Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments

Perks, Matthew and Owen, Gareth and Benskin, Clare McWilliam Haldane and Jonczyk, Jennine and Deasy, Clare and Burke, Sean and Reaney, Sim and Haygarth, Philip Matthew (2015) Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments. Science of the Total Environment, 523. pp. 178-190. ISSN 0048-9697

Full text not available from this repository.

Abstract

Recent advances in monitoring technology have enabled high frequency, in-situ measurements of total phosphorus and total reactive phosphorus to be undertaken with high precision, whilst turbidity can provide an excellent surrogate for suspended sediment. Despite these measurements being fundamental to understanding the mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period spanning March 2012–February 2013. An assessment of the factors producing constituent hysteresis is undertaken following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment, with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate and soluble constituents, highlighting the challenges faced in mitigating the delivery of contaminant fluxes to headwater river systems.

Item Type:
Journal Article
Journal or Publication Title:
Science of the Total Environment
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300/2311
Subjects:
ID Code:
81062
Deposited By:
Deposited On:
31 Aug 2016 15:18
Refereed?:
Yes
Published?:
Published
Last Modified:
17 Jun 2020 04:11