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ABSTRACT

In the Fifth generation (5G) wireless communication systems, a majority of the traffic demands is contributed by
various multimedia applications. To support the future 5G multimedia communication systems, the massive multiple-input
multiple-output (MIMO) technique is recognized as a key enabler due to its high spectral efficiency. The massive antennas
and radio frequency (RF) chains not only improve the implementation cost of 5G wireless communication systems but also
result in an intense mutual coupling effect among antennas because of the limited space for deploying antennas. To reduce
the cost, an optimal equivalent precoding matrix with the minimum number of RF chains is proposed for 5G multimedia
massive MIMO communication systems considering the mutual coupling effect. Moreover, an upper bound of the effective
capacity is derived for 5G multimedia massive MIMO communication systems. Two antenna receive diversity gain models
are built and analyzed. The impacts of the antenna spacing, the number of antennas, the quality of service (QoS) statistical
exponent, and the number of independent incident directions on the effective capacity of 5G multimedia massive MIMO
communication systems are analyzed. Comparing with the conventional zero-forcing precoding matrix, simulation results
demonstrate that the proposed optimal equivalent precoding matrix can achieve a higher achievable rate for 5G multimedia

massive MIMO communication systems. Copyright () 0000 John Wiley & Sons, Ltd.
KEYWORDS
mutual coupling, massive MIMO systems, effective capacity, RF chains, equivalent precoding.

*Correspondence
Dr. Qiang Li, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan
430074, Hubei, P. R.China. E-mail: gli_patrick@mail.hust.edu.cn

Part of this work appeared in the IEEE IWCMC 2015 [1], which was granted the best paper award.

1. INTRODUCTION

As various wireless multimedia applications are getting
more and more popular, the demand for wireless traffic
is increasing rapidly, and the massive multi-input-multi-
output (MIMO) technology has been proposed as a
key technology for the next generation (5G) wireless
communication systems [2—4], facilitating to guarantee the
increasing demand of user QoE (Quality of Experience)
[5, 6]. Recently, a number of excellent studies have

validated that massive MIMO systems are specialized in
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improving the wireless communication capacity vastly in
cellular networks[7]. Apparently the huge antenna arrays
have to be deployed compactly because enough space
are not available at not only base stations (BSs) but
also mobile terminals, therefor the interaction of mutual
coupling among antennas gets so strong that it can’t be
ignored in massive MIMO systems[8]. Also, the realistic
channel capacity which is subject to the quality of service
(QoS) in multimedia wireless communication systems and

the Shannon capacity are not the same thing [9-12]. So,
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exploring a new precoding solution for the 5G massive
MIMO multimedia communication systems is necessary.

A lot of studies have achieved great achievements
about mutual coupling among multiple antennas on many
topics such as antenna propagation, signal processing and
antenna arrays [13-16]. Utilizing the real measurement
data, the authors of [13] have made a comparison on
the antenna array performance between the systems
considering the mutual coupling and the systems not. It
has been proved that mutual coupling has a great influence
on the performance of antenna arrays for not only small
but also large inter-antenna spacing, because that in order
to contain the changes in all the anticipant vectors, the
steering vectors of the antenna arrays should be adjusted
not only in amplitude but also in phase[14]. Clerckx et.
al. studied how the mutual coupling influenced a simple
multi-antenna communication system performance [15]. In
order to recover the signals received by separate antennas
without mutual coupling, the authors of [16] have invented
a new technique to make a compensation for mutual
coupling in small antenna arrays.

At practical wireless communication transmission
terminals, each data stream is first passed through the
baseband precoding to radio frequency (RF) chains and
then is transmitted to antennas by the RF chains precoding.
For MIMO wireless systems, the precoding technologies
are focused on the baseband precoding, i.e., the first
order precoding, and each RF chain corresponds to an
antenna. Utilizing the phase matrix between RF chains and
antennas, the joint precoding of baseband and RF chains
was proposed for massive MIMO systems with limited
RF chains [17, 18]. However, it is still a great challenge
to reduce the number of RF chains for saving the cost of
massive MIMO wireless communication systems.

Lots of excellent studies in the field of wireless
multimedia communication have emerged [19-23]. In
order to evaluate the QoS of wireless multimedia networks,
the authors in [19, 20] created a constrained model of
statistical QoS to study the transmission characteristics
of data queues. In [21, 22], the authors referred to the
effective capacity of the block fading channel model and
proposed a rate and power adaption scheme in which
the power is driven by QoS. And in [23], the authors
further combined the effective capacity with information
theory and developed some rate adaptation and QoS-

driven power schemes which were suitable for the systems
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of multiplexing and diversity. Also they concluded that
stringent QoS and high throughput can be achieved by
the multi-channel communication systems simultaneously
according to their simulation results. However, rare
efforts has been made to study the effective capacity
of massive MIMO multimedia wireless communication
systems which consider the QoS constraint and mutual
coupling effect.

Motivated by the above gaps, we propose an optimal
equivalent precoding matrix to reduce the cost of RF chains
in 5G massive MIMO multimedia communication systems
and derive the upper bound of effective capacity with QoS
constraints. The main contributions of this paper are listed

as follows.

1. We define the receive diversity gain to analyze
how the mutual coupling influence the performance
of the rectangular antenna arrays in the massive
MIMO wireless communication systems.

2. An optimal equivalent precoding matrix is proposed
to reduce the cost of RF chains and satisfy
the multimedia data requirements for 5G massive
MIMO multimedia communication systems.

3. We refer to the QoS statistical exponent constraint
and the mutual coupling effect, then derive the
upper bound of effective capacity for 5G massive
MIMO multimedia communication systems.

4. Based on numerical results, the proposed optimal
equivalent precoding matrix is compared with the
conventional zero-forcing (ZF) precoding matrix
in 5G massive MIMO multimedia communication

systems.

The rest of this paper is summarized as follows.
In Section 2, a system model in which there is a
2D antenna array is described for massive MIMO
wireless communications. In Section 3, the effect of
mutual coupling on the massive MIMO wireless systems
is evaluated by the receive diversity gain. Moreover,
an optimal equivalent precoding matrix is proposed
to reduce the cost of RF chains and satisfy the
multimedia data requirements for 5G massive MIMO
multimedia communication systems. Furthermore, the
upper bound of effective capacity is derived for 5G massive
MIMO multimedia communication systems. Numerical
simulations and analysis are presented in Section 4.

Finally, Section 5 summarizes the paper.
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Figure 1. System model.

2. SYSTEM MODEL

A massive MIMO wireless transmission system is
illustrated in Fig. 1. The wireless down-link between a user
equipment (UE) with multi-antenna and a BS with a 2D
rectangular antenna array is studied in this paper.

First of all, we define some basic parameters for this
model. We define \ as the wavelength of the carrier, d as
the antenna spacing of this antenna array, aX (a > 1) as the
length of this antenna array and bA (b > 1) as the width of
this antenna array. If we would like to deploy m antennas
in each row and n antennas in each column for this antenna
array, then we will have the relationship as listed in (1),

d— a\ _ bA ’ )

m—1

and the total number of antennas in this antenna array M

can be derived easily as
M = mn. 2)

If we define SN Rps as the signal-to-noise ratio (SNR)
at the BS, H and S stand for the small scale fading matrix
and large scale fading coefficient of the channel in this
model respectively, the signal the BS transmits is defined
as x, w means the additive white Gaussian noise (AWGN)
over wireless channels, and the mutual coupling matrix is
configured as K, equivalent precoding matrix is configured
as F¢q, A is defined as steering matrix, then the down-link
signal vector received at a UE equipped with N antennas

can be expressed as

y = VSNRpsHAKF.,8"*x + w, 3)
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in which x is a N X 1 vector, wisa /N X 1 vector.
H ~ CN (0, PI) is governed by a complex Gaussian
distribution, and is expressed as

H=[hi,...h,, .. hp]" e CV*7, )

in which CV*¥ denotes a N x P matrix, P stands for
the number of the independent incident directions, h, ~
CN (0,I) stands for the complex coefficient vector of
small scale fading received from the pth incident direction,

which is expressed as
h, = h{” + jh{), Q)

in which h;r)is defined as the real part of h,, and h}(,i)
is defined as the imaginary part of h,. Furthermore,
both of them are Gaussian random variables distributed
independently and identically, whose expectation and
variance are 0 and 0.5 respectively.

Definitely, P will be very large if considerable scatterers
exist in the propagation environment. According to [24,
25], we divide the angular domain into P independent
incident directions with P being large but finite.

Here we assume both of the azimuth angle ¢,(q¢ =
1,...,P) and elevation angle 6 are within the scope
of [—m/2,m/2]. Each independent incident direction
corresponds to one steering vector a (¢,,0) € C**1, so
all the P steering vectors can constitute the steering matrix

A of the rectangular antenna array which is expressed as

A =la(¢1,0),...,a(pq,0),...,a(op,0)]. (6)

If we define A9 € C™*™ as the steering matrix of the gth
incident direction of the rectangular antenna array, we will

get the following relationship,
vec (A”) = a(dq,0) @)

in which vec(:) is defined as the matrix vectorization
operation.

Without loss of generality, we assume the antenna which
locates at the first place for both the row and the column
of the rectangular antenna array as the reference point
of which the phase response is zero. And we normalize
amplitude responses of all the antennas of the antenna
array as 1. We define AZ,, (1 < c<m,1 <e<n)asthe

element in the steering matrix A? which locates at the cth
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row and eth column, and it is expressed as

(¢ — Ddcospqsind
AL = exp{ i 2T % . ®)
A +(e — 1)dsingqsind

For a rectangular antenna array with M elements, we
define K € CM>*™ a5 the corresponding mutual coupling

matrix, which is expressed as [15]
K=2Z1(Zt1+Zn) ", ©)

in which Z;, denotes the antenna load impedance that
is constant for each antenna, Zp; denotes the M x M
mutual impedance matrix, and I denotes an M x M
unit matrix. From Fig. 1, Zjs can be constructed by

n X n sub-matrices, i.e.,Zn = [Zst] where Z:, as

nxn?
an m X m mutual impedance sub-matrix, denotes the
mutual impedances between the m antennas located at
the sth (s =1,...,n) row and the m antennas located
at the ¢th (¢ =1,...,n) row in the rectangular antenna
array. For ease of exposition, we define Ants, as the
antenna located at the sth row and uth (s = 1, ..., m;u =
1,...,m) column of the rectangular antenna array, and
define Ant¢, as the antenna located at the ¢th row and the
vth (t = 1,...,m;v = 1, ...,m) column of the rectangular

antenna array, the corresponding distance between which

is given as df, = d\/(t —5)? 4 (v —u)?. Thus Zs; can

be written as

st st st
Z11 Z12 e Z1m
st st st
221 222 e R2m
Z, = . . . . ) (10)
st st st
Zm1 Zm?2 Zmm

Consider a special case where all M antenna elements
in the rectangular antenna array are dipole antennas with
the same parameters. Then the mutual impedance 25’ only
depends on the antenna spacing and can be obtained with
the EMF method in [32]. With a fixed antenna spacing d,

we have the following properties:

Zoh = 20t 1) (v 1)s (11)

Zoh, = Zoy. (12)
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Similar properties can be derived for Z; as

Zst = ZL(sy1),(t+1)5 (13)

Zst = Zys. (14)

Together with (10)-(14), the mutual impedance matrix
Z s can be readily obtained. It bears noting that with (10)-
(14), the computational complexity can be significantly
reduced compared to the direct calculation of the M x M
entries of Z s, especially with a large M.

The equivalent precoding matrix Feq = FreFgp con-
sists of baseband precoding matrix Fpp and the RF
precoding matrixF rg.

N, data streams are transmitted by Nk radio
frequency (RF) chains and M antennas at the BS. All
wireless data is received by Npp RF chains and N
antennas at the UE. In this case, the detected wireless

signals at the UE is expressed by
y=Wly=WL,W! (15)
y eqy BB Y RFY>

in which 7 is a conjugate transpose operation, W, is a
N x N, equivalent signal detection matrix which consists
of baseband detection matrix W gp and the RF detection
matrix Wrr, y is the received signal vector at antennas
of the UE. Essentially, Frr and Wrr are phase shift
matrices used for the signal precoding and detection at the
RF chains. Hence, the absolute value of the RF detection
matrix F rr and the RF precoding matrix F rr is equal to
1.

3. MUTUAL COUPLING EFFECT
MODELING

3.1. Receive Diversity Gain Models

Deployed in a constrained space at the BS, the number
of antenna elements is inversely proportional to the
antenna spacing, i.e., a larger number of antennas lead to
a smaller antenna spacing. As concluded in [26], more
antennas lead to a higher receive diversity gain of the
massive MIMO system, whereas the diversity gain can be
compromised by the mutual coupling effect that is caused
by decreasing the antenna spacing. Thus, when a number

of antennas are deployed in a fixed constrained area, there

4 Wirel. Commun. Mob. Comput. 0000; 00:1-14 © 0000 John Wiley & Sons, Ltd.
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SNRpBs

max — 1 1
R og I+ N.

with

R=W! W.,.

exists a tradeoff between M and d, and it is important to

analyze the the effect of mutual coupling on the achievable

receive diversity gain of the massive MIMO systems.
Firstly, with a fixed antenna spacing, the antenna

number receive diversity gain Gy is defined as

Gar = &7 — &7, (16)
in which 5}6}“‘“ denotes the expectation of the receive
SNR at the UE with M antennas and minimum antenna
spacing being dmin at the antenna array of the BS, and
f;iv}“m‘i: denotes the expectation of the receive SNR at the
UE subject to the minimum antenna spacing dmin and
minimum antenna number My, at the antenna array of
the BS.

Secondly, with a fixed number of antennas, the antenna

spacing receive diversity gain G4 is defined as
__¢d dmin
Ga = i — §Mmi,,7 am

in which §j‘\i/[mm denotes the expectation of the receive
SNR at the UE with an antenna spacing of d and with at
least Mmin antennas at the antenna array of the BS. 532;“:,
which can be considered as the baseline for G4 and Gy,
is the same as that in (16).

In order to obtain the expectation of the received SNR in
(16) and (17), perfect channel state information is assumed
to be available at the BS, which uses maximal-ratio
combining (MRC) for signal detection. When there are M
antennas and the neighboring antennas are separated with
a spacing of d, the received signal after MRC detection at
the UE is given as [27]

§=G'y =VSNRyeG Gz + G'w, (18a)

in which G denotes the conjugate transpose of G with

G = HAKF, 3" (18b)
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W/ HAKF, . F/ K'ATHW, R |, 1)

1.1

In addition, the average SNR seen at the UE side can be

written as
SNRps||G'G

IGTG| , (19)
— SNRgs HGTGH

SNRug =

Then with M antenna elements with antenna spacing d,
the expectation of the SNR at the UE can be obtained as
& = E{SNRup}
- swmuse ool o

— SNRpsNp HFZqKTATHTHAKFeq

in which E {-} denotes the expectation operation. We can
further obtain G4 and Gjs through substituting (20) into
(16) and (17), and replacing M and d with Mmin and dmin.

3.2. Shannon Capacity with Optimal RF Chains

A phase shift matrix is designed to separate the
RF chains and the antennas. Assume that the relation-
ship among the numbers of data stream, RF chains
and antennas is configured as Ng < N}; » < M. Con-
sidering the equivalent precoding matrix (Feq) sy n. =
(FRF)MxN}qF (FBB)NEFXNS’ about it’s rank, we have
rank (Feq) < min (Ns, Nip, M). This result implies
that the up-bound of the degree of freedom at the equiva-
lent precoding matrix is depended on the minimum among
the numbers of data stream, RF chains and antennas. When
the number of RF chains is larger than the number of data
stream, a part of number of RF chains, i.e., Nsr — N, has
not been utilized by the equivalent precoding matrix. To
save the cost, the number of RF chains can be configured as
N to satisfy the requirement of the equivalent precoding
matrix Feq.

Based on the system model in Fig. 1, the sys-
tem achievable rate, i.e., the maximum Shannon capac-
ity is expressed by (21) and normalized on the unit
bandwidth [28]. Let MIN = min (M, P), the eigen-

values of wireless channels H are ordered by A\; >
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Runae = log SNRpBs

SNRps
N,
SNRps
N

= log [T+

=log |I +

A2 -+ = Aprn. The maximum available rate iS Rymax =
MIN

S log (1 + SNN%)%), where SN Rps is the SNR
k=1 s
value at the BS. The rank of wireless channel H

is denoted by r =rank (H). As a consequence, the

maximum available rate is rewritten by Rmax_full =
rank(H)

Z log (1 + %)\k) ‘When the numbers of data
k=1 s

stream and RF chains are equal to the rank of wire-

less channel rank (H), the wireless channel capacity has
been fully utilized. When the rank of wireless channels
rank (H) is less than the number of data stream, what
should we do to configure the number of RF chains? To
utilize the wireless channel capacity and save the imple-
mentation cost of RF chains, the number of RF chains is
configured as the rank of wireless channels in this paper.

To simplify the derivation, the rank of wireless channels
is assumed to be larger than the number of data stream
in the following study. The optimal equivalent detection
matrix W, is derived by a singular value decomposition
(SVD) method

W., = UwEw Vi, (22)
with
Aw
Sw = , (22.1)
0
0 wa . 0
Aw = ) . . ) (22.2)
0 0 . Wy

in which Uw and VI,V are unitary matrices.
The optimal equivalent precoding matrix F., is derived
by a SVD method

- 1 Lt
1+ SRR W, (Wi,we,) Wi,

Xiaohu Ge et al.

UHZHVLUFZFELULVHELUL‘, (25)

VLUFEFE;ULVHELEH‘

with
Ar 0
S = ¥ , (23.1)
0 O
fi 0 0
0 fo --- 0
Af = . . . ) (23.2)
0o 0 - fr

in which Ug and VI, are unitary matrices.

When a SVD method is performed over the equivalent
channel Heq = HAK, the equivalent channel is derived
by

H., = UaZuV],, (24)
with
Aux O
Sy = H , (24.1)
0 o
A0 0
0 X -+ 0
Apg = . . . ) (24.2)
0 0 Ar

in which Uy and VL are unitary matrices.

Based on (22), (23) and (24), the maximum available
rate Rmax is further derived by a SVD method in (25) when
the optimal equivalent detection matrix W, is assumed to

be a non-singular matrix. Let

ApAlL 0
g2 = EFET = ( FO ¥ 0 ) s (26)

AlLAg 0
2H2_2L2H_( HOH 0>, @7)

U = V[, Ug. (28)
F., = UpSp Vi, 23
4 FEEYE @3 (25) is rewritten by
N
R=1log|I+ %UEP@UTEHQ . (29)
6 Wirel. Commun. Mob. Comput. 0000; 00:1-14 © 0000 John Wiley & Sons, Ltd.
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_ SNRgps N
Rmax = log N. (SNRBS I+3¥ge 2H2> ‘ -
. SNRgs N : ’
= rion (P50 ) s (1, (v, + 04
L(fi, f5-f7)
N N N
(SNR s +/\1f1> (SNR +)\2f2> (SNR + A f'r) (33)
fa(ff+ 3+ +f7—N2)
OL (f1,f5 -+ f7)
of?
N N
:A?<SNR +A1fl)-- (SNR + A 1) ; (€Z)
N, N, 2
(SNR +)‘1+1f1+1)" (SNR +Ar .fr)

in which ¥g2> and ¥42 are diagonal matrices and the
values of elements at diagonal line are larger than zero.
Furthermore, the eigenvalues of g2 and X2 are the
elements at the diagonal lines, respectively. U is a unitary
, JU|l, = M. When U is configured as a
diagonal matrix, the maximum available rate is achieved
by

matrix, i.e

SNRBs

I
+ N.

Rmax = IOg EFZ ZHQ . (30)

Assume that the transmission power at the BSs is
independent of the equivalent precoding matrix. This

assumption implies that ||Feq|| - = Ns, i.e.,

(€29}

> fE=N
i=1

The maximum available rate R,,q, can be simplified as
(32).

To achieve the maximum achievable rate, the optimal
solution of the equivalent precoding is derived by a
Lagrange multiplier method in the following. A function
is first constructed in (33) with Lagrange factor oe. And
then take the derivative of L (f7, f3 - -
to f2, (i = 1,2...r) in (34).

Let

f7) with respect

oL (fi, f5 - f7

or? ) =0, 35)
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in which (¢ = 1, 2...r), we can further derive the following

result
NS NS
SNRQBS + fz‘2 SNR;BS + f_]
A7 A2
J\; ) (36)
2 g2 N. (1 1
= 5= 5 RS <A§ A?)

in which (4,5 = 1,2...r).
Based on (31),

equivalent precoding matrix F, is derived by

the square of eigenvalues at the

1

;)

, NS(%%+§+---+

f2 = B
v , SNRpsr 37)
N N
T T
T SNRss)\i

According to (25) and (30), we know that W4, VF,
Uwpy and U are removed in the simplification process of
Rax, so0 Vg, Un and U can be unit matrices. And
furthermore, Ur and Vy can also be unit matrices, and
Ur = Vu.

singular matrix, W, can be decomposed by

wa- ().

In this case, the optimal equivalent precoding matrix is

Considering the W, is a N X N non-
(38)

simplified by
F., = UrZp V]

=Vuir

(39)
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bt 0 0 O 0
bt 0 0 O 0
0 b 0 O 0
0 b 0 O 0
e]'ﬂl,l e.iﬂl,zr 0
Feq = : : : 0 0 b. 0 0 , 40)
6119M,1 ejﬂM,zr 0 0 0 b: 0 0
(FrRF) M x2Ng 00 0 0
0 0 -~ 0 0 - 0 |
(FBB)2Ng x N
Cg (9) = _i In|FE eieTB(lOg(SNJ\}ZBS )+10g<i§1(5N1\1;SBS +f‘2A?)))
oT
1 _9TBlo (%&) 10g< 1 (Lﬁ—f?)\?)) e
= _ﬁ ln e & Ns E € i=1\9NFBs o . (42)

0T B

1 —oTBlog (2B ) r N 2,2)\ @
=1 N )R _Ns g2y
o7 " (6 M\ SNRgs TN

Based on the method in [28], the optimal equivalent
precoding matrix F., is composed of Frr and Fpp,

which are designed in (40) with

1
b; = 2 12%)1(\/1 \fisl (40.1)
Buagon = Loy —cos 3l
’ § ij
Vin; = &fij +cos ‘f—J (40.3)
: 2b;

in which f; ; is the element of F.q located at the ith row
and the jth column, £ f; ; is the corresponding angle.

Based on the result in (40), the number of RF chains
2N, can satisfy the requirement of the optimal equivalent
precoding matrix. In general, the number of antennas M is
larger than the number of RF chains 2N, in 5G massive
MIMO wireless systems. Hence, our proposed optimal
equivalent precoding matrix can save the number of RF
chains M — 2N,.

3.3. Effective Capacity with Mutual Coupling
Effect

From [33], we define the effective capacity under

multimedia constraints as

Cr (0) = —eiT In (E{e—"TBR}) . @D
in which 0 and B denote the QoS statistical exponent and
bandwidth respectively, E{-} is the expectation operation.
Without losing generality, we consider independent fading
channels that keep static within a frame duration 7.
Considering the maximum available rate in (32), (41)
can be extended as (42), and it is clear that f(x) =
z~ %, (a > 0) is a convex function. Then an upper bound
of the effective capacity can be obtained using Jensen’s

inequality,

Ce(0) = _HLT In (E {e_eTBR})

1 —0TBE{R}
< _— . 43)
S7p In (e )

— BE{R}

Based on (32), the upper bound of the maximum available
rate is derived in (44). When the optimal equivalent
precoding matrix is used for massive MIMO wireless

systems, the upper bound of the maximum available rate is

8 Wirel. Commun. Mob. Comput. 0000; 00:1-14 © 0000 John Wiley & Sons, Ltd.
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o (228) e i

k]

E{Rmax} < rlog (SNNRBS + Zlog (

< rlog (SN]\];BS +Zlog

=rlog (SN;?BS) + Zlog <NS

E{Rmax} < rlog (%) +rlog (iz (NS +

Ns
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wx) )}

SNRps
SNRps N, ) ’ “4)
rlog(iN )Jerog( {SNRBS+fl)\ })
MNN,+27=L ZZ %2
SNRps
) (45)
) #{5))
SN;BS) E{ir (A'HAKK'AT) })
i) () el m))
ﬁ) (r (AKKTAT) + Pr)) ,
N, + ﬁ) (tr (AKKTA*) + Pr)>) . 47)

further derived in (45). Considering the lemma 2.9 in [34],
the upper bound of the maximum available rate is finally
expressed in (46). As a consequence, the upper bound of
the effective capacity in 5G multimedia communication

systems is given by (47).

4. NUMERICAL RESULTS AND
ANALYSIS

In this section, we demonstrate the performance of
the multimedia oriented massive MIMO communication
systems in terms of the receive diversity gain as well as the
effective capacity, where both effects of the QoS statistical
exponent and mutual coupling are evaluated. For ease of
illustration, we consider a rectangular antenna array with
the length-width ratio of a/b = 2. There are altogether
128 dipole antenna elements in the rectangular antenna
array [29], each with length and diameter of 0.5\ and
0.001), respectively. Then, a reasonable minimum antenna
spacing is dmin = 0.1A. The large scale fading factor is
normalized to § = 1 [25, 26, 31], with a load impedance
at each antenna as Z5 = 50 Ohms [30]. Without loss
of generality, we assume that the BS is located in rich

scattering environment where the incident directions can
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Figure 2. Antenna spacing receive diversity gain with respect to
the antenna spacing considering different SNRs.

arrive at an arbitrary angle uniformly. Thus it is reasonable
to assume that the elevation angle 6 and azimuth ¢, follow
i.i.d. uniform distributions within [—7/2, 7 /2]. For ease of
demonstration, the default number of independent incident
directions P = 70 is configured, with frame duration 7" =
1ms and bandwidth B = 1MHz [35].

In Fig. 2, the antenna spacing receive diversity gain G4
with respect to the antenna spacing is investigated. Mmin

is configured as 1. When the antenna spacing d is fixed,
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Figure 3. Antenna number receive diversity gain with respect to
the antenna number considering different SNRs.
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Figure 4. Effective capacity with respect to the antenna number
considering different SNRs.

the antenna spacing receive diversity gain increases with
the increase of SNR. But if we fix the SNR at the BS,
it is shown that there is almost no correlation between
the antenna spacing receive diversity gain and the antenna
spacing.

Fig. 3 illustrates the correlation between Gjs and
the antenna number considering different SNRs. dmin is
configured as 0.1\. And it is shown that the antenna
number receive diversity gain has a positive correlation
with the antenna number and SNR.

In Fig. 4, the effective capacity is illustrated with
varying values of the antenna number and SNR. For ease of

illustration, the antenna spacing is set as 0.5\ and 6 is set

Xiaohu Ge et al.
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Figure 5. Effective capacity with respect to the QoS statistical
exponent 6 and the antenna spacing.
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Figure 6. Shannon Capacity with respect to the antenna
number considering different precoding matrices.

as 0.01. With a fixed SNR value, it is observed that a higher
effective capacity is obtained by increasing the antenna
number. In addition, with a fixed number of antennas, a
higher effective capacity is obtained with a higher SNR.

Fig. 5 shows the effective capacity with varying values
of QoS statistical exponent and the antenna spacing. With a
fixed antenna spacing, it is observed that a higher effective
capacity is reached by decreasing the QoS statistical
exponent. On the other hand, for a fixed QoS statistical
exponent and increasing of antenna spacing, the effective
capacity almost keeps stationary.

When the number of user and the baseband data

stream are configured as one, Fig. 6 compares the
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Figure 7. Effective capacity with respect to the QoS statistical
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Shannon capacity with respect to the antenna number
considering different precoding matrices. the proposed
optimal equivalent precoding matrix labeled as “Feq”
and the zero-forcing precoding matrix labeled as “ZF”
are compared in Fig. 6. When the number of antennas
and the SNR are fixed, the Shannon capacities with
the proposed optimal equivalent precoding matrix are
greater than the Shannon capacities with the zero-forcing
precoding matrix. Moreover, the Shannon capacities with
the proposed optimal equivalent precoding matrix has
a positive correlation with the the number of antennas.
However, the Shannon capacities with the zero-forcing
precoding matrix almost keeps stationary with the increase
of the number of antennas. This result indicates that our
proposed optimal equivalent precoding matrix can improve
the Shannon capacity, i.e., the available rate in massive
MIMO wireless communication systems.

Fig. 7 analyzes the effective capacity and the upper
bound of effective capacity with respect to the QoS
statistical exponent considering different SNRs, in which
“EC_SNR” labels the effective capacity results and
“EC_upper_bound_SNR” represents the upper bound of the
effective capacity results. When the SNR is fixed, there is a
positive correlation between the effective capacity and the
QoS statistical exponent. Moreover, the more the the QoS
statistical exponent decrease, the closer the upper bound of
effective capacity gets to the effective capacity.

When the number of antennas is configured as 128,

Fig. 8 describes the effective capacity with respect to the
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Figure 8. Effective capacity with respect to the independent
incident directions P considering different SNRs.

number of independent incident directions. When the SNR
is fixed, there is a positive correlation between the effective

capacity and the independent incident directions.

5. CONCLUSIONS

Based on the mutual coupling effect, an optimal
equivalent precoding matrix has been proposed to
maximize the available rate and save the cost of RF
chains for 5G massive MIMO multimedia communication
systems. Considering the requirements of multimedia
wireless communications, the upper bound of the
effective capacity has been derived for 5G massive
MIMO multimedia communication systems with the
QoS statistical exponent constraint. Compared with the
conventional ZF precoding matrix, numerical results show
that the proposed optimal equivalent precoding matrix
can obviously improve the available rate for 5G massive
MIMO multimedia communication systems. In the future
work, taking into account the QoS statistical exponent
constraints, a more efficient signal detection precoding
algorithm is worth exploring towards better performance of

the multimedia massive MIMO communication systems.
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