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Abstract 22	

Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity 23	

to human disturbances, particularly fishing. Estimates of fish biomass, their spatial 24	

distribution, and recovery potential are important for evaluating reef status and crucial for 25	

setting management targets. Here we modeled fish biomass estimates across all reefs of 26	

the western Indian Ocean using key variables that predicted the empirical data collected 27	

from 337 sites. These variables were used to create biomass and recovery time maps to 28	

prioritize spatially explicit conservation actions. The resultant fish biomass map showed 29	

high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, 30	

distance to markets, and fisheries management restrictions. Lastly, we assembled data 31	

based on the age of fisheries closures and showed that biomass takes ~ 25 years to 32	

recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass 33	

levels for sustainable fishing yields, maximum diversity, and ecosystem stability or 34	

conservation targets once fishing is suspended was modeled to estimate temporal costs of 35	

restrictions. The mean time to recovery for the whole region to the conservation target 36	

was 8.1(+ 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 37	

and 4 years, but with high spatial variation. Recovery prioritization scenario models 38	

included one where local governance prioritized recovery of degraded reefs and two that 39	

prioritized minimizing recovery time, where countries either operated independently or 40	

collaborated. The regional collaboration scenario selected remote areas for conservation 41	

with uneven national responsibilities and spatial coverage, which could undermine 42	

collaboration. There is the potential to achieve sustainable fisheries within a decade by 43	

promoting these pathways according to their social-ecological suitability.  44	
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 47	

Introduction 48	

 49	

Achieving sustainability in fisheries is often challenging due to a lack of data and unclear 50	

goals or targets for management [1]. This is particularly true for poor and developing 51	

countries [2-4]. The challenge of sustainable fishing has been accentuated by the 52	

emergent drive for more holistic ecosystem-based management goals that propose 53	

broader ecological and social outcomes, including setting fisheries targets above potential 54	

ecological thresholds [4]. One way to handle this complexity is to find proxy metrics that 55	

cause or are closely associated with ecological change and can be directly affected, and 56	

potentially managed, by human usage. Fish biomass has been shown to be a key proxy 57	

for coral reefs where the state of reef ecosystems and the life history composition of the 58	

fish community are well predicted by a simple biomass metric [5-8].   59	

Coral reefs in the western Indian Ocean (WIO), the Caribbean and globally have been 60	

shown to follow a predictable decline in ecosystem state, processes and potential services 61	

as fish biomass diminishes under heavy fishing [5-8]. For the Indian Ocean, this gradient 62	

ranges from 7500 kg/ha for the large seascape wilderness of the Chagos Islands [9], to 63	

1200 kg/ha in national coastal fisheries closures [10], to <600 kg/ha in various fisheries 64	

[5,11]. Along a biomass gradient there are changes in ecological processes of carnivory 65	

and herbivory, the organic and inorganic carbonate balance, and numbers of species, their 66	

life histories, and ecological functions [5,11,12].  67	



 68	

The first measurable ecological changes appear to emerge when biomass is below ~1050 69	

kg/ha, but changes in number of species and fish life histories occur in succession below 70	

600 kg/ha [11,12], and degradation of ecological states, processes, and services below 71	

300 kg/ha [5]. Maximum sustained yields have been estimated to occur between 300 and 72	

600 kg/ha, where sustainability includes maintenance of stocks, ecological states, and 73	

moderate diversity [5]. Conservation targets, where measured ecological processes are 74	

maintained in fished seascapes, are estimated at ~2 standard deviations above the mean 75	

estimate of the switch-point for the first measured ecological change, which is 1150 kg/ha 76	

[6].   77	

 78	

Three targets for planning fisheries are therefore the mid-range estimate for sustainable 79	

production (~450 kg/ha), the point where fish diversity declines (~600 kg/ha), and where 80	

reef states and processes begin to change (~1150 kg/ha). With these targets and 81	

knowledge of the fish biomass or benefits and recovery times or costs, models can 82	

optimize the selection of reefs for fisheries restrictions. Previous studies have shown that 83	

human population density and particularly distance to markets are good predictors of fish 84	

biomass and functional groups [13,14]. Recovery rates are also being increasingly 85	

understood from studies of well-enforced long-term fisheries closures [7,15,16]. Similar 86	

patterns of recovery are emerging in disparate locations, with rate and duration depending 87	

on the initial biomass and rates of increase for various functional groups [7]. This 88	

emerging information makes it possible to map the distribution of reef fish biomass using 89	

proxies for fishing pressure, and to predict recovery rates based on local demography and 90	



management conditions. Recovery time can then be evaluated as a cost - the lost 91	

opportunity to capture fish – and can be minimized to develop regional fisheries and 92	

conservation prioritization plans.  93	

 94	

In this study, we modeled the factors that influence fish biomass, and estimated recovery 95	

rates under alternative management scenarios in the western Indian Ocean. We present a 96	

regional case study where 20% of the reefs are targeted for conservation and 50% for 97	

sustainable fishing, which aligns with a call by the Convention for Biological Diversity to 98	

put 20% of near-shore areas in closures by 2020 [17]. We then consider three priority-99	

area selection scenarios, two that reduce the costs (recovery time) for two governance 100	

scenarios where WIO countries plan and minimize costs independently and 101	

collaboratively [18]. Thirdly, where the priority is to raise biomass to multi-species 102	

maximum sustained yield (MMSY) levels in degraded reefs. The last scenario is typical 103	

of community led closures where local communities prioritize overfished reefs for 104	

closure and recovery [19,20]. The first two scenarios are more typical of national and 105	

regional strategies that propose to reach national and global protected area targets 106	

[21,22]. By considering these different assumptions about management needs and 107	

governance capacity, we provide a basis for considering a number of likely priorities.   108	

Methods 109	

Our analyses and subsequent mapping utilized 541 surveys of the biomass of fish in 337 110	

sites in the WIO during the period of 1987-2014 by two people (T.R. McClanahan and 111	

N.A.J. Graham). All diurnally active, non-cryptic reef associated fish species were 112	

included in the surveys. Replicate belt transects were used in some countries, and 113	



replicate stationary point counts in others, which have been shown to yield similar 114	

biomass values in methodological comparisons [Watson & Quinn 1997; Samoilys & 115	

Carlos 2000]. Species or family level fish survey data at a site over time were pooled into 116	

total fish biomass values (kg/ha) for each site. Sites were grouped into five different 117	

fisheries management categories as follows: remote sites (isolated reefs far from human 118	

populations); high compliance closure; low compliance and young closure; all destructive 119	

gear restricted (only line and trap fishing permitted); most destructive gear restricted 120	

(spear guns and gill nets also used); and no gears restricted (small mesh seine nets and 121	

explosives also in use) (Fig. S1). These groups were further categorized into either fished 122	

or un-fished. These groupings were based on maps of protected areas and the authors 123	

experience working in the above study sites [6]. For each record, the time period (in 124	

years) during which the corresponding management type was implemented was also 125	

recorded. Site attributes, including the Euclidean distance to the nearest town (i.e. 126	

potential fish markets) and the population of the town were added for each record. We 127	

defined a market as a national capital, provincial capital, major population centre, or 128	

landmark city, following Cinner et al. [26] and Marie et al. [2016 Ecology Letters]. We 129	

used population data from the Gridded Population of the World (GPW) database 130	

(CIESIN, 1996; http://sedac.ciesin.columbia.edu/plue/cenguide.html, retrieved Dec 15, 131	

2013) [23]. Sea surface temperature time series weekly data (SST) for 1980-2014 was 132	

extracted from CORTAD database (http://www.nodc.noaa.gov/sog/cortad/) and 133	

summarized into minimum, mean and maximum[24]. 134	

 135	



From the above high compliance closure fish biomass data, we determined the 136	

relationship between the duration of protection and fish biomass to estimate recovery 137	

times in the region. For the 111 sites in 16 high compliance closures, we plotted age 138	

against biomass and recovery time was estimated. The relationship between fish biomass 139	

and duration of protection was determined by fitting a three parameter self-starting 140	

logistic and asymptote models using the nls package in R version 3.2.2 (R Core Team 141	

2014), which optimizes given functions to fit available data [25]. The package has an 142	

initial attribute that creates the starting estimates for the parameters in the models, 143	

representing asymptote biomass value at the inflection point of the curve and a scale 144	

parameter in the biomass axis that estimates the time to recovery equation. 145	

Ethics statement 146	

Permission for fieldwork was granted from the following agencies: 1. Kenya: National 147	

Council of Science and Technology; 2. Mozambique: Eduardo Mondlane University; 3. 148	

Mayotte: Head of  Equipment, Agriculture and Homing Department; 4. Mauritius: 149	

Mauritius Oceanography Institute; 5. Madagascar: Ministère de L¹Environnement et des 150	

Forêts, Direction du Système des Aires Protégées; 6. South Africa: Departments of 151	

Science and Technology, the Environmental Affairs and Tourism, Ezemvelo Kwa Zulu 152	

Natal Wildlife, and the iSimangaiso Wetlands Park Authority; 7. Seychelles: Seychelles 153	

Bureau of Standards and Nature Seychelles; 8. Tanzania: Institute of Marine Science, 154	

University of Dar-es-salaam; 9. In the Maldives, some of the work was with the Banyan 155	

Tree Resort who had a permit to conduct research, and some work was under a permit 156	

from the Ministry of Fisheries and Agriculture; 10. The British Indian Ocean Territory: 157	

the British Indian Ocean Territory Administration; 11. No permit was required for 158	



Comoros but we worked with the Coordinator of the Coral Reef Task Force and Focal 159	

point of the Nairobi Convention; 12. No permit was required for Reunion.Field studies 160	

did not involve manipulation of any endangered or protected species. 161	

 162	

Fish biomass model 163	

To determine the predictors of fish biomass, a full-generalized additive mixed model 164	

(GAMM) was constructed with seven predictor variables and interactions, including: 165	

management and fishing (fixed terms), distance to markets (log transformed, spline 166	

smoothed terms, k=5) and market population (spline smoothed terms, k=5); average SST, 167	

minimum SST, and maximum SST. The year of sampling was added as a random 168	

intercept in the GAMM models. GAMs are the similar to generalized linear models 169	

(GLM’s) in that they relate a response variable to one or multiple independent variables 170	

but they also have the property of exploring non-linearity in the relationships using 171	

smoothers with no a priori assumption on the shape of the relationship. All the statistical 172	

methods were assessed using a hierarchical modeling framework to account for sampling 173	

in multiple years. These predictors were selected on the basis of prior studies in the 174	

scientific literature and ongoing work in this field [26]. We would have liked to include 175	

predictors such as coral cover and water quality, however we did not have data for these 176	

variables across all of our sites. Further, factors such as coral cover are strongly 177	

influenced by factors such as SST and fishing, included in our model. Additional social 178	

drivers would also have been interesting to include, such as levels of local economic 179	

development [Cinner et al. 2009 Curr Biol], however we did not have the data to include 180	

these. The purpose was not to have a comprehensive assessment of reef fish biomass 181	



predictors, but rather to approximate biomass with well known predictors. Next, we 182	

constructed all possible sub-models from this set of predictors, including an intercept-183	

only model, using the dredge function implemented in the MuMIn package [27]  (R Core 184	

Team 2014). A number of models in the set differed in their data fit by only small 185	

amounts, as defined by Akaike Information Criteria (AICc). We therefore employed a 186	

model averaging approach to 95% confidence set, a procedure that accounts for model 187	

selection uncertainty to obtain robust parameter estimates or predictions [28]. This 188	

procedure entails calculating a weighted average of parameter estimates, such that 189	

parameter estimates from models that contribute little information about the variance in 190	

the response variable are given little weight [29], while ameliorating the effects of 191	

uninformative parameters [30] . 192	

Spatial prediction of biomass and time to recovery 193	

Using the WCMC coral reef distribution data as the coral reef habitats template 194	

(http://www.unep-wcmc.org/), we created 2.5km x 2.5km square grids of ‘planning units’ 195	

in the WIO seascape. While there are no standard rules on determining the appropriate 196	

planning unit grid size, there are some factors that are useful guidelines, including range 197	

size of the species being modeled, area typically utilized by resource users, and the 198	

research questions being asked. In consideration of these, we chose a 2.5km grid. This 199	

captures the range size of most reef fishes, is representative of the relatively local nature 200	

of most reef fishing in the region, and is appropriate for the scale of our region wide 201	

study area (~7000 miles sq). For each planning unit, site attributes used in fish biomass 202	

modeling above were added (i.e. fisheries management categorization, fishing, distance 203	

to market and population of the market). Using the averaged biomass model constructed 204	



above, biomass was predicted spatially on all the planning units before applying the 205	

logistic and asymptote model parameters for calculating the time to recovery for each 206	

grid; that is the time it takes for fish biomass to recover to a given level of fish biomass. 207	

Although social-ecological conditions may change in the future influencing these 208	

recovery models, our current data span large gradients in human use, including protected 209	

areas embedded in heavily fished seascapes. We calculated time to recovery to three 210	

biomass thresholds as possible management targets as described above.  211	

Priority-area selection to minimize time to recovery 212	

After predicting time to recovery for both sustainable fishing and conservation targets, we 213	

evaluated different spatial prioritization approaches, one focused on achieving sustainable 214	

fishing and conservation targets at the lowest costs for national and regional scales and 215	

the other focused on allowing fish biomass to recover in the most biomass-depleted reefs. 216	

The first approach is a complementarity-based spatial prioritization, aimed at identifying 217	

sites for protection that complement, rather than replicate, each other. The second 218	

approach is a threshold-based spatial prioritization, aimed at selecting all sites that meet 219	

pre-established thresholds. Both these approaches are widely used for identifying 220	

important areas for biodiversity [31].  221	

We used a spatial prioritization tool, Marxan with Zones [32] to prioritize for marine 222	

management areas that minimize the time to recovery. Marxan with Zones uses a 223	

simulated annealing algorithm to identify sites that fulfill pre-determined quantitative 224	

targets for biodiversity features while minimizing cost, and also allows for the selection 225	

of zones with different management actions. In this study, our biodiversity feature is 226	



fishable biomass, which represents diversity but also other ecological services [5,33]. Our 227	

costs are the time for fish biomass to recover to the proposed biomass thresholds, which 228	

is an opportunity cost of lost catch. By using these times to recovery values as “costs” 229	

Marxan minimized time to recovery while meeting the biomass targets. Marxan was 230	

given the aim to reserve 20% and 50% of the total reef area as conservation and 231	

sustainable fishing zones.  232	

We looked at the effect that cross country collaboration would have on spatial 233	

prioritization outcomes for a coordinated international and independent national analysis 234	

[21,34]. In the uncoordinated Marxan analysis, the 20% conservation and 50% 235	

sustainable fishing targets were met separately for planning units in the Exclusive 236	

Economic Zone of each country, while in the coordinated analysis these targets were met 237	

across all planning units. For each scenario we conducted 100 Marxan runs, and we 238	

present these results by identifying 20% of planning units with the highest selection 239	

frequency as conservation zones, then removing these planning units and identifying 50% 240	

of planning units with the highest selection frequency as sustainable fishing zones. The 241	

remaining planning units were classified as unmanaged. The three simple groups were 242	

mapped to view management priorities because, given the large scale of the analysis and 243	

the relatively small planning units used, it was difficult to view priorities for the entire 244	

region using standard Marxan selection frequency maps. 245	

The final prioritization approach is entirely threshold-based and was focused on 246	

recovering fish biomass in the most biomass-depleted reefs, which is a method that is 247	

more focused on recovering sustainability using closures rather than achieving 248	

conservation targets. Here, we spatially executed analyses that set and ranked the most 249	



depleted planning units (i.e. <450kg/ha) as the priority for closure by reclassifying the 250	

grids along with the planning units within a 2.5km radius. Consequently, the planning 251	

units selected in the most depleted planning units were designated as ‘core priority areas’ 252	

and the adjacent areas as ‘spillover areas’. We then calculated the total areal coverage for 253	

both core and spillover areas and estimated the time to recovery of core areas to the 254	

above sustainability and conservation targets and mapped these data and present 255	

summaries for each location or country.  256	

 257	

Results 258	

Fish biomass predictions 259	

Among the fish biomass models, the most parsimonious model explained up to 65% of 260	

the variability observed in fish biomass data (Table 1, Fig. 1). Fisheries management type 261	

was one of the three most important predictors with high compliance closure and remote 262	

management categories having a positive influence on fish biomass and no gear and most 263	

destructive gear restrictions a negative influence (Table 1, Fig. 1). Similarly, distance to 264	

market and its interaction with fishing significantly influenced fish biomass, with 265	

biomass increasing with increase in distance interaction with ‘fished’ fishing category, 266	

Biomass increased with increase in maximum SST. A model that included fishing 267	

variable in addition to those in the best model  had essentially the same values of the 268	

maximized log-likelihood and within 2 AIC as the best model, indicating that fishing was 269	

a non-informative parameter in this model.  270	



Most reefs in the region have a fish biomass of less than 600 kg/ha. For example, 42% of 271	

the reefs’ cells were predicted to host fish biomass of less than 450kg/ha; 6% more than 272	

450 but less than 600kg/ha; 13% more than 600 and less than 1150; and 39% more than 273	

1150kg/ha (Table 2; Fig. 3a). Notably, the low biomass areas are Kenya’s south and 274	

Madagascar’s southwest fringing reefs; with Tanzania, Mozambique, northern 275	

Madagascar and most inhabited islands, such as the Comoros, having moderate levels. 276	

Maldives is predicted to have highest biomass levels along with remote islands of the 277	

Chagos and the Seychelles.  278	

Time to recovery models 279	

The recovery of fish biomass in the high compliance closures indicates good fits to the 280	

asymptotic, logistic, and Ricker functions with less than 2 AIC points between the models 281	

(Fig. 2).  Similar response behavior patterns were observed with no significant difference 282	

among the three models (Fig. 2) as indicated by the AIC delta of <2 (Fig. 2).  Further, all 283	

three functions significantly simulated the behavior pattern of the observed data (p<0.01). 284	

The data and equations suggest leveling just after 20 years of closure and the average of 285	

the logistic and asymptote model parameters were therefore used in the calculations of 286	

the time to recovery for the planning units below.   287	

Mapping recovery times to biomass targets 288	

Three recovery maps are shown (Figs. 3,4) based on the proposed time to reach the 289	

proposed threshold of 1150 kg/ha (Fig. 4ab) and the proposed mean production and high 290	

diversity sustainability levels of 450 and 600 kg/ha (Figs. 3b, 4a). The mean recovery 291	

time to the conservation levels for reefs in the region is 8.11+3.02 (+ SD) (Table 3). This 292	



varies considerably with the initial biomass levels with Kenya’s southwest Madagascar 293	

fringing reefs and portions of Mauritius and Reunion requiring over 20-30 years; whereas 294	

Tanzania, Mozambique, northern Madagascar and most inhabited islands requiring 5 to 295	

20 years. The remote islands of the Chagos, the outer islands of Seychelles and parts of 296	

the Maldives are already above the suggested conservation biomass threshold.  297	

The mean recovery time to sustainable yields and maximum diversity levels for reefs in 298	

the region are 1.74+1. 3 and 2.9+1.5 years, respectively (Table 3). For sustainable yields 299	

thresholds, the low initial biomass reefs, southern Kenya’s and southwest Madagascar 300	

and portions of Mauritius and Reunion have average recovery periods of 4 to 8 years but 301	

the averages for these countries are between 1 to 4  years. In northern Madagascar and 302	

most inhabited islands most reefs are already at the two sustainability levels. Tanzania 303	

and Mozambique coastlines require variable times ranging from 0 to 7 years. The time to 304	

recover maximum diversity showed similar patterns with some time increased to 9 years 305	

in the most biomass depleted reefs. Most countries would require 1 to 7 years to reach the 306	

maximum diversity threshold at the national level, although some small nations have 307	

already achieved this level.  308	

Prioritizing placement of closures in the most biomass-depleted reefs and calculating the 309	

core priority and adjacent spillover areas indicates that 24.5% of the reef area would be 310	

core and 32.6% spillover areas to achieve the threshold of 450 kg/ha for the entire region 311	

at our planning unit spatial resolution (Fig. 5; Table 4). This also varies considerably 312	

between countries with Madagascar, Comoros, and Mauritius requiring ~20-37%, and 313	

Reunion, Tanzania, and Mozambique requiring ~40% of their reefs in core areas. The 314	

remote offshore islands and Mayotte requiring none to ~30% in this form of management 315	



and Kenya with a value of 31% for a highly populated country attributable to a mix of 316	

existing national parks and remote areas in northern Kenya with high biomass.   317	

Spatial planning 318	

Applying the Marxan algorithms to minimize time to recovery and establishing the 319	

spatial goals of 20% of the reefs for conservation and 50% for sustainability, partitions 320	

these three target management categories differently depending on the by-country and 321	

entire-region coordination scenarios (Fig. 6). The entire-region scenario has most of the 322	

conservation areas placed in the offshore island of the Maldives, Chagos, and Seychelles 323	

but also some areas in northern Kenya and Mozambique and a few locations scattered 324	

throughout, including northern Madagascar (Fig. 6a). The by-country scenario places the 325	

conservation areas more broadly, as 20% conservation has to be established in each 326	

country (Fig. 6b). This results in new sites added in southern Tanzania and its offshore 327	

islands. Also, much of northern Madagascar is prioritized for conservation and all 328	

countries have sites selected according to where the highest biomass is predicted.    329	

The times to recovery for the three governance scenarios indicate the fastest recovery for 330	

collaboration, followed by the no-country collaboration, and finally by the biomass 331	

depletion status (Table 5). The whole-region values to reach the sustainable yield 332	

thresholds were 0.43+0.51, 0.76+0.92, and 3.91 (1.34) years for the collaboration, no 333	

collaboration, and local management governance scenarios, respectively. Maximum 334	

diversity would require 0.66+0.77, 1.43+0.91, and 6.24+1.14 and conservation thresholds 335	

3.27+2.14, 7.13+2.53, and 15.23+2.17 years for the three governance scenarios, 336	

respectively. Again, these values vary considerably by location, country, threshold, and 337	



scenario.  338	

Regional collaboration generally shortens countries time to recovery, but the differences 339	

can vary. For example, regional collaboration decreased recovery time by up to 9 years in 340	

countires such as Mozambique and Mauritius (Table 5.). Some countries, such as 341	

Mauritius or the Cormoros, have very low biomass overall, such that none of their reefs 342	

would be included in a regional collaboration while others, such as Seychelles, already 343	

have many of their reefs above thresholds and therefore require less time or costs to 344	

participate in the collaboration. Conversely, the biomass-depleted prioritization approach 345	

requires a long recovery period for Kenya and Mauritius but so do many of the countries 346	

with low biomass, most countries requiring 3 to 6 and 12 to 18 years to achieve the mean 347	

sustainable yield and conservation thresholds, respectively.  348	

 349	
Discussion 350	

 351	

Conservation planners and managers are faced with different approaches to prioritizing 352	

marine conservation that can vary based on underlying philosophies and values of what is 353	

important to protect, for what reasons, by whom, and how best to promote effective 354	

human actions [35-37]. Typically, a common concern and the main use of systematic 355	

conservation planning is the efficient use of limited resources and trade offs required to 356	

protect representative threatened biodiversity [32,38]. Political boundaries are also a 357	

concern, as conservation requires collective action and most operate at some political 358	

level ranging from local coastal communities, such as fish landing sites, sub-national 359	

divisions, nations, regional and global governance bodies [39,40]. Proposed planning 360	



should stimulate human actions that have some measurable and predictable effect on 361	

ecosystems and human livelihoods. Consequently, technical planning needs to contribute 362	

to larger portfolio of decision-making activities, which should include factors not easily 363	

modeled in spatial plans but also by approaching planning with a variety of assumptions 364	

and associated scenarios.  365	

Here, we present the spatial conservation prioritization outcomes of a variety of 366	

potentially common management approaches. The spatial prioritization plans deriving 367	

from these different philosophies can vary but overlap enough to form a basis for 368	

comparison and compromises [36,38]. We emphasize the importance of developing a 369	

portfolio of approaches where hidden values and associated cultural decisions are 370	

included in the models. Because these values are hidden in model assumptions, they are 371	

often a source of conflict when technical solutions are presented in subsequent 372	

deliberative discussions [41,42]. Many resource conflicts and failures to implement 373	

technical solutions occur when technical solutions have not fully appreciated access 374	

issues, or psychological and cultural values that produce difficult-to-quantify trade offs 375	

[43, Hicks & Cinner 2014, Hicks et al. 2015]. . 376	

A common management approach is to preferentially protect areas having the highest 377	

conservation potential at the minimum cost [44]. This is, for example, the approach being 378	

used by nations and some conservation organizations that prioritize remote and intact 379	

areas that can quickly reach conservation target areas, including the Chagos Archipelago 380	

in the Indian Ocean [45]. Large and remote protected areas support significantly different 381	

biotic communities from national closures, particularly the protection of apex predators 382	

and scraping herbivores that are often uncommon in the more typical national closures 383	



that are frequently developed for ecotourism purposes [9]. Standard prioritization has the 384	

advantages of efficiency and affordability but there are also hidden transaction and 385	

opportunity costs of negotiations, enforcement, and monitoring. Further, they can lack 386	

redundancy and a political balance of costs and responsibilities that may be critical for 387	

accommodating failures and political efforts to establish regional protected areas [46-48].  388	

An example from this region is that the probability of closure failure is likely to be >35% 389	

as indicated by the ratio of low compliance to total closures reported in recent WIO 390	

regional surveys [6]. Failure probability will also vary in different social environments 391	

and, while low economic development is often associated with high biomass reefs, the 392	

capacity to protect it is likely to be limited without significant intervention [49,50]. 393	

Similarly, very remote areas may lack stakeholder communities willing to maintain the 394	

costs of their protection. Designations can be motivated by the desire to achieve targets 395	

and be unrealistic about the efficacy and social justice issues created when remote 396	

protected areas with large expenditures are created [48]. Social injustice can be leveled at 397	

these cases, as scarce resources might be better spent on stakeholders that benefit from 398	

the establishment of protected areas.  399	

Here, we see some specific regional issues likely to arise when the least costly 400	

international collaboration is considered as a means to reach conservation targets. In this 401	

case, some countries are exempt from responsibility or action either because they already 402	

have reached the stated goals, such as the Seychelles, or the time to recovery are too long 403	

to require efficient action, such as Mauritius, while a burden can be added to others with 404	

limited resources, such as Tanzania. Here, other considerations are needed; for example, 405	

Mauritius has the highest level of fish endemism in the region and so any consideration of 406	



endemism would prioritize the Mascarene Islands [51,52]. Tanzania has a history of 407	

conflict and low compliance with large national protected areas and any extra burden may 408	

require involvement of alternative livelihoods [11,53]. These examples can typify 409	

regional issues that are not easily solved or policed by a regional oversight body. 410	

Consequently, while this approach is useful and may be a good way to insure some 411	

wilderness areas are identified and protected, they may fail to reach the appropriate level 412	

of effective governance, agreement, and social justice associated with collective 413	

expenditures that are considerations required for spatial planning [44,54]. Similar 414	

challenges have been encountered through the well studied coral triangle initiative, 415	

potentially providing useful lessons for regions such as the western Indian Ocean 416	

(Fidelman et al. 2012; Weeks et al. 2014).  417	

The no-national coordination results are more realistic about the appropriate scale of 418	

governance for some types of protected areas. They produce responsibility for each 419	

nation and its stakeholders, but do so in a way that conservation goals can be rapidly 420	

reached. While the recovery time required in this scenario is greater than the regional 421	

goal, for Madagascar, the differences are small and never more than 1 year. Costs would 422	

likely be offset by the time spent coordinating on a regional agreement and monitoring 423	

system. For example, despite a few efforts to create cross boundary protected area over 424	

the past decade, none of these efforts have produced concrete actions [22]. Further, there 425	

is not a high level of economic and governance interaction within the region that often 426	

precedes and is associated with regional conservation action [21,34]. Countries in this 427	

region vary in the amount of area they already have and have proposed for protected 428	

areas [55] and have variable local social support for protected areas [6].  429	



The final biomass-depletion selection scenario focuses on restoring degraded ecosystems 430	

that should improve fisheries and ecosystem resilience when restored. Models suggest 431	

that fisheries closures are only effective at increasing fisheries yields when biomass is 432	

reduced below MMSY levels [56-59]. Consequently, the biomass depletion approach fits 433	

well with these objectives in selecting sites that have biomass below MMSY levels. Fish 434	

biomass, diversity, and ecosystem services are often closely linked in coral reefs and 435	

therefore this planning approach is expected to produce other social-ecological benefits 436	

[5,33,60]. This approach does require the greatest recovery time, especially if the goal is 437	

for closures to reach the conservation threshold. Further, small closures have limited 438	

capacity to restore apex predators and other feeding functional and life histories groups 439	

[6,9]. Nevertheless, there is evidence that governments and communities in the region are 440	

embracing and expanding this management tool [20,50]. The success rate and full social-441	

ecological outcomes needs further investigation but preliminary evaluations are hopeful 442	

in finding ecological changes and social acceptability for small closure sizes [61,62].  443	

Model limitations 444	

The spatial models have a number of limitations that need to be considered when 445	

evaluating their usefulness. The data used to build the model are well replicated and 446	

collected over large areas but there is variation in the fish biomass predictions by human 447	

population, management, and recovery rates that limit the predictive ability. There are 448	

likely to be differences at any specific sites that are not accounted for in the model, 449	

including habitat and environmental conditions that will influence reef fish biomass and 450	

recovery rates and also cultural factors, such as adoption, enforcement, and compliance. 451	

Other studies suggest that there are, however, clear and predictable relationships between 452	



distance to markets, management, and fish biomass [63,64]. Further, fish recovery rates 453	

are often found to occur at a 15 to 25 year rate [16,65,66] but there are also reports of 454	

slower and faster recovery [7,67]. Given that the model was calibrated with data collected 455	

in this region, the chances for errors of extrapolation is limited. Nevertheless, many 456	

ecological and social factors are not well understood let alone modeled accurately on the 457	

regional scale of this study. Therefore, any application of the spatial model to specific 458	

sites will have to consider these limits. Local variability requires applying the usual social 459	

and ecological considerations during the planning and implementation process [35,68].  460	

The cost used here is recovery time, which is proportional to lost fisheries production or 461	

biomass not captured and consumed by people. Estimates of fisheries production are 462	

variable but generally fall ~4-6 tons/km2/year but can reach more than 10 tons/km2/year 463	

[49,69]. Consequently, a loss of one year of fishing can represent around 0.5 million tons 464	

of reef fish for the region. This creates challenges to feeding or creating alternative food 465	

sources in an already biomass dependent and depleted fishery [60,70]. Full closure to all 466	

fishing is, however, an extreme case used to estimate costs and less severe restrictions, 467	

such as gear management would allow partial recovery while still providing food and 468	

income [71]. This would extend the recovery time but is expected to create less social 469	

resistance.   470	

Spatial prioritization tools are for decision support not decision making, which requires 471	

human experience and the inclusion of more criterion than are typically modeled [44]. 472	

Our study demonstrates the use of understanding of baselines, carrying capacity and rates 473	

of biomass recovery and associated ecological factors to identify and plan priority areas. 474	

Yet, we also show how different assumptions and proposals can lead to very different 475	



spatial priorities and foresee potential conflicts. From our analysis and the current state of 476	

governance in the region, we suggest that a combination of the by-country prioritization 477	

and the biomass depletion selection criteria is most likely to be adopted. These 478	

approaches fit the regions need to protect intact ecosystems and biodiversity at the 479	

national level but also sustain biomass and support the production of local fisheries 480	

[60,70].  481	

The methods that we used have potential to be applicable globally. Human coastal 482	

population densities are estimated at 1.2 x 109 or nearly three times higher the global 483	

average and 17% of them rely on fisheries as a primary source of nutrition [23]. Clearly, 484	

the human population, market, and management factors shown here and elsewhere are 485	

largely driving the depletion of biomass of reef ecosystems globally [7,63,72]. Yet, one 486	

of the key outcomes of coral reef research in this region is that thresholds of fish biomass 487	

are critical for maintaining the ecological state and services [5,6]. It is suggested that 488	

maintaining ecological states above the sustainability thresholds will provide greater 489	

potential to adapt to disturbances that will increase with global climate change. An 490	

important step in providing this adaptation potential is to develop spatial plans and 491	

priority-areas for conservation action that utilize these empirically derived thresholds.   492	
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Table 1. Significance tables for parametric model terms (fixed effects) and smooth terms for the 

top biomass predictive model. 

 
Variable Estimate SE t Pr(>|t|) 

a) AICc = 1358 Fixed terms      

R2 = 0.66 Intercept 5.5 0.2 33.6 <0.01 

 
Management: High compliance closure 1.0 0.2 6.7 <0.01 

 

Management: Low compliance and young 

closure 
0.2 0.1 1 NS 

 
Management: Most destructive gear restricted -0.4 0.2 -1.3 0.05 

 
Management: No gears restricted -0.4 0.2 -2.3 0.05 

 
Management: Remote 1.9 0.4 7.2 <0.01 

 

Smoothed terms, k=5 Edf 
 

F P 

s(log of distance):	Fishing-Fished 3.1 
 

21.7 <0.01 

 
s(log of distance):	Fishing-Unfished  1 

 
0.25 NS 

 Sea surface temperature - maximum 3.9  34.3 <0.01 

 

  



 

Table 2. Modeled biomass (kg/ha) expressed as a percentage of the total reef area for each 

location or country and the entire western Indian Ocean region. 

 

 
 
 

Biomass  
Country <300 kg/ha 300-450 kg/ha 450-600 kg/ha 600-1150 kg/ha >1150 kg/ha

Bassas da India 0.00 0.00 0.00 0.00 100.00 

British Indian Ocean Territory 0.00 0.00 0.00 3.88 96.12 

Comoro Islands 66.03 14.76 19.21 0.00 0.00 

Glorioso Islands 72.64 0.00 0.00 0.00 27.36 

Ile Europa 0.00 0.00 0.00 0.00 100.00 

Ile Tromelin 0.00 0.00 0.00 0.00 100.00 

Juan de Nova Island 0.00 0.00 0.00 0.00 100.00 

Kenya 32.22 38.57 15.26 13.37 0.58 

Madagascar 63.90 21.57 8.66 5.86 0.00 

Maldives 0.47 16.22 15.84 42.82 24.66 

Mauritius 48.90 0.00 0.00 41.05 10.05 

Mayotte 1.81 50.66 42.78 3.53 1.21 

Mozambique 80.73 17.07 0.18 1.78 0.23 

Reunion 47.77 38.72 0.00 13.51 0.00 

Seychelles 3.63 0.54 0.00 0.00 95.83 

South Africa 0.00 0.00 0.00 100.00 0.00 

Tanzania 44.67 52.93 2.36 0.04 0.00 

Entire Region 27.22 14.77 6.13 13.28 38.59 



Table 3. Mean (+SD) recovery time in years to the three proposed biomass thresholds for 

each country and the entire Western Indian Ocean region 

 

 Sustainable Fishing Maximum Diversity Conservation 

Country 450 kg/ha (SD) 600 kg/ha (SD) 1150 kg/ha (SD)

Bassas da India 0 (0) 0 (0) 0 (0) 

British Indian Ocean Territory 0 (0) 0 (0) 0.02 (0.17) 

Comoro Islands 3.13 (2.35) 5.72 (1.72) 14.21 (2.48) 

Glorioso Islands 3.25 (2.29) 4.62 (3.26) 10.5 (7.4) 

Ile Europa 0 (0) 0 (0) 0 (0) 

Ile Tromelin 0 (0) 0 (0) 0 (0) 

Juan de Nova Island 0 (0) 0 (0) 0 (0) 

Kenya 3.11 (2.93) 5.28 (3.04) 15.1 (6.17) 

Madagascar 3.43 (2.41) 5.6 (2.47) 14.4 (4) 

Maldives 0.13 (0.54) 1.05 (1.77) 6 (4.57) 

Mauritius 3.34 (2.96) 4.42 (3.91) 12.36 (6.85) 

Mayotte 0.61 (1.06) 3.56 (1.49) 11.05 (2.39) 

Mozambique 4.56 (1.51) 6.57 (1.71) 15.3 (3.46) 

Reunion 3.59 (2.24) 5.68 (2.59) 14.76 (4.93) 

Seychelles 0.71 (1.65) 1.07 (2.43) 2.47 (5.6) 

South Africa 0 (0) 0 (0) 6.9 (0.53) 

Tanzania 3.65 (1.95) 6.14 (1.41) 14.83 (2.79) 

Entire Region 1.74 (1.29) 2.92 (1.52) 8.11 (3.02) 



 Table 4. Amount of reef (as a percentage of the total in each country) selected in each 

management type using the biomass depletion prioritization scenario. 

  

Country Core closure (%) Spillover (%) Biomass >450 

Bassas da India 0.00 0.00 100.00 

British Indian Ocean Territory 0.00 0.00 100.00 

Comoro Islands 37.53 43.45 19.01 

Glorioso Islands 29.46 43.18 27.36 

Ile Europa 0.00 0.00 100.00 

Ile Tromelin 0.00 0.00 100.00 

Juan de Nova Island 0.00 0.00 100.00 

Kenya 30.72 47.48 21.80 

Madagascar 37.43 49.36 13.20 

Maldives 7.65 9.86 82.49 

Mauritius 20.88 28.02 51.10 

Mayotte 23.77 35.47 40.77 

Mozambique 41.74 56.07 2.18 

Reunion 40.09 59.91 0.00 

Seychelles 1.65 2.52 95.83 

South Africa 0.00 0.00 100.00 

Tanzania 42.78 55.57 1.64 

Regional Average 24.49 32.63 42.88 



 

Table 5.  Mean (+SD) time to recovery (in years) for sustainable yields (450 kg/ha), maximum diversity (600 kg/ha), and conservation 

(1150 kg/ha) thresholds for core closure priority areas. Marxan was used to select reefs for the regional collaboration, and no- 

collaboration scenarios, while the degradation prioritisation is described in the methods). NS indicates countries where 

Marxan/Degradation prioritisation did not select any conservation areas. 

Marxan - Regional Collaboration Marxan - No Collaboration Degradation Prioritization 

Thresholds 
 
Country 

450 kg/ha 
(SD) 

600 kg/ha 
(SD) 

1150 kg/ha 
(SD) 

450 kg/ha 
(SD) 

600 kg/ha 
(SD) 

1150 kg/ha 
(SD) 

450 kg/ha 
(SD) 

600 kg/ha 
(SD) 

1150 kg/ha 
(SD) 

Bassas da India 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) NS NS NS 
British Indian Ocean 
Territory 0 (0) 0 (0) 0.12 (0.54) 0 (0) 0 (0) 0.04 (0.29) NS NS NS 
Comoro Islands NS NS NS 4.78 (0.7) 6.86 (0.49) 15.66 (0.84) 4.27 (1.08) 6.49 (0.8) 15.04 (1.47) 
Glorioso Islands 0.53 (1.51) 0.78 (2.2) 1.78 (5.01) 1.29 (2.03) 1.94 (3.03) 4.44 (6.95) 4.47 (0.28) 6.58 (0.24) 15.04 (0.54) 
Ile Europa 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) NS NS NS 
Ile Tromelin 0 (0) 0 (0) 0 () 0 (0) 0 (0) 0 (0) NS NS NS 
Juan de Nova Island 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) NS NS NS 
Kenya 0.38 (0.91) 1.55 (2.42) 5.02 (6.02) 0.65 (0.96) 3.46 (1.77) 11.2 (2.08) 4.04 (2.7) 6.54 (2.15) 16.99 (5.51) 
Madagascar 2.98 (2.62) 5.21 (2.66) 13.61 (4.23) 4.27 (1.83) 6.4 (1.8) 15.42 (3.5) 4.56 (1.48) 6.72 (1.29) 15.82 (2.79) 
Maldives 0 (0) 0 (0) 0.11 (0.81) 0.06 (0.4) 0.47 (1.22) 5.11 (4.19) 1.04 (1.32) 3.66 (1.61) 11.59 (1.32) 
Mauritius 1.02 (2.35) 1.34 (3.08) 3.12 (7.18) 4.22 (2.78) 5.56 (3.65) 12.94 (8.51) 6.07 (0.39) 7.98 (0.35) 18.66 (1.06) 
Mayotte 0 (0) 0 (0) 0 (0) 0.62 (0.95) 4.23 (0.63) 11.83 (0.62) 2.07 (0.82) 5.03 (0.48) 12.69 (0.66) 
Mozambique 2.86 (2.25) 4.25 (3.26) 9.76 (7.49) 4.84 (1.36) 6.88 (1.39) 16.03 (2.75) 5.12 (1.1) 7.16 (0.95) 16.62 (2.13) 
Reunion NS NS NS 0.29 (0.66) 2.25 (2.22) 8.73 (5.02) 3.39 (2.68) 5.8 (2.57) 15.26 (4.58) 



Seychelles 0 (0) 0 (0) 0 (0) 0.26 (1.11) 0.37 (1.57) 0.85 (3.59) 4.55 (0.91) 6.69 (0.69) 15.39 (1.31) 
South Africa NS NS NS 0 (0) 0 (0) 5.12 (0) NS NS NS 

Tanzania 1.51 (1.09) 4.68 (0.72) 12.32 (0.79) 3.03 (1.79) 5.67 (1.24) 13.86 (2.06) 3.45 (1.96) 5.95 (1.46) 14.46 (2.48) 

Regional average 0.66 (0.77) 1.27 (0.8) 3.27 (2.14) 1.43 (0.91) 2.59 (1.01) 7.13 (2.53) 3.91 (1.34) 6.24 (1.14) 15.23 (2.17) 



 

 

Figure legends 

 

Figure 1.  Scatterplots showing the empirical relationships between fish biomass, 

fisheries management categories, and proxies for the impacts of fishing (i.e. population 

and distance to markets).  These relationships are based on 214 2.5 x 2.5 km cells where 

fish biomass data were collected and used to develop a regional biomass model for the 

total of 11678 2.5 x 2.5 km cells in the region with coral reefs (see figure 3).  ADGR = all 

destructive gear restricted, HCC = high compliance closure, LCYC = low compliance 

and young closure, MDGR = most destructive gear restricted, NGR = no gear restricted, 

R = remote. 

 

Figure 2.  Scatterplot and estimates and best-fit equations for three likely models for the 

relationship between the age of the high compliance closures and the fish biomass in 

sampled western Indian Ocean coral reefs. 

 

Figure 3. Map of the western Indian Ocean for (a) modeled biomass based on the 

empirical relationship established in figure 1, and (b) the estimated time to recover 

biomass to a mean estimated sustainability level (450 kg/ha). 

 

Figure 4. Map of  (a) the estimated time to recover biomass to a mean estimated 

sustainability level (600 kg/ha), and (b) the estimated conservation target of 1150 kg/ha 



in fully protected fisheries closures studied over a 20-year period (McClanahan et al. 

2007).   

 

Figure 5.  Map derived from algorithm identifying and prioritizing the most depleted fish 

biomass for small closures and adjacent spillover reefs until all reefs with biomass <450 

kg/ha are classified.  

 

Figure 6.  Western Indian Ocean maps of Marzone maximum probability priority 

selections for 50% sustainability, 20% conservation, and 30% unmanaged where to time 

to recovery was the cost and minimized if (a) countries collaborated to reach these goals, 

and (b) there was no collaboration between countries. 

 

 

 


