes, larger magnitudes

of shifts, and larger subsets of affected variables (if using soft restriction) provide a

greater reduction in computation time. Further simulations have been considered to

investigate the scalability of the algorithm.

A comparison of A-SMOP with PELT, E-Divisive and E-CP3O demonstrates that

the subset-multivariate approach taken by A-SMOP represents an intermediate be-

tween a fully-multivariate approach and a repeated univariate approach. The multi-

variate power of detecting changes across multiple variables is harnessed, whilst the

univariate benefits of not assuming fully-common changes and ignoring ‘noisy’ vari-

ables are also exploited. These advantages come with only a mild increase in com-

putational cost, with the possibility of limiting this increase at the expense of some

accuracy. In addition, the use of PELT within A-SMOP means that the benefits of

any future improvements made to PELT can also be reaped by A-SMOP. Compar-

isons have also been drawn between SMOP and A-SMOP to assess the differences

between the two algorithms in practice.

Finally, we have considered the possibility of utilising information regarding the
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structure of changepoints within the algorithm. While this could potential result

in reduced computation time, the associated practical difficulties mean that such a

feature is not implemented in the algorithm.

The methodology developed in this chapter and in Chapter 4 has been imple-

mented in the changepointmv package in R. This package is available at http:

//www.lancaster.ac.uk/˜pickerin/software.html. Details of this package, in-

cluding its structure, methods and examples, are contained in Appendix C.

http://www.lancaster.ac.uk/~pickerin/software.html
http://www.lancaster.ac.uk/~pickerin/software.html


CHAPTER 5. APPROX. SEGMENTATION OF MULTIVAR. TIME SERIES 142

Algorithm 6: Approximate Subset Multivariate Optimal Partitioning
Input : A multivariate time series X = (X1,X2, . . . ,Xn) containing p

variables, a univariate cost function Dj(·) for each variable j, and
penalty values α and β.

Initialise: Set F (c0) = 0, L(c0) = ∅, and c(c0) = ∅.
1 begin
2 for j∗ ∈ {1, . . . , p} do
3 Set τ j∗ = α-PELT(Xj∗

1:n)

4 Set τ = ⋃p
j=1 τ

j

5 if Using Hard Subset Restriction then
6 Set S := {Sτ}τ∈τ = hard(τ 1, . . . , τ p, w)

7 else if Using Soft Subset Restriction then
8 Set S := {Sτ}τ∈τ = soft(τ 1, . . . , τ p, w)

9 for τ ∗ ∈ τ do
10 for cτ∗ ∈ C̄τ ,S,τ∗ do
11 for c ∈ Cτ ,S,τ∗−1(cτ∗) do

12 Set hcτ∗ (c) = F (c) +
p∑
j=1

[
I(cj 6= cjτ∗)

(
Dj(Xj

(cj+1):cj
τ∗

) + α
)]

13 +m(c, cτ∗)β

14 Set F (cτ∗) = minc∈Cτ ,S,τ∗−1(cτ∗ ){hcτ∗ (c)}
15 Set c′ = arg minc∈Cτ ,S,τ∗−1(cτ∗ ){hcτ∗ (c)}
16 Set L(cτ∗) = L(c′) ∪ {c1

τ∗ , c
2
τ∗ , . . . , c

p
τ∗}

17 Set c(cτ∗) =
(
c(c′), cτ∗

)
Output : The sequence of most-recent changepoint vectors recorded in

c
(
(n, n, . . . , n)

)
.
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Run-times (secs) Scenario 1 Scenario 2 Scenario 3 Scenario 4
Hard Restriction 0.08770.00126 0.08760.00142 0.1150.0021 0.1030.00148
Soft Restriction 0.08980.00153 0.1590.00459 0.3020.0308 0.3580.0304

PELT 0.07890.000984 0.07790.00121 0.08560.00155 0.08090.00114
E-Divisive 18.80.32 18.50.334 18.70.322 18.60.282
E-CP3O 0.2510.00269 0.2850.00199 0.2830.00216 0.2910.0025

Scenario 5 Scenario 6 Scenario 6a Scenario 7
Hard Restriction 0.3040.129 0.1710.0056 0.1450.00234 0.2640.00226
Soft Restriction 0.7380.188 7.681.32 0.6510.0517 1.040.0791

PELT 0.08810.00122 0.1140.00228 0.1170.00192 0.160.00203
E-Divisive 12.80.342 39.51.53 N/A* 66.20.725
E-CP3O 0.3550.00734 0.3450.00619 N/A* 1.610.00863

Scenario 8 Scenario 9 Scenario 10 Scenario 11
Hard Restriction 1.80.0831 2.980.145 6.070.314 0.1190.00203
Soft Restriction 77.811.7 12310.8 22521.2 0.2970.0181

PELT 0.1610.00206 0.3210.00366 0.6340.00568 0.09450.00109
E-Divisive 87.61.12 3604.09 145012.1 10.20.0678
E-CP3O 1.470.00842 6.880.0562 330.257 0.2860.00259

Table 5.3.2: Mean running times for A-SMOP with both hard and soft subset
restriction, PELT, E-Divisive and E-CP3O for each scenario. The best
values for each scenario are highlighted in bold. *Note that Scenario 6a

is repeat of Scenario 6 except with a larger penalty value. Since
E-Divisive and E-CP3O do not utilise a penalty, we do not include

them in the results of this scenario.



Chapter 6

Conclusions and Future Directions

This thesis has presented novel methodology for the detection of changepoints. Two

important settings have been considered: (i) autocorrelated univariate time series

where changes are occurring in the second-order structure, and (ii) multivariate time

series where changes may occur in only a subset of the variables. These two issues

represent key aspects of the analysis of acoustic sensing signals that have received

comparatively little attention in the changepoint literature. Our goal has been to

develop methods which address these, with the emphasis on providing a solution

which is accurate whilst maintaining a reasonable computational cost.

Our proposed approach to the second-order univariate changepoint problem was

presented in Chapter 3. The procedure, referred to as WHIP, minimises a penalised

cost function based on Whittle’s likelihood (Whittle, 1951). A key contribution is

that the method allows for use of a non-linear penalty in the penalised likelihood. We

demonstrate that WHIP allows for a reduced computational complexity over the ex-

act likelihood approach with only slight impact on accuracy. Moreover, our empirical

studies demonstrate that our method is comparable with other leading second-order

changepoint techniques. Given this, we use WHIP to search for changes in acous-

tic sensing data which correspond to the occurrence of external disturbances of the

measuring cable.

For the multivariate changepoint detection problem, the vast majority of meth-

ods currently available assume that changes occur in all variables at the same time.
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However, in many practical applications, and for acoustic sensing data in particu-

lar, it is often true that only a certain subset of variables are affected by a given

change. In Chapter 4 we introduced the concept of changepoint vectors which allows

for the explicit modelling of both changepoints and their corresponding sets of af-

fected variables. To obtain the optimal configuration of such changepoint vectors for

a given multivariate time series, we propose the SMOP algorithm. This uses dynamic

programming to minimise a penalised likelihood with two separate penalties. These

permit independent control to avoid detecting (i) too many changepoints and (ii) too

many variables in a given affected subset. To our knowledge, no current approach

in the literature provides both the changepoint locations and their sets of affected

variables in the general setting considered here.

The exact approach taken by SMOP requires the evaluation of all possible change-

points and subsets, leading to a computational complexity of O(pn2p). Unfortunately

we demonstrated that the use of pruning techniques, akin to those used by Killick

et al. (2012), does not reduce this complexity in practice. To tackle this computa-

tional burden, in Chapter 5 we proposed an approximation of the SMOP algorithm,

A-SMOP. This considers only ‘likely’ changepoint locations and affected variable sub-

sets, obtained through pre-processing steps. This reduces the computational cost of

the method whilst retaining a high-quality (though no longer guaranteed optimal)

solution. Studies on both simulated time series and a substantive data set from the

acoustic sensing context illustrate the strong performance of A-SMOP against leading

competitors for both speed and accuracy.

The multivariate changepoint detection methodology developed in this thesis has

been made available in the changepointmv package in R. This package is available at

http://www.lancaster.ac.uk/˜pickerin/software.html. Details of this package

are provided in Appendix C.

http://www.lancaster.ac.uk/~pickerin/software.html
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6.1 Future Work

We now turn to consider possible avenues for future research. In particular we con-

sider further developments which build from the A-SMOP method. These comprise

of heuristic pruning, the inclusion of cross-correlation into the subset-multivariate

changepoint model, and incorporation of the CROPS algorithm (Haynes et al., 2014)

within the initial stages of A-SMOP to possibly increase the accuracy of the method.

6.1.1 Heuristic Pruning

We begin by considering a heuristic approach to pruning. Suppose that a performance

of PELT using penalty α+β (herein referred to as (α+β)-PELT) on a given variable

results in some changepoints being detected. We refer to these changepoints as (α+β)-

changepoints. Then inclusion of each of these changes improves the likelihood by

more than α + β in a single variable. This means that these changes are likely to

be detected as a changepoint under the subset-multivariate model by A-SMOP. We

therefore wish to use this information to reduce the number of calculations performed

by A-SMOP. This could be done as follows. During the A-SMOP algorithm (given

in Algorithm 6), suppose we are considering some changepoint vector cτ∗ ∈ C̄τ ,S,τ∗ .

Suppose further there is a (α+ β)-changepoint τ j
∗

α+β in some variable j∗ ∈ {1, . . . , p},

such that τ j
∗

α+β < cj
∗

τ∗ . Then if for some other changepoint vector c ∈ Cτ ,S,τ∗−1(cτ∗) we

have cj∗ < τ j
∗

α+β, then we do not need to consider c as the most recent changepoint

vector prior to cτ∗ . Here we make use of the fact that τ j
∗

α+β is likely to be a changepoint

which is detected within variable j∗ by A-SMOP, and hence do not consider any

changepoint vectors where the most recent changepoint in variable j∗ would be before

τ j
∗

α+β.

We refer to this concept as heuristic pruning. It is heuristic in the sense that there

is no rigorous theoretical argument which justifies the pruning, as there is for example

in the pruning used in PELT. Rather, it is based on logical arguments. Heuristic

pruning could be implemented within the A-SMOP algorithm by first performing

(α + β)-PELT, in addition to α-PELT, on each variable in the series. This would
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produce a set of (α+β)-changepoints for each variable. The pruning would then occur

within the dynamic programming stage of the A-SMOP algorithm as described.

The benefit of such pruning would be a reduction in computational time. Such a

reduction could be vast, particularly in scenarios where there are frequent changes of

relatively large magnitude in many variables. However, the accuracy of the method

could be reduced, as the pruning has the potential to discard a possible changepoint

location which represents an optimal changepoint. Nevertheless, heuristic pruning

may represent a credible extension to A-SMOP for situations where a solution with

a higher level of approximation is acceptable in exchange for a reduced computation

time.

6.1.2 Modelling Cross-Correlation

Another possible extension to A-SMOP is modelling of the inter-variable correlation

within the subset-multivariate changepoint framework. Currently, it is assumed that

all variables are independent (i.e. zero cross-correlation), and this allows for the easy

summation of individual costs from all variables, as shown in equation (4.3.2) in

Chapter 4. However, since we are considering changes which may occur at common

time-points across multiple variables, it is reasonable to assume that there may be

instances where cross-correlation between these variables is present. One possible

approach to including such correlation in the subset-multivariate changepoint model

would be to consider the minimisation of the following penalised cost function:

cost(X1:n, τ ,J ) + pen(τ ,J )

=
m+1∑
k=1

p∑
j=1

[
I(cjτk = τk)Dj(Xj

(cjτk−1+1):cjτk
)
]

+D(X1
1:n, X

2
1:n, . . . , X

p
1:n)

+
αm+1∑

k=1

p∑
j=1

I(cjτk = τk) + (m+ 1)β
 , (6.1.1)

where D(X1
1:n, X

2
1:n, . . . , X

p
1:n) represents a function quantifying the multivariate de-

pendence structure between the variables. If Dj(·) is taken to be a likelihood for each

j ∈ {1, . . . , p}, then D(·) represents the multivariate copula density for the variables.
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This function (6.1.1) could then be minimised in exactly the same way as equation

(4.3.2) within A-SMOP.

6.1.3 Increasing Changepoint Accuracy using CROPS

A third possible addition could be the use of the Changepoints for a Range Of Penal-

ties (CROPS) algorithm, proposed by Haynes et al. (2014), within the initial stage of

A-SMOP to identify potential changepoint locations. The CROPS algorithm works

by running PELT on a given time series for a range of penalty values. These values are

chosen such that each penalty considered provides a different number of changepoint

locations.

In this case, a range of penalties could be considered up to α+β, and would include

α, where α and β are the penalty values discussed in Chapter 4. Then if the CROPS

algorithm (instead of traditional PELT) is applied to each variable using this range

of penalty values, the changepoint locations which are detected could be used within

the formulation of the search space for A-SMOP. This would produce a larger set of

possible changepoint locations compared to running PELT with a single penalty α on

each variable. Consequently, using CROPS instead would provide greater accuracy

at the expense of computation time, since the search space considered by A-SMOP

when using CROPS would be larger compared to when using PELT.



Appendix A

Proofs for ‘Multivariate

Changepoint Detection with

Subsets’

A.1 Proof of Proposition 4.4.1

Proof. Since F (cu) is, by definition, the minimisation of the penalised cost function

(4.3.2) for the series Xcu , we have:

F (cu) = min
c∈Hcu


m+1∑
k=1

 p∑
j=1

[
I(cjτk = τk)

(
Dj(Xj

(cjτk−1+1):cjτk
) + α

)]
+ β


= min

ct∈{Ct : cjt≤c
j
u ∀ j}

min
c∈Hct

m+1∑
k=1

 p∑
j=1

[
I(cjτk = τk)

(
Dj(Xj

(cjτk−1+1):cjτk
) + α

)]
+ β


+

p∑
j=1

[
I(cjt 6= cju)

(
Dj(Xj

(cjt+1):cju
) + α

)]
+ |cu \ L(ct)| β


= min

0≤t<u

 min
ct∈{C̄t : cjt≤c

j
u ∀ j}

min
c∈Hct

m+1∑
k=1

 p∑
j=1

[
I(cjτk = τk)

(
Dj(Xj

(cjτk−1+1):cjτk
) + α

)]

+ β

+
p∑
j=1

[
I(cjt 6= cju)

(
Dj(Xj

(cjt+1):cju
) + α

)]
+ |cu \ L(ct)| β


= min

0≤t<u

 min
ct∈{C̄t : cjt≤c

j
u ∀ j}

F (ct) +
p∑
j=1

[
I(cjt 6= cju)

(
Dj(Xj

(cjt+1):cju
) + α

)]

150



APPENDIX A. PROOFS FOR CHAPTER 4 151

+ |cu \ L(ct)| β


= min
0≤t<u

 min
ct∈{C̄t : cjt≤c

j
u ∀ j}

F (ct) +
p∑
j=1

[
I(cjt 6= cju)

(
Dj(Xj

(cjt+1):cju
) + α

)]

+m(ct, cu)β
,

by definition of m(·, ·). Hence the result.

A.2 Proof of Proposition 4.7.1

Proof. Recall that for some changepoint vectors cr and cs, m(cr, cs) = |cs \ L(cr)|, so

that m(cr, cs) represents the number of additional changepoints which have occurred

between cr and cs (including the changes occurring at cs, but not those at cr). We

note that since both cost(·) and I(·) are always non-negative, m(·, ·) > 0 and α, β > 0

by definition, then we can add cost(Xcv :cw) +m(cu, cw)β+m(cv, cw)β+α
∑p
j=1 I(cju 6=

cjw) + α
∑p
j=1 I(cjv 6= cjw) to both sides of equation (4.7.4) to obtain the following:

F (cu) + cost(Xcu:cv) + k + cost(Xcv :cw) +m(cu, cw)β +m(cv, cw)β

+ α
p∑
j=1

I(cju 6= cjw) + α
p∑
j=1

I(cjv 6= cjw)

≥ F (cv) + cost(Xcv :cw) +m(cu, cw)β +m(cv, cw)β + α
p∑
j=1

I(cju 6= cjw)

+ α
p∑
j=1

I(cjv 6= cjw). (A.2.1)

Now since p ≥ m(cv, cw), m(cu, cw) ≥ 0, p ≥ ∑p
j=1 I(cjv 6= cjw) and ∑p

j=1 I(cju 6= cjw) ≥ 0,

we therefore have pβ ≥ m(cv, cw)β, m(cu, cw)β ≥ 0, αp ≥ α
∑p
j=1 I(cjv 6= cjw) and

α
∑p
j=1 I(cju 6= cjw) ≥ 0. Hence, the inequality (A.2.1) becomes

F (cu) + cost(Xcu:cv) + k + cost(Xcv :cw) +m(cu, cw)β + pβ + α
p∑
j=1

I(cju 6= cjw) + αp

≥ F (cv) + cost(Xcv :cw) +m(cv, cw)β + α
p∑
j=1

I(cjv 6= cjw). (A.2.2)
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Recalling from Proposition 4.7.1 that k = K − (α + β)p, then by replacing k on the

left-hand side of equation (A.2.2) and cancelling the αp+ βp terms, we have

F (cu) + cost(Xcu:cv) + cost(Xcv :cw) +K + α
p∑
j=1

I(cju 6= cjw) +m(cu, cw)β

≥ F (cv) + cost(Xcv :cw) + α
p∑
j=1

I(cjv 6= cjw) +m(cv, cw)β. (A.2.3)

Therefore, recalling that for some changepoint vectors cr and cs (where cjr ≤ cjs for all

j = 1, . . . , p) we define cost(Xcr:cs) =
p∑
j=1

[
I(cjr 6= cjs)Dj(X

j

(cjr+1):cjs
)
]
, by using assump-

tion (4.7.2) we have

F (cu) + cost(Xcu:cw) + α
p∑
j=1

I(cju 6= cjw) +m(cu, cw)β

≥ F (cv) + cost(Xcv :cw) + α
p∑
j=1

I(cjv 6= cjw) +m(cv, cw)β (A.2.4)

=⇒ F (cu) +
p∑
j=1

[
I(cju 6= cjw)Dj(Xj

(cju+1):cjw
)
]

+ α
p∑
j=1

I(cju 6= cjw) +m(cu, cw)β

≥ F (cv) +
p∑
j=1

[
I(cjv 6= cjw)Dj(Xj

(cjv+1):cjw
)
]

+ α
p∑
j=1

I(cjv 6= cjw) +m(cv, cw)β

(A.2.5)

=⇒ F (cu) +
p∑
j=1

[
I(cju 6= cjw)

(
Dj(Xj

(cju+1):cjw
) + α

)]
+m(cu, cw)β

≥ F (cv) +
p∑
j=1

[
I(cjv 6= cjw)

(
Dj(Xj

(cjv+1):cjw
) + α

)]
+m(cv, cw)β. (A.2.6)

Hence, the minimum cost to cw with cu as the most recent changepoint vector will

always be greater than (or equal to) the minimum cost to cw with cv as the most

recent changepoint vector. Thus it follows that cu cannot be a future minimiser of

the sets

hcw =
F (cτ ) +

p∑
j=1

[
I(cjτ 6= cw)

(
Dj(Xj

(cjτ+1):cjw
) + α

)]
+m(cτ , cw)β :

cτ ∈ C̄τ ; τ = 0, . . . , w − 1
 (A.2.7)
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and can be removed from the set of cτ for each future step.

A.3 Proof of Proposition 4.7.2

Proof. Suppose that we have some changepoint vectors cJ ∈ C̄J
τ∗ and cJ−1,j∗ ∈

EJ−1
τ∗ (cJ) such that cjJ−1,j∗ = cjJ for all j ∈ {P \ Pτ∗(cJ)}. We use j∗ to denote

the series which is such that cj
∗

J = τ ∗ and cj
∗

J−1 = tj∗ , where tj∗ is some time-point

such that tj∗ < τ ∗. Then we can refer to cJ−1 by cJ−1,j∗ in order to highlight which is

the discrepant series.

Our proof of this proposition consists of the consideration of two lemmas. The

first of these is given by Lemma A.3.1.

Lemma A.3.1. Assume that for every such cJ ∈ C̄J
τ∗ and cJ−1,j∗ ∈

{
EJ−1
τ∗ (cJ) :

cjJ−1,j∗ = cjJ ∀ j ∈ P \ Pτ∗(cJ)} we have for some cw ∈ C̄w (w > τ ∗)

hcw(cJ) < hcw(cJ−1,j∗), (A.3.1)

i.e. the minimum penalised cost to cw with cJ as the most recent changepoint vector

is lower than when cJ−1,j∗ is the most recent changepoint vector. Then the following

inequality holds:

fj∗(τ ∗) +Dj∗(Xj∗

τ∗:cj
∗
w

) + αI(τ ∗ 6= cj
∗

w )

< fj∗(tj∗) +Dj∗(Xj∗

tj∗ :cj
∗
w

) + αI(tj∗ 6= cj
∗

w ) + β
(
M(cJ−1,j∗)−M(cJ)

)
. (A.3.2)

The proof of Lemma (A.3.1) is given in Section A.3.1. Lemma (A.3.1) implies

that the univariate minimum penalised cost in series j∗ up to cj∗w with τ ∗ as the most

recent changepoint is lower than the similar penalised cost when tj∗ is the most recent

changepoint plus the term β
(
M(cJ−1,j∗)−M(cJ)

)
. We note that this additional term
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is always either 0 or β. This is because we always have

M(cJ−1,j∗) =

 M(cJ) if cj
∗

J−1,j∗ ∈
{
cjJ−1,j∗ : j ∈ P \ {Pτ∗(cJ)}

}
M(cJ) + 1 if cj

∗

J−1,j∗ 6∈
{
cjJ−1,j∗ : j ∈ P \ {Pτ∗(cJ)}

} ,

and so

β
(
M(cJ−1,j∗)−M(cJ)

)
=

 0 if cj
∗

J−1,j∗ ∈
{
cjJ−1,j∗ : j ∈ P \ {Pτ∗(cJ)}

}
β if cj

∗

J−1,j∗ 6∈
{
cjJ−1,j∗ : j ∈ P \ {Pτ∗(cJ)}

} .

In the second stage of our proof, we consider Lemma (A.3.2)

Lemma A.3.2. Suppose that we now have some changepoint vector cJ−i where cJ−i ∈

{EJ−i
τ∗ (cJ) : cjJ−i = cjJ ∀ j ∈ P \ Pτ∗(cJ)}, with the corresponding set of i discrepant

variables denoted by {j∗1 , j∗2 , . . . , j∗i } = {j∗x : x = 1, 2, . . . , i} = {Pτ∗(cJ) \ Pτ∗(cJ−i)}.

Hence, for each j∗x (x = 1, 2, . . . , i) we have cj
∗
x
J = τ ∗ and cj

∗
x
J−i = tj∗x , where tj∗x is some

time-point such that tj∗x < τ ∗. Since the inequality (A.3.2) holds for all such cJ and

cJ−1,j∗, then in particular it holds for the changepoint vectors

cJ−1,j∗1 , cJ−1,j∗2 , . . . , cJ−1,j∗i ∈ {E
J−1
τ∗ (cJ) : cjJ−1 = cjJ ∀ j ∈ P \ Pτ∗(cJ)}

where cj
∗
x
J−1,j∗x = tj∗x for each x = 1, 2, . . . , i and cjJ−1,j∗x = cjJ otherwise. Then for such

changepoint vectors, it can be shown that

hcw(cJ) < hcw(cJ−i) + β

[
i∑

x=1
M(cJ−1,j∗x)− (i− 1)M(cJ)

]
. (A.3.3)

The proof of Lemma A.3.2 is given in Section A.3.2. The inequality (A.3.3) leads

to two cases:

1. If (i− 1)M(cJ) ≥ ∑i
x=1M(cJ−1,j∗x), then we have hcw(cJ) < hcw(cJ−i).

2. If (i − 1)M(cJ) <
∑i
x=1M(cJ−1,j∗x), then we cannot say whether or not the

statement hcw(cJ) < hcw(cJ−i) is true.

Therefore, assuming that case 1 is true, we have the result of the Proposition.
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The next two sections demonstrate the proofs of the Lemmas A.3.1 and A.3.2,

used in stages 1 and 2 of the proof of Proposition 4.7.2, respectively.

A.3.1 Proof of Lemma A.3.1

Proof. Recall that we assume inequality (A.3.1) holds. Then we have

hcw(cJ) < hcw(cJ−1,j∗)

⇐⇒ F (cJ) + cost(XcJ :cw) + α
p∑
j=1

I(cjJ 6= cjw) +m(cJ , cw)β

< F (cJ−1,j∗) + cost(XcJ−1,j∗ :cw) + α
p∑
j=1

I(cjJ−1,j∗ 6= cjw) +m(cJ−1,j∗ , cw)β

⇐⇒
∑
j∈P

fj(cjJ) + βM(cJ) +
∑
j∈P
Dj(Xj

cjJ :cjw
) + α

∑
j∈P

I(cjJ 6= cjw) +m(cJ , cw)β

<
∑
j∈P

fj(cjJ−1,j∗) + βM(cJ−1,j∗) +
∑
j∈P
Dj(Xj

cj
J−1,j∗ :cjw

) + α
∑
j∈P

I(cjJ−1,j∗ 6= cjw)

+m(cJ−1,j∗ , cw)β

⇐⇒
∑
j∈P

fj(cjJ) + βM(cJ) +
∑
j∈P
Dj(Xj

cjJ :cjw
) + α

∑
j∈P

I(cjJ 6= cjw)

<
∑
j∈P

fj(cjJ−1,j∗) + βM(cJ−1,j∗) +
∑
j∈P
Dj(Xj

cj
J−1,j∗ :cjw

) + α
∑
j∈P

I(cjJ−1,j∗ 6= cjw),

since m(cJ , cw) ≤ m(cJ−1,j∗ , cw). Hence, by separating the terms in this inequality

and recollecting them for different groups of variables (i.e. different sets of j’s), and

cancelling where necessary, we have

hcw(cJ) < hcw(cJ−1,j∗)

⇐⇒
∑

j∈{P\Pτ∗ (cJ )}
fj(cjJ) +

∑
j∈{Pτ∗ (cJ )\j∗}

fj(τ ∗) + fj∗(τ ∗)

+
∑

j∈{P\Pτ∗ (cJ )}
Dj(Xj

cjJ :cjw
) +

∑
j∈{Pτ∗ (cJ )\j∗}

Dj(Xj

τ∗:cjw
) +Dj∗(Xj∗

τ∗:cj
∗
w

)

+ α

 ∑
j∈{P\Pτ∗ (cJ )}

I(cjJ 6= cjw) +
∑

j∈{Pτ∗ (cJ )\j∗}
I(τ ∗ 6= cjw) + I(τ ∗ 6= cj

∗

w )
+ βM(cJ)
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<
∑

j∈{P\Pτ∗ (cJ )}
fj(cjJ−1,j∗) +

∑
j∈{Pτ∗ (cJ )\j∗}

fj(τ ∗) + fj∗(tj∗)

+
∑

j∈{P\Pτ∗ (cJ )}
Dj(Xj

cj
J−1,j∗ :cjw

) +
∑

j∈{Pτ∗ (cJ )\j∗}
Dj(Xj

τ∗:cjw
) +Dj∗(Xj∗

tj∗ :cj
∗
w

)

+ α

 ∑
j∈{P\Pτ∗ (cJ )}

I(cjJ−1,j∗ 6= cjw) +
∑

j∈{Pτ∗ (cJ )\j∗}
I(τ ∗ 6= cjw) + I(tj∗ 6= cj

∗

w )


+ βM(cJ−1,j∗)

⇐⇒
∑

j∈{P\Pτ∗ (cJ )}

[
fj(cjJ) +Dj(Xj

cjJ :cjw
) + αI(cjJ 6= cjw)

]

+
∑

j∈{Pτ∗ (cJ )\j∗}

[
fj(τ ∗) +Dj(Xj

τ∗:cjw
) + αI(τ ∗ 6= cjw)

]
+
[
fj∗(τ ∗) +Dj∗(Xj∗

τ∗:cj
∗
w

) + αI(τ ∗ 6= cj
∗

w )
]

+ βM(cJ)

<
∑

j∈{P\Pτ∗ (cJ )}

[
fj(cjJ−1,j∗) +Dj(Xj

cj
J−1,j∗ :cjw

) + αI(cjJ−1,j∗ 6= cjw)
]

+
∑

j∈{Pτ∗ (cJ )\j∗}

[
fj(τ ∗) +Dj(Xj

τ∗:cjw
) + αI(τ ∗ 6= cjw)

]
+
[
fj∗(tj∗) +Dj∗(Xj∗

tj∗ :cj
∗
w

) + αI(tj∗ 6= cj
∗

w )
]

+ βM(cJ−1,j∗)

⇐⇒
∑

j∈{P\Pτ∗ (cJ )}

[
fj(cjJ) +Dj(Xj

cjJ :cjw
) + αI(cjJ 6= cjw)

]

+
[
fj∗(τ ∗) +Dj∗(Xj∗

τ∗:cj
∗
w

) + αI(τ ∗ 6= cj
∗

w )
]

+ βM(cJ)

<
∑

j∈{P\Pτ∗ (cJ )}

[
fj(cjJ−1,j∗) +Dj(Xj

cj
J−1,j∗ :cjw

) + αI(cjJ−1,j∗ 6= cjw)
]

+
[
fj∗(tj∗) +Dj∗(Xj∗

tj∗ :cj
∗
w

) + αI(tj∗ 6= cj
∗

w )
]

+ βM(cJ−1,j∗).

Since we are assuming that (A.3.1) is true for all cJ ∈ C̄J
τ∗ and cJ−1 ∈ EJ−1

τ∗ (cJ) such

that cjJ−1,j∗ = cjJ for all j ∈ {P \ Pτ∗(cJ)}, then this implies that we must have:

fj∗(τ ∗) +Dj∗(Xj∗

τ∗:cj
∗
w

) + αI(τ ∗ 6= cj
∗

w )

< fj∗(tj∗) +Dj∗(Xj∗

tj∗ :cj
∗
w

) + αI(tj∗ 6= cj
∗

w ) + βM(cJ−1,j∗)− βM(cJ), (A.3.4)

and hence the result is proved.
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A.3.2 Proof of Lemma A.3.2

Proof. Recall that inequality (A.3.2) holds in particular for the changepoint vectors

cJ−1,j∗1 , cJ−1,j∗2 , . . ., cJ−1,j∗i ∈ {E
J−1
τ∗ (cJ) : cjJ−1 = cjJ ∀ j ∈ P \ Pτ∗(cJ)}. Hence, we

have

hcw(cJ)

=
∑

j∈{P\Pτ∗ (cJ )}

[
fj(cjJ) +Dj(Xj

cjJ :cjw
) + αI(cjJ 6= cjw)

]

+
∑

j∈{Pτ∗ (cJ )\{j∗1 ,j∗2 ,...,j∗i }}

[
fj(τ ∗) +Dj(Xj

τ∗:cjw
) + αI(τ ∗ 6= cjw)

]

+
∑

j∈{j∗1 ,j
∗
2 ,...,j

∗
i }

[
fj(τ ∗) +Dj(Xj

τ∗:cjw
) + αI(τ ∗ 6= cjw)

]
+ βM(cJ) + βm(cJ , cw)

<
∑

j∈{P\Pτ∗ (cJ )}

[
fj(cjJ) +Dj(Xj

cjJ :cjw
) + αI(cjJ 6= cjw)

]

+
∑

j∈{Pτ∗ (cJ )\{j∗1 ,j∗2 ,...,j∗i }}

[
fj(τ ∗) +Dj(Xj

τ∗:cjw
) + αI(τ ∗ 6= cjw)

]

+
∑

j∈{j∗1 ,j
∗
2 ,...,j

∗
i }

[
fj(tj) +Dj(Xj

tj :cjw
) + αI(tj 6= cjw)

]
+

i∑
x=1

βM(cJ−1,j∗x)−
i∑

x=1
βM(cJ)

+ βM(cJ) + βm(cJ , cw),

using inequality (A.3.2). Now, using the fact that cjJ = cjJ−i for j ∈ {P \Pτ∗(cJ)}, we

have

hcw(cJ)

<
∑

j∈{P\Pτ∗ (cJ )}

[
fj(cjJ−i) +Dj(Xj

cjJ−i:c
j
w
) + αI(cjJ−i 6= cjw)

]

+
∑

j∈{Pτ∗ (cJ )\{j∗1 ,j∗2 ,...,j∗i }}

[
fj(τ ∗) +Dj(Xj

τ∗:cjw
) + αI(τ ∗ 6= cjw)

]

+
∑

j∈{j∗1 ,j
∗
2 ,...,j

∗
i }

[
fj(tj) +Dj(Xj

tj :cjw
) + αI(tj 6= cjw)

]
+ βm(cJ , cw) +

i∑
x=1

βM(cJ−1,j∗x)

− iβM(cJ) + βM(cJ)

≤
∑

j∈{P\Pτ∗ (cJ )}

[
fj(cjJ−i) +Dj(Xj

cjJ−i:c
j
w
) + αI(cjJ−i 6= cjw)

]
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+
∑

j∈{Pτ∗ (cJ )\{j∗1 ,j∗2 ,...,j∗i }}

[
fj(τ ∗) +Dj(Xj

τ∗:cjw
) + αI(τ ∗ 6= cjw)

]

+
∑

j∈{j∗1 ,j
∗
2 ,...,j

∗
i }

[
fj(tj) +Dj(Xj

tj :cjw
) + αI(tj 6= cjw)

]
+ βm(cJ−i, cw) +

i∑
x=1

βM(cJ−1,j∗x)

− iβM(cJ) + βM(cJ)

= hcw(cJ−i) + β

[
i∑

x=1
M(cJ−1,j∗x)− (i− 1)M(cJ)

]
.

The second inequality here is due to the fact that m(cJ , cw) ≤ m(cJ−i, cw), since the i

discrepant variables have changes at locations other than τ ∗, and hence may introduce

additional changepoint locations. Therefore, we have

hcw(cJ) < hcw(cJ−i) + β

[
i∑

x=1
M(cJ−1,j∗x)− (i− 1)M(cJ)

]
,

and hence the result.



Appendix B

Proofs for ‘Approximate

Segmentation of Multivariate Time

Series’

B.1 Proof of Proposition 5.2.1

Proof. We first define α-PELT as the univariate PELT method with the penalty set as

α. Suppose that a performance of SMOP on the p-variate time seriesX1:n produces an

optimal configuration of changepoints, denoted by (τ 1, τ 2, . . . , τ p). Here τ j represents

a vector containing the changepoint locations estimated in the jth variable, so that

τ j = (τ j1 , τ j2 , . . . , τ jmj), with mj denoting the number of (true) univariate changepoints

detected in the jth variable. In particular, for variable j∗ we have τ j∗ = (τ j
∗

1 , . . . , τ
j∗
mj∗

).

Note that for each j = 1, . . . , p we set τ j0 = 0 and τ jmj+1 = n.

Let m be the total number of multivariate changepoints detected, so that

m =
∣∣∣∣∣∣
p⋃
j=1
τ j

∣∣∣∣∣∣ ≤
p∑
j=1

mj. (B.1.1)

Due to the assumption of zero cross-correlation in our model and our interest in series

j∗, the cost of this optimal configuration (τ 1, τ 2, . . . , τ p) produced by SMOP can be

decomposed into the optimal cost for series j∗ plus the optimal cost for all the other
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series:

p∑
j=1

mj+1∑
i=1
Dj
(
Xj

(τ ji−1+1):τ ji

)
+

p∑
j=1

(mj + 1)α + (m+ 1)β

=
∑
j∈J

mj+1∑
i=1
Dj
(
Xj

(τ ji−1+1):τ ji

)
+
∑
j∈J

(mj + 1)α + (mJ + 1)β

+
mj∗+1∑
i=1
Dj∗

(
Xj∗

(τ j
∗
i−1+1):τ j

∗
i

)
+ (mj∗ + 1)α +m∗β, (B.1.2)

where J = {1, . . . , p \ j∗}, mJ =
∣∣∣⋃j∈J τ j∣∣∣ and m∗ =

∣∣∣τ j∗ \ ⋃j∈J τ j∣∣∣. Note that we

are continuing with the convention that the penalty terms are also added for the

‘changepoint’ at the end of the data.

Since, by assumption, the performance of α-PELT detects no changepoints in

variable j∗, then we must have that

Dj∗(Xj∗

1:n) + α ≤
mj∗+1∑
i=1
Dj∗

(
Xj∗

(τ j
∗
i−1+1):τ j

∗
i

)
+ (mj∗ + 1)α (B.1.3)

for all possible mj∗ . Therefore, since m∗ ≥ 0 and β ≥ 0, we must have that

Dj∗(Xj∗

1:n) + α ≤
mj∗+1∑
i=1
Dj∗

(
Xj∗

(τ j
∗
i−1+1):τ j

∗
i

)
+ (mj∗ + 1)α +m∗β. (B.1.4)

Adding the terms
∑
j∈J

mj+1∑
i=1
Dj
(
Xj

(τ ji−1+1):τ ji

)
+
∑
j∈J

(mj + 1)α+ (mJ + 1)β to both sides

of the inequality (B.1.4), we have

∑
j∈J

mj+1∑
i=1
Dj
(
Xj

(τ ji−1+1):τ ji

)
+
∑
j∈J

(mj + 1)α + (mJ + 1)β +Dj∗(Xj∗

1:n) + α

≤
∑
j∈J

mj+1∑
i=1
Dj
(
Xj

(τ ji−1+1):τ ji

)
+
∑
j∈J

(mj + 1)α + (mJ + 1)β

+
mj∗+1∑
i=1
Dj∗

(
Xj∗

(τ j
∗
i−1+1):τ j

∗
i

)
+ (mj∗ + 1)α +m∗β (B.1.5)

The RHS of inequality (B.1.5) is equal to the RHS of equation (B.1.2), which is in

turn equal to the cost of the optimal changepoint configuration provided by SMOP.
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The LHS of inequality (B.1.5) is equal to the cost of X1:n under the configuration

where variable j contains the changepoints τ j for each j ∈ J , and variable j∗ contains

no changepoints. Therefore, since the RHS of (B.1.5) is the optimal (i.e. minimal)

cost over all possible changepoint configurations, this tells us that the LHS cannot

be less than the RHS, and hence they must be equal. Consequently, we must have

mj∗ = 0, with τ j∗ = ∅ (and hence m∗ = 0). This implies that the optimal changepoint

configuration of X1:n contains no changepoints in variable j∗.

This result shows that if no changepoints are detected in variable j∗ using α-

PELT, then no changepoints will be present in variable j∗ in the optimal changepoint

configuration under the subset-multivariate changepoint model obtained by SMOP.

B.2 Proof of Proposition 5.2.2

Proof. Suppose that for each variable j∗ = 1, . . . , p within the multivariate times

series X1:n, we apply α-PELT to obtain a set of changepoint locations τ j∗ . Set

τ = ⋃p
j∗=1 τ

j∗ . For some window size w, we can apply both hard subset restriction and

soft subset restriction to this set of changepoint locations, resulting in two possible sets

of affected variable subsets for each τ ∈ τ . For each such τ , denote these respective

sets by S(hard)
τ and S(soft)

τ . Note that by the definition of hard subset restriction (see

Algorithm 4), S(hard)
τ is actually a set containing one element: S(hard)

τ = {sτ,(hard)}.

Also denote the sets Shard = {S(hard)
τ }τ∈τ and Ssoft = {S(soft)

τ }τ∈τ .

Now suppose we have some τ ∗ ∈ τ , along with the affected variable subset

sτ∗,(hard) and the set of subsets S(soft)
τ∗ . From the definition of soft subset restric-

tion in Algorithm 5, it can be seen that the affected variable subsets sτ∗,(soft) ∈ S(soft)
τ∗

are formed as follows. Suppose Bk is the set of binary permutations of length k,

Jτ∗ = {j : sjτ∗,(hard) = 0, τ j 6= ∅} and J∗τ∗ = {j : sjτ∗,(hard) = 1}. Then S(soft)
τ∗ is a

set of |B|Jτ∗ || subsets such that sjτ∗,(soft) = 1 for all j ∈ J∗τ∗ and sjτ∗,(soft) = bj for all

j ∈ Jτ∗ , where b ∈ B|Jτ∗ | is a binary permutation with a different sτ∗,(soft) correspond-

ing to a different b. Since every such b ∈ B|Jτ∗ | is considered, the zero permutation
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b = (0, . . . , 0) is always considered in particular. For the sτ∗,(soft) in this case, we have

sjτ∗,(soft) =

 1 if j ∈ J∗τ∗
0 if j ∈ Jτ∗

. (B.2.1)

Since the RHS of equation (B.2.1) is also equivalent to sjτ∗,(hard), we therefore have

sjτ∗,(soft) = sjτ∗,(hard) for the case when b is the zero permutation. As such, we always

have sτ∗,(hard) ∈ S(soft)
τ∗ . This is true for all τ ∗ ∈ τ , and so we have Shard ⊆ Ssoft.

Now consider the following two possible sets of changepoint vectors produced by

combining the set of changepoint locations τ with the two respective sets of affected

variable subsets Shard and Ssoft: Cτ ,Shard,n and Cτ ,Ssoft,n. These sets denote all

possible changepoint vectors using hard restriction and soft restriction, respectively.

Since it has been shown that Shard ⊆ Ssoft, then because Cτ ,Shard,n and Cτ ,Ssoft,n

are formed using the same set of changepoint locations τ , we must have Cτ ,Shard,n ⊆

Cτ ,Ssoft,n.

Therefore, if we perform A-SMOP using soft subset restriction, then there are two

possible outcomes:

1. All possible changepoint vectors in the optimal configuration lie in Cτ ,Shard,n.

Hence, application of hard restriction would also obtain the same optimal con-

figuration, so that

csoft = chard and F soft = F hard.

2. There exists at least one changepoint vector c ∈ csoft such that

c ∈ {Cτ ,Ssoft,n \ Cτ ,Shard,n}.

Hence, the overall cost of this configuration is lower than the cost of the optimal

configuration obtained using hard restriction, i.e. F soft < F hard.

Therefore, we must have F soft ≤ F hard, so that soft subset restriction produces a

segmentation which has the same or a lower cost than the segmentation produced
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using hard subset restriction.



Appendix C

changepointmv: An R Package for

Multivariate Changepoint Analysis

A range of methodologies have been proposed for the detection of multivariate change-

points. However, despite the variety of these contributions, only a handful of R pack-

ages are available for implementing such methods. The most notable of these are the

ecp and bcp packages of James and Matteson (2014) and Erdman and Emerson (2007)

respectively. These packages take separate approaches to the multivariate changepoint

problem: the ecp package utilises non-parametric energy statistics, whereas the bcp

package adopts a Bayesian MCMC framework.

Recall from Section 4.2.1 that multivariate changepoints can be classified as fully-

multivariate or subset-multivariate. For the former, all variables are changing at the

changepoint location. For the latter, only a subset of the variables are affected by

the change. The ecp and bcp packages are similar in that they both implement

only fully-multivariate detection procedures. To our knowledge, no publicly available

R package exists which permits the explicit detection of subset-multivariate change-

points. Motivated by this, we present the changepointmv R package. This is

a software suite which implements both the SMOP and A-SMOP methodology de-

scribed in Chapters 4 and 5. These methods detect both fully- and subset-multivariate

changepoints through the use of a parametric framework, allowing for a variety of dis-

tributional models and types of change. This software is available for download at
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http://www.lancaster.ac.uk/˜pickerin/software.html.

This appendix is structured as follows. We begin with an outline of the package

structure in Section C.1. In Section C.2 we discuss the two main functions within the

changepointmv package: smop and asmop. Case studies considering the application

of asmop function are examined in Section C.3.

C.1 Package Structure and the cptmv class

There are two main functions within the changepointmv package implementing the

multivariate changepoint detection methodology developed within this thesis. These

are:

• smop: Performs the SMOP algorithm, described in Chapter 4.

• asmop: Performs the A-SMOP algorithm, described in Chapter 5.

The package also introduces a new S4 object class called cptmv. In a similar

manner to the cpt class from the changepoint package (Killick et al., 2015), the

cptmv class is used to store information relating to the results of the multivariate

changepoint analysis performed by SMOP or A-SMOP. In particular, an object of

type cptmv contains the following slots:

• data.set - an n × p matrix containing the sequence of multivariate observa-

tions. Each row represents a different p-variate observation, and each column

represents the n-length series for that specific variable.

• cost.func - a character object providing the name of the function used to

calculate the (unpenalised) cost, e.g. "norm.mean" for changes in the mean of

multivariate Normally-distributed observations.

• cpt.type - a character object denoting the type of change(s) which are being

detected, e.g. "mean" for mean, "mean and variance" for both mean and

variance.

http://www.lancaster.ac.uk/~pickerin/software.html
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• alpha - the numeric value of the α penalty used within the SMOP and A-SMOP

detection algorithms (see Chapter 4 for details).

• beta - the numeric value of the β penalty used within the SMOP and A-SMOP

detection algorithms (see Chapter 4 for details).

• num.cpt.vecs - the total number of possible changepoint vectors considered by

the detection procedure.

• cpt.vecs - a p-column matrix containing the final set of detected changepoint

vectors. Each row contains a different changepoint vector.

• like - the numeric value of penalised likelihood of the estimated segmentation.

• cpts - a numeric vector containing the set of detected changepoint locations.

• subsets - a p-column matrix of logical values representing the sets of affected

variables corresponding to each detected changepoint. The ith row represents

the subset for the ith changepoint in cpts.

• runtime - the numeric value of the running time of the detection procedure, in

seconds.

As cptmv is an S4 object, these slots can be accessed using the @ symbol (analgous

to the $ symbol for S3 objects). To enable the end-user to easily visualise the results

of their changepoint analysis, the changepointmv package contains a plot method

for the cptmv class. The behaviour of this method is dependent of the type of change

being detected. For example, for changes in variance the changepoint locations are

shown by vertical lines. For changes in mean, the mean values are also shown using

horizontal lines in each segment.

Recall from Chapter 4 that changepoint vectors are used to encapsulate informa-

tion about both the locations of changepoints and the subsets of variables in which

they occur. Specifically, a changepoint vector at a given time-point t, denoted ct,

contains the most recent changepoint locations in each variable up to and including

time t. The changepoint vectors found in cpt.vecs represent the unique distinct
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changepoint vectors detected for the series. This is simply a different representation

of the information contained in cpts and subsets.

Within the following sections we examine the key functions of the changepointmv

package.

C.2 The smop and asmop Functions

The smop and asmop functions within the changepointmv package are used to imple-

ment the SMOP and A-SMOP algorithms presented in Chapters 4 and 5, respectively.

Both functions share common architecture, but also have important differences in their

arguments and output. Within this section we describe how to invoke these functions,

delineate their structure and arguments, and consider some illustrative examples.

C.2.1 Usage

The smop function has the following structure:

smop(data, alpha = 2 * log(nrow(data)),

beta = 2 * log(ncol(data)) * log(nrow(data)), min.dist = 2,

cost.func = "norm.meanvar.seglen", class = TRUE, verbose = TRUE)

The details of these arguments are as follows:

• data – An n × p matrix representing a length n multivariate time series con-

taining observations of p variables.

• alpha – The variable-specific penalty, used to penalise the addition of a given

changepoint into a given variable. A non-negative numeric value.

• beta – The multivariate penalty, used to penalise the addition of a new change-

point into the model regardless of the variable(s) in which it occurs. A non-

negative numeric value.

• min.dist – The minimum distance allowed between any two changepoints. Re-

quired to have an integer value of at least 2.
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• cost.func – The name of the multivariate cost function used by the method,

given as a string. Possible values include "norm.mean", "norm.var", "norm.meanvar",

"norm.mean.seglen", "norm.var.seglen" and "norm.meanvar.seglen". De-

tails of these of values are provided below.

• class – A logical value. If TRUE then an object of class cptmv is returned. If

FALSE, a generic list is returned with identical slots to those in the cptmv object.

• verbose – A logical value. If TRUE then information regarding the check-list of

possible changepoint vectors is printed during the algorithm.

The asmop function has a similar structure to smop:

asmop(data, alpha = 2 * log(nrow(data)),

beta = 2 * log(ncol(data)) * log(nrow(data)), min.dist = 2,

cost.func = "norm.meanvar.seglen", window.size,

hard.restrict = TRUE, class = TRUE, verbose = FALSE)

The two additional arguments are:

• window.size – A non-negative integer representing the size of the window con-

sidered to the left and right of a given changepoint when performing subset

restriction. Note that the choice of this value is entirely context dependent. See

Section 5.2.2 for details on the role of this value and how it affects the behaviour

of A-SMOP.

• hard.restrict – A logical value. If TRUE then hard subset restriction is used. If

FALSE then soft subset restriction is used. See Section 5.2.2 for details regarding

the differences between hard and soft subset restriction.

The argument cost.func, used by both smop and asmop, can take a range of

possible functions, depending on the distribution of the data being considered and

the type of change(s) being sought. To date, the following possible values have been

implemented:
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• "norm.mean" – Used for detecting changes in mean in multivariate Normally

distributed data. Assumes fixed variance parameters (= 1) for each variable.

The mean parameters are set to their maximum likelihood estimates. If the true

variance is not 1, then the data can first be normalised for analysis by calculating

the sample variance for each variable and dividing it into each observation in

that variable.

• "norm.var" – Used for detecting changes in variance in multivariate Normally

distributed data. Assumes fixed mean parameters (= 0) for each variable. The

variance parameters are set to their maximum likelihood estimates. If the mean

is not 0, then the data can first be normalised for analysis by calculating the

sample mean for each variable and subtracting it from each observation in that

variable.

• "norm.meanvar" – Used for detecting changes in both mean and variance in

multivariate Normally distributed data. The mean and variance parameters are

set to their maximum likelihood estimates.

• "norm.mean.seglen", "norm.var.seglen" and "norm.meanvar.seglen" – Iden-

tical to "norm.mean", "norm.var" and "norm.meanvar", respectively, except

these contain a log(segment length) penalty term in the likelihood for each

variable. These functions are included to allow for the use of penalties akin to

the modified BIC (Zhang and Siegmund, 2007).

C.2.2 Illustrative Examples

We now consider some examples that demonstrate the performance of the smop and

asmop functions. The first example we consider is a single change in mean at the

mid-point of 2 out of 3 Normally distributed variables, displayed in Figure C.2.1(a).

library(zoo) # for plotting

n = 20; p = 3

set.seed(100)
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data.meanchange = matrix(NA, n, p)

data.meanchange[,1] = c( rnorm(n/2, 0, 1), rnorm(n/2, 10, 1) )

data.meanchange[,2] = c( rnorm(n/2, 0, 1), rnorm(n/2, 10, 1) )

data.meanchange[,3] = rnorm(n, 0, 1)

# plot multivariate time series:

plot.zoo(data.meanchange, ylim=range(data.meanchange))
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C.2.1(a): Original data.
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C.2.1(b): Detected changepoints.

Figure C.2.1: An example of a single change in mean at the mid-point of 2 out of 3
Normally distributed variables. Plot (a) shows the original data, and
plot (b) shows the data with the changepoints detected by both smop
and asmop (dashed blue lines), along with the means of the segments

(sold red lines).

We apply both smop and asmop to this series. Since we are searching for changes

in mean only, we set cost.func to "norm.mean.seglen" and use the default values

for all other arguments. For the asmop function, a choice of value for window.size is

also necessary. This value is entirely context dependent. Informally, it can be thought

of as a tolerance for the slight misestimation of potential multivariate changepoint lo-

cations within the initial stages of the algorithm. A larger value means that estimated

changepoints across different variables which are ‘close’ (in time) are more likely to

be treated as the same changepoint across those variables. Since this example series

is relatively short, we wish to have a small window size and hence set window.size

to 2.

meanchange.results.smop = smop(data.meanchange,
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cost.func="norm.mean.seglen")

meanchange.results.asmop = asmop(data.meanchange,

cost.func="norm.mean.seglen", window.size=2)

plot(meanchange.results.smop)

plot(meanchange.results.asmop)

# see how many changepoint vectors were considered:

meanchange.results.smop@num.cpt.vecs # 5833

meanchange.results.asmop@num.cpt.vecs # 3

# view the running times

meanchange.results.smop@runtime # 10.29 seconds

meanchange.results.asmop@runtime # 0.02 seconds

As demonstrated in Figure C.2.1(b), both the smop and asmop functions identify the

true changepoint locations in the correct variables.

The key difference between the smop and asmop functions is the number of pos-

sible changepoint vectors considered within the procedure, and hence the running

times of the functions. Indeed, the num.cpt.vecs slot of the results show that smop

considers 5833 changepoint vectors, whereas asmop considers only 3. This is reflected

in their running times, with smop requiring 10.29 seconds and asmop requiring only

0.02 seconds on an Intel i5 2.5GHz processor. We note that the changepoint vectors

considered by smop will always include those considered by asmop. This consideration

of additional changepoint vectors means that the smop function will always produce

a solution which is at least as accurate as the solution produced by asmop.

In addition to this example, we consider the application of asmop to a larger se-

ries. Specifically, we examine a series containing 500 observations of six Normally

distributed variables. This series has multiple changes in variance occurring in dif-

ferent subsets of variables, and is displayed in Figure C.2.2(a). Note that we do not

apply smop to this data set due to the excessively long run-time of the method on a

series of this size.

library(zoo) # for plotting

# load data from changepointmv package:
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data("var.change.ex")

plot.zoo(var.change.ex)
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C.2.2(a): True changes.
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C.2.2(b): A-SMOP with hard subset restriction.
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C.2.2(c): A-SMOP with soft subset restriction.

Figure C.2.2: An example of multiple changes in variance in six Normally distributed
variables. Each change affects a different subset of the variables. The
true changepoints are shown by the red solid lines, and the estimated

changepoints in each case are shown by the blue dashed lines.

To demonstrate the difference between the hard-restricted and soft-restricted ver-

sions of A-SMOP, we perform two applications of asmop on this data: one with

hard.restrict=TRUE, and another with hard.restrict=FALSE (i.e. soft restriction

is used). We set window.size=10 and use cost.func="norm.var.seglen".

varchange.results.hard = asmop(data=var.change.ex,

cost.func="norm.var.seglen", window.size=10, hard.restrict=TRUE)
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varchange.results.soft = asmop(data=var.change.ex,

cost.func="norm.var.seglen", window.size=10, hard.restrict=FALSE)

The plots of the results of these two applications are presented in Figures C.2.2(b)

and C.2.2(c), respectively. These plots suggest that soft-restricted A-SMOP provides

a more accurate segmentation compared to hard-restricted A-SMOP, with the key

differences being the size of the affected variable subsets. Hard-restricted places a

two-variable change at 198 and a one-variable change at 222, whereas soft-restricted

places a single three-variable change at 204. Similar behaviour is exhibited later in

the 300–350 range. Visual inspection suggests that these three-variable changepoints

are more appropriate.

To assess this mathematically, the changepointmv package includes a function

called vmeasure. The V-measure, introduced by Rosenberg and Hirschberg (2007), is

a metric which quantifies the accuracy of a given segmentation (compared to the true

segmentation) on the [0, 1] scale, with a larger value (i.e. closer to 1) indicating a more

accurate segmentation. The V-measure of a segmentation resulting from application

of smop or asmop can be found using the vmeasure function as follows:

# create ’true’ changepoint locations and subsets:

true.cpts = c(100, 200, 300, 400, 500) # includes end-point of data

true.subsets = matrix(NA, length(true.cpts), ncol(var.change.ex))

true.subsets[1,] = c(F,F,F,T,T,T)

true.subsets[2,] = c(T,T,T,F,F,F)

true.subsets[3,] = c(F,T,F,T,F,T)

true.subsets[4,] = c(T,F,F,T,T,F)

true.subsets[5,] = c(T,T,T,T,T,T) # end-point affects all variables

# calculate V-measure of hard- and soft-restricted segmentations:

vmeasure(varchange.results.hard, true.cpts, true.subsets) # 0.891

vmeasure(varchange.results.soft, true.cpts, true.subsets) # 0.980

# see how many changepoint vectors were considered:

varchange.results.hard@num.cpt.vecs # 280
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varchange.results.soft@num.cpt.vecs # 15422

# view the running times

varchange.results.hard@runtimes # 0.46 seconds

varchange.results.soft@runtimes # 218.4 seconds = 3.64 mins

This gives V-measures of 0.891 and 0.980 for the segmentations produced using

hard and soft restriction, respectively. This therefore confirms that soft restriction

provides a more accurate segmentation than hard restriction. The higher accuracy

of soft-restricted A-SMOP is to due its consideration of additional changepoint vec-

tors: num.cpt.vecs = 15422 for soft-restricted and num.cpt.vecs = 280 for hard-

restricted. Note that due to the definition of soft restriction, this will always be the

case (see Section 5.2.2 for more details). This is subsequently reflected in the running

times: 3.64 minutes and 0.46 seconds for soft- and hard-restricted, respectively.

C.3 Case Studies

We now consider application of the asmop function to two data sets:

• a multivariate series containing the flows of four rivers in Quebec; and

• a multivariate series containing the exchange rates of four currencies against the

US Dollar.

Each series is examined in turn.

C.3.1 Quebec River Flows

This data set contains the annual January to June streamflow amounts for four rivers

in Quebec (Baleine, Churchill Falls, Manicouagan and Romaine) from 1972 to 1994,

measured in L/(km2s). This data is also analysed by Perreault et al. (2000) and is

originally published by the Centre d’Expertise Hydrique Quebec. It is made available

in the bcp package (Erdman and Emerson, 2007), from which we have obtained the

data.



APPENDIX C. CHANGEPOINTMV: AN R PACKAGE 175

library(bcp) # for data

library(zoo) # for plotting

data("QuebecRivers")

plot.zoo(QuebecRivers)

A plot of this data is shown in Figure C.3.1.
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Figure C.3.1: The annual January to June streamflow amounts for four rivers in
Quebec from 1972 to 1994, measured in L/(km2s).

Interest lies in detecting changes in the streamflow of the rivers. Whilst Per-

reault et al. (2000) search only for shifts in the mean level, visual inspection of the

data suggests that changes may be occurring in the mean and/or variance of the

flow. Therefore, we consider changes in both properties. Inspection of the series

for Churchill Falls may lead to the interpretation that it could be non-stationary

near the beginning. If the end-user believes that this may be the case, then a non-

stationary analysis of this univariate series could be performed, for example using the

Locally Stationary Wavelet process (see Nason et al. (2000) for more details). The

low-frequency components could then be filtered out to remove this behaviour and

leave the information regarding the mean and variance relatively unaffected. How-
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ever, in this instance we take the view that this apparent behaviour is simply due

to the stochastic nature of the observations, and that the series will be segmented

appropriately by the changepoint detection procedure.

Since it is feasible that some rivers may be affected by a change whilst others

may not, it is prudent to search for subset-multivariate (rather than strictly fully-

multivariate) changes. To this end, we apply the A-SMOP algorithm to the data using

asmop. Soft subset restriction is used for greater accuracy. Since we are searching for

changes in both mean and variance, we set cost.func to "norm.meanvar.seglen".

We use the default values for alpha (= 2 log n), beta (= 2 log p log n), and min.dist

(= 2). Since the series is relatively short, we wish to use a small window size and

hence set window.size=3. We therefore run the following code:

# running A-SMOP with default beta value

quebec.results = asmop(data=QuebecRivers,

cost="norm.meanvar.seglen", window.size=3, hard.restrict=FALSE)

plot(quebec.results)

# see the years at which changes occur

rownames(QuebecRivers)[quebec.results@cpts]

The resulting plot is shown in Figure C.3.2. We see that A-SMOP estimates two

changepoints in the series, at the years 1975 and 1984. These two changes affect dif-

ferent rivers: the change at 1975 affects Churchill Falls, whereas the change at 1984

affects Baleine, Manicouagan and Romaine. We note that the detected locations cor-

respond to the findings of Perreault et al. (2000), who search for a single changepoint

and estimate one at 1984. The multiple changepoint approach of A-SMOP allows the

detection of the additional changepoint. Furthermore, such intricate results detailing

the specific affected variables provide additional information, and are not part of the

output of the fully-multivariate approaches in the bcp and ecp packages.

Given the results in Figure C.3.2, we can either believe that there are two changes

in the series which affect the respective subsets of rivers, or consider that there may

be another segmentation which is more appropriate and try to obtain this by altering
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Figure C.3.2: The results of applying asmop to the Quebec river flows data set.

the α and/or β penalties. The choice of appropriate values for α and β is an open

question and is dependent on many factors including the size of changes and the length

of segments, both of which may be unknown prior to analysis. As demonstrated

here, current practice for penalty choice assessment involves plotting the detected

changepoints on the data to see if they seem reasonable.

C.3.2 Currency Exchange Rates

This data set is a multivariate series containing 1826 observations of the daily clos-

ing exchange rates of four currencies against the United States Dollar (USD). These

are the Euro (EUR), Canadian Dollar (CAD), Australian Dollar (AUD) and British

Pound (GBP). The rates are taken from 01/01/2010 to 31/12/2014. This data set

can be obtained via the quantmod package (Ryan, 2015) using the following code:

library(quantmod) # for downloading exchange rate data

library(zoo) # for plotting

# store symbols of exchanges rates of interest:

currencies.usd = c("EUR/USD", "CAD/USD", "AUD/USD", "GBP/USD")
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start.date = "2010-01-01"

end.date = "2014-12-31"

# create a sequence of the dates to use for row names of data matrix:

dates = as.character( seq(from=as.Date(start.date),

to=as.Date(end.date), by="1 day") )

# download the individual exchange rate series into the R environment:

getFX(currencies.usd, from=start.date, to=end.date)

# Adds four objects: EURUSD, CADUSD, AUDUSD, GBPUSD.

# Compile four univariate series into single multivariate series:

rates = matrix(NA, nrow=1826, ncol=4)

rates[,1] = EURUSD; rates[,2] = CADUSD

rates[,3] = AUDUSD; rates[,4] = GBPUSD

colnames(rates) = currencies.usd

row.names(rates) = dates

plot.zoo(rates) # plot multivariate series of exchange rates.

A plot of this data is shown in Figure C.3.3(a). Previous authors have modelled
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C.3.3(a): Original data.
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C.3.3(b): First-differenced data.

Figure C.3.3: The daily closing exchange rates of four currencies against the United
States Dollar (USD): EUR, CAD, AUD and GBP.

daily stock market returns as changes in volatility (see, for example, the analysis of

Dow Jones Index returns by Killick et al. (2012)). From the plot of the first-differences

of the series in Figure C.3.3(b), it appears reasonable to do the same for daily exchange
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rates. Visual inspection of these volatilities suggests that there may be changes in the

variation of the four exchange rates, particularly towards the end of the series. Some

changes appear to only affect certain currencies.

In an effort to detect any changes in the exchange rates, and identify which of

the currencies are affected, we apply A-SMOP to the series. As in previous analyses

of financial data we assume that the exchange rates are Normally distributed with

constant mean and piecewise stationary variance (both of which are unknown). We

therefore set the cost function as norm.var.seglen (so that very small segments are

penalised) and use a window.size of 10 (so that if two currencies are affected by a

change within 10 days of each other, we assume it is induced by the same event). Hard

restriction is used to ensure a faster computation time, and use the default values for

the other parameters (including the α and β penalties).

rates.diff = diff(rates)

currency.results = asmop(rates.diff, cost.func="norm.var.seglen",

window.size=10, hard.restrict=TRUE)

plot(currency.results)

# see the dates at which changes occur

dates[currency.results@cpts]

The results of asmop are illustrated in Figure C.3.4. It can be seen that multiple

changes are detected in the series, with different changes affecting different combina-

tions of the exchange rates. A consideration of world events suggests that some of

the detected changepoints correspond to certain developments. In particular, a sharp

drop in UK unemployment was reported on 11/08/2010, which corresponds exactly

to a detected change in the GBP. Similarly, a detected change in July 2011 in only

the AUD corresponds to the introduction of the Minerals and Resource Rent Tax in

Australia. Indeed, the occurrence of more global events correspond to the detected

locations of changepoints which affect many of the exchange rates. Specifically, the

formal end of the Iraq War in December 2011 correlates with a detected reduction

in variance in the EUR, CAD and AUD. Likewise, the rise of ISIS and the ongoing
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Figure C.3.4: The results of applying asmop to the exchange rate time series in
Figure C.3.3(b).

Israel-Palestine conflict are likely an influence in the detected increase in variance of

all four exchange rates in August 2014.

C.3.3 Summary

This appendix illustrates the application of the methodology available in the change-

pointmv package for performing changepoint analysis on multivariate time series.

The functions available allow for the detection of a range of different types of change,

including changes which occur in all variables and those which in occur in only subsets

of variables. Further, the package provides the user with separate control over the

penalisation of additional changepoints and additional affected variables for a given

detected change. Consequently, the changepointmv package is useful the analysis

of multivariate series where interest lies in both the locations of any changes and the

identification of the affected variables. The changepointmv package can be obtained

from http://www.lancaster.ac.uk/˜pickerin/software.html.

http://www.lancaster.ac.uk/~pickerin/software.html
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point detection tests for multivariate data using rank statistics. arXiv preprint

arXiv:1107.1971, 2011b.

Luong, T. M., Perduca, V., and Nuel, G. Hidden Markov Model Applications in

Change-Point Analysis. arXiv preprint arXiv:1212.1778, 2012.

Maboudou, E. M. and Hawkins, D. M. Fitting Multiple Change-Point Models to a

Multivariate Gaussian Model. In Proceedings of International Workshop in Sequen-

tial Methodologies, 2009.

Maboudou-Tchao, E. M. and Hawkins, D. M. Detection of multiple change-points in

multivariate data. Journal of Applied Statistics, 40(9):1979–1995, 2013.

Maidstone, R., Hocking, T., Rigaill, G., and Fearnhead, P. On optimal multiple

changepoint algorithms for large data. arXiv preprint arXiv:1409.1842, 2014.

Matteson, D. S. and James, N. A. A nonparametric approach for multiple change point

analysis of multivariate data. Journal of the American Statistical Association, 109

(505):334–345, 2014.

Nam, C. F., Aston, J. A., and Johansen, A. M. Quantifying the uncertainty in change

points. Journal of Time Series Analysis, 33(5):807–823, 2012.



BIBLIOGRAPHY 188

Nam, C. F. H., Aston, J. A. D., Eckley, I. A., and Killick, R. The uncertainty of

storm season changes: Quantifying the uncertainty of autocovariance changepoints.

Technometrics, 57(2):194–206, 2015.

Nason, G. P. Wavelet methods in statistics with R. Springer Verlag, 2008.

Nason, G. P., Von Sachs, R., and Kroisandt, G. Wavelet processes and adaptive

estimation of the evolutionary wavelet spectrum. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 62(2):271–292, 2000.

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. Circular binary

segmentation for the analysis of array-based DNA copy number data. Biostatistics,

5(4):557–72, 2004.

Ombao, H., von Sachs, R., and Guo, W. SLEX Analysis of Multivariate Nonstationary

Time Series. Journal of the American Statistical Association, 100(470):519–531,

2005.

Ombao, H. C., Raz, J. A., Von Sachs, R., and Malow, B. A. Automatic Statistical

Analysis of Bivariate Nonstationary Time Series. 96(454):543–560, 2001.

Page, E. S. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

Perreault, L., Parent, E., Bernier, J., Bobée, B., and Slivitzky, M. Retrospective

multivariate Bayesian change-point analysis: A simultaneous single change in the

mean of serveral hydrological sequences. Stochastic Environmental Research and

Risk Assessment, 14:243–261, 2000.

Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. A statistical approach

for array CGH data analysis. BMC Bioinformatics, 6:27, 2005.

Polunchenko, A. S. and Tartakovsky, A. G. State-of-the-art in sequential change-point

detection. Methodology and computing in applied probability, 14(3):649–684, 2012.



BIBLIOGRAPHY 189

Polushina, T. and Sofronov, G. Change-point detection in biological sequences via

genetic algorithm. In 2011 IEEE Congress on Evolutionary Computation (CEC),

pages 1966–1971. IEEE, 2011.

Preuß, P., Puchstein, R., and Dette, H. Detection of multiple structural breaks in

multivariate time series. Journal of the American Statistical Association, 110(510):

654–668, 2015.

R Development Core Team. R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria, 2011.

Reeves, J., Chen, J., Wang, X. L., Lund, R., and QiQi, L. A review and comparison of

changepoint detection techniques for climate data. Journal of Applied Meteorology

and Climatology, 46(6):900–915, 2007.

Rigaill, G. Pruned dynamic programming for optimal multiple change-point detection.

arXiv preprint arXiv:1004.0887, 2010.

Rissanen, J. Stochastic complexity in statistical inquiry. World Scientific, 1989.

Rosenberg, A. and Hirschberg, J. V-measure: A conditional entropy-based external

cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empir-

ical Methods in Natural Language Processing and Computational Natural Language

Learning (EMNLP-CoNLL), pages 410–420, 2007.

Ruggieri, E., Herbert, T., Lawrence, K. T., and Lawrence, C. E. Change point method

for detecting regime shifts in paleoclimatic time series: Application to δ18O time

series of the Plio-Pleistocene. Paleoceanography, 24(1), 2009.

Ryan, J. A. quantmod: Quantitative Financial Modelling Framework, 2015. R package

version 0.4-5.

Schwarz, G. Estimating the dimension of a model. The Annals of Statistics, 6(2):

461–464, 1978.



BIBLIOGRAPHY 190

Scott, A. and Knott, M. A cluster analysis method for grouping means in the analysis

of variance. Biometrics, pages 507–512, 1974.

Shumway, R. H. and Stoffer, D. S. Time series analysis and its applications: with R

examples, volume 3. Springer New York, 2000.

Siegmund, D., Yakir, B., Zhang, N. R., et al. Detecting simultaneous variant intervals

in aligned sequences. The Annals of Applied Statistics, 5(2A):645–668, 2011.

Silkina, T. Application of distributed acoustic sensing to flow regime classification.

Master’s thesis, Department of Petroleum Engineering and Applied Geophysics,

Norwegian University of Science and Technology, 2014.

Srivastava, M. S. and Worsley, K. J. Likelihood Ratio Tests for a Change in the

Multivariate Normal Mean. Journal of the American Statistical Association, 81

(393):199–204, 1986.

Stark, D. R. and Spall, J. C. Computable rate of convergence in evolutionary compu-

tation. In Proceedings of the Fifth International Conference on Information Fusion,

2002, volume 1, pages 88–93. IEEE, 2002.

Tartakovsky, A. G., Polunchenko, A. S., and Sokolov, G. Efficient computer network

anomaly detection by changepoint detection methods. IEEE Journal of Selected

Topics in Signal Processing, 7(1):4–11, 2013.

Van der Horst, J., Den Boer, H., Wyker, B., Kusters, R., Mustafina, D., Groen,

L., Bulushi, N., Mjeni, R., Awan, K., Rajhi, S., et al. Fiber optic sensing for

improved wellbore production surveillance. In IPTC 2014: International Petroleum

Technology Conference, Doha, Qatar, 2014.

Velis, D. R. Statistical segmentation of geophysical log data. Mathematical Geology,

39(4):409–417, 2007.

Venkatraman, E. S. Consistency results in multiple change-point problems. PhD

thesis, Department of Statistics, Stanford University, 1993.



BIBLIOGRAPHY 191

Vert, J.-P. and Bleakley, K. Fast detection of multiple change-points shared by many

signals using group LARS. In Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel,

R., and Culotta, A., editors, Advances in Neural Information Processing Systems

23, pages 2343–2351. Curran Associates, Inc., 2010.

Viterbi, A. J. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260–269,

1967.

Vostrikova, L. J. Detecting disorder in multidimensional random processes. Soviet

Mathematics Doklady, 24:55–59, 1981.

Wald, A. Note on the consistency of the maximum likelihood estimate. The Annals

of Mathematical Statistics, pages 595–601, 1949.

Whittle, P. Hypothesis Testing in Time Series Analysis. Almquist and Wicksell, 1951.

Wyse, J., Friel, N., et al. Approximate simulation-free Bayesian inference for multiple

changepoint models with dependence within segments. Bayesian Analysis, 6(4):

501–528, 2011.

Xie, Y. and Siegmund, D. Sequential multi-sensor change-point detection. The Annals

of Statistics, 41(2):670–692, 2013.

Xing, H., Mo, Y., Liao, W., and Zhang, M. Q. Genome-wide localization of protein-

DNA binding and histone modification by a Bayesian change-point method with

ChIP-seq data. PLoS Computation Biology, 8(7):e1002613–e1002613, 2012.

Yamaguchi, K. Estimating a change point in the long memory parameter. Journal of

Time Series Analysis, 32(3):304–314, 2011.

Yao, Y. Estimating the number of change-points via Schwarz’ criterion. Statistics &

Probability Letters, 6(3):181–189, 1988.



BIBLIOGRAPHY 192

Yau, C. Y. and Davis, R. A. Likelihood inference for discriminating between long-

memory and change-point models. Journal of Time Series Analysis, 33(4):649–664,

2012.

Yuan, M. and Lin, Y. Model selection and estimation in regression with grouped vari-

ables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67, 2006.

Yule, G. U. The applications of the method of correlation to social and economics

statistics. Journal of the Royal Statistical Society, 72:721–730, 1909.

Yule, G. U. On a method of investigating periodicities in disturbed series, with special

reference to wolfer’s sunspot numbers. Philosophical Transactions of the Royal

Society of London. Series A, Containing Papers of a Mathematical or Physical

Character, 226(636-646):267–298, 1927.

Zhang, N., Siegmund, D., Ji, H., and Li, J. Detecting simultaneous change-points in

multiple sequences. Biometrika, 97:631–645, 2010.

Zhang, N. R. and Siegmund, D. O. A modified Bayes information criterion with

applications to the analysis of comparative genomic hybridization data. Biometrics,

63(1):22–32, 2007.


	Introduction
	Changepoint Detection and Time Series Models
	Univariate Changepoint Detection
	Univariate Changepoint Model
	Changepoint Detection Paradigms
	Formulating Penalised Cost Functions
	Searching for Multiple Changepoints

	Multivariate Changepoint Detection
	Multivariate Changepoint Model
	At Most One Changepoint (AMOC) Methods
	Multiple Changepoint Methods

	Modelling Dependent Time Series
	Stationary Time Series Models
	Spectral Density and the Periodogram
	Changes in Dependence Structure


	Detecting Changes in Second-Order Structure: An Application to Acoustic Sensing Data
	Introduction to Acoustic Sensing Data
	99993em.5Whittle's Likelihood and its Application to Changepoints
	Whittle's Likelihood Approximation
	Detecting Changes in Second-Order Structure using Whittle's Likelihood

	99993em.5Comparison of Second-Order Changepoint Methods
	Accuracy of Estimation
	Computational Complexity

	Analysis of Acoustic Sensing Data
	Concluding Remarks

	Multivariate Changepoint Detection with Subsets
	Introduction
	99993em.5The Multivariate Changepoint Detection Problem
	Fully-Multivariate vs Subset-Multivariate
	Current Subset-Multivariate Approaches

	Modelling Subset-Multivariate Changepoints
	Changepoint Vectors
	Formulating a Penalised Cost Function

	Detecting Subset-Multivariate Changepoints
	Simulation Study
	Scenario Details and Results

	Analysis of Quebec River Flows
	Pruning Changepoint Vectors
	Retrospective Pruning
	Subset Pruning
	Practical Applicability of Pruning

	Concluding Remarks

	Approximate Segmentation of Multivariate Time Series
	Introduction and Motivation
	Search Space Reduction
	Reducing Possible Changepoint Locations and Affected Variables
	Further Subset Reduction
	Approximate SMOP

	Simulation Study
	Comparison of Methodology
	Scalability of A-SMOP

	Application to Acoustic Sensing Data
	SMOP vs A-SMOP: Application to Quebec River Flows
	A-SMOP for Structured Data
	Conclusion

	Conclusions and Future Directions
	Future Work
	Heuristic Pruning
	Modelling Cross-Correlation
	Increasing Changepoint Accuracy using CROPS


	Proofs for `Multivariate Changepoint Detection with Subsets'
	Proof of Proposition 4.4.1
	Proof of Proposition 4.7.1
	Proof of Proposition 4.7.2
	Proof of Lemma A.3.1
	Proof of Lemma A.3.2


	Proofs for `Approximate Segmentation of Multivariate Time Series'
	Proof of Proposition 5.2.1
	Proof of Proposition 5.2.2

	changepointmv: An R Package for Multivariate Changepoint Analysis
	Package Structure and the cptmv class
	The smop and asmop Functions
	Usage
	Illustrative Examples

	Case Studies
	Quebec River Flows
	Currency Exchange Rates
	Summary


	Bibliography

