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Abstract 
 
Wheat is a major component of the UK diet, and provides approximately 20% of 

global caloric intake. Wheat is grown on more land area than any other crop, and the 

continued supply of wheat is essential for global food security. Biotechnology is likely 

to play an important role in the sustainable increase of wheat yields, and the genetic 

manipulation of chloroplasts for photosynthetic improvement has many potential 

advantages over transformation of the nuclear genome. The genetic modification of 

the chloroplast genome via transformation was first demonstrated in the late 1980’s, 

and since then, chloroplast transformation of many Dicotyledonous (dicot) plant 

species such as Nicotiana tabaccum has been routinely performed. In comparison, the 

transformation of chloroplasts in Monocotyledons (monocot) plant species, which 

includes all cereal crops, has made far less progress. To date, there has been no 

reproducible homoplasmic plastid transformation event in the monocots.  

This study identifies a number of bottlenecks responsible for the prevention of 

chloroplast transformation in wheat. One such bottleneck is the lack of a suitable 

explant for plastid transformation, as traditional nuclear transformation targets are 

absent of metabolically active plastids. This study has developed a robust regeneration 

protocol for a previously undescribed tissue, termed the primary inflorescence leaf 

sheath (piLS), which is rich in active chloroplasts. Functional wheat specific 

chloroplast transformation vectors have been generated, and bombardment studies 

have been conducted with these on piLS and a second tissue, the immature embryos-

derived callus. Immature embryo callus (IEC) does not contain active plastids, 

however contains pro-plastids and is highly embryogenic.  

To uncover novel ways of increasing photosynthesis in C3 plants, a number of 

transplastomic tobacco lines expressing the Synechococcus elongatus PCC 7942 ictB 

gene were generated. Previous studies suggest that ictB may be an inorganic carbon 

transporter. In a number of transplastomic lines produced in this study, the 

intercellular carbon concentration (Ci) is significantly increased. This increased Ci did 

not result in an increased photosynthetic rate, however did cause a number of 

phenotypic differences, such as smaller plants, wider leaves, and earlier seed pod 

formation.  

The results, with regards to chloroplast transformation, and its implications in 

improving photosynthesis within C3 plants, are discussed in this thesis.   
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1. General Introduction 
 

Plastids are specialized organelles located within the plant cell. They contain their 

own genome of between 100-200kb which encodes approximately 120 genes, and 

have their own protein production machinery (Maliga, 2004). The plastid genome 

exists in a large copy number (~100/plastid), and each circular genome is attached to 

the organelle membrane in clusters called plastid nucleoids (Kobayashi et al., 2002, 

Sato et al., 1993, Kuroiwa, 1991). The term “plastid” is derived from the ancient 

Greek word “plastós”, meaning formed or molded. This is a fitting name, as when the 

plastid differentiates from its pro-plastid progenitor, it can take on a number of 

different functions within the plant cell. Pro-plastids can develop into a range of 

different plastid types including chromoplasts for pigment storage, amyloplasts for 

starch storage and gravity detection, elaioplasts which store fats, and most famously, 

the chloroplasts which host photosynthesis.  

 

1.1  The Chloroplast 
 

Chloroplasts are organelles found in plant cells and some eukaryotic algae. The 

chloroplast is best known for its role in photosynthesis, where inorganic carbon from 

the air (CO2) is converted into organic carbon in the form of sugars, with O2 produced 

as waste. The chloroplast was not always a cytoplasmic resident of the photosynthetic 

eukaryotes. To understand the origin of the chloroplast, and all plastids for that matter, 

we must delve back 1.5 billion years to the primary endosymbiosis event. It is during 

this proterozoic occurrence, that it is believed a free living prokaryote-like 

cyanobacteria was integrated into a eukaryote by endocytosis, and a symbiotic 

relationship was forged (Gould et al., 2008). Over time, the cyanobacterial ancestor 

was reduced to a primary plastid, giving rise to the formation of three ancestral 

autotrophic lineages, the red algae, the glaucophytes and the green algae, who are the 

ancestors of all land plants, (Adl et al., 2005). These primary plastids maintained the 

double membrane from their gram-negative cyanobacterial heritage (Cavalier-Smith, 

2000, Cavaliersmith, 1982, Cavalier-Smith, 2010), which is still evident today as 
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concluded by the presence of galactolipids (Jarvis et al., 2000), β-barrel proteins in 

both membranes (Schleiff et al., 2003), and the occurrence of peptidoglycans (not in 

all cases) beneath these membranes (Steiner et al., 2005).  Phylogenetic analyses 

suggests that the red and green algae diverged later than the glaucophytes 

approximately 550 million years ago (mya), with plants emerging from their green 

algae ancestors approximately 400 to 475 mya, resulting in terrestrial take over, and 

hence creating the environment to allow animals to appear on land. Phycobilisomes, 

the light harvesting antennae of photosystem II in cyanobacteria, red algae, and 

glaucophytes, was replaced with chlorophyll b in green algal/plant lineage plastids, 

and a suite of accessory pigments developed to capture light and provide protection to 

the photosynthetic machinery from unfiltered earthbound light (Melkonian, 1990).   

 

As a whole, primary plastids have undergone a plethora of changes and modifications 

during their time optimizing the relationship between their progenitor (eubacterial 

endosymbiont) and its eukaryotic hosts. These changes, or innovations, include (a) the 

consolidation of genetic information within the cyanobacterial endosymbiont genome 

by removal of redundant genetic information, (b) the establishment of a metabolite 

exchange system to facilitate the movement of photosynthetic products from the 

endosymbiont into its host, (c) substantial transfer of genetic information from the 

endosymbiont genome into the host genome (Bauer et al., 2001, Bock and Timmis, 

2008), (d) the creation of a targeting system for protein products of these transferred 

genes from the host cytoplasm to the endosymbiont (Bauer, Hiltbrunner et al. 2001),  

and (e) the development of a protein import machinery for the transport of targeted 

protein products outside the double membrane of the endosymbiont, into its cytoplasm 

(Reumann et al., 2005, Andres et al., 2010, Schwenkert et al., 2011, Shi and Theg, 

2013, McFadden, 1999). The majority of intracellular genetic transfer between 

endosymbiont and host most likely occurred early on in the optimization process, at 

least before the divergence of the three primary endosymbiotic lineage (glaucophyta, 

chlorophyta, and rhodophyta), as they all share a similar suite of common genes 

(Martin et al., 1998). It is also important to note that this gene transfer, from organelle 

to nucleus, is not limited to the period of time in the early evolution of plastids, but 

continues to occur in present day plant species (Martin, 2003, Kleine et al., 2009). 

However, given that the majority of gene transfer occurred pre-divergence, it is fairly 

likely that the protein targeting and import systems were developed soon after these 
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gene transfer events, which is supported by the fact that the protein targeting/import 

machinery are very similar in both rhodophyte and green algae lineages (McFadden 

and van Dooren, 2004). 

With time, further modifications, adaptations, and innovations occurred to the 

endosymbiont and its relationship with its new host, until such a point where the 

endosymbiont became an integrated component of the host cell, an organelle that has 

reached a stable suite of core metabolic functions.  
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1.2  The chloroplast genome 

 Structure 1.2.1

The common and standard picture of the plastid genome consists of a circular 

genome, between 100-200kbp, containing approximately 120—130 genes in higher 

plants, and the highly conserved genome is organized into a quadripartite structure. 

This quadripartite structure defines two inverted repeat regions (IRs: IRA and IRB), 

separating the large single-copy (LSC) and small single-copy (SSC) regions of the 

genome (Fig 1.1). The IRs are normally identical in their nucleotide composition but 

differ in their relative orientation, and mainly include ribosomal RNA genes. In land 

plants, it is the variation within the inverted repeat regions, in terms of number of 

genes, that provides the main difference in genome sizes between different plastid 

species, given that protein coding genes and tRNA genes are very similar (Chumley et 

al., 2006, Gao et al., 2010, Ravi et al., 2008). The major differences that allow one to 

distinguish between plastid genomes of different lineages are the original eubacterial 

genes that are retained, presence or absence of introns and repeats, transcript edition, 

and the organisation and orientation of genes within the genomes. In land plants and 

green algae, these characteristics are largely conserved between species, once again 

indicating a common lineage.  

 

 Content 1.2.2

Gene content of the chloroplast DNA (cpDNA) between different species is largely 

conserved, and can be divided into three main categories. The first category contains 

genes responsible for the photosynthetic apparatus of the chloroplast, such as 

photosystem I (psaA, psaB), photosystem II (psbA, psbB), Large subunit of RubisCO 

(rbcL), ATP synthase (atpA, atpB), NAD(P)H dehydrogenase genes (ndhA, ndhB), 

and cytochrome 6bf (petA, petB). The second is composed of a suite of RNA genes 

and genes for the chloroplast genetic apparatus, such as ribosomal RNA (rrn16, rrn5), 

transfer RNA (trnH, trnK), RNA polymerase (rpoA, rpoB), and ribosomal subunit 

genes (rps2, rps3). The third and final category is comprised of conserved plastid-

specific open reading frames (ORFs) and protein coding genes (matK, cemA). See 

(Green, 2011) for a basic list of plastid genes. It is also important to note here that 

although the common consensus is that cpDNA are constructed into circular genomes, 
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there is a body of evidence to suggest linear cpDNA genomes, varying in length and 

branched structure, do exist in modern plant species (Bendich, 2004). 

 

 
Fig 1.1 The tobacco chloroplast genome (Shinozaki et al., 1986). Large single copy, 

LSC, and small single copy, SSC, regions (0-86,687 and 112,030-130,601bp 

respectively) are highlighted in blue. Area between the LSC and SSC are the inverted 

repeat regions, IRa and IRb (86,687-112,030bp and 130,601-155,943bp respectively). 

Highlights: Red, all chloroplast genes; green, chloroplast transfer RNA genes; orange, 

chloroplast ribosomal RNA genes.  
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Fig 1.2 An annotated diagram of the wheat chloroplast genome, drawn using the 

complete genome sequence as input (GenBank accession number NC_002762.1) in 

version 1.1 of the OrganellarGenomeDRAW software tool (Lohse et al., 2013). The 

gray arrows denote the direction of transcription for the two DNA strands of the 

genome, and the inner circle shows its tetrapartite structure. IRA, inverted repeat A; 

IRB, inverted repeat B; LSC, large single-copy region; SSC, small single-copy region. 
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1.3  Plastid transcription and translation 

 Plastid transcription 1.3.1

As mentioned above, the plastome of most algae and land plants contains genes for 

the construction of the plastid RNA polymerase (RNAP), which is necessary for 

plastidial transcription. One of these plastid RNAP is a cyanobacterial-type RNAP, 

commonly known as the plastid-encoded plastid RNAP (PEP), whose core subunits 

((α)2, β, β’, and β’’) are coded for within the plastome (by rpoA, ropB, rpoC1, and 

rpoC2 respectively). Further evidence of the plastids bacterial origins comes from the 

observation that PEP β and β’ subunits are capable of substituting the homologous 

subunits of E.coli RNAP (Severinov et al., 1996). What is interesting is that while the 

core components of the PEP holoenzyme is derived from the plastid genome, the 

sigma (σ) factors which combine with the holoenzyme, are derived from nuclear 

encoded genes. Sigma factors are encoded by the small family of sig genes (Lysenko, 

2007, Shiina et al., 2009), and are necessary for plastidial promoter recognition and 

transcription initiation. Other nuclear derived additions to the PEP holoenzyme are 

various accessory proteins (Schweer et al., 2010, Shiina et al., 2005), which are also 

believed to aid transcription.  

 

Approximately 90% of plastidial transcription is believed to be conducted by PEP 

(Liere and Boerner, 2007), which means 10% of the remaining transcriptional activity 

is conducted by another RNAP. This RNAP is the single subunit nuclear-encoded 

plastid RNAP (NEP) (Hedtke et al., 2002). Initial studies demonstrating active 

transcription in plastids with impaired protein synthesis (Hess et al., 1993) suggested 

the existence of NEPs. Furthermore, transcription of plastid genes were shown to still 

occur from transplastomic tobacco plants absent in PEP (Legen et al., 2002, Krause et 

al., 2000, Allison et al., 1996), and nonphotosynthetic plastids of the parasitic plant 

Epifagus virginiana, which is absent of PEP genes (Ems et al., 1995, Morden et al., 

1992). The nuclear encoded RNAPs that are responsible for transcription within 

plastids are the bacteriophage T3/T7 type, encoded by the RpoT gene family. In the 

dicotyledon plants such as Nicotiana tabacum, and Arabidopsis thaliana, there are 

three RpoT genes, two of which are targeted to the plastid for NEP function, RpoTm 

and RpoTp (Azevedo et al., 2008, Liere et al., 2004). In the cereals however, the 

RpoTp is the only NEP enzyme (Kusumi et al., 2004).  
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Although PEP are believed to be responsible for the transcription of photosynthetic 

genes, most genes within the plastome have promoters for both NEP and PEP, with 

only a few genes having promoters exclusively limited to either. Interestingly, the 

rpoB operon which codes for 3 out of the 4 core subunits of the PEP holoenzyme is 

solely transcribed by NEP (Silhavy and Maliga, 1998, Swiatecka-Hagenbruch et al., 

2007). Thus it would seem that PEP activity is controlled by the nucleus in two ways, 

by supply of sigma factors and accessory proteins for PEP holoenzyme binding, and 

also by the transcription of PEP core subunits by NEP. Further research has 

demonstrated that NEP promoters are more active in early leaf development (Lysenko 

and Kusnetsov, 2005), while PEP activity increases during chloroplast maturation 

(Swiatecka-Hagenbruch et al., 2007, Zoschke et al., 2007). NEP activity is also light 

regulated, and appears to show light induced binding to thylakoid membrane proteins, 

thus reducing the transcription of PEP holoenzyme subunits (Azevedo et al., 2008). A 

model for the regulation of NEP and PEP proposes that nuclear RpoTp encodes NEP, 

which in turn transcribes and regulates the expression of the plastid rpoB operon and 

this PEP. PEP transcribes genes for photosynthetic complexes such as PSI and PSII, 

and it is the products of photosynthesis (e.g. reactive oxygen species) that signal to the 

nucleus to modulate NEP transcription. PEP transcription of tetrapyrrole biosynthesis 

(chlorophyll and haem) precursors are also believed to “signal” the nucleus to regulate 

NEP transcription (Liere et al., 2011). Thus it is possible that NEP and PEP 

machineries are used to adjust expression of genes within the nucleus and plastids 

depending on changes to the internal and external environment.  

 

Most plastid promoters posses the eubacterial σ70–type signals for binding the sigma 

factors of PEP. These signals are the -35 (TTGaca) and -10 (TATaaT) consensus 

sequences, and promoters that contain them are termed PEP promoters. Bacterial 

RNAP are able to faithfully recognize PEP promoters, thus further demonstrating the 

cyanobacterial origins of plastids (Gatenby et al., 1981, Liere et al., 2011). NEP 

promoters resemble plant mitochondrial promoters, and to date have been described as 

existing in three types. The detailed structure of NEP promoters is beyond the scope 

of my thesis, however research in this are is reviewed in Liere et al, 2011. 
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 Plastid translation 1.3.2

Most of the primary transcription products of both NEP and PEP activity are 

polycistronic, and require significant posttranscriptional modifications such as intron 

removal, processing into monocistronic or oligocistronic mRNAs, RNA editing, and 

trimming of 5’ and 3’ ends (Bock, 2000, Stoppel and Meurer, 2012, Sugiura, 2008). 

As mentioned in the previous section, gene expression is under significant 

transcriptional control (Mullet and Klein, 1987, Liere and Boerner, 2007). However 

during the process of evolution, it is generally believed that gene expression in 

plastids shifted towards a more posttranscriptional level of control (Eberhard et al., 

2002), specifically during RNA stabilisation and translation (Staub and Maliga, 1993, 

Eberhard et al., 2002, Kahlau and Bock, 2008, Stern et al., 2010). Plastid mRNAs are 

stabilised by RNA secondary structures as well as their 5’ and 3’ UTRs. 

Ribonucleases are employed to remove protective stem-loop structures and 

polyadenylation sites, which initiates degradation of plastid mRNAs (Stern et al., 

2010, Stoppel and Meurer, 2012).  

Plastid translation is conducted by ribosomes similar to eubacterial 70s ribosomes, 

with the translational machinery being close homologues to those in cyanobacteria, 

again pointing to the plastids bacterial past (Manuell et al., 2007, Marin-Navarro et 

al., 2007).  Translation is initiated when the 30s ribosome combined with the initiator 

tRNA finds and binds to the initiator start site in the mRNA, AUG, although on rare 

occasions, this can be GUG or UUG (Sugiura et al., 1998). In bacteria, a Shine-

Dalgarno (SD) sequence is required for the initiation of translation. This SD site, or 

ribosomal binding site (RBS), binds to a purine rich sequence known as the anti-SD 

sequence, at the 3’ end of the 16s rRNA (which is part of the 30s ribosomal subunit). 

The plastids also share the same translation mechanism. The SD site in some plastid 

genes is clearly detectable (such as the rbcL RBS, GGAGG), however many plastid 

genes lack clearly defined SD sequences. Continuation into elongation phases of 

translation occurs when the 50s subunit binds with the pre-initiation complex to from 

an active initiation complex. Translation is terminated when the ribosome complex 

reaches one of the three standard stop codons, UAA, UAG, or UGA, which requires 

the assistance of ribosome release factors (Meurer et al., 2002, Motohashi et al., 

2007), which is subsequently followed by disassembly of translation complex (Wang 

et al., 2010). The role of the plastid translation apparatus in plant development is 

reviewed in depth by Tiller and Bock, 2014.   
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1.4  Manipulating the chloroplast genome  
The plastid genome can be engineered by genetic transformation, and cells containing 

modified plastid DNA can be regenerated to form plants with transgenic plastid 

genomes, known as transplastomic plants.  

 Plastid transformation methods in green plants and algae 1.4.1

The key innovation that began plastid transformation technologies was the gene gun 

(also known as the biolistics/bioballistics device). In 1987, driven by the limitations of 

current technologies for DNA delivery in to plant cells, Sanford and Klein et al. 

(1987) transformed the way in which genetic manipulation could take place. They 

demonstrated that small tungsten particles, termed micro-projectiles, could be 

accelerated and fired into plant cells without causing fatal injury. Furthermore, they 

demonstrated that DNA/RNA bound micro-projectiles could be delivered into onion 

tissue, and these DNA/RNA sequences be genetically expressed. Although this 

method was initially developed for the transformation of nuclear targets, a year later 

in 1988, Boynton (Boynton et al., 1988) used this same methodology to successfully 

transform the chloroplast in Chlamydomonas Reinhardtii. These C.reinhardtii were 

deletion mutants for the gene atpB (which codes for an ATP synthase essential for 

photosynthesis), and due to the mutation, were unable to photosynthesise. One µm 

sized gold particles coated with plasmid DNA containing a functional (wild type) 

atpB gene, were fired into Chlamydomonas on agar plates using gunpowder charge. 

The transgene was incorporated into the chloroplast genome by homologous 

recombination (Blowers et al., 1989), and rescued the photosynthetic phenotype. It is 

quite surprising that bombardment of chloroplasts with gold or tungsten particles 

results in viable transformed plastids, as plastids are in the same size range as the 

standard particles themselves (0.4-1.7 µm), depending on the target species.  

Soon after the initial successes in Chlamydomonas, transformation of chloroplasts in 

tobacco (Nicotiana tabacum) was achieved (Svab et al., 1990). This landmark event, 

the first Embryophyta plastids to be transformed, proved to be the only published 

evidence for many years. Plastid transformation appeared to have hit a wall at 

Chlamydomonas and Tobacco, however within these two systems, the basic principles 

of plastid genome engineering and a toolbox were developed (Day and Goldschmidt-

Clermont, 2011), with information of plastid genome content, gene function, and 

transcription and translation (Stern et al., 1997) also being uncovered. Over the 
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coming decades, other Embryophyta species of the dicotyledon family were 

transformed, including soybean, potato, and tomato (see Bock 2015).  

The speed of the biolistic bombardment system, coupled with the robustness and low 

maintenance of the tobacco chloroplast transformation protocol, in comparison to 

other cell culture, glass bead (Economou et al., 2014), or polyethylene glycol (PEG) 

treated protoplast techniques (Oneill et al., 1993), leaves this methodology unrivaled 

in time and transformation efficiency at present. Unless another cheaper, more 

efficient system is developed, there is no reason why particle bombardment of explant 

tissue would not remain as the chosen tool for chloroplast transformation of a specific 

species of interest. Especially given the evidence that particle bombardment can be 

used to simultaneously alter the nuclear genome as well as the chloroplast genome 

(Elghabi et al., 2011). 

  Vector design for successful integration of foreign DNA into the plastid 1.4.2

genome 

As mentioned above, the basic and most efficient method for delivery of exogenous 

DNA into plastids is to use biolistic bombardment. However, to achieve stable 

chloroplast transformation, that is where (a) the transforming DNA integrates into a 

specific location within the chloroplast genome, and (b) where all untransformed 

copies of plastid DNA are eliminated to give a homoplasmic plastid genome content, 

an effective expression cassette needs to be constructed.  

 

 Homologous recombination and targeted insertion of transgene into plastome 1.4.2.1

The first step, DNA integration, is reliant on successful homologous recombination. 

This relies on “flanking regions” placed either side of the transformation cassette with 

sufficient nucleotide homology to the nucleotide sequence within the plastid genome 

where integration is required to take place. Although gene content and orientation 

within land plants are observed to be highly conserved, the use of ‘universal’ flanking 

regions is not advised unless dealing with closely related species (Ruf et al., 2001). 

RNA editing patterns can differ even between closely related species (Kahlau et al., 

2006), and heterologous RNA editing sites have been shown to remain unprocessed 

when transferred into another species (Bock et al., 1994, Schmitz et al., 2009, 

Schmitz-Linneweber et al., 2005). It is therefore wise to carefully select flanking 
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regions for homologous recombination that closely match the target sequence in the 

germplasm to be transformed. 

 

The genomes of most higher plant chloroplasts that have been sequenced contain two 

inverted repeat regions (IRs) (Ravi et al., 2008), IRa and IRb, separated by a large and 

small single copy region (LSC and SSC respectively, Fig 1.1, Fig 1.2). IRa and IRb 

are identical in their DNA sequence, and contain genes responsible for ribosomal 

RNA (rRNA) and transfer RNA (tRNA) production. Genes targeted and inserted into 

the one of the IRs is rapidly copied over into the second IR by gene conversion 

(Daniell et al., 1998),  thus a gene targeted to the IRs is present in two copies per 

chloroplast genome. It must be noted that both transformed and non-transformed IRs 

can be templates for gene conversion, thus transgenes can also be eliminated by gene 

conversion (Lutz et al., 2007). The trnI-trnA gene region within the IRs (Fig 1.3a) is 

one of the most frequently targeted transformation regions (Chakrabarti et al., 2006, 

Cheng et al., 2010, Chiyoda et al., 2007, Davarpanah et al., 2009, Jeong et al., 2004, 

Lelivelt et al., 2005, Li et al., 2012, Liu et al., 2007, Lutz et al., 2007, Zhu et al., 2011, 

Maliga, 2004, Lee et al., 2006, Daniell et al., 1998) due to its integration success rate, 

and its conservation between higher plant species. The trnI-trnA gene region has also 

been used to express several proteins (Daniell et al., 2005). Insertion of foreign DNA 

into the plastome has also been achieved in over 14 other sites (Maliga, 2004).  

Due to the chloroplasts’ bacterial origin, chloroplast genes exist mostly in di- or poly-

cistronic operons. It has been shown that promoter-less constructs can still generate 

exogenous gene transcripts and translation products, so long as they are inserted 

downstream of a plastid promoter, and have the necessary 3’ regulatory elements 

(Staub and Maliga, 1995). The trnI-trnA gene region resides in a polycistron (Fig 1.3) 

driven by the strong plastidial 16s ribosomal RNA promoter (Prrn). Therefore, it is 

possible to insert exogenous DNA into the trnI-trnA gene region without a promoter, 

and still get transcription of the exogenous gene via read-through from the Prrn. If a 

promoter-containing construct is inserted into the trnI-trnA region, transgene 

transcription would occur from both the constructs promoter, and via read-through. 

This increases mRNA transcript levels of the exogenous gene/genes. Thus if the desire 

is to avoid interference from read-through transcription, for example, if studying 

promoter activity, then insertion into the trnI-trnA should be avoided. An alternative 



 27 

location within the IRs that is not affected by read-through transcription is the trnV-

3’rps12 intergenic region (Zoubenko et al., 1994).   

 

 
Fig 1.3 a, The inverted repeat region a (IRa), showing, all chloroplast genes (blue), 

transfer RNA genes (green), ribosomal RNA genes (red), and exons (grey). b, 

showing from left to right, trnV, 16s rRNA, trnI, trnA, 23s rRNA, 4.5s rRNA and 5s 

rRNA genes of the IRa. 

 

  Selection to attain homoplasmy 1.4.2.2

The second step, creating a homoplasmic transgenic chloroplast genome, requires a 

combination of an effective transformation cassette, and the expression of a suitable 

selectable marker. The basic structure of an expression cassette (see Fig 1.4, and 

section 3.1) for the purposes of plastid transformation consists of a promoter upstream 

of the coding region (gene of interest, selectable marker, etc), followed by a 3’UTR 

downstream. For transgene expression within the plastid, promoters of the bacterial 

type are used as they are recognized by the plastid-encoded plastid RNA polymerases 

(PEPs), as well as conferring a much higher gene expression in comparison to 

nuclear-encoded plastid RNA polymerases which favour phage type promoters 

(Hajdukiewicz et al., 1997). For successful translation, a SD sequence is required for 

binding to the 3’ end of the 16s rRNA, and this is provided by the 5’UTR. As a note, 

the distance between the SD and translation initiation is of critical importance for 

efficient translation initiation in plastids, as it is in bacteria (Drechsel and Bock, 2011, 

Esposito et al., 2001, Chen et al., 1995). The 3’UTR is essential for successful 

transgene transcript stability and processing by forming stable stem-loop RNA 

structures (Stern and Gruissem, 1987, Stern et al., 1997). 
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Fig 1.4 The structure of a basic transformation cassette. A promoter (Prom) is required 

to drive the expression of the gene of interest (in this case a selection gene), and the 

transcription product of the gene requires stability from a 3’ untranslated region (3’ 

UTR). The cassette is inserted into a specific location within the chloroplast genome 

by flanking the cassette with DNA sequences homologous to the region into which 

insertion is required (Left flanking arm, Right flanking arm).  

 

Selectable makers (see Table 1.1) can provide both positive selection, and negative 

selection. However, for the creation of homoplasmic chloroplast transformants, 

positive selection markers are utilised, whereas negative selection markers are likely 

to be useful in genetic screens for the regulators of plastid gene expression (Serino 

and Maliga, 1997, Gisby et al., 2012). The most commonly used positive selectable 

marker by far has been the protein product of the aadA gene, 3”-adenylytransferase, 

originally used in Chlamydomonas, and adapted for use in the tobacco 

(Goldschmidtclermont, 1991, Svab and Maliga, 1993). This aminoglycoside confers 

resistance to spectinomycin and streptomycin, both potent inhibitors of plastid 

translation that bind to the chloroplast 70s ribosome. Although alternative selectable 

markers have been developed over the years (Day and Goldschmidt-Clermont, 2011, 

Bock, 2015) aadA remains the most utilised due to its effectiveness. There is 

considerable attractiveness to removing selection/marker gene following plastid 

transformation, especially for the biotechnological modifications of agronomic crops. 

Mechanisms of marker removal following plastid transformation are described in 

Maliga (2004), and Day and Goldschmidt-Clermont (2011).  
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Table 1.1 Selectable markers for plastid transformation, adapted from (Day and 

Goldschmidt-Clermont, 2011). 

  

Marker	 Selection	 Organism	 Reference	

Antibiotic 

Resistance	

   

aadA	 Spectinomycin/Streptomycin	 Chlamydomonas	

 

Rice	

Tomato	

Oilseed rape	

Carrot	

Soybean	

Potato	

Lettuce	

(Goldschmidtclermont, 

1991)	

(Lee et al., 2006)	

(Ruf et al., 2001)	

(Hou et al., 2003)	

(Kumar et al., 2004)	

(Dufourmantel et al., 2004)	

(Sidorov et al., 1999)	

(Lelivelt et al., 2005)	

Nptll	 Kanamycin	 Tobacco	

Cotton	

(Carrer and Maliga, 1995)	

(Kumar et al., 2004)	

rrnS Spectinomycin/Streptomycin	 Chlamydomonas	

Tomato	

Tobacco	

(Newman et al., 1990)	

(Nugent et al., 2005)	

(Svab et al., 1990)	

rrnL	 Erythormycin	 Chlamydomonas	 (Newman et al., 1990)	

aphA-6	 Kanamyin	 Cotton	 (Kumar et al., 2004)	

Visual	    

gfp	 Green Fluorescence	 Tobacco 

Rice	

Potato	

(Khan and Maliga, 1999)	

(Lee et al., 2006) 

(Sidorov et al., 1999)	

Herbicide 

resistance	

   

bar	 Phosphinothricin	 Tobacco	 (Iamtham and Day, 2000)	

psbA	 DCMU, metribuzin	 Chlamydomonas	 (Przibilla et al., 1991)	

HPPD	 Diketonitrile	 Tobacco	 (Dufourmantel et al., 2007)	

EPSP	 Glyphosphate	 Tobacco	 (Ye et al., 2003)	
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 Promoter and 5’-UTR choice 1.4.2.3

Levels of protein expression from transgenes is dependent on promoter strength and 

mRNA turnover (which is dependent on the protective action of 5’- and 3’-UTR stem-

loop structures (Barkan and Goldschmidt-Clermont, 2000), and will be discussed 

further in 1.4.2.5). Promoters are normally selected from the plastid genome of the 

organism that is being modified. The plastid genome contains a number of promoters, 

suitable for use in chloroplast transformation cassettes. The 16s rRNA promoter (Prrn) 

and psbA promoter (PpsbA) are considered to be strong plastid promoters (Hanson et 

al., 2013, Maliga, 2004), and are readily used in chloroplast transformation studies. 

Chloroplasts originate from cyanobacteria (Green, 2011), and therefore contain the -

35 (TTGaca) and -10 (TAtaaT) consensus sequence of the eubacterial sigma-70 type 

promoters (Reznikoff et al., 1985, Liere et al., 2011). The bacterial origins of 

chloroplasts are further supported by studies that demonstrate the ability of E-coli 

RNA polymerases to recognize PEP (plastid-encoded plastid RNA polymerase) 

promoters (Gatenby et al., 1981, Liere et al., 2011). Therefore, a suitable promoter 

must contain the elements necessary for RNA polymerase binding and successful 

transcription.  

Most transformation vectors use entire or truncated strong plastid promoters, such as 

the psbA, atpB, or rbcL (Staub and Maliga, 1993, Kuroda and Maliga, 2001b). In 

more recent times, the most widely used promoter in chloroplast transformation 

studies is the Prrn. In the plastid genome, this promoter is responsible for the 

transcription of chloroplast genes downstream of it, as part of a single operon. The 

Prrn contains both -35 and -10 consensus sequences required for transcription.  When 

comparing the wheat Prrn to that of other monocot and dicot Prrn (Fig 1.5), the -35 

and -10 boxes are highly conserved. When comparison is made between the total Prrn 

sequence of wheat and tobacco, rice, and maize, percentage identity is 86.6%, 97.8%, 

and 97.8% respectively.  
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Fig 1.5 Sequence alignment of the -35 and -10 upstream region in three dicot species 

(1, Pea; 2, Spinach; 3, Tobacco) and three monocot species (4, Wheat; 5, Rice; 6, 

Maize).   

 

The decision to use a promoter to drive transgene expression, or utilise the read-

through mechanism, requires significant consideration. Promoterless uidA inserted 

downstream of the plastid rbcL gene resulted in 4 fold higher β-glucuronidase protein 

levels than constructs containing a heterologous ribosomal promoter inserted at the 

same site in the plastid genome (Staub and Maliga, 1995). This was despite there 

being a greater monocistronic uidA mRNA produced in the latter case. The successful 

use of promoterless constructs has been demonstrated in a number of chloroplast 

transformation studies (Herz et al., 2005, Chakrabarti et al., 2006, Gray et al., 2009, 

Gray et al., 2011) 

While a strong promoter like the Prrn is desirable, the translatability of a transgene is 

more affected by the 5’ UTR chosen (Maliga, 2003, Barkan, 2011). The Prrn is a 

promoter that controls transcription of ribosomal and transfer RNA genes, which 

means that there is no ribosomal binding site present upstream of any of the genes, or 

at the 5’ end of the Prrn. Therefore, if the Prrn is chosen to drive transcription and 

translation of exogenous genes in a transformation vector, a ribosomal binding site, a 

SD sequence, needs to be inserted at the 3’ end of the Prrn. The rbcL SD site, 

GGAGG, placed at the 3’ end of the Prrn, is sufficient to initiate translation of a 

transcript (Day and Goldschmidt-Clermont, 2011). Alternatively, the use of a bacterial 

5’ UTR has been shown to be able to successfully initiate ribosomal binding and 

translation (Kuroda and Maliga, 2001a). In E.coli, translation is facilitated by the 

interaction between the SD sequence upstream of the AUG start codon, and the anti-

SD sequence at the 3’ end of the 16sr RNA (Sprengart et al., 1990). The promoter of 

gene 10 of the T7 bacteriophage (T7g10), has a well-defined downstream box (see 

next section) sequence (Sprengart et al., 1996), and has been shown to accumulate 

high levels of exogenous protein in bacteria (Studier et al., 1990). Placing the 5’ UTR 

of T7g10 downstream of the Prrn, can successfully produce exogenous transcripts and 
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translation products (Herz et al., 2005, Bohmert-Tatarev et al., 2011, Kuroda and 

Maliga, 2001a), while also increasing protein expression (Kuroda and Maliga, 2001a, 

Oey et al., 2009). Other bacteriophage 5’ UTRs can be used to provide sufficient 

marker gene expression to recover transplastomics, however expression levels are low 

(Yang et al., 2013). The creation and successful use of inducible promoters has also 

been demonstrated in plastid transformation, and should be considered for studies 

temporal or spatial transgene expression is required (Muhlbauer and Koop, 2005, 

Verhounig et al., 2010).  

 

  Downstream Boxes 1.4.2.4

The downstream box (DB), first identified in E. coli (Sprengart et al., 1996), is 

defined as the first 10-15 codons downstream from the start codon, and works 

synergistically with the SD sequences upstream to regulate protein accumulation. E. 

coli DB sequences have been shown to be functional in higher plants (Gray et al., 

2011, Kuroda and Maliga, 2001a, Kuroda and Maliga, 2001b, Ye et al., 2001), as well 

as significantly changing the magnitude of protein accumulation (Gray et al., 2009). 

However, results have also shown that which DB to use to optimise expression has to 

be selected empirically, as final protein accumulation is dependent upon the coding 

region under DB control.  
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 Spacers and transcript stability  1.4.2.5

 

Expression of each gene in a multigene transformation vector can be achieved by 

inserting a promoter 5’ to each individual gene. However, by increasing the number of 

plastidial promoters in a transformation vector, could increase the probability of 

unwanted rearrangements within the chloroplast genome, or rearrangements within 

the vector. In order to avoid this, genes can be arranged into a polycistron, with each 

individual gene preceded by a leader or spacer, short plastidial sequences (Herz et al., 

2005) that have translation capabilities. In essence, each gene has its own translational 

element, however all are under the same single transcriptional control. The psbD/C 

overlap region from the tobacco chloroplast genome has been used successfully in 

tobacco transformation vectors (Bohmert-Tatarev et al., 2011) as has the SD 

containing region of the rbcL gene (Svab and Maliga, 1993). 

Although plastid expression is similar to that of prokaryotic organisms, gene 

expression in plastids is largely controlled at the post-transcriptional level (Stern et al., 

1997, Quesada-Vargas et al., 2005, Marin-Navarro et al., 2007). Translation efficiency 

is primarily dependent on the 5’ UTR (Barnes et al., 2005), as well as the DB (Kuroda 

and Maliga, 2001a) in some chloroplast genes. Similar to eubacterial mRNA, 

chloroplast mRNA does not have a cap structure or Poly A tail. The mRNAs also lack 

any conserved SD like sequences, which suggests that other trans-acting factors must 

be involved in the regulation of translation from chloroplast mRNA.  

The 3’ UTR is necessary for mRNA stability (Herrin and Nickelsen, 2004), which it 

achieves by forming stem-loop structures necessary for mRNA processing (Rott et al., 

1996), and preventing degradation of the mRNA by ribonucleases (Stern et al., 2010). 

The translation and accumulation of psbA, which encodes the D1 protein of 

photosystem 2, has been shown to be light dependent and under the control of both the 

5’ and 3’ UTR (Staub and Maliga, 1993). The 3’ inverted repeat sequences, a common 

occurrences in plastid mRNA sequences, can fold in to stem and loops and appear to 

be important for mRNA processing and stability (Rott et al., 1998), and proteins with 

endonuclease activity are known to bind to these regions (Lisitsky and Schuster, 

1995). Furthermore, interactions between 5’ and 3’UTRs of plastid genes, such as 

psbA, has been demonstrated to be involved in mRNA stability (Eibl et al., 1999).  
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1.5  Chloroplast transformation for the improvement of 

photosynthesis 
By manipulating various open reading frames (ORFs) or genes (Bock and Khan, 

2004), chloroplast transformation has made possible the improved understanding of 

plastid genes and their roles in orchestrating photosynthesis. By better understanding 

how chloroplasts work, we can better understand how photosynthesis can be 

improved. By utilising our understanding of plastid genome function, chloroplast 

transformation also provides an opportunity to engineer the plastid genome to 

supercharge photosynthesis.  

 

 RubisCO 1.5.1

One way in which this can be achieved is through the manipulation of ribulose 1,5-

bisphosphate carboxylase oxygenase (RubisCO) subunits (Andrews and Whitney, 

2003). The RubisCO enzyme plays its role within the first step of converting 

inorganic carbon (iC) into carbohydrates in plants and algae, by catalyzing the 

incorporation of CO2 into ribulose 1,5-bisphosphate. Accumulating carbohydrates is 

paramount for increasing biomass and growth. RubisCO is an ancient enzyme, whose 

evolution began at a time when the atmosphere was rich in CO2 due to the absence of 

photosynthetic organisms, approximately 3.5 billion years ago. Despite its importance 

in the process of biomass production, RubisCO is largely inefficient (Long et al., 

2006b), and has therefore been targeted as an area of improvement for more 

improving photosynthesis (Parry et al., 2007, Raines, 2006). All RubisCO enzymes, of 

which there are three forms, are comprised of at least two large 50kD subunit arranged 

head to tail to form a dimer (L2), with two active sites located at the interface. During 

evolution of photosynthetic organisms, the arrangements of subunits within RubisCO 

has changed and diverged into three forms, I, II, and III, while the catalytic site in all 

forms has remained conserved (Andersson and Backlund, 2008). Land plants, algae, 

and photosynthetic bacteria use the most abundant form of RubisCO, form I, which is 

comprised of 4 L2 dimers (L2) 4 capped by 8 small 13-17kD subunits (organised in 2 

groups of 4). Form I is thus denoted L8S8. The small subunits are not required for 

catalysis, however have been found to be essential for maximal activity and RubisCO 

stability (Andersson and Backlund, 2008).  
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RubisCO shows natural variation in its catalytic activity between families (Carmo-

Silva et al., 2010), although this is based on limited comprehensive catalytic data 

(Whitney et al., 2011). Algae and cyanobacteria, or other photosynthetic organisms 

that have developed in a high CO2, although have higher carbon fixation rates, have 

lower affinities and specificities for CO2 over O2. The same is said for C4 plants and 

other organisms that adopt energy expensive methods for increasing carbon 

concentration in close proximity to RubisCO. C3 plants on the other hand, which 

include most agronomical crops and algae, possess RubisCO that have high affinities 

and specificities for CO2 over O2, however have a slower carbon fixation rate 

(Whitney et al., 2011). It would seem that nature has fine tuned each system 

accordingly, given the differences in evolutionary history and intracellular inorganic 

carbon concentrations (Tcherkez et al., 2006). The argument is thus, can 

photosynthesis be improved by making adjustments to processes developed through 

billions of years of evolution. The amount of RubisCO in a cell is thought to be in 

excess; therefore an approach to increase RubisCO levels is unlikely to improve 

photosynthesis (Bally et al., 2009, Bally et al., 2011). In theory however, it is possible 

to raise yields of a C3 crop, by transferring RubisCO with higher affinities for CO2 and 

reduced photorespiration, for example from the red alga Griffithsia monilis (Long et 

al., 2006b). However it is not as simple as that. In higher plants, the large subunit of 

RubisCO is coded for (rbcL gene), transcribed, and translated in the plastid. The gene 

for the small subunit (rbcS) on the other hand, are housed within the nucleus, 

translated in the cytoplasm, and unfolded small subunit protein transported to the 

chloroplast prior to processing into the “caps” for the RubisCO enzyme (Nishimura et 

al., 2008, Jarvis, 2008). N terminal modifications, along with other post-translational 

modifications, is conducted to L-subunits in order to prevent proteolytic degradation 

(Houtz et al., 2008). To ensure correct folding, L-subunits also associate with Hsp70 

chaperone proteins (Nishimura et al., 2008). While the S-subunits most certainly 

associate with cytoplasmic chaperone proteins prior to transport into chloroplasts, 

their folding and protein associates prior to binding to L-dimers within the chloroplast 

is unclear. Any protein product of heterologous RubisCO genes that are inserted into 

the nucleus or chloroplast, must be able to undergo the same alterations and 

processing that native RubisCO genes would be able to. Indeed, the ability to create 

hybrid Rubsico has been demonstrated by replacing tobacco rbcL with the tomato 

rbcL to give pale green photoautotrophic plants with hybrid tomato L-subunit/tobacco 



 36 

S-subunit RubisCO (Zhang et al., 2011). Replacing higher plant rbcL genes with 

protobacterium rbcM (L2), archaeabacterium RubisCO (L10) (Whitney and Andrews, 

2001a, Alonso et al., 2009), and sunflower rbcL (Sharwood et al., 2008, Sharwood 

and Whitney, 2010, Kanevski et al., 1999) via chloroplast transformation has also 

been successfully demonstrated. Although catalytic properties of RubisCO were as 

expected, sunflower L subunits showed compatibility issues with folding and 

assembly, thus limiting the formation of L8S8 hybrid RubisCOs. Furthermore, efficient 

red algae RubisCOs were unable to be introduced into higher plants plastids due to 

incomplete folding and assembly (Whitney et al., 2001) as a result of significant 

evolutionary divergence. Most L-subunit substituted transplastomics often 

demonstrate a pale green phenotype or/and require elevated CO2 for growth (Hanson 

et al., 2013). Attempts to express S-subunits within the chloroplast directly were met 

with disappointing results, as the plastids favoured assembly of Rubsicos with nuclear 

derived S-subunit as opposed to those transcribed and translated within the plastid 

(Whitney and Andrews, 2001b). Expression of a linked L and S-subunit RubisCO 

transcribed and translated from a single operon within the plastome, produced plants 

that required elevated CO2 as juvenile plants. The requirement of supplementary CO2 

was not due to an impaired catalytic activity of the RubisCO, but an inadequacy in 

folding, which may have arisen due to the build up of insoluble fused RubisCO 

aggregates (Whitney et al., 2009). Thus it would appear that although the integration 

of exogenous RubisCO genes into the plastid genome is clearly possible, adequate 

translation, folding and assembly into hybrid RubisCO might not be so forthcoming. 

Even if functional hybrid RubisCO is obtained, an improvement in RubisCO activity 

is unlikely. Furthermore, the import of RubisCO proteins from the cytosol into the 

plastid to form functional RubisCO has also been demonstrated, however this 

approach is also unlikely to result in increased RubisCO activity (Kanevski and 

Maliga, 1994). The production of a tobacco “master line” (cmtrL) which allows the 

relatively rapid production of homoplasmic L-subunit replacement transplastomics, 

could increase the probability of uncovering RubisCO subunit 

modifications/combinations that improves RubisCO catalysis (Whitney and 

Sharwood, 2008). Time will tell whether RubisCO modification can provide 

supercharged photosynthesis. 
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 RubisCO Activase 1.5.2

While work on RubisCO continues, alternative routes to improved photosynthesis is 

necessary. Photosynthesis is particularly sensitive to heat stress, and such inhibition 

can result in reduced yield (Lobell and Field, 2007), and correlates with a reduced 

activity of RubisCO (Salvucci and Crafts-Brandner, 2004). With global temp set to 

increase by up to 2.5 in the next 10 years, reducing yield losses due to heat stress will 

be important. One enzyme that is particularly sensitive to temperature increases is 

RubisCO activase (RA), which is responsible for priming RubisCO activity. RA frees 

the RubisCO active site off sugar phosphate inhibitors, which are used to regulate 

RubisCO (Parry et al., 2008). A more thermostable RA mutant did improve 

photosynthesis and growth in Arabidopsis (Kumar et al., 2009), however 

overexpression of activase in the cereal crop rice  did not provide such improvements 

(Fukayama et al., 2012). Unfortunately, poor understanding of RAs interaction with 

RubisCO impedes furthering this as an option for improving photosynthesis. 

 

 Ribulose-1,5-bisphosphate (RuBP) 1.5.3

At saturating levels of CO2, the availability of RuBP can be rate limiting for 

photosynthesis. Sedoheptulose-1,7-bisphosphatase (SBPase), fructose-1,6-

bisphosphate aldolase, and transketolase are the enzymes responsible for the 

regeneration of RuBP (Zarzycki et al., 2013), and are thus an area of interest for the 

improvement of photosynthesis. Overexpression of SBPase in rice chloroplasts 

enhanced CO2 assimilation at higher temperatures, increased photosynthetic rates 

under salt stress (Feng et al., 2007), and resulted in greater biomass accumulation in 

Arabidopsis thaliana and Nicotiana tabacum (Miyagawa et al., 2001, Lefebvre et al., 

2005). SBPase is bi-functional, in that it also acts as a fructose-1,6-

bisphosphataseFBPase, and both SBPase and FBPase catalytic functions are enhanced 

in overexpression lines, and both have a positive effect on photosynthetic rate (Tamoi 

et al., 2006). However, under CO2 limiting conditions, SBPase overexpression can be 

toxic.  

 

 Increasing inorganic carbon concentrations around RubisCO 1.5.4

An attractive approach for improving photosynthesis in C3 crop plants would be to 

introduce the carbon concentrating mechanisms employed in C4 plants to increase 
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intracellular inorganic carbon, thus favouring carboxylation and reducing losses 

through photorespiration. Photorespiration in C4 plants has been shown to remain slow 

even under limiting conditions (Carmo-Silva et al., 2008). 

 

Encouraging results from nuclear transformed higher plants suggest that increasing 

concentrations of CO2 in the vicinity of RubisCO, or by introducing multi-enzyme 

photorespiratory bypass pathways (Maurino and Peterhansel, 2010) targeted to the 

chloroplasts that utilise the glycolate substrate, can improve biomass production by 

reducing photorespiration (Kebeish et al., 2007, Maier et al., 2012). The bypass 

pathways not only removed glycolate from engaging in photorespiration, but 

converted glycolate into glycerate, which can be used to regenerate RuBP. Carbon 

dioxide  is a by-product of these enzymatic pathways, thus increasing inorganic carbon 

concentrations to be used by RubisCO. These examples of successful bypass 

pathways can be constructed into polycistrons and inserted into the plastome (Khan, 

2007). 

 

While work continues on introducing the “Kranz” anatomy and the CO2 concentrating 

mechanisms of C4 plants into C3, a complex multi-gene approach, alternative single 

or double transgene insertions into the plastome or nucleus that would mimic the 

cyanobacterial and algae carbon concentrating mechanism (CCM) is an option 

(Lieman-Hurwitz et al., 2003, Price et al., 2013, Price et al., 2008). With a reduction 

in transgene insertions and no anatomical modifications, such an approach is likely to 

be less technically challenging, and may also require lower energy costs in 

comparison the C4 pathway. CCMs are not observed in land plants, and therefore 

CCM mechanisms need to be exogenously introduced within these plant cells. In 

cyanobacteria, RubisCO and carbonic anhydrase (CA) are housed within a 

compartment known as a carboxysome. Carboxysomes are semi permeable protein 

shells, not present in land plants (except the earliest land plants Anthocerotophyta), 

which increase the concentration of inorganic carbon around RubisCO. The 

organisation of RubisCO and CA within one compartment and consequential elevated 

CO2 levels, reduces the possibility of photorespiration, and compensates for the low 

efficiency of RubisCO. Developing carboxysomes in the plastids of higher land plants 

is very complex, and faces many obstacles (Zarzycki et al., 2013).  
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A simpler option could be to insert cyanobacterial bicarbonate pumps into the 

chloroplast envelope, such as Chlamydomonas HCO3
- transporters (Spalding, 2008). 

There are five import mechanisms known to transport inorganic carbon in 

cyanobacteria, three for HCO3
-, and two for CO2 (Price, 2011). Three well 

characterised HCO3
- transporters are the BCT1 (Price et al., 2008, Omata et al., 1999), 

SbtA, and BicA (Price et al., 2004)  transporters. BicA shows the lowest affinity for 

HCO3
-, however has a faster transport rate, and like SbtA, is coupled to Na+ symport. 

In theory, insertion of these transporters into the chloroplast membrane, would 

provide increased flow of inorganic carbon into the stroma, where HCO3
- will be 

converted to CO2 by carbonic anhydrase, thus increasing CO2 around RubisCO and 

subsequent photosynthetic carbon fixation. Expression of the inorganic transporter B 

(ictB), initially believed to be a HCO3
- transporter (Bonfil et al., 1998), in the nucleus 

and transported to the chloroplast in Arabidopis thaliana and Nicotiana tabacum, 

demonstrated increased photosynthetic rates and plant growth under CO2 limiting 

conditions. Overexpression studies in cyanobacterial strains absent of most inorganic 

carbon transporters can increase our understanding and characterisation of increased 

bicarbonate/CO2 uptake. Having a variety of protein channels/transporter options 

would be useful to test for in higher plant species.  

 

1.6  Nuclear verses chloroplast transformation 
For many plant species, nuclear transformation is most efficiently achieved using the 

bacterium Agrobacterium tumefaciens (Bevan, 1984). A. tumefaciens has the innate 

ability to transfer a copy of part of Ti plasmid into a plant cell via a pilus. Once in the 

plant cell, the bacterial DNA is transported to the nucleus where it integrates 

randomly into the nuclear DNA. By inserting a gene of interest between the left and 

right border sequences of the Ti plasmid, it too will be copied along with the rest of T-

DNA transferred into the plant cell cytoplasm, and directed into the nucleus. The 

position of T-DNA insertion into the plant nucleus appears to be largely random and 

unpredictable, hence unless inserted into intergenic regions, would result in undesired 

disruption of particular genes.  Furthermore, even if insertion of T-DNA has occurred 

in an intergenic region, and that fertile offspring have been produced from these 

transformants, expression of the transgene can be surprisingly varied in each tissue 

type and between different transgenic events. This is because the expression of the 
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transgene depends on the activity of its promoter and also the genomic location of the 

insertion and on number of transgene copies /rearrangements etc that have occurred 

during the initial transformation (Grevelding et al., 1993).  

Insertion of exogenous genes into a chloroplast with A. tumefaciens has been 

conducted (Deblock et al., 1985), although the experiment has since never been 

reproduced. The chosen method for chloroplast transformation today is biolistic 

transformation via a particle gun (Sanford, 1990, Klein et al., 1987). Chloroplast 

transformation has many advantages over nuclear transformation. Firstly, because 

each chloroplast contains a certain number of circular chromosomes, it is easy to 

calculate the number of transgene insertions that is possible. This is an advantage 

when the dosage of transgene protein product is important to control, for example if 

the transgene product is of pharmaceutical importance. Protein production of 

chloroplast transgenes is far greater than nuclear transgenes (18% of total proteins, 

and 0.5-3% of total proteins respectively (Maliga, 2004)). This is another advantage if 

the transgene is of medical or pharmaceutical importance. The higher level of protein 

production is due to a several factors including: the high number of chloroplast 

chromosomes per cell (approximately100) as well as the lack of gene silencing, 

epigenetic mechanisms and pre/post transcriptional silencing. It is also possible to 

express multiple genes from polycistronic mRNA (Maliga, 2001, Staub and Maliga, 

1995, De Cosa et al., 2001, Quesada-Vargas et al., 2005). Secondly, transcription and 

translation of a transgene would occur only in the chloroplast, hence any 

mRNA/protein product would be compartmentalised within the chloroplast. The 

prevention of protein product entering the cytoplasm of the cell has three advantages: 

avoiding adverse reactions between cellular components and the exogenous protein, 

no alteration of the cellular water potential, and reduced labour of exogenous protein 

extraction (if protein is of pharmaceutical importance). Thirdly, the chloroplast 

genomes do not undergo genetic alterations as does the nuclear genome does (and 

rather frequently), such as polyploidy, gene duplication, or recombination events. 

Lastly, and most importantly, plastids are inherited maternally in the vast majority of 

angiosperms (Birky, 1995, Mogensen, 1996, Hagemann, 2002). Maternal inheritance 

occurs due to the exclusion of pollen-derived chloroplasts from the male gamete 

during fertilization. This would mean that any alterations made to the chloroplast 

genome of plant tissue that is eventually grown to an adult plant primed for 

reproduction, cannot transmit the transgenic chloroplast to its offspring via its pollen. 
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This is an enormous advantage as gene flow of GM genotypes via pollen into wild 

relatives is a commonly-cited environmental risk hindering the  development and 

commercialization of GM crops. Although some genetic leakage has been observed in 

some species (Ruf et al., 2007, Svab and Maliga, 2007), plastid transformation 

provides a strong level of biological containment, and is still considered a safe method 

of transgene containment following risk assessment (Wilkinson et al., 2003). 

 

The advantages associated with chloroplast transformation has resulted in a rapid 

increase in scientific interest, especially from the biopharmaceutical sector. This has 

lead to a large number of different plant species chloroplasts being sequenced, with 

more chloroplast sequencing expected in the near future (Wani et al., 2010). 
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1.7  Chloroplast transformation in the monocots. 
From the suggestion that chloroplasts contain DNA in 1951, the cytological 

identification of chloroplast DNA over a decade later, to the first reports of integration 

of exogenous DNA into plastid DNA, modern plastid transformation research has 

provided many examples of successful and stable plastid genome alterations to date. 

These successes have largely, if not exclusively, been limited to the dicotyledon plant 

species and algal species. In comparison, chloroplast transformation in the 

monocotyledon species has been restricted to rare events. The first event of exogenous 

DNA expression in monocot chloroplasts came in the form of transient GUS 

expression in wheat. Following his work with transient gene expression in the plastids 

of higher plants (Daniell et al., 1990), Henry Daniell turned his attention to transient 

expression in wheat using the uidA gene (Daniell et al., 1991).  Biolistic bombardment 

(Klein et al., 1987) of albino wheat leaf with the uidA gene under the transcriptional 

control of a dicot plastid promoter, the catalytic activity of the uidA translational 

product (beta-glucuronidase, which cleaves its substrate X-gluc to produce an indigo 

dye) could be observed compartmentalised within the chloroplast. In comparison, 

bombardment of the same tissue with a nuclear uidA transformation vector showed the 

insoluble blue die evenly spread throughout the cell. It was hoped that these results 

could provide a positive benefit the prospects for chloroplast transformation in the 

monocots. However it would not be until the end of the decade when a second report 

of chloroplast transformation in the monocots would be presented.  

Encouraged by the expression of the FLARE-S fusion gene (a 3”-adenyltransferase + 

GFP fusion protein) in non green plastids in tobacco, Khan and Maliga attempted to 

create chloroplast transformed rice cells by bombarding white embryogenic tissue 

culture cells formed from mature seeds (used for rice nuclear transformation) with a 

rice specific chloroplast transformation vector containing the FLARE-S expression 

cassette (Khan and Maliga, 1999). Integration of FLARE-S was confirmed using PCR 

and confocal microscopy, however, only a fraction of the chloroplasts in the PCR 

positive transformants were shown to express FLARE-S. Although plastid 

homoplasmy was unable to be achieved, this presented a step forward in that it clearly 

presented chloroplast transformation within the monocots is possible, plastid encoded 

promoters (PEP) are functional in non green plastids, and that streptomycin can be 
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used as a selection mechanism (however, the lack of homoplasmy indicates an 

alternative selection mechanism may be necessary).  

Bombardment of rice embryogenic callus, formed from mature seed, once again 

proved to be the target for a chloroplast transformation study published in 2006 (Lee 

et al., 2006). A rice-specific plastid transformation vector, containing an expression 

cassette consisting of gfp and aadA under the expressional control of the Prrn 

promoter (PEP promoter), targeted to the trnI-trnA genes of the rice plastid genome, 

was bombarded into embryogenic calli of rice. GFP expression was confirmed using 

confocal microscopy and western blot analysis, however homoplasmy was once again 

not achieved, and due partly to the low efficiencies and labour intensive nature of the 

procedure (4000 bombarded calli produced just 2 independent lines), has not been 

repeated by other laboratories (or at least not published to date).  

1.8  Bottlenecks and outlook 
Successful plastid transformation is reliant on three things, (a) an adequate and robust 

method of DNA delivery into plastids, (b) a tissue target that contains plastids 

possessing active homologous recombination enzymes to facilitate the integration of 

exogenous DNA into the plastid genome, (c) a tissue target with a robust regeneration 

system, and (d) an effective selection mechanism. As described above, the biolistic 

method of DNA delivery is the most effective and cost efficient method of depositing 

DNA into plastids, and this method has universal capabilities. Plastid homologous 

recombination is also known to be highly efficient and active within Chlamydomonas 

and the seed plants, and therefore DNA delivery and homologous recombination are 

unlikely to be limiting factors in successful monocot chloroplast transformation 

(especially as partial transformation has been demonstrated). The factors causing the 

bottleneck are most likely to be the tissue culture methods and selection processes.  

There is no universal method for plastid transformation across the land plant species 

and algae. Each new species targeted for chloroplast transformation would require the 

development of a suitable tissue culture system which may also show differences in 

response between cultivars for that particular species. This presents a great challenge 

that would involve laborious and time-consuming optimization work, based largely on 

a trial and error principal. Furthermore, a novel selection mechanism is likely to be 

required for the plastid transformation of the monocotyledon embryophytes. 
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1.9 Aims of project 
• Identify novel tissues suitable for use in the chloroplast transformation of 

wheat, and develop a robust tissue culture process for these novel tissues. 

• Produce functional wheat specific chloroplast transformation vectors. 

• Develop an optimised protocol for the chloroplast transformation of wheat. 

• Produce transplastomic tobacco containing the cyanobacterial carbon 

concentrating gene, ictB, for the improvement of photosynthesis in a C3 plant. 
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2 General Material and Methods 

2.1  Chloroplast transformation via biolistic bombardment 

 Nicotiana tabaccum (tobacco) plant preparation. 2.1.1

Seeds were sterilised in eppendorf tubes by exposure to 70% ethanol for 30 seconds, 

followed by 10% bleach (available chlorine 10-15% in stock) for 5 mins on a roller 

mixer. Under sterile conditions, seeds were then washed 5 times with 1ml of sterilised 

distilled H2O. Seeds were allowed to dry for 5 mins, and then were placed (up to 100 

seeds) on a 9cm petri dish containing MS (see 4.2) media at 26°C, in the dark for 4-7 

days to encourage germination. Once the seedlings had germinated, the required 

numbers were moved to magenta boxes (1 per box) containing MS media. Magenta 

boxes containing tobacco seedlings were moved to the culture room at 26°C on a 16/8 

hour day/night cycle at 10-50µE light intensity. After 4-6 weeks, the first five leaves 

below the unexpanded top leaf are suitable for transformation.  

 Tobacco leaf explant preparation 2.1.2

Suitable leaves were excised from tobacco plants grown in vitro. For each leaf, the 

midrib and edges were removed to leave two rectangle pieces (Fig 2.1). These were 

then placed in the centre of a 9cm petri dish containing RMOP (Day and 

Goldschmidt-Clermont, 2011) media abaxial (bottom) side up, ready for 

bombardment. Once prepared, plates were used immediately. 

 
Fig 2.1 Preparation of tobacco leaf for bombardment. Leaf is placed abaxial side up 

(left), and using a sterile scalpel, the midrib (arrow) and edges are removed (red 

dashed lines) to leave two rectangular pieces (right).   
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 Gold preparation 2.1.3

40mg of 0.6µm gold (BIO-RAD, USA) was weighed into an eppendorf, and 1mL of 

100% ethanol added. The mixture was sonicated for 2 mins, then pulse centrifuged for 

3 seconds. Supernatant was removed, and the ethanol wash followed by centrifugation 

was repeated twice. 1mL of sterile distilled H2O was added and the mixture sonicated 

for 2 mins. The mixture was again pulse centrifuged for 3 seconds, supernatant 

removed, and repeated. Gold was then re-suspended in 1mL sterile distilled H2O. 

50mL amounts were aliquotted into eppendorfs, vortexing between each aliquot. 

 DNA coated gold particle preparation 2.1.4

50µL aliquot of gold mixture was allowed to thaw, and placed in a sonicator for 3 

mins. 5µL of plasmid DNA (1mg/mL) was added to the gold, mixed by pipetting, 

vortex for 5 seconds, and then placed on ice for 60 seconds. The lid of the eppendorf 

containing gold and plasmid DNA mixture was opened, and 50µL of 2.5M CaCl2 

pipetted into the lid of the eppendorf. 20µL of 0.1M spermidine was added to CaCl2, 

mixed by pipetting, and allowed to drop into the gold/plasmid mixture by closing the 

lid. The mixture was vortexed for 5 seconds and place on ice for 1 min. The DNA 

coated gold particles were centrifuged at 3,000 rpm in a microcentrifuge for 1 min, 

and the supernatant discarded. 150µL of 100% ethanol was added to the pellet, while 

dislodging and breaking up the pellet with the pipette tip. It was important that large 

clumps were broken down at this stage. The mixture was mixed well with a pipette, 

and vortexed for 5 seconds. A second centrifugation step was performed at 3,000 rpm 

for 1 min in a microcentrifuge. The supernatant was discarded, and the pellet re-

suspended in 60µL of 100% ethanol (per 10 shots), once again dislodging and 

breaking up the pellet with the pipette. The DNA/gold preparation was vortexed for 5 

seconds, and distributed onto macrocarriers (5 µL), or store on ice. Preparation was 

vortexed for 5 seconds for every 5 macrocarriers.  

 

 DNA delivery 2.1.5

Bio-Rad PDS 1000/He particle delivery system was set up as per manufacturer’s 

instructions, and microcarrier launch assembly placed into the top shelf position 

(groove 2). A 9cm Petri dish containing target tissue on the relevant media was placed 

in the fourth shelf position (groove 4). This produced a 6cm distance from the 

stopping screen in the launch assembly to the target plate. 5µL of the DNA coated 
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gold particle preparation was pipetted on the centre of the macrocarrier, and ethanol 

allowed to evaporate in a laminar flow hood. The device was operated according to 

manufacturers instructions, with biolistic bombardments conducted at a vacuum of 27-

28in Hg. Following bombardment, plates containing bombarded target tissue were 

moved to the subsequent relevant conditions. 

 

 Selection of tobacco plastid transformants  2.1.6

Bombarded leaves were cut into 0.5cm square pieces, and placed on RMOP medium 

containing 500mg/L spectinomycin abaxial side up under sterile conditions.  Blades 

and forceps were sterilised between each bombarded plate. Plates were sealed with 

parafilm (twice) and incubated in 10-50µE light on a 16/8 hour day/night cycle at 

26°C for 4-8 weeks. Green resistant shoots or cell clumps appeared between 6-8 

weeks, and these were separated from the callus piece it grew from, then placed on 

RMOP supplemented with 500mg/L spectinomycin in a 9cm petri dish, in 10-50µE 

light on a 16 hour day cycle at 26°C.  After 8 weeks, plates that had not produced 

resistant shoots were disposed of. Resistant shoots that had grown into a mass of 

several shoots were then subjected to second round of selection on RMOP 

supplemented with 500mg/L spectinomycin, in a magenta box. Alternatively, if the 

resistant shoots were large enough, MS was used instead of RMOP in order to 

encourage root formation.  

 Transferring plants to greenhouse 2.1.7

To transfer rooted transplastomic tobacco shoots to greenhouse, the agar was gently 

broken up, the roots washed in running tap water to remove as much solid media as 

possible, and then planted into soil. The plants were placed into a covered micro-

propagator, and left to incubate in the greenhouse after watering. To collect seedpods 

once matured, the plants were no longer watered and seedpods allowed to dry,  and  

removed from the plant only when they turned brown.   
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2.2  Molecular Characterization 

 Isolation of genomic DNA 2.2.1

Whole genomic DNA from both tobacco and wheat were extracted from young adult 

leaves using a DNeasy Plant Mini Kit (Qiagen, 27220 Turnberry Lane, Suite 200, 

Valencia, CA 91355), using the manufacturer’s protocol.  

 Polymerase Chain Reaction (PCR) 2.2.2

Each reaction tube contained a total reaction mixture of 20µl. Components of each 

PCR reaction would include a 4µL 5x buffer, 0.4 µL dNTPs (10mM), 1µL forward 

primer (10µM), 1µL reverse primer (10µM), 50-250ng of genomic DNA/ 1pg-10ng 

plasmid DNA, 0.5 units polymerase enzyme, dH2O up to make volume up to 20µL. 

For all PCR reactions, the Phusion®High-Fidelity DNA polymerase was used (New 

England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA). Once PCR 

reaction mixtures were ready, they were moved to a PCR machine. Thermocycling 

conditions were set as per Phusion® High-Fidelity DNA polymerase manufacturers 

instructions.  

 Agarose Gel 2.2.3

Electrophoresis gels were 1% molecular biology grade agarose, dissolved in 0.5x TBE 

buffer (5x TBE buffer: 53g Tris base, 27.5g boric acid, 10mM EDTA, made up to 1 

litre with H2O). Once the agarose had been dissolved by heating in a microwave oven 

0.01% v/v 10mg/ml ethidium bromide was mixed into the buffer as it cooled. Gels 

were left to solidify in a microgel former with appropriate combs before being placed 

in a microgel bath and submerged in 0.5x TBE buffer. The PCR mix was mixed with 

6x tri track loading buffer (Thermo Fisher Scientific Inc., 81 Wyman Street, Waltham, 

MA 02451, USA) and the resultant mixture loaded into wells. HyperladderTM 1kb 

DNA ladder (5µl) (Bioline USA Inc., 305 Constitution Drive, Taunton, MA 02780, 

USA) was added to a well for each experiment. Once PCR products and ladder had 

been loaded, gels were run between 40-90V, then photographed under ultraviolet 

light. 

 DNA extraction from agarose gel 2.2.4

Using ultraviolet light, a DNA band was first identified in the agarose gel, and then 

excised with a clean sharp blade. As much of the agarose was removed at the time of 
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excision. The excised band was then placed in an 2ml eppendorf, and DNA extracted 

from the band using a Wizard® SV gel and PCR clean up kit (Promega Corporation, 

2800 Woods Hollow Road, Madison, WI 53711, USA), following manufacturer’s 

instructions.  

 Chloroplast DNA extraction 2.2.5

Chloroplasts from green tobacco and wheat leaves were extracted using a chloroplast 

extraction kit (Sigma-Aldrich, 3050 Spruce St, St. Louis, MO 63103, USA), as per 

manufacturer’s  instructions.  

2.3  Gene Cloning 

 Poly A Tailing DNA fragments 2.3.1

PCR amplified DNA fragments that were extracted from agarose gel, needed to have a 

single deoxyadenosine base attached to the 3’ ends of each amplified fragment for 

cloning into the pGEM-T Easy vector. Each PCR reaction tube contained 1µL 10x 

PCR buffer, 0.2µL aNTP (10mM), up to 100ng fragment DNA, Hot start Taq (New 

England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA), and dH2O up to 

a total reaction volume of 10µL. The mixtures were then placed in a PCR machine at 

95°C for 15 mins, then 72°C for 30 mins.  

 Ligation into pGEM-T Easy Vector  2.3.2

Adenine tailed DNA fragments from 2.3.1 were ligated into the pGEM-T easy vector 

(Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA) as per 

manufacturer’s instructions.  

 Ligation into other vectors 2.3.3

T4 DNA ligase (New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, 

USA) was used for all ligations. Each reaction contained a minimum insert to vector 

ratio of 3:1, 200 units of T4 DNA ligase, 1µL of 10x T4 ligase reaction buffer (New 

England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA), and dH2O up to 

a total reaction volume of 10µL. Reactions were left at room temperature for 2 hours, 

prior to transformation into E.coli (2.6.1). 
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 Restriction Endonuclease digestions  2.3.4

All restriction endonuclease enzymes used were purchased from New England 

Biolabs (New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA), 

and digestions were performed as per manufacturers instructions. If larger amounts of 

restriction products were required, reaction volumes were scaled up accordingly. 

2.4 Microbiological techniques 

 E.coli transformation and culture 2.4.1

For all E.coli transformations, NEB 10-beta competent cells (New England Biolabs, 

240 County Road, Ipswich, MA 01938-2723, USA) were used. Cells were thawed at 

room temperature on ice and 10-20µL were pipetted into 1.5mL eppendorf tubes (in 

an ice bucket at room temperature), and 10ng of DNA/2.5µL of ligation mix was 

pipetted into cells and mixed (by pipetting). The mixture was incubated on ice for 30 

mins, followed by a heat shock step at 42°C for 30 seconds, then snap cooled on ice. 

Following this, 150µL of SOC medium was added, and the mixture incubated at 37°C 

for 60-120 mins. Pre-prepared 2xYT agar (Sigma-Aldrich, 3050 Spruce St, St. Louis, 

MO 63103, USA), mix was warmed using a microwave oven, and allowed to cool 

before pouring into sterile 9cm petri dishes. If selection was required, then the 

relevant antibiotic was added to the warmed 2x YT agar after it has cooled to a 

temperature that it can be held comfortably in the hand, but not too cool that the agar 

has begun to harden and set. For colony screening using the disruption of the LacZα 

gene to give blue/white colonies for failed insertion/successful insertion of DNA into 

the multiple cloning site, X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galacto-

pyranoside) was added to the agar. X-gal (Melford Laboratories, Bildeston Road, 

Chelsworth, Ipswich, Suffolk, IP7 7LE, UK) was added under conditions to that of 

selectable agent. Under sterile conditions, 75µL of incubated mixture was then 

pipetted onto agar plates containing 2x YT, and spread with sterile disposable 

spreaders. Plates containing transformed E.coli cells were then left to incubate at 37°C 

overnight. For the preparation of Miniprep volumes (5mL) of transformed E.coli, a 

single colony was “picked” off the overnight culture with a sterile toothpick, and 

placed in a vial containing 5mL of 2x YT. Selection was added to the 2x YT if it was 

required. This was then placed in an incubator at 37°C, rotating at 220 rpm, overnight. 

For maxiprep volumes (50-100mL) of transformed E.coli, 5mL of 2xYT containing a 
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“picked” colony was incubated for 8-10 hours at 37°C, rotating at 220 rpm. A 1/1000 

aliquot of this was then diluted in 50-100mL of 2xYT (with or without selection). This 

was then left to incubate overnight at 37°C, rotating at 220 rpm.  

 Plasmid Miniprep 2.4.2

Plasmid DNA was recovered from transformed E.coli using Wizard® Plus Minipreps 

DNA Purification kit (Promega Corporation, 2800 Woods Hollow Road, Madison, WI 

53711, USA), following manufacturer’s instructions. 

 Plasmid Maxipreps 2.4.3

Plasmid DNA was recovered from transformed E.coli using a Qiagen Plasmid Maxi 

Kit (Qiagen, 27220 Turnberry Lane, Suite 200, Valencia, CA 91355), following 

manufacturers instructions.  
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2.5  Microscopy 

 Digital Photography 2.5.1

Digital photographs were taken using either a Canon EOS 350D digital SLR Compact 

systems camera, with zoom lens EF-S18-55mm f/2.5-5.6, or an Olympus OM-D E-

M10 compact system camera, with a M.Zuiko Digital ED 60mm f2.8 Macro lens. For 

macro images using the Canon, the lens was disconnected, turned around, and held in 

place. Camera was then moved towards or away from object in order to focus. For 

macro images using the Olympus, the camera was connected to a SZ40 Olympus 

microscope using 60S T camera adapter. A JJC macro LED ring light attached to the 

microscope provided illumination.  

 Light Microscopy 2.5.2

Light microscopy was conducted using a Leica M205 FA stereomicroscope (Leica 

Camera AG, Am Leitz-Park 5, 35578 Wetzlar, Germany). A DsRed filter was used for 

the detection of DsRed proteins (Excitation wavelength 510- 560nm, Emission 

wavelength 590-650nm).  

 Laser Microscopy 2.5.3

Laser microscopy was conducted using a Zeiss LSM780 (Carl-Zeiss-Strasse 22, 

73447 Oberkochen, Germany). For detection of DsRed and GFP proteins, the 

recommended manufacturer settings were used, with digital gain adjusted to amplify 

detected protein emission wavelengths accordingly. Images were processed with the 

accompanied image processing program (ZEN 2011). 
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3 Design and construction of wheat and tobacco chloroplast 

transformation vectors 

3.1  Introduction 
As mentioned in Chapter 1, chloroplast transformation is dependent upon the delivery 

of a transformation cassette into chloroplasts via particle bombardment, subsequent 

integration of the transformation cassette into the chloroplast genome, and finally the 

expression of transgenes thus permitting selection of positively transformed 

chloroplasts. Thus, the design of the transformation cassette is equally as important as 

the method of delivery. A basic transformation cassette is shown in Fig 3.1, however 

in the majority of chloroplast transformation cassettes, both a gene of interest and a 

selection gene are required. The cassettes can be designed and orientated as shown in 

Fig 3.2. It has been successfully demonstrated that up to 4 genes can be transcribed in 

a single polycistronic operon by using a combination of spacers and leaders between 

each gene (Bohmert-Tatarev et al., 2011). 

 

 
Fig 3.1 The structure of a basic transformation cassette. A promoter (Prom) is required 

to drive the expression of the gene of interest (in this case a selection gene), and the 

transcription product of the gene requires stability from a 3’ untranslated region (3’ 

UTR). The cassette is inserted into a specific location within the chloroplast genome 

by flanking the cassette with DNA sequences homologous to the region into which 

insertion is required (Left flanking arm, Right flanking arm).  

 

The flanking arms, DNA sequences homologous to the regions within the plastid 

genome the transformation cassette is targeted to, are placed either side of the 

transformation cassette, and both arms should ideally be 1-2kb in length (Maliga, 

2004). Plastid targeting sequences can be selected from any part of the plastid 

genome, but should be designed to avoid disrupting native functional genetic 

elements. For example, interruption of the petB-petD region with aadA resulted in a 

sucrose dependent phenotype (Zhang et al., 2001). For a list of plastid targeting sites 
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previously used, please see (Maliga, 2004) and (Day and Goldschmidt-Clermont, 

2011). The 16srRNA/trnI - trnA/23srRNA gene region of the chloroplast genome has 

been successfully targeted in a number of tobacco chloroplast transformation studies, 

and it is this region that I will target in the wheat chloroplast genome. 

 

a 

 
b 

 
c 

 
 

Fig 3.2 The structure of a transformation cassette for the expression of multiple genes. 

a, Each gene is driven by its own promoter (P) and each transcript stabilised with its 

own 3’ UTR (3’); b, as in a, the “selection” gene is driven by its own promoter, and 

transcript stabilised with a 3’ UTR, however the orientation is in the opposite 

direction. By having the promoter orientated in opposite orientation, you avoid 

deletions by repeated sequences (Lutz et al., 2007); c, The promoter drives the 

expression of both the gene of interest and selection gene, to produce a single mRNA 

transcript, however a leader/spacer sequence (L) is placed between the two genes to 

ensure separate translation. A 3’ UTR is again used for stability of the single 

transcript. See (Bohmert-Tatarev et al., 2011) for further information.  
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For the purposes of my investigation, the chloroplast transformation of wheat, I 

decided to construct a transformation cassette that would consist of two coding genes, 

a visual reporter gene and a selection gene. As there was no previously published data 

of direct exogenous gene expression within the chloroplasts of wheat, I attempted to 

keep the design of the cassette as simple as possible, and based on previously-

validated genetic elements to minimise the possibility that any absence of 

transformation was not due to failed transcription of marker or selection genes. It is 

for this reason that I initially chose to construct a chloroplast transformation cassette 

that contained the gfp reporter gene and aadA selection gene, transcribed in opposite 

orientations, each under the control of a promoter (as described in Fig 3.2.b). 

However, cloning two identical promoters in opposite orientations proved 

problematic, and therefore I decided to design a cassette that would express gfp and 

aadA in a single polycistronic transcript (see Fig 3.2.c). As described in the Chapter 1, 

the tobacco Prrn is a strong plastid promoter, and its fusion with the 5’UTR of the 

T7g10 bacterial promoter produces higher levels of exogenous protein accumulation 

(Maliga, 2002, Oey et al., 2009) when compared to the Prrn fused with other 5’UTRs 

containing ribosomal binding sites. It is for this reason that I chose to design a cassette 

driven by the wheat Prrn promoter fused with the T7g10 5’UTR. To ensure separate 

translation of gfp and aadA from a single polycistronic mRNA, a spacer was inserted 

between marker and selection gene. A number of options are available to choose from 

(Bohmert-Tatarev et al., 2011), and I elected to use the psbD/C spacer sequence 

(9,983-10,036 of Triticum aestivum chloroplast genome) to separate the gfp and aadA 

genes in the transformation cassette.  The transformation cassette (TCas1 Fig 3.3) was 

synthesised, and provided in the pUC57 vector. Once constructed, the transformation 

cassette will be tested in the tobacco transformation system to confirm its function.  
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Fig 3.3 The transformation cassette TCas1. Prrn, wheat 16srRNA promoter; 5’UTR 

T7g10, the 5’ untranslated region of gene 10 from T7 E.coli; aadA, aminoglycoside 

resistance gene; psbD/C, the wheat psbD/C intergenic region; gfp, green fluorescent 

protein gene codon optimised for plastids; 3’ UTR psbA, the 3’ untranslated region of 

the tobacco psbA gene. Restriction endonuclease sites are indicated with dotted lines. 

 

 Aims 3.1.1

• Design and construct wheat specific chloroplast transformation vectors. 

• Confirm function of the chloroplast transformation cassette by testing in the 

tobacco chloroplast transformation system. 
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3.2  Material and Methods  

 Vectors 3.2.1

Detailed in this section are the vectors used and referenced to in Chapter 3. 

  pRRes14m 3.2.1.1

 
Fig 3.4 pRRes14m, a gift from Dr A. Huttly (Rothamsted Research). pRRes14m was 

generated from the pGEM (PROMEGA) backbone.  It contains a pMB1 and an F1 

ORI (origin of replication, light blue), which are located on the right and left of the 

Ampicillin resistance gene (orange) respectively. The lacZ promoter (green) and lacZ 

α-peptide gene (pink), are separated by the multiple cloning site (purple). The multiple 

cloning site is flanked by a T3 (dark blue, left) and a T7 (dark blue, right) primer 

sequence. 5’-3’ orientation of genetic elements are indicated by blunt (5’) and pointed 

(3’) ends of annotations. 
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  pPRV323CloxII 3.2.1.3

 
Fig 3.6 pPRV323Clox (Lutz et al., 2007), GenBank Accession No. DQ489715. 

Formerly known as pPRV323Clox (Chakrabarti et al., 2006). A chloroplast 

transformation vector targeted to the rrn16/trnI-trnA gene region (burgundy), 

containing ampicillin resistance (orange), multiple cloning site (pink), aadA gene 

(green) driven by the tobacco Prrn (TPrrn, Red). Prrn is followed by the tobacco atpB 

gene leader (light blue) and N terminus (black). aadA is tagged with a  c-myc tag 

(purple), and transcript stabilised with the psbA 3’UTR (yellow). Transformation 

cassette can be post-transformationally excised by Cre due to loxP sites (dark blue) 

located either side of the transformation cassette. Swa1 restriction endonuclease sites 

(not shown) are located to the left of the multiple cloning site, and to the right of the 

second loxP site. Pointed ends indicate direction of genetic elements. 
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 Isolation of genomic DNA 3.2.2

Whole genomic DNA wheat were extracted from young adult leaves using a DNeasy 

Plant Mini Kit (Qiagen, 27220 Turnberry Lane, Suite 200, Valencia, CA 91355), 

using the manufacturers protocol.  

 

 Generating flanking arms for homologous recombination 3.2.3

Total genomic wheat DNA (100ng) was amplified in 25µL PCR reactions (see 2.2.2) 

with primers (Table 3.1) deigned to only amplify the 16srRNA/trnI – trnA/23srRNA 

gene region (corresponding to 92,304-93,761 and 93,762-95,494 respectively) of the 

wheat chloroplast DNA. PCR primers were designed to add specific restriction sites to 

the 5’ end of amplicons. 

 

Primer pair Sequence (5’-3’) 
Tm 

(°C) 

5’ Restriction 

Endonuclease 

Amplicon 

length (bp) 

trnI F2 

trnI R1 

CGTCACACTATAGGAGCT 

CAGAGTGCTTCTTCTATTCTT 

52 

53 

SfaAI 

SmaI 
1359 

trnA F1 

trnA R2 

AAGAATAGAAGAAGCATCTG 

CCCTATTAAGACTCGCTT 

53 

53 

EcoRV 

PacI 
1752 

Table 3.1 primers used for the amplification of flanking arms. 

 

 Cloning into pGEM®-T easy vector, pRRes14m, and pPRV323Clox 3.2.4

All cloning into vectors was conducted as per manufacturers instructions, or as 

described in Chapter 2.3. 

 

 DNA extraction from agarose gel 3.2.5

Using ultraviolet light, a DNA band was first identified in the agarose gel, and then 

excised with a clean sharp blade. As much as possible of the agarose was removed at 

the time of excision. The excised band was then placed in a 2ml eppendorf, and DNA 

extracted from the band using a Wizard® SV gel and PCR clean up kit (Promega 

Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA), following 

manufacturers instructions.  
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 Production of WPrrn and TPrrn promoters 3.2.6

Wheat Prrn (WPrrn, 90,830-90,990 in the wheat chloroplast genome) was PCR 

amplified with primers (Table 3.2) containing a Sma1 restriction endonuclease site at 

the 5’ end, and a ribosomal binding site (RBS) + HindIII restriction site engineered 

into the 3’ end. The tobacco Prrn (TPrrn) was PCR amplified from the pUM78 vector, 

with Sma1 restriction endonuclease site at the 5’ end, and a ribosomal binding site 

(RBS) + HindIII restriction site engineered into the 3’ end. 

 

Primer Sequence (5’-3’) Tm (°C) 
5’ Restriction 

Endonuclease 

TPrrn F1 CTTAGGTTTTCTAGTTGGATTTG 58 SmaI 

TPrrn R1 GATCCCTCCCTACAACTG 57 HindIII 

WPrrn F1 AACCCAATGTGGTATTAGG 60 SmaI 

WPrrn R1 CCCTCCCAAGGATAACTTG 61 HindIII 

Table 3.2 Primers used for the amplification of WPrrn and TPrrn from wheat and 

tobacco chloroplast DNA respectively. Yellow highlights engineered ribosomal 

binding sites.  

 

 

 Chloroplast transformation of tobacco  3.2.7

See chapter 2.1.  
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3.3  Results 

 Generating flanking arms for homologous recombination 3.3.1

As explained in section 3.1 I chose to target my transgenes to the 16srRNA/trnI – 

trnA/23srRNA gene region. To generate the flanking arms for the transformation 

cassette, I first amplified this region (corresponding to 92,304-93,761 and 93,762-

95,494 respectively) from the wheat chloroplast genome of Apogee. PCR primers 

were designed to amplify the two regions and to also add a specific restriction site to 

the 5’ end (Table 3.1). Total genomic DNA was obtained from wheat leaves 10 days 

post sowing using a protocol that also retained chloroplast DNA (see 2.2.1). Primer 

pairs trnI F2/trnI R1 and trnA F1/trnA R2 (Table 3.1) were used to amplify the 

corresponding regions and produced amplicons of 1,359 bp and 1,752 bp, 

corresponding to the 16srRNA/trnI and trnA/23srRNA gene regions respectively (Fig 

3.7). 

 

 

 
 

 
Fig 3.7 Generation of homologous recombination arms. Above, amplification of 

16srRNA/trnI (trnI) and trnA/23srRNA (trnA) gene regions with primers(triangles, 

direction of which indicates direction). Below, PCR products run on a agarose gel. 

Lane 1, trnI amplicon; Lane2, trnA amplicon; L, 1kb DNA ladder; kb, Kilobase. 

 



 63 

PCR amplicons were ligated into the pGEM®T-Easy vector to generate vectors 

pGEM®T-easy + trnI amplicon (pG-I) and pGEM®T-easy + trnA amplicon (pG-A), 

which were then transformed into competent E.coli cells. Diagnosis of successful 

amplification, ligation, and transformation was demonstrated by double digesting 

aliquots of pG-I and pG-A extractions, with SfaAI/SmaI and EcoRV/PacI 

respectively, and running on an agarose gel (Fig 3.8). 

 

 
Fig 3.8 Diagnostic digestion of pG-I and pG-A. Lane 1, pG-I; Lane 2, pG-A; L, 1kb 

Ladder; kb, Kilobase. Gel confirm the expected sizes of the vector backbone  (3015 

bp), the trnI (1359 bp) and trnA (1752 bp) fragments.  

 

pG-I and pG-A were sequenced between T3 and T7 primers (insertion site), and to 

confirm they contained no point mutations, were aligned with their corresponding 

regions in the apogee chloroplast genome that I had previously sequenced. Vectors 

pG-I and pG-A were double digested with SfaAI/SmaI and EcoRV/PacI respectively, 

to separate the trnI and trnA fragments which were extracted from the gel and 

purified. pRRes14m vector was linearised with a SfaAI/SmaI double digest, aliquots 

run on a gel, and linearised vectors extracted and purified. The two flanking arms 

were sequentially ligated into pRRes14m to give the plasmid pRRes14mF2 (Fig 

3.9.b), which was validated by diagnostic restriction endonuclease digestion. 
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Fig 3.9 Insertion of flanking arms into pRRes14m (a) to give pRRes14mF2 (b). 

 

 

 

Fig 3.10 Diagnostic digestion of pRRes14mF2 Lane 1, 

pRRes14mF2 digested with SfaA1/Sma1; Lane 2, 

pRRes14mF2 digested with EcoRV/Pac1; L, 1Kb 

ladder; kb, kilobase.   
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 Construction of pRRes14mF2-T7g10, pRRes14mF2-TPrrn, pRRes14mF2-3.3.2

WPrrn 

Once the integrity of pRRes14mF2 was confirmed by sequencing, I then ligated the 

synthesised transformation cassette (TCas1, Fig 3.3) between the trnI and trnA 

flanking arms of pRRes14mF2. The plasmid containing the TCas1 (pUC57-TCas1) 

was double digested with SmaI/EcoRV to release TCas1 from the vector. This was 

confirmed by gel electrophoresis (Fig 3.11).  

 

 
Fig 3.11 Digestion of pUC57-Tcas1 with SmaI and EcoRV. Lane 1 and 2 both contain 

digested pUC57-Tcas1. L, 1kb Ladder; kb, Kilobase. 

 

 
Fig 3.12 Formation of pRRes14mF2-Tcas1. a, Ligation of TCas1 into pRRes14mF2 to 

give b, pRRes14mF2-TCas1. 
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A successful ligation of TCas1 into pRRes14mF2 (Fig 3.12) would present two bands 

of 6734bp and 1675 bp. However, the diagnostic digest (Fig 3.13) showed that the 

ligation was unsuccessful. The ligation of TCas1 into pRRes14mF2 was repeated a 

number of times, varying the ratio of insert (TCas1) to vector (pRRes14mF2). 

Subsequent diagnostic digests of ligation products showed that ligations continued to 

be unsuccessful. Furthermore, sequencing results using T3 and T7 primers (flanking 

the MCS) indicated that sections of bacterial genes had been inserted into the MCS. 

 

 
Fig 3.13 Digestion of ligation products from the ligation of Tcas1 into pRRes14mF2. 

Lanes 1-8 all contain ligation products from ligation reactions at varying ratios of 

insert:vector. L, 1kb ladder; kb, kilobase.  
 

All the components of the transformation cassette, except the wheat Prrn, have been 

previously cloned into a number of transformation vectors without any reported 

difficulties. For this reason, I performed a series of diagnostic cloning experiments to 

diagnose and confirm that the wheat Prrn is the cause of cloning failure.  

 

I digested pUC57-TCas1 with Zra1/EcoRV and Zra1/SnaB1 in two separate 

digestions, to give TCas1.2 and TCas1.3, and cloned both into the pRRes14mF2 

linearised with Sma1/EcoRV (Fig 3.14). Both ligations were successful, indicating 

that the problem with cloning of the whole TCas1 sequence is occurring in sequences 

upstream of the Zra1 restriction site, which is the wheat Prrn. The successful clone of 

TCas1.3 into pRRes14mF2 was retained, and labelled pRRes14mF2-T7g10 (Fig 

3.14c). The vector pRRes14mF2-T7g10.2 was generated by cloning TCas1.3 into 

pRRes14mF2 linearised with Zra1/EcoRV (Fig 3.15). 
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Fig 3.14 Formation of pRRes14mF2-T7g10 and pRRes14mF2-TCas1.2. a, Double 

digestion of Tcas1 with Zra1/EcoRV, and Zra1/SnaB1 to give Tcas1.2 and Tcas1.3; b, 

Double digestion of pRRes14mF2 with Sma1/EcoRV to create a linearised 

pRRes14mF2; c, Ligation of linearised pRRes14mF2 with TCas1.2 and Tcas1.3 to 

give  pRRes14mF2-TCas1.2 and pRRes14mF2-TCas1.3 (renamed pRRes14mF2-

T7g10). 
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Fig 3.15 Tcas1.3 ligated into pRRes14mF2 linearised with Zra1/EcoRV (a), to give 

pRRes14mF2-T7g10.2. 

 

Once I had established that the wheat Prrn was causing the problems with cloning 

TCas1 into pRRes14mF2, I PCR amplified a shorter portion of the wheat Prrn 

(WPrrn, 90,830-90,990 in the wheat chloroplast genome), with primers containing a 

Sma1 restriction endonuclease site at the 5’ end, and a ribosomal binding site (RBS) + 

HindIII restriction site engineered into the 3’ end. The tobacco Prrn (TPrrn) was PCR 

amplified from the pUM78 vector (Dr Anil Day, Manchester University, UK), with 

Sma1 restriction endonuclease site at the 5’ end, and a ribosomal binding site (RBS) + 

HindIII restriction site engineered into the 3’ end.  This then allowed the insertion of 

both WPrrn and TPrrn into pRRes14mF2-T7g10.2 linearised with Sma1/HindIII, to 

create pRRes14mF2-TPrrn and pRRes14mF2-WPrrn (Fig 3.16) 
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Fig 3.16 Formation of pRRes14mF2-TPrrn and pRRes14mF2-WPrrn. a, 

pRRes14mF2-T7g10.2 linearised with Sma1/HindIII is ligated with TPrrn and WPrrn 

to give b, pRRes14mF2-TPrrn and pRRes14mF2-WPrrn.  

 

 Construction of pPRV323Clox-T7g10, pPRV323Clox-TPrrn, and 3.3.3

pPRV323Clox-WPrrn 

To test that the chloroplast transformation cassettes were functional, they were 

inserted into the chloroplast transformation vector pPRV323CloxII (gift from Pal 

Maliga). pPRV323CloxII is a tobacco chloroplast transformation vector targeted at the 

tobacco trnI-trnA gene region. pPRC323CloxII was linearised with SwaI, which 

resulted in the release of the transformation cassette. TCas1.3 from pRRes14mF2-

T7g10 was excised using a ZraI/EcoRV double digest, and cloned into the linearised 

pPRV323CloxII, to give pPRV323Clox-T7g10 (Fig 3.17). The transformation 

cassettes from pRRes14mF2-TPrrn and pRRes14mF2-WPrrn were excised with a 

SmaI/EcoRV double digest, and inserted into the linearised pPRV323CloxII, to give 

pPRV323Clox-TPrrn, and pPRV323Clox-WPrrn (Fig 3.18). 
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Fig 3.17 Production of pPRV323Clox-T7g10. a, TCas1.3 was digested out of 

pRRes14mF2-T7g10 with ZraI/EcoRV, and ligated into pPRV323CloxII linearised 

with SwaI to give b, pPRV323Clox-T7g10. 

 

 
Fig 3.18 Production of pPRV123Clox-TPrrn and pPRV123Clox-WPrrn. The 

transformation cassettes from pRRes14F2-TPrrn and pRRes14mF2-WPrrn were 

excised with Swa1/EcoRV, ligated into pPRV323CloxII linearised with SwaI to give 

b, pPRV323Clox-TPrrn and pPRV323Clox-WPrrn. 
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 Validation of transformation vector function 3.3.4

The transformation cassettes within pPRV323Clox-T7g10, pPRV323Clox-TPrrn and 

pPRV323Clox-WPrrn were all tested for function in the tobacco chloroplast 

transformation system (Svab et al., 1990). Following bombardment and subsequent 

selection with spectinomycin, resistant plants that regenerated from callus tissue on 

antibiotic selection (Fig 3.19) were examined for GFP expression using a confocal 

microscope (Fig 3.20, 3.21, 3.21).  

 

 
Fig 3.19 Resistant shoots developing from callus on RMOP media containing 

antibiotic selection.  

 

Results show clear GFP expression of GFP in leaf cells of regenerated tobacco plants 

from pRRes14mF2-T7g10, pRRes14mF2-TPrrn, and pRRes14mF2-WPrrn 

bombardment studies. This indicates that all elements within the transformation 

cassettes are functioning as expected. Interestingly, it also demonstrates that the wheat 

Prrn is functional in a tobacco chloroplast. 
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3.4  Discussion 
The construction of a chloroplast transformation cassette requires careful 

consideration. Given that the current knowledge of chloroplast transformation in the 

monocot species is limited, the components in the wheat chloroplast transformation 

cassette were chosen based on their demonstrated functionality within plastids.   

The trnI-trnA gene regions of the chloroplast genome have been the most frequently 

targeted in tobacco chloroplast transformation, and are the regions also used to 

transform rice plastids (Khan and Maliga, 1999, Lee et al., 2006). Given the frequency 

of successful use of this target region in transformation studies, I decided to use the 

wheat trnI-trnA gene region for the chloroplast transformation in wheat. The rational 

was the same for the choices of promoters driving the transgenes, spacer sequence 

separating the transgenes, and the 3’ UTR for transcript stability. The 5’UTR of the 

T7g10 bacterial gene, which contains a ribosomal binding site at its 3’ end, has been 

demonstrated to be a strong promoter in tobacco chloroplast transformation studies. 

The expression of transgenes under the control of this promoter have been shown to 

constitute high levels of total leaf protein, and in some cases, the high protein 

production has resulted in cytotoxicity and sterility. The 16s rRNA gene is a plastid 

gene, and its promoter, the Prrn, has also been successfully utilised as a promoter in 

chloroplast transformation vectors (Day and Goldschmidt-Clermont, 2011). However, 

because the Prrn lacks a ribosomal binding site (RBS), a plastid RBS such as that in 

the rbcL 5’UTR, must be engineered at the 3’ end. Alternatively, the Prrn can be 

fused to the T7g10 promoter as it has a plastid functional RBS, and has been 

demonstrated to consistently produce relatively large amount of exogenous protein. 

Hence my choice of promoter was the wheat Prrn (WPrrn) fused with the T7g10 

5’UTR. To date, the WPrrn has not been used in any published chloroplast 

transformation study. Choosing to have the transgenes driven by this promoter meant 

that both the selection (aadA) and reporter (gfp) genes in the cassette would be 

transcribed into a single transcript. It was therefore necessary to have a spacer gene 

inserted in between the aadA and gfp.  The psbC/D intergenic region has been 

demonstrated to be successful at providing separate translation of multiple genes from 

a single transcript (Bohmert-Tatarev et al., 2011). Due to its success in this synthetic 

construct, I chose the psbC/D gene region to provide separate translation of aadA and 

gfp. The final component to consider was the 3’UTR, which is necessary to ensure 
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transcript stability. The 3’UTR of the psbA tobacco chloroplast gene has been shown 

to provide transcript stability in tobacco and in monocot species, hence the psbA 

3’UTR was chosen to provide mRNA stability to our wheat chloroplast transformation 

construct. Due to the relatively long length of the psbA 3’ UTR (approximately 

400bp) and the well validated status of the tobacco psbA gene, I chose to use this 

version as opposed to the wheat psbA, so as not to induce unwanted homologous 

recombination events.  

The transformation cassette, TCas1, was synthesised by GenScript, and I initially 

attempted to insert TCas1 into pRRes14mF2, a chloroplast transformation vector 

containing the wheat trnI-trnA homologous recombination flanking arms. As detailed 

within the results of this chapter, I was unable to achieve the insertion of TCas1 into 

pRRes14mF2. During the troubleshooting process, I managed to insert a truncated 

(Fig 3.23) TCas1 (TCas1-T7g10), the cassette without the wheat Prrn (WPrrn), into 

pRRes14mF2 to give pRRes14mF2-T7g10. It was clear from this result, that there 

was a genetic component within the WPrrn that was preventing successful cloning of 

TCas1 into pRRes14mF2. Cloning a truncated WPrrn (90,830-90,986 in the wheat 

chloroplast genome) into pRRes14mF2-T7g10.2 provided further indication to the 

location of the problematic genetic sequence, which was within the final 69bp of the 

full length WPrrn sequence. 

 

 
Fig 3.23 showing, a, the alignment of full length wheat Prrn (long black line, 90,830-

90,986bp of wheat chloroplast genome) with the truncated wheat Prrn (short black 

line, 90,830-90,986 of wheat chloroplast genome); and b, the 3’ excluded sequence 

(blue, 69bp) was analysed for secondary structures. 

 

When the 69 bp excluded WPrrn sequence was entered into a program that predicted 

DNA secondary structure formation, results indicated that at least two hairpin 
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structures are likely to form (Fig 3.24). Given that the 3’ end of the 5’ UTR is 

important for transcriptional control, it is possible that these hairpin structures are 

involved in interactions with plastid encoded ribosomes during translation. These 

hairpin structures may explain the issues experienced with the cloning of TCas1 into 

pRRes14mF2. Following ligation of TCas1 into linearised pRRES14mF2, the 

successful clones are then amplified by incubation in E.coli cells, where the 

replication of plasmids occurs due to bi-directional DNA polymerase activity from the 

origin of replication. The hairpins that formed in the full WPrrn sequence may have 

inhibited the DNA polymerase during replication, and resulted in failed or reduced 

amplification. When the TCas1 was delivered from Genscript, they mentioned that 

they had difficulty amplifying the plasmid in standard E.coli cells due to its instability, 

and instead had to supply the plasmid in CopyCutter™ EPI400™ E. coli. 

CopyCutter™ EPI400™ E. coli cells significantly lower the copy number of a wide 

variety of common vectors so that unstable DNA sequences may be cloned more 

readily. DNA that is unstable at high-copy number often code for proteins that inhibit 

cell growth, or contains AT- and GC-rich sequences, or as appears likely in my 

cloning difficulties here, sequences with strong secondary structure. 

 

 
Fig 3.24 showing the secondary structure formations that occur in the 3’ sequences of 

the tobacco Prrn (left), and the wheat Prrn (right). 
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Removal of secondary structures enabled successful cloning, and also allowed the 

transformation cassettes to be tested in the tobacco chloroplast transformation system. 

As can be seen from Fig 3.20, 3.21, 3.22, all transformation cassettes are functional, 

indicating complete promoter function, and successful transcription and translation of 

exogenous genes. Therefore, if the chloroplast transformation of wheat is not attained 

during the time course of this project, it would not be due to a poorly constructed 

transformation vector. Interestingly, the wheat Prrn is shown to be functional within 

the chloroplasts of tobacco.  
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4 Tissue Culture 

4.1  Introduction 
Plant regeneration from somatic cells is possible through either organogenesis or 

somatic embryogenesis, with both pathways leading to the production of fertile 

regenerants. It is widely accepted that the somatic embryogenesis pathway is more 

suitable for the production of transgenic crops, as it presents a developmental pattern 

resembling that of zygotic embryogenesis in plants (Ammirato, 1983). For cereals, the 

road leading to somatic tissues capable of embryogenic callus formation has been a 

long one. In 1969, the first report emerged of regeneration of whole Triticum aestivum 

plants by in vitro tissue culture of stem tissue (Shimada et al., 1969). However it was 

not until almost a decade later, that regeneration from immature embryo derived callus 

was demonstrated (Chin and Scott, 1977).  Prior to the 1980s, regeneration of cereal 

and grass species had been conducted from shoot meristems (Thomas et al., 1979, 

Vasil et al., 1979, Vasil and Vasil, 1980). These meristems are multicellular in origin, 

and therefore any transgenic plant obtained from this source would likely be chimeric. 

The advantages of regeneration from single cells or somatic embryoids, for the 

production of fertile nuclear genetic transformation of wheat make the possibility of 

chimerism much lower.. It was not until the beginning of the 1980s that the creation of 

transgenic wheat appeared optimistic. The publishing of scutellum-derived embryoid 

formation resembling zygotic embryoids in Guinea grass (Lu and Vasil, 1982), were 

quickly followed by reports of regeneration from immature embryos (Sears and 

Deckard, 1982), and immature inflorescences (Oziasakins and Vasil, 1982) of 

Triticum aestivum, with the anatomy of somatic embryogenesis from embryo derived 

callus being well characterized (Magnusson and Bornman, 1985).  

 

It is clear from the literature that the immature embryo is the favoured and most 

consistent choice of explant for the regeneration of Triticum aestivum (Reviewed by 

Jones (2005)). However other sources of tissue have been explored for the tissue 

culture and regeneration of Triticum aestivum. As mentioned above, the immature 

inflorescence is another explant that provides a robust method of plant regeneration, 

although does not show to work for all wheat varieties (Oziasakins and Vasil, 1982). 

A third previously used explant are segments of young leaves. Cells from a small area 
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close to the leaf base, which were in close proximity to the original leaf meristem, 

were shown to have retained a capacity for totipotency and form callus (Wernicke and 

Milkovits, 1984) in 6 different Triticum genotypes. Anther and microspores have also 

demonstrated to be capable of regeneration. The culture of immature anthers 

containing haploid microspores, under conducive conditions, diverts the normal 

development of the male gametophyte to a sporophytic pathway, resulting in 

embryogenic callus formation (Dunwell, 1985, Wei, 1982). Theoretically, plants 

regenerated via this method are genetically haploid, however, the chromosome 

complement may  double spontaneously or after the application of spindle assembly 

inhibitors such as colchicine to produce fertile diploid plants. Therefore, anther culture 

provides a rapid method for the production of homozygous (double-haploid) lines, 

which is of interest to producers of breeding lines. The regeneration of plants from 

microspores separated from anthers prior to tissue culture has also been demonstrated 

in Triticum aestivum (Datta and Wenzel, 1987). 

Out of all the explant tissues capable of regenerating into new plants in Triticum 

aestivum, they all share a common factor; they do not contain an abundant number of 

chloroplasts. This is problematic if the desired end product is a chloroplast 

transformed wheat plant. In the tobacco chloroplast transformation system, the most 

successful chloroplast transformation protocol (Svab et al., 1990, Svab and Maliga, 

1993), targets young tobacco leaves. This explant is highly regenerable, and contains 

an abundant number of chloroplasts (approximately 100 chloroplasts per cell), of 5-

8µm in size (Fig 4.1). There is simply no equivalent tissue in  wheat for the purpose of 

chloroplast transformation. 
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Fig 4.1 Chloroplasts in young tobacco leaves. Red indicates chlorophyll auto-

fluorescence. Scale bars represent 5µm.  

 

 Aims 4.1.1

• Identify immature wheat tissue that contained chloroplasts.  

• Develop and optimize tissue culture procedures to regenerate fertile new wheat 

plants via organogenesis from the identified tissues. 
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4.2  Material and Methods 

 Media Composition 4.2.1
Media Conc Components pH 

L7 2x 200mL Macrosalts (10x) 

2mLMicrosalts (1000x) 

20mL Fe Na EDTA 

400mg Myo-Inositol 

40mL 3AA (25x) 

2.5gL Asparagine 

60g Maltose (for L7 3%) 

5.7 (KOH)  

R 2x 200mL Macrosalts (10x) 

2mLMicrosalts (1000x) 

20mL Fe Na EDTA 

10mL L Vitamins/Inositol (200x) 

60g Maltose 

5.7 (KOH) 

MS 2x 8.8g MS Basal Medium 

10mL Fe Na EDTA 

0.2g Myo-Inositol 

2mL Thiamine (1mg/mL) 

1g MES 

60g sucrose 

5.8 (KOH) 

M 2x 200mL Macrosalts (10x) 

2mLMicrosalts (1000x) 

20mL Fe Na EDTA 

2ml MS Vitamins (1000x) 

200mg Myo-Inositol 

40mL 3AA (25x), 2.5gL Asparagine 

180g sucrose (for M 9%) 

5.7 (KOH) 

WLS 2x 200mL Macrosalts (10x), 2mLMicrosalts 

(1000x), 20mL Fe Na EDTA, 2ml MS 

Vitamins (1000x), 200mg Ascorbic acid*, 

200mg Caserin hydrolysate, 3.8g MES, 1g 

glutamine, 1.5g MgCl2, 1mg 2,4-D*, 4.4mg 

picloram*, 1.2mg AgNO3*, 2.5gL Asparagine, 

80g maltose 

5.8 (KOH) 

To attain 1x, mix with equal amounts of (2x) AgargelTM (10g/L) 

Table 4.1 Components of L7, R, MS, M and WLS basal media (2x). Conc, 

concentration; *, do not autoclave. 
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 Component Amount (g/L) 

Macrosalts (10x) Ammonium nitrate (NH4NO3) 

Potassium nitrate (KNO3) 

Potassium phosphate monobasic  (KH2PO4) 

Magnesium sulfate heptahydrate (MgSO4.7H2O) 

Calcium chloride dihydrate (CaCl2.2H2O) 

2.5 

15 

2 

3.5 

4.5 

Microsalts (1000x) Manganese sulfate monohydrate (MnSO4) 

Boric Acid (H3BO3) 

Zinc sulfate heptahydrate (ZnSO4.7H2O) 

Potassium iodide (KI) 

Sodium molybdate dihydrate (Na2MoO4.2H2O) 

Copper sulfate pentahydrate (CuSO4.5H2O) 

Cobalt chloride hexahydrate (CoCl2.6H2O) 

15 

5 

7.5 

0.75 

0.25 

0.025 

0.025 

L Vitamins/  

Inositol (200x) 

Inositol 

Thiamine HCL 

Pyridoxine 

Nicotinic acid 

Ca-Pantoethane 

Ascorbic acid 

40 

2 

0.2 

0.2 

0.2 

0.2 

3AA (25x) L-Glutamine 

L-Proline 

L-Asparagine 

18.75 

3.75 

2.5 

Table 4.2 Components of macrosalts, microsalts, L Vits/inositol, and 3AA. 

 

The tables in this section detail the composition of media used in Chapter 4. MS Basal 

Medium was obtained from Sigma-Aldrich (3050 Spruce St, St. Louis, MO 63103, 

USA).   
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 Component Amount (mg/L) 

MS Basal  
Ammonium nitrate (NH4NO3) 

Boric Acid (H3BO3) 

Calcium chloride (CaCl2) 

Cobalt chloride hexahydrate (CoCl2.6H2O) 

Cupric sulfate pentahydrate (CuSO4.5H2O) 

Ferrous sulfate heptahydrate (FeSO4.7H2O) 

Magnesium sulfate (anhydrous) (MgSO4) 

Manganese sulfate monohydrate (MnSO4) 

Potassium iodide (KI) 

Potassium nitrate (KNO3) 

Potassium phosphate monobasic  (KH2PO4) 

Sodium molybdate dihydrate (Na2MoO4.2H2O) 

Zinc sulfate heptahydrate (ZnSO4.7H2O) 

Disodium EDTA dihydrate 

Glycine 

Myo-Inositol 

Nicotinic acid 

Pyridoxine hydrochloride 

Thiamine HCL 

1650.00 

6.2 

332.2 

0.025 

0.025 

27.8 

180.7 

16.9 

0.83 

1900.0 

170.0 

0.25 

8.6 

37.26 

2.00 

100 

0.5 

0.5 

0.1 

Medium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 Components of MS Basal medium 
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 Tissue Culture  4.2.2

 Immature embryo callus 4.2.2.1

Ears were harvested from wheat plants 15-21 days post anthesis, and immature 

caryopses were surface sterilised with 70% (v/v) ethanol for 5 min and 10% (v/v) 

sodium hypochlorite for 15 min followed by three washes with sterile distilled water. 

The immature embryos, translucent at this stage of development, were aseptically 

removed from early-medium milk stage caryopses, and the scutella isolated by 

removal of the embryonic axis. Scutella were placed cut side down in the centre of a 

9cm petri dish containing immature embryo callus induction medium, with 30 scutella 

per plate. Explants were cultured in the dark at 26°C for 21-27 days to produce 

embryogenic callus. 

 Immature inflorescence 4.2.2.2

Apogee and Cadenza tillers were harvested 28-32 days and 40-44 days (respectively) 

post sowing (Fig 4.2). The top 3 cm of stem was removed (and the bottom 5 cm in 

cadenza), and the remainder surface sterilised with 100%(v/v) ethanol for 30 seconds, 

and 10% (v/v) sodium hypochlorite for 10 mins, followed by three washes with sterile 

distilled water. The location of the immature inflorescence in the bottom 5 cm of the 

stalk was identified by running the blunt side of a no.11 scalpel along the length of the 

stalk. The inflorescence was felt as a bump. The immature bundles were dissected out 

by making incisions 1 cm either side of the inflorescence. Each leaf layer covering the 

inflorescence was rolled away until the immature inflorescence was revealed. Each 

inflorescence was cut into 1-2mm sections and placed on the required media.  

 Peduncle Node 4.2.2.3

Apogee and cadenza stems were harvested 28-32 days and 40-44 days (respectively) 

post sowing. The top 3 cm of stem was removed (and the bottom 5 cm in cadenza), 

and the remainder surface sterilised with 100%(v/v) ethanol for 30 seconds, and 10% 

(v/v) sodium hypochlorite for 10 mins, followed by three washes with sterile distilled 

water. The location of the immature inflorescence in the bottom 5 cm of the stalk was 

identified by running the blunt side of a no.11 scalpel along the length of the stalk. 

The inflorescence was felt as a bump. The immature bundles were dissected out by 

making incisions 1 cm either side of the inflorescence. Each covering of the 

inflorescence was rolled away until the immature inflorescence was revealed, with the 
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node attached to the base of the inflorescence. The node was separated from the 

inflorescence and cut into 2-3 cross sectional pieces. Each piece was placed on L7 

callus induction media.  

 

 
Fig 4.2 Locating the immature bundle. a, Apogee plants of 28-32 days post sowing are 

harvested; b, the immature inflorescence (iIF) is located as a bump in the lower 5cm 

of the stem (s), just above node 1 (N1). Once tiLS and siLS are removed, incisions are 

made above Node 2 (N2) and below the collar (C) to remove the iIF and piLS; c, 

location of the piLS. 

 Leaf Sheaths 4.2.2.1

Apogee and cadenza stalks were harvested 28-32 days and 40-44 days (respectively) 

post sowing. The top of each stem was removed, and the remainder surface sterilised 

with 70% (v/v) ethanol for 30 seconds, and 10% (v/v) sodium hypochlorite for 10 

mins, followed by three washes with sterile distilled water. The location of the 

immature inflorescence in the bottom 5 cm of the stem was identified by running the 

blunt side of a no.11 scalpel along the length of the stalk. The inflorescence was felt 

as a bump. The immature bundles were dissected out by making incisions 1 cm either 

side of the inflorescence. Each covering of the inflorescence was rolled away until the 

primary leaf sheath remained. Removals of leaf sheath are made easier by separating 

from the node they are attached to. The primary leaf sheaths, (piLS, see Fig 4.3) the 

first sheath surrounding the immature inflorescence, were aseptically separated from 

the immature bundle, cut into 6-12 pieces, and placed adaxial side up (waxy side up) 

on callus induction media.  
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Fig 4.3 a, immature inflorescence (iIF), surrounded by primary, secondary, and 

tertiary leaf sheaths (piLS, siLS, tiLS respectively); b, an iIF and its piLS separated. c, 

tissue above the top red line and tissue below the bottom red line are disposed because 

they are the most recalcitrant. This also aids the ease at which a piLS can be rolled flat 

onto filter if they are to be biolistically bombarded (Fig 4.4).  For tissue culture, LS 

are cut into equal sections (maximum 3 as indicated by black lines), and each section 

rolled out and cut into 3-4 pieces each.  

 

 
Fig 4.4 piLS of different sizes rolled flat onto filter paper, abaxial side up.  
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4.3  Results 
I started with the assumption that the target tissue for transformation must possess 

metabolically active chloroplasts or pro-plastids. Unlike in tobacco and some other 

species, the obvious mature green tissues with chloroplasts in wheat cannot be 

induced to from regenerable callus. Thus I focused on immature tissues and on callus 

tissue. 

 Immature embryo-derived callus 4.3.1

The most commonly used wheat explant for nuclear transformation, the immature 

embryo, does not contain chloroplasts. Furthermore, any pro-plastids within the 

immature embryo appear to be smaller than 0.5µm in diameter (Fig 4.5) and the 

activity of enzymes to enable homologous recombination of the transformation 

cassette into the plastid genome would be very low. It is likely that the relative size of 

micro-projectile particles (typically 0.6µm in diameter) compared to the pro-plastid 

would result in irreparable damage to the pro-plastid, therefore preventing 

transformation. Callus derived from immature embryos are also absent of 

chloroplasts, however it has been reported that under certain conditions, callus cells 

derived from immature embryos in tissue culture can turn green. I investigated 

whether pro-plastids in callus derived from wheat immature embryos were larger in 

size than those in the immature embryos, and whether they may be more 

metabolically-active. 

Immature embryos were callus induced, and between 21 and 30 days (when callus is 

most embryogenic), were moved into light (100-130µE) for incubation at 24°C. After 

4 days exposure to light, chloroplasts can be observed in the embryogenic callus (Fig 

4.6). These chloroplasts are approximately 1µm in size, and therefore the pro-plastid 

that form these chloroplasts are significantly larger and more active than those in the 

immature embryo (smaller than 0.5µm). Given the highly embryogenic nature of 

immature embryo callus, the presence of metabolically active non-green plastids of 

approximately 1µm exist within callus cells, and the previous use of callus as explant 

targets for chloroplast transformation in rice (Lee et al., 2006), I determined that 

targeting wheat immature embryo callus for the purpose of chloroplast transformation 

would be a sensible approach.  
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Fig 4.5 a, Immature Embryo. Scale bar represent 100µm. b, cells within the immature 

embryo. Black arrows point to circular structures that could be pro-plastids. Scale bar 

represents 5µm. 

 

 
Fig 4.6 Chloroplasts in callus derived from immature embryo. Exposure of 21 day 

immature embryo callus tissue to light for 4 days (a) and 7 days (b) induces the 

activity of chloroplasts, indicated by chlorophyll auto-fluorescence (red). Scale bare 

represents 5µm (a, b) and 1µm (c).  
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 The immature inflorescence  4.3.2

The immature inflorescence (iIF) was also considered as a suitable target because 

parts of this organ appears green and is an alternative explant for nuclear genetic 

transformation, albeit a much less commonly-used one.  

 

To investigate the potential of iIF for chloroplast transformation, I analysed the callus 

induction and regeneration phases of immature inflorescence tissue culture, to 

investigate whether the embryogenic callus could be developed from green starting 

tissue. 

 

The  iIF (5-10mm in length) were isolated and cut into  1-2mm sections and cultured 

using standard callus induction media. The origin of the regenerable callus and the 

position of cells possessing chloroplasts were analyzed. It was found that the 

distribution of active chloroplasts was restricted to the rachis of the iIF, with no 

chloroplasts or chlorophyll expressing plastids being observed in the floret tissue (Fig 

4.7 and Fig 4.9). However, the regenerable callus originated only from the floret 

regions and all regenerated plants came from this callus (Fig 4.8). 
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Fig 4.7 Chloroplast distribution within the immature inflorescence. a, horizontal cross 

section of the iIF showing floret (F) and rachis (R), with chloroplasts (red) clearly 

located only in the rachis regions. Close up images of the rachis (b), and both floret 

and rachis (c, d) further support the observation that the floret regions are absent of 

chloroplasts. Scale bars represent 50µm (a), 20µm (c) and 10µm (b, d).  
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Fig 4.8 Tissue culture of an immature inflorescence (iIF) cross section (~ 4mm across 

in a). a-f, Callus induction of iIF piece showing callus formation occurring from floret 

tissue (black arrow) and rachis (white arrow). g-i, regeneration of callus tissue shows 

shoots forming from floret derived callus, while rachis derived callus degenerates 

(dark areas, see g).   
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Fig 4.9 Chloroplasts within the rachis are abundant (a), and are approximately 1µm in 

size (b). Scale bars represent 5µm (a) and 1µm (b).  

 

To test whether I could induce chloroplast development within these floret regions, I 

exposed iIFs to a period of 2 to 7 days exposure in light post extraction. After 4 days 

exposure, I found that chloroplasts of 1-2µm in size developed within the floret tissue, 

although in a very low number (Fig 4.10). Unfortunately, this period of light exposure 

renders the iIF recalcitrant to regeneration. Given that the regenerable tissue of the 

inflorescence derives from the chloroplast absent floret regions, and the immature 

embryo callus (IEC) is more embryogenic than the iIF, I favoured the latter as a target 

for chloroplast transformation. In further support of the use IEC as an explant target, 

the two only reports of chloroplast transformation in monocots also used embryo 

callus tissue.  

 

 A novel green explant for wheat chloroplast transformation 4.3.3

The primary immature leaf sheath (piLS), is the first and closest of 5 leaf sheaths that 

surrounds the iIF as it develops at the base of the wheat plant. The leaf sheaths 

provide rigidity to the developing shoot as it rapidly grows from nodal meristem, and 

those surrounding the iIF provide it with protection from shoot damage. These tissues 

are considerably green (Fig 4.4), indicating the presence of chloroplasts (Fig 4.11), 

with the abundance of chloroplasts and rigidity increasing from primary to tertiary 

iLS.  
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Fig 4.10 Induction of chloroplast development in floret tissue. a, floret tissue is absent 

of any chloroplasts, however exposure to 4 days (b), and 7 days of light (c, d), induces 

the formation of active chloroplasts (red). Scale bars represent 5µm.  
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Fig 4.11 Chloroplasts (red) within the leaf sheaths of Triticum Aestivum. Scale bars 

represent a, 20µm, b, 5µm, and c, 1µm.  

 

To investigate whether regenerable callus could be induced from leaf sheaths a series 

of experiments were performed. 

 

 Effect of 2,4-D  4.3.3.1

Once the piLS was isolated, it was cut into 6, 9 or 12 pieces, if the LS’s were 6mm, 7-

8mm, or 9-13 mm in length respectively. Cut pieces were placed abaxial side down 

onto 9mm petri dishes containing callus induction media. Callus induction media was 

composed of L7 (3%) media supplemented with 10mg/L AgNO3, and varying 

concentrations of 2,4-Dinitrophenylhydrazine (2,4-D). L7 (3%) was chosen as it is 

used for the callus induction of the iIF, and the iIF and iLS develop in close proximity 

and from the same nutrition source. Leaf sheath pieces which were covered in over 

75% of callus tissue, were scored as having formed callus. Pieces that had formed less 

than 75% of callus tissue were scored as not having formed callus. 

 

From Fig 4.12 it is clear that L7 (3%) supplemented with 10mg/L AgNO3 and 

0.5mg/L 2,4-D (n=45 piLS) provides the highest and most consistent amount of callus 

formation in Apogee piLS. Increasing levels of 2,4-D reduced the number of piLS 

pieces that would form callus, as well as increasing the inconsistency of callus 

formation. L7 (3%) supplemented with 0.5mg/L 2,4-D was therefore used as the basis 

for callus induction of piLS. Callus induction media, (CIM), from here on refers to L7 

(3%) supplemented with 10mg/L AgNO3 and 0.5mg/L 2,4-D. CIM produces firm, dry 

embryogenic callus (Fig 4.13 and 4.14). I also observed that larger concentrations of 

2,4-D increased the incidence of non-embryogenic callus formation (Fig 4.15). 
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Fig 4.12 Callus formation of Apogee piLS on L7 (3%) callus induction media with 

varying concentrations of 2,4-Dinitrophenylhydrazine (2,4-D). For each condition, 

n=20. 
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Fig 4.13 Embryogenic callus formation in Apogee piLS on CIM at time point a, 0 

days, b, 7 days, c, 14 days, d, 21 days, e, 28 days. Scale bars represent 2mm. Black 

arrows indicate embryoids.  



 98 

 
Fig 4.14 Embryogenic callus formation in Apogee piLS on CIM at time point a, 0 

days, b, 7 days, c, 14 days, d, 21 days, e, 28 days. Scale bars represent 2mm. Black 

arrows indicate embryoids 
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Fig 4.15 Non-embryogenic callus formation in Apogee piLS on CIM at time point a, 0 

days, b, 7 days, c, 14 days, d, 21 days, e, 28 days. Scale bars represent 2mm.  

 

Both embryogenic and non-embryogenic callus were observed for shoot formation on 

regeneration media (Fig 4.16 and Fig 4.17). 
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Fig 4.16 Shoots regenerating from embryogenic callus of Apogee piLS after 7 -14 

days on regeneration media. 

 
Fig 4.17 Non-embryogenic callus after 2 weeks on regeneration media. Although 

greening may occur, callus forms roots or root hairs rather than shoots.  
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 Optimisation of mineral salts  4.3.3.2

Callus formation of Apogee was also tested with two other commonly used tissue 

culture media, MS and M (9%), supplemented with 0.5mg/L 2,4-D (Fig 4.18). Both 

showed callus formation at similar percentages (70.5% and 73.7% respectively) and 

consistencies, however CIM still provided superior callus formation (99.6%). CIM is 

also most effective on Apogee piLS of sizes of 8-13mm (Fig 4.19). 

 
Fig 4.18 Callus formation of Apogee piLS on commonly used tissue culture media. 20 

replicates per condition. For each condition, n=20. 

 
Fig 4.19 Callus induction of Apogee piLS on CIM. 240 total samples. n=243.  



 102 

 Genotype-dependency of leaf sheath regeneration 4.3.3.3

The Rothamsted transformation lab uses the spring wheat variety Cadenza for much 

of its conventional genetic engineering work. To test whether the emerging protocol  

for leaf sheath regeneration was specific to the Apogee genotype, I compared the 

response of Cadenza.    

CIM was able to also induce consistent embryogenic callus formation in piLS of 

cadenza (Fig 4.20). Callus formation in Apogee siLS and tiLS with CIM was also 

attempted, however failed to produce any callus. 

 

 
Fig 4.20 Callus formation of cadenza piLS on L7 (3%) callus induction media 

supplemented with 10mg/L AgNO3 and varying concentrations of 2,4-

Dinitrophenylhydrazine (2,4-D). For each condition, n=20. 

 

Following 4 weeks on CIM, moving callus into light (on the same media) was shown 

to induce shoot (Fig 4.21) and root (Fig 4.22) formation in both Apogee and cadenza.  
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Fig 4.21 Shoot formation following light exposure. piLS callus from Apogee (black) 

and Cadenza (grey) show shoot formation when exposed to light while on callus 

induction media. For each condition, n=20. 

 

 
Fig 4.22 Root formation following light exposure. pILS callus from Apogee (black) 

and Cadenza (grey) show root formation when exposed to light while on callus 

induction media. For each condition, n=20. 
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 Balance of cytokinin & auxin is significant 4.3.3.4

The regeneration steps for wheat immature embryos and immature inflorescences is 

conducted on R regeneration media supplemented with 5mg/L zeatin and 0.1mg/L 

2,4-D (cytokinin:auxin ration of 50:1). This medium has been optimized for Cadenza 

over many years of research into conventional transformation of the nuclear genome. 

Given the observation that piLS embryogenic callus from both Cadenza and Apogee 

varieties are capable of forming shoots and roots when exposed to light, I investigated 

a range of different hormone ratios. The regeneration of piLS callus on R regeneration 

media supplemented with 1mg/L zeatin and 0.1mg/L 2,4-D (10:1), 2.5mg/L zeatin and 

0.1mg/L 2,4-D (25:1), and 5mg/L zeatin and 0.1mg/L 2,4-D (50:1) was compared  

(Fig 4.23).  

 

 
Fig 4.23 Shoot (black) and plant (grey) regeneration from Apogee piLS on R media 

supplemented with 0.1 mg/L 2,4-D and varying concentrations of Zeatin. For each 

condition, n=20. 

 

Although the 50:1 (5mg/L zeatin) conditions encouraged greater shoot formation per 

piLS section (25.75%), it was the 25:1 conditions that produced the greatest number 

of regenerated plants (19.58%). Neither of the cytokinin:auxin ratios were suitable for 

regeneration in Cadenza. 

 



 105 

Apogee piLS embryogenic callus when placed on hormone free MS media, showed to 

green up significantly more when compared to that on hormone free R media (Fig 

4.24).  

 

 
Fig 4.24 Apogee piLS callus after 4 weeks on hormone free R media (left), and 

hormone free MS (right) in light.  

 

Following these observations, regeneration of Apogee piLS on MS media 

supplemented with varying concentrations of Zeatin was conducted (Fig 4.25).  

 
Fig 4.25 Shoot (black) and plant (grey) regeneration from Apogee piLS on MS media 

supplemented with 0.1 mg/L 2,4-D and varying concentrations of Zeatin. For each 

condition, n=20. 



 106 

Between Zeatin concentrations of 0.5-2mg/L, the percentage of shoot and plant 

regeneration remains relatively similar, with no significant difference observed. 

However at 0.25mg/L Zeatin, regeneration was at its maximum (41.34 %), even 

though shoot regeneration was not significantly higher than any of the other 

concentrations.  Callus formed from Apogee piLS of between 6-8mm (Fig 4.26) were 

also observed to be most responsive on MS media supplemented with Zeatin 

(concentrations varying from 0.25-10mg/L). 

 

 
Fig 4.26 Regeneration of shoots from Apogee piLS callus on MS media supplemented 

with Zeatin. Percentage values were taken from regeneration experiments conducted 

on 0.25, 0.5, 1, 2.5, 5, and 10mg/L Zeatin. n=243. 
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 Summary 4.3.3.5

In the tables below, I have summarized the results from the tissue culture 

investigations with apogee piLS. In each table, the conditions which produced the 

greatest callus induction or plant regeneration are highlighted with a “ * ”. All 

experiments were conducted at 24°C. Callus induction was conducted in darkness, 

and regeneration conducted in light  (100-130µE) on a day/night cycle of 12h/12h.  

 
Media [2,4-D] (mg/L) AgNO3] (mg/L) CI (%)  

L7 (3%) 0 10 0  

L7 (3%) 0.1 10 10.61  

L7 (3%) 0.25 10 89.86  

L7 (3%) 0.5 10 94.84 * 

L7 (3%) 1 10 86.84  

L7 (3%) 2 10 73.72  

L7 (3%) 3 10 79.31  

L7 (3%) 4 10 80.95  

Table 4.4 Callus induction (CI) of Apogee piLS with varying concentrations of 2,4-D. 

 

Media [2,4-D] (mg/L) [AgNO3] (mg/L) CI (%)  

MS 0.5 10 70.5  

M (9%) 0.5 10 73.7  

L7 (3%) 0.5 10 99.6 * 

Table 4.5 Callus induction (CI) of Apogee piLS on varying mineral salts.  

 
Media [Zeatin] (mg/L) [2,4-D] (mg/L) CuSO4 Reg (%)  

R 0 0.1 1M 0  

R 1 0.1 1M 9.36  

R 2.5 0.1 1M 19.58 * 

R 5 0.1 1M 11.22  

Table 4.6 Plant regeneration (Reg) from Apogee piLS callus on R regeneration media. 
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Media [Zeatin] (mg/L) [2,4-D] (mg/L) CuSO4 Reg (%)  

MS 0 0.1 1M 0  

MS 0.1 0.1 1M 12.73  

MS 0.25 0.1 1M 41.34 * 

MS 0.5 0.1 1M 28.23  

MS 1 0.1 1M 24.55  

MS 2.5 0.1 1M 24.15  

MS 5 0.1 1M 28.15  

MS 10 0.1 1M 27.09  

MS 20 0.1 1M 26.89  

Table 4.7 Plant regeneration (Reg) from Apogee piLS callus on MS regeneration 

media. 

 

Optimum embryogenic callus induction was achieved with Apogee piLS of 8-13 mm 

in length, on L7 (3%) callus induction media supplemented with 0.5mg/L 2,4-D and 

10mg/L AgNO3 (Table 4.4 and 4.5). Optimum plant regeneration from Apogee piLS 

callus was first achieved on R regeneration media supplemented with 2.5mg/L zeatin, 

0.1mg/L 2,4-D, and 1M CuSO4 (Table 4.6). Further investigations demonstrated that 

plant regeneration from Apogee piLS callus could be further increased by 

regeneration on MS regeneration media supplemented with 0.25mg/L zeatin, 0.1mg/L 

2,4-D, and 1M CuSO4 (Table 4.7). Typically, the duration from piLS isolation to a 

reproducing adult plant is approximately 4 months, with a further 1-2 months required 

for seeds to mature (Fig 4.27). Seeds from regenerated Apogee wheat plants appear 

phenotypically normal, germinate as WT, and provide no indication of somaclonal 

variation.  

Although the protocol developed for Apogee piLS was unable to demonstrate 

regeneration in Cadenza piLS, MS regeneration media supplemented with 0.1mg/L 

2,4-D and 5 mg/L zeatin or 4 mg/L 6-Benzylaminopurine, benzyl adenine (BAP) did 

encourage regeneration of Cadenza piLS callus, although this was at a significantly 

lower rate (1 plants produced per piLS).  
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Fig 4.27 Regeneration of new wheat plants from Apogee piLS via organogenesis. 

piLS pieces are placed on CIM (a) and incubated in the dark for 25-30 days to 

produce embryogenic callus (b). These callus pieces are incubated on R regeneration 

media in light for 3-4 weeks (c), and then moved to magentas (d). Typically 3-4 weeks 

later, plantlets are potted on. Plantlets form adult apogee plants that are small (e), 

otherwise phenotypically normal and fertile (f).  
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4.4  Discussion 
The absence of chloroplast-containing regenerable explant tissues, presents an 

obvious problem for the development of a chloroplast transformation of wheat. If 

there are no active chloroplasts present in a target tissue, then the biolistic 

bombardment of DNA coated particles will ultimately fail to transform any 

chloroplasts. Due to this restriction, it was necessary to identify alternative options for 

the chloroplast transformation of wheat.  

Due to the recalcitrant nature of adult wheat tissue, regeneration of new wheat plants 

through tissue culture is restricted to immature tissues. The most embryogenic of these 

are the immature embryo and the immature inflorescence which are well-characterised 

as part of established protocols. One method for nuclear transformation of wheat, is to 

biolistically bombarded the immature embryo with a nuclear transformation DNA 

vector. However, I have shown that the immature embryo lacks any active 

chloroplasts, and that any possible pro-plastids would be too small to successfully 

repair following bombardment of even the smallest of bombardment particles. I have 

also shown that the regeneration of the immature inflorescence occurs from the floret 

regions, which are absent of any chloroplasts. Incubation in light for 4 to 7 days post 

extraction does induce the formation of active chloroplasts in floret tissue, however 

this incubation period also renders the inflorescences recalcitrant to further 

regeneration. Furthermore, activated chloroplasts are not present in every cell of the 

florets. This suggests that, (a) light incubated floret tissue may not be suitable even if 

not rendered recalcitrant due to the limited chloroplast distribution and low number, 

and (b) the number of pro-plastids large and active enough prior to light incubation 

are also of poor distribution and insufficient number for biolistic bombardment.  Light 

incubation of 21 day old immature embryo callus also produces active chloroplasts 

throughout the callus tissue, indicating that immature embryo callus at 21 days, 

contains a large number of pro-plastids of consistent distribution throughout the 

tissue. For this reason, I decided to use immature embryo callus as an initial target for 

the biolistic chloroplast transformation of wheat while also looking at other options.  

Despite immature embryo callus providing one potential starting tissue, I also set 

about identifying a regenerable chloroplast-containing explant To find this, I looked at 

other immature tissues that would contain enough cambium tissue in order to 

regenerate new plants. Given the immature inflorescence being highly regenerable, I 
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decided to investigate tissues associated with the immature inflorescence, which were 

(a) the immature leaf sheaths and (b), the peduncle node that the immature 

inflorescence develops from and is attached to (node 2).  

Initial experiments where nodal pieces were cultured on CIM, showed that callus 

induction and regeneration was possible, however at a very low efficiency (1 plant per 

10 nodes). Furthermore, the inability to generate sterile enough nodal tissue reduced 

the capacity for regeneration further as plate contamination was high (1 in 3 plates). 

For these reasons, I did not pursue the node as a viable option for the regeneration of 

whole wheat plants, despite it containing vast numbers of chloroplasts.  

The immature leaf sheaths are abundant in chloroplasts, with the density increasing 

from the primary leaf sheath to the tertiary. Rigidity also increases from primary to 

tertiary. In this chapter, I have described a protocol for the regeneration of new wheat 

plants, via embryogenesis, from the primary leaf sheath (piLS) of Triticum Aestivum 

var. Apogee. I also attempted to develop a protocol for Triticum Aestivum var. 

Cadenza, however in the results, I was unable to do so. However a small follow up 

study showed that regeneration from Cadenza piLS is possible on MS regeneration 

media supplemented with 5mg/L zeatin, or 4mg/L BAP, all be it at a much lower 

efficiency (1 plant per 5 piLS). The reason for this may be due to the length of 

incubation on CIM. Due to Apogee’s faster life cycle, they may reach the 

embryogenic stage of callus induction sooner than Cadenza. Therefore a longer period 

of Cadenza piLS on CIM may produce more embryogenic callus. These results with 

cadenza suggest that regeneration via embryogenesis in piLS from other varieties can 

occur, however the conditions need to be optimised.   
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5 Biolistic bombardment of wheat for chloroplast 

transformation 

5.1  Introduction 
Chloroplast transformation is achieved by the biolistic bombardment of an explant 

tissue with gold/tungsten particles coated in DNA, using a gene gun (also known as a 

biolistics device). First developed to demonstrate transient nuclear expression (Klein 

et al., 1987), it was not long until the technology was used to create transgenic 

chloroplast transformants in Chlamydomonas reinhardi (Boynton et al., 1988, 

Blowers et al., 1989), Nicotiana tabacum (Svab et al., 1990), and many other 

dicotyledon species (Day and Goldschmidt-Clermont, 2011).  

 

Chloroplast transformation has many advantages over nuclear transformation. Firstly, 

each chloroplast contains a certain number of circular chromosomes, therefore making 

it easy to calculate the number of transgene insertions that is possible. It is also 

possible to express multiple genes from polycistronic mRNA (Maliga, 2001, Staub 

and Maliga, 1995, De Cosa et al., 2001, Quesada-Vargas et al., 2005). Secondly, 

transcription and translation of a transgene only occurs in the chloroplast, hence any 

mRNA/protein product would be compartmentalised within the chloroplast, thus 

removing cytotoxicity. Lastly, and most importantly, plastids are inherited maternally 

in the vast majority of angiosperms (Birky, 1995, Mogensen, 1996, Hagemann, 2002). 

Thus, any transgene escape via pollen is vastly reduced. This provides a strong level 

of biological containment as it reduces, and is still considered a safe method of 

transgene containment following risk assessment (Wilkinson et al., 2003). 

 

Progress in chloroplast transformation of the monocot species has been very limited, 

especially when compared to the achievements attained with dicot species such as 

N.tabacum (tobacco). The two published monocot transformation reports were both in 

rice (Khan and Maliga, 1999, Lee et al., 2006), and neither of these produced 

homoplasmic plants. Both instances used the biolistic bombardment method for DNA 

delivery, and the target tissue was embryogenic callus derived from mature seed. 

Although the rate of heteroplasmic chloroplast transformation was very low (2 



 113 

transformants from 4000 bombarded explants, (Lee et al., 2006)), these studies 

demonstrated that limitations of chloroplast transformation in the monocots are not 

due to the DNA delivery method, but instead the target tissue and subsequent 

selection. In chapter 1, I have explained the rationale behind requiring a chloroplast-

containing regenerable target for chloroplast transformation. I have subsequently 

demonstrated the successful identification of such a tissue in wheat, the primary 

inflorescence leaf sheath (piLS), and developed a regeneration protocol for this as 

described in chapter 4. Wheat piLS will therefore serve as a tissue target in our 

bombardment experiments. I will also be targeting embryogenic callus derived from 

the immature embryo. Wheat embryogenic callus derived from the immature embryo 

contains pro-plastids that can be encouraged to form abundant chloroplasts after just 4 

days of light exposure, indicating that the pro-plastids are abundant and active. Given 

the highly embryogenic nature of this callus, active and abundant pro-plastids reside 

in this tissue, and that previous rice chloroplast transformation studies have 

successfully used embryogenic callus as targets for biolistic bombardment, wheat 

embryogenic callus was also used as a target for the chloroplast transformation of 

wheat.  

The transformation cassettes from the wheat-specific chloroplast transformation 

vectors described in chapter 3 (pRRes14mF2-T7g10, pRRes14mF2-TPrrn, 

pRRes14mF2-WPrrn) were all tested for function in the tobacco chloroplast 

transformation system (Maliga, 2002). These results provided confidence that any 

absence of stable chloroplast transformation in wheat would not be due to the 

bombardment system, or the vector DNA.  

 

 Aims 5.1.1

• Optimise the bombardment conditions for the biolistic bombardment of piLS. 

• Bombard the piLS and IEC with wheat specific chloroplast transformation 

vector to attain chloroplast transformed wheat plants.  
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5.2  Materials and methods 

 Chloroplast transformation vectors pRRes14mF2-T7g10, pRRes14mF2-5.2.1

TPrrn, pRRes14mF2-WPrrn 

The vectors pRRes14mF2-T7g10, pRRes14mF2-TPrrn, pRRes14mF2-WPrrn are 

described in chapter 3. They are targeted to the trnI-trnA gene region within the wheat 

plastome, and are composed of a promoter/5’UTR, selection marker, leader, and 

3’UTR (Fig 5.1). 

 
Fig 5.1 pRRes14mF2-T7g10, pRRes14mF2-TPrrn, pRRes14mF2-WPrrn. The 5’UTR 

T7g10, T-Prrn (tobacco Prrn), W-Prrn (wheat Prrn), serves as a promoter, aada as the 

selection marker, psbD/C as a leader, gfp (codon optimised for plastids) as a visual 

marker, and 3’ UTR stabilises the transcribed mRNA. 

 Biolistic bombardment of wheat explants 5.2.2

Wheat explants (piLS and IEC) were bombarded using the same parameters as set out 

for tobacco leaf biolistic bombardment in chapter 2.1.  

 IEC formation and preparation for bombardment 5.2.3

Ears were harvested from wheat plants 15-21 days post anthesis, and immature 

caryopses were surface sterilised with 70% (v/v) ethanol for 5 min, 10% (v/v) sodium 

hypochlorite for 15 min, then three washes with sterile distilled water. The immature 

embryos, translucent at this stage of development, were aseptically removed from 

early-medium milk stage caryopses, and the scutella isolated by removal of the 

embryonic axis. Scutella were placed abaxial side up in the centre of a 9cm petri dish 

containing immature embryo callus induction medium (M 9%), with 30-40 scutella 

per plate. Explants were cultured in the dark at 24°C for 14-21days to produce 

embryogenic callus. To allow for a longer period of callus formation, immature 

embryos were cultured on M(9%) for 7 days, then moved to WLS for up to 6 weeks. 
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For bombardment, 9-10 embryogenic calli were moved to the centre of a 9cm petri 

dishes containing M(9%) or WLS (depending on what media callus induction was 

conducted on). Following bombardment, each plate was left in the dark for 48 hours at 

24°C. 

 piLS preparation for bombardment 5.2.4

Apogee piLS were extracted as described in chapter 4.2.2.4, and four placed abaxial 

side down in the centre of a 9cm petri dish containing CIM. A sterile filter paper was 

placed on top of the CIM prior to preparation of piLS, so as piLS would be placed on 

the damp filter paper. Following bombardment, each sheath was spread out on the 

filter paper, and left in the dark for 48 hours at 24°C. 

 Selection of transformed IEC 5.2.5

Bombarded calli were incubated in the dark for 48 hour. Incubated bombarded IEC 

were then either moved to selective callus induction for a period of time, or 

transferred to selective R regeneration media, 10 bombarded callus pieces per plate. 

Bombarded IEC on selective callus induction media, after a period of time, were then 

transferred to selective R regeneration media. Regeneration plates were double sealed 

with parafilm, and incubated at 25 °C in a 12-h/12-h day/dark cycle, light intensity of 

100-130µE.  

 

 Selection of transformed piLS 5.2.6

Bombarded piLS were placed in the dark for 48 hours to rest, then cut into 9-12 

pieces, and transferred to selective CIM. Plates were double sealed with parafilm, and 

incubated at 25 °C in the dark for 21-30 days. Leaf sheath pieces which formed 

embryogenic callus, were transferred to selective R regeneration media, sealed with 

parafilm, and incubated at 25 °C in a 12-h/12-h day/dark cycle, light intensity of 100-

130µE. 

 

 Microscopy 5.2.7

Images in this chapter were taken using equipment and settings described in chapter 

2.5. 
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5.3  Results 

 Optimisation of bombardment for piLS 5.3.1

The adaxial epidermis of all the leaf sheaths are waxy, and therefore are thicker than 

the abaxial surface. Thus I chose the adaxial surface to bombard. To ensure that gold 

particles could enter the cells of the piLS through the adaxial epidermis, optimisation 

of bombardment parameters was necessary. To achieve this, piLS pieces were 

bombarded with both 0.4 and 0.6µm gold particles, at 900, 1100, and 1350 psi, using 

an easily scorable visual reporter plasmid pDsRed (gifted to us by Ann Blechl at 

USDA-ARS, USA and Jorge Dubcovsky at UC Davis, USA). The DsRed vector 

contains the DsRed gene under the control of a ubiquitin promoter. The DsRed protein 

can be easily detected at certain wavelengths (See 2.5.2). At all pressures and gold 

particle sizes, transient DsRed protein expression was observed in leaf sheath pieces 

(Fig 5.2 and 5.3), however, only at 1100 and 1350 psi were gold particles viewed to 

be in the same plane as chloroplasts. These results confirmed that both 0.4µm and 

0.6µm gold particles can be used for the delivery of exogenous DNA into piLS tissue, 

and that the optimum bombardment pressures are the 1100 and 1350 psi.  

 
Fig 5.2 piLS bombarded with 0.6µm gold particles at 1100 psi. Gold particles/clumps 

(white arrows) can be seen in the same plane as chloroplasts (red, indicating 

chlorophyll auto fluorescence). Scale bar represents 2µm. 
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piLS leaf sheaths bombarded at 1100 psi with 0.6µm gold particles carrying pDsRed 

were allowed to form callus on CIM. Callus pieces were then moved to R regeneration 

media for 1 week and analysed using light microscopy. I found that large portions of 

the callus tissue stably expressed the DsRed protein (Fig 5.4), even in the absence of 

any selection. This suggested that piLS tissue is not only capable of transiently 

expressing exogenous DNA, but can also form callus stably expressing exogenous 

DNA.  

 
Fig 5.4. piLS callus expressing the DsRed protein. Callus was analysed for DsRed 

expression using light microscopy (see 2.5.2). BF, bright field; DsRed, with DsRed 

filter applied, BF+DsRed, bright field and DsRed filter images combined. Scale bars 

represent 500µm.  
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Bombardment of piLS at 1100 psi with a single shot of 0.6µm gold did not have any 

adverse affect on callus induction and subsequent regeneration efficiency of the tissue, 

however two shots reduced the percentage callus formation to approximately 50%.  

 

 Optimisation of bombardment for immature embryo callus (IEC) 5.3.2

Previous chloroplast transformation studies in rice have used callus tissue as the 

bombarded explant, and given that heteroplasmic transformation was achieved (even 

at low efficiencies), this indicates that bombardment of callus tissue using standard 

bombardment pressures and gold sizes is suitable. Furthermore, bombardment of 

wheat IEC at 600, 900, and 1100 psi with 0.6µm gold carrying a GUS (β-

glucorinidase) expression vector produced transient β-glucorinidase expression in 

callus tissue, indicating that that these parameters are suitable for DNA delivery into 

callus tissue.  

 Optimisation of antibiotic selection.  5.3.3

 Immature embryo callus (IEC) 5.3.3.1

Wheat cells, like most cereals, have a natural resistance to spectinomycin (Fromm et 

al., 1987). However, the aadA gene also confers resistance to streptomycin (Svab and 

Maliga, 1993), therefore can be used to select for transformed chloroplasts in wheat. 

Immature embryos were callus induced on M (9%), and after 21 days were transferred 

to M (9%) supplemented with varying concentrations of streptomycin (0-500mg/L). 

IEC were still capable of forming callus at 500mg/L streptomycin (the highest 

concentration tested), and appeared less compact when exposed to concentrations of 

of 250mg/L and above. However, when 21day old IEC were placed on R regeneration 

media supplemented varying concentrations of streptomycin for 1 month, the effect on 

regeneration was clear. As the concentration of streptomycin increased, the percentage 

of green shoot regeneration reduced (Fig 5.5 and Fig 5.6). At 500mg/L streptomycin, 

no green shoot formation was observed, and few bleached shoots formed from IEC 

pieces. 
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Fig 5.5 IEC (21 day old) placed on R regeneration media supplemented with varying 

concentrations of streptomycin for 4 weeks. a, 0; b, 50; c, 100; d, 200, e, 400 mg/L . 

 

 
Fig 5.6 Green shoot formation from IEC on R regeneration media supplemented with 

varying concentrations of streptomycin. Percentage was calculated as the number of 

IEC that formed green shoots from total IEC  
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From these results, I decided that selection of bombarded IEC would be conducted on 

callus induction media supplemented with streptomycin concentrations between 200-

500 mg/L, and on regeneration media supplemented with streptomycin concentrations 

between 400 and 500 mg/L.  
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 Primary Inflorescence Leaf Sheath (piLS) 5.3.3.2

The effect streptomycin has on the callus induction of piLS was also tested. piLS were 

placed on CIM supplemented with varying concentrations of streptomycin and scored 

for % callus formation?. In the tobacco chloroplast transformation system, kanamycin 

has also been demonstrated as a successful selection agent (Carrer et al., 1993, Day 

and Goldschmidt-Clermont, 2011), and its affect on piLS callus induction was also 

tested (Fig 5.7). 

 
Fig 5.7 Percentage callus induction of piLS on CIM supplemented with varying 

concentrations of a, streptomycin; and b, kanamycin. Percentages for 0mg/L were 

calculated as described in chapter 4, and percentages above 0mg/L were calculated as 

piLS pieces forming any amount of callus out of total piLS pieces.  
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Both streptomycin and kanamycin inhibit embryogenic callus formation from piLS 

tissue on CIM, with maximum inhibition occurring at 500mg/L and 100mg/L 

respectively. Antibiotics bleached the tissue, killed it completely (Fig 5.8), or allowed 

the formation of only non-embryogenic callus. Callus pieces that formed on CIM 

supplemented with 250mg/L streptomycin, failed to regenerate when placed on R 

regeneration media. However, selection on Kanamycin appeared to be harsher than 

that with streptomycin, as the frequency of piLS pieces having undergone cell death 

was observably much greater.  

 

 
Fig 5.8 Effect of antibiotics on piLS during callus induction. piLS pieces would either 

bleach and remain inactive (left), or undertake cell death (right). Scale bars represent 

1mm.  

 

With these observations, I decided that selection of transformed chloroplasts from  

bombarded piLS pieces would be conducted on CIM supplemented with streptomycin 

between 250-500 mg/L, or kanamycin at 100mg/L.  

 

 Bombardment of piLS to observe transient GFP expression. 5.3.4

As an added control, I attempted to see if transient expression of GFP was possible in 

the chloroplast of piLS. Transient expression of fluorescent proteins in plastids 

following biolistic bombardment has been previously described (Hibberd et al., 1998).  

piLS were bombarded with 0.6µm gold carrying pRRes14mF2-TPrrn, and after 2-4 

days incubation in the dark, were analysed for GFP expression using laser microscopy 

(see 2.5.3).  In one bombardment experiment (10 piLS), clear GFP expression can be 

seen, although this was not localised to a chlorophyll expressing compartment (Fig 5.9 
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and 5.10). At this early stage of development, it is not unusual for chloroplasts or 

proplastids to lack chlorophyll expression, as has been confirmed by transient nuclear 

chloroplast targeted GFP expression (results not shown). The GFP expressing 

compartments appear similar in morphology to the chloroplasts that surround them, 

and are in similar number, therefore it would appear that these too are indeed plastids. 

The bombardment experiment was repeated numerous times, however similar results 

could not be obtained.   
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Fig 5.9 Transient GFP expression in bombarded piLS tissue. Each column of images 

represents a section through a specific location in a bombarded piLS piece. GFP, 

green fluorescent protein fluorescence; Chl, chlorophyll auto fluorescence; PMT, 

photomultiplier tube (background). Scale bar represents 5µm.  
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Fig 5.10 Transient GFP expression in bombarded piLS tissue. Continuation from Fig 

5.9. Each column of images represents a section through a specific location in a 

bombarded piLS piece. GFP, green fluorescent protein fluorescence; Chl, chlorophyll 

auto fluorescence; PMT, photomultiplier tube (background). Scale bar represents 

5µm. 
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 Bombardment of IEC for stable chloroplast transformation 5.3.5

A total of 3860 IEC were bombarded in my investigations, and the different 

parameters for each bombardment study is detailed in table 5.1. Chloroplast 

transformation vector pRRes14mF2-WPrrn was used for all bombardments.  

 

 Experiment 
Explant 

no. 

Age when 

bombarded 

(days) 

CI Selection 

(mg/L) 

Days on 

Selective CI 

R selection 

(mg/L) 

** 1 1260 21 0 0 500 

 2 800 14 250 7 500 

 3 800 14 400 14 500 

* 4 500 21 400 14 500 

* 5 500 14 400 14 500 

Table 5.1 Bombarded IEC for chloroplast transformation. CI, callus induction, 

conducted on M(9%) supplemented with varying concentrations of streptomycin and 

hormones. R, Regeneration, conducted on R regeneration media (see) supplemented 

with streptomycin and hormones. * These calli were callus induced on WLS media. 

 

For all bombardment experiments, small green cell masses/shoots were observed on 

1/100 IEC while on selective R media (Fig 5.11). These cell masses were analysed for 

GFP expression using a confocal microscope, however, while chlorophyll auto 

fluorescence was observed, GFP fluorescence was not. When post bombardment 

incubation on non-selective callus induction media was conducted (See ** in table 

5.1), large shoots were observed also forming while on selective R media, although 

prolonged exposure to selection eventually lead to bleaching (Fig 5.11f). No GFP 

expression was observed from any green cell mass or shoot that formed from 

bombarded IEC on selective R media. Some bombarded IEC were able to form roots, 

however after 6-8 weeks on selective R media, the IEC would undergo cell death. IEC 

would eventually turn yellow and then brown when undergoing cell death. None of 

the bombardment experiments produced any stable chloroplast transformation events. 
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Fig 5.11 Green shoot formation on bombarded IEC. In all bombardment studies, small 

green cell masses/shoots (a-d) and large shoots (e-f) were observed when transferred 

to selective R regeneration media.  
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 Bombardment of piLS for stable chloroplast transformation  5.3.6

A total of 1212 piLS were bombarded in my investigations, and the different 

parameters for each bombardment study is detailed in table 5.2. Chloroplast 

transformation vector pRRes14mF2-WPrrn was used for all bombardments.  

 

Experiment Explant no. CI Selection Days on Selective CIM R selection 

1 702 200 25-30 200 

2 410 400 25-30 400 

3 100 400 60 400 

Table 5.2. Bombardment of piLS for chloroplast transformation. CI, CIM 

supplemented with varying concentrations of streptomycin and hormones. R, 

Regeneration, conducted on piLS R regeneration media supplemented with various 

concentrations of streptomycin and hormones. 

 

Following bombardment and subsequent selection on CIM, some piLS pieces formed 

what appeared to be callus (Fig 5.12). Frequency of callus formation was greater with 

200mg/L streptomycin selection than 400mg/L selection. Transferring these on to 

selective R media did not result in any green shoot formation from callus pieces, 

except for a single event that eventually bleached. The majority of callus pieces would 

die after 4 weeks on selective R media, and those pieces that continued to survive 

selection would form roots. When incubation on selective CIM was increased to 60 

days, callus that formed appeared larger and more embryogenic. When placed on 

selective R media, callus failed to develop any resistant shoots, while some formed 

small roots/root hairs, and others died after 4 weeks. None of the bombardment 

experiments produced any stable chloroplast transformation events. 
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Fig 5.12 bombarded piLS pieces following 25-30 days incubation on selective CIM. 

Black arrows indicate possible embryoids. Scale bars represent 1mm.  
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5.4  Discussion 
Progress of plastid transformation in the monocot species has been very limited, 

especially when compared to plastid transformation in the dicot species. Part of my 

investigation was to identify the bottlenecks that hinder the use of the chloroplast 

transformation technology in wheat. One of these bottlenecks is the absence of 

suitable explants for bombardment. In chapter 4, I detailed a previously undescribed 

tissue that contains abundant chloroplasts, the leaf sheath, and demonstrated a robust 

protocol for the regeneration of the primary leaf sheath (piLS). In this chapter, I have 

demonstrated that delivery of exogenous DNA via particle bombardment into piLS 

cells is not a bottleneck, and that a bombardment pressure of 1100 is sufficient to 

deliver gold particles into close proximity of chloroplasts. GFP fluorescence from 

plastids following bombardment of piLS with pRRes14mF2-TPrrn seen in piLS (Fig 

5.9 and 5.10) was originally believed to be transient GFP expression, emanating from 

chlorophyll absent plastids. These plastids are located within one or two cells, which 

contain no chlorophyll expressing plastids. It is unclear whether all the plastids within 

this cell/these cells are expressing GFP, although when further magnified, plastids of 

similar size and shape that are not producing GFP or chlorophyll are also observable 

(Fig 5.13). Numerous repeats of this bombardment experiment did not produce any 

similar events, and therefore another explanation for the GFP expression is necessary.  

Other members of the research group also use the biolistic bombardment gun used in 

this experiment. Although thorough cleaning and sterilisation of equipment takes 

place before and after each experiment, it is possible that the GFP expression is the 

result of contamination with a previously used vector. Looking through the gun usage 

history, 10 days prior to my bombardment experiment where GFP expression was 

observed, a vector containing a nuclear transformation cassette that targeted GFP to 

the chloroplast was used. The gun was also used three more times with vectors that do 

not contain GFP elements before I used it. Although it is highly unlikely that a gold 

particle carrying this vector DNA could have remained on a stopping screen or in the 

carrier chamber, or that vector DNA could have persisted despite numerous washes, 

the possibility of contamination being the cause of GFP expression cannot be ruled 

out, especially in the absence of a successful repeat. It is for this reason that I believe 

the transient GFP expression I have observed to be inconclusive.  
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Fig 5.13 G

FP excitation in chlorophyll absent plastids.. plastids (w
hite arrow

s) of sim
ilar size and shape to chloroplasts (red) in adjacent cells 

show
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FP expression (right, green arrow
s). G

old particles (black arrow
s) can be clearly observed. Scale bar represents 5µm

. 
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Selection of transformed chloroplasts presents another bottleneck, which I have 

attempted to address in this chapter. Both IEC and piLS were tested for sensitivity to 

streptomycin instead of spectinomycin, as cereals such as wheat, are resistant to 

spectinomycin (Fromm et al., 1987). I was encouraged by the heteroplasmic 

transformation achieved in rice chloroplast transformation studies (Khan and Maliga, 

1999, Lee et al., 2006), which used streptomycin for selection at a maximum 

concentration of 300mg/L. Exposure of IEC to streptomycin did not appear to have a 

significant cytotoxic effect, even at concentrations as high as 500mg/L. Callus tissue 

were able to grow and proliferate, and presented slightly less compact and watery 

callus formation. When 21 day old IEC were transferred to selective R regeneration 

medium, green shoot formation was completely inhibited at 500mg/L streptomycin. 

At these concentrations clear shoots formed from approximately 50% of callus pieces, 

although the density or shoot formation was less than IEC on non-selective R 

regeneration media. IEC pieces would eventually show cell death after 2 months on 

selective R regeneration media. Although IEC were still capable of growing and 

proliferating on selective R regeneration media, I believed that streptomycin 

demonstrated sufficient inhibition of green shoot formation and wheat plant 

regeneration to be used as a selection agent for cells containing transformed 

chloroplasts. Initially, 21 day old IEC were bombarded and moved directly onto 

selective R regeneration media. This did not produce any chloroplast transformation 

event, which suggested two things. First, 21 day old IEC are at a developmental stage 

where embryoids are ready to regenerate. Second, the time on selection following 

bombardment was not sufficient enough, and more time was needed to allow 

bombarded callus with transformed chloroplasts to proliferate. To test these 

hypotheses, in IEC bombardment experiments 2 and 3, I introduced bombarded IEC 

to selective M (9%) callus induction media for a period of time prior to transferring to 

selective R regeneration media. These conditions also did not produce any chloroplast 

transformation events, suggesting two things. First, IEC require exposure to selective 

callus induction for longer periods, and second, streptomycin does not provide 

sufficient selection to provide an advantage to transformed chloroplasts. To test the 

first of these hypotheses, I conducted IEC bombardment experiments 4 and 5, which 

increased the incubation time on selective callus induction media. Immature embryos 

cannot be callused on M (9%) for longer than 4 weeks, as by this point embryoids 

have reached optimum maturity and begin to form shoots (even if kept on callus 
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induction media), and recalcitrance increases. In order to keep callus incubated on 

selective callus induction for longer periods, I opted to use WLS media (Table 5.1) for 

callus induction. WLS media allows immature embryos to remain on callus induction 

up to 6 weeks. In experiments 4 and 5, IEC was formed on WLS, and following 

bombardment were transferred to selective WLS media for a period of time prior to 

transferring to selective R regeneration media. These conditions also did not produce 

any chloroplast transformation events, which suggests three things. First, bombarded 

callus needs a longer period of time on selective callus induction, second, 

streptomycin is not a robust enough selection agent for transformed chloroplasts, and 

third, IEC is not a suitable explant type. I believe it is mostly a combination of the first 

two, which is preventing chloroplast transformation in wheat from occurring. Given 

that a single chloroplast transformation even was not observed from 3860 bombarded 

embryos, strongly indicates that streptomycin is not a robust enough selection agent. 

Furthermore, the observations that IEC can still grow and proliferate on high amounts 

of streptomycin, in addition to the inability of streptomycin to completely inhibit 

shoot formation and cause a more rapid cell death, correlates with streptomycin not 

being an appropriate selective agent for chloroplast transformation in IEC.  

Although streptomycin does not appear to be an appropriate selection agent for 

transformed chloroplasts in the IEC, it did inhibit callus formation of piLS. This 

provided encouragement that transformed chloroplasts would be positively selected 

for in bombarded piLS. In experiment 1 (Table 5.2), following bombardment and 

incubation on selective CIM for 25-30 days, some piLS pieces did produce what 

appeared to be callus, although these did not resemble the embryogenic callus 

normally observed in piLS tissue culture. These pieces were moved to selective R 

regeneration media, however resistant shoots did not develop. Callus either died or 

formed short roots/root hairs. Increasing the concentration of streptomycin to 

400mg/L did result in an observable reduction in piLS pieces forming callus, however 

on R regeneration media, callus pieces produced the same results as observed in 

experiment 1. Due to the lack of embryogenic like formation from bombarded piLS 

following incubation on selective CIM, I hypothesised that the duration of time on 

CIM may not have been enough for resistant cells to form embryogenic callus. To test 

this, in experiment 3 (Table 5.2) I incubated bombarded piLS on CIM for 60 days, and 

observed callus formation that appeared embryogenic. These were transferred to 

selective R media, and also failed to produce resistant shoots. 
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Apogee piLS were also tested for their sensitivity to Kanamycin, as it has previously 

been demonstrated to be an effective selection agent for tobacco chloroplast 

transformation. I have demonstrated that kanamycin inhibits callus formation in piLS 

at 100mg/L. Unfortunately there was not sufficient time left in the project to conduct 

chloroplast transformation experiments using kanamycin as a selection agent.  

In chapter 3, I described the construction of a number of chloroplast transformation 

vectors, and the successful use of the transformation cassettes in these vectors in 

transforming tobacco chloroplasts. These results indicated that all transformation 

vectors constructed were functional. I chose to only use one of these vectors, 

pRRes14mF2-WPrrn (containing the wheat Prrn), for two reasons. First, there was not 

sufficient time to test all the vectors, and doing so would also be inefficient as they 

were all functional and differed only in the promoter, and second, to maximise the 

chances of transgene expression, I used the transformation vector that contained the 

Prrn specific to wheat. Given the functionality of the WPrrn in tobacco chloroplasts, 

the transformation cassette is not a reason for the inability to achieve chloroplast 

transformation in wheat, and can therefore be used for further investigation.  

 

5.5 Future investigations 

IEC are highly embryogenic tissue, and do contain pro-plastids. However the inability 

to take IEC through numerous rounds of selection over several weeks is likely to 

prevent selection of transformed chloroplasts. In the wheat regeneration system, there 

is currently no cell line or protocol where an immature embryo can be continually 

proliferated through callus induction for several weeks. In maize, the Hi II Type II 

callus system provides such an option (Frame et al., 2000). Replicating such a 

protocol or cell line in wheat would be a wise option for further investigation of 

chloroplast transformation in wheat.  

In my bombardment studies with piLS, I was unable to achieve chloroplast 

transformation. This could be due to a number of factors, first, streptomycin is not an 

appropriate selection agent, and second, incubation time on selective CIM was not 

sufficient enough to encourage growth of resistant callus. I have demonstrated that 

Kanamcyin significantly inhibits callus formation in piLS, and given its function in 

tobacco chloroplast transformation, should be tested in follow up experiments with 

piLS.  
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piLS are the only chloroplast abundant explant tissue that can be regenerated from, 

and should continue to be considered for chloroplast transformation studies. To 

increase the tissue’s ability to undergo chloroplast transformation, increasing its 

regeneration capabilities is important. In the tobacco transformation system, every 

section of the young tobacco leaf can form a new plant. In comparison, the current 

regeneration protocol of apogee piLS used in our bombardment studies shows a 

regeneration capacity of approximately 20%. While this is a significant improvement 

from the situation prior to this work, it presents obvious limitations. In chapter 4, I 

have demonstrated that moving regeneration from R media to MS media 

supplemented with the same concentration of hormones increases the regeneration to 

approximately 25%. Further manipulation of hormone levels (0.25mg/L zeatin and 

0.1mg/L 2,4D) indicated an increase of regeneration to approximately 40%. 

Unfortunately this improved protocol could not be tested for chloroplast 

transformation of wheat, as there was not sufficient time left to conduct further 

bombardment studies. However, this demonstrates the potential that exists within 

piLS callus to regenerate, and that further optimisation of regeneration from apogee 

piLS could result in higher levels of regeneration, and thus increasing the possibility 

of chloroplast transformation.  
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6 Improving photosynthesis in tobacco using the ictB gene  

6.1  Introduction 

 The problem 6.1.1

Feeding an ever growing, meat hungry, human population presents many challenges. 

It is arguably the biggest threat to the longevity of our species, and thus food security 

has become a global priority. A change in human dietary behavior would ease this 

burden, and calls for a transition from meat heavy diets to ones that target lower 

trophic levels is taking place in developed countries. However with the members of 

the developing world now demanding more red meat as a result of greater economic 

prosperity, and this trend set to increase over the following decades, solutions to 

increase grain yield is necessary. With insecurity surrounding water and fertilizer 

availability, climate change, and the reduced availability of arable land further 

compounding the issue, the toolbox to meet future demands needs to be extensive. 

This toolbox will require GM technologies.  

Wheat is produced on over 200 million hectares of land, and accounts for one fifth of 

the world’s calorie intake. The gains that were once experienced during the green 

revolution are no longer being realized, and global yield increases have ground to a 

halt, while decreasing in some areas. This is not ideal given that the global demand for 

wheat is predicted to increase at a faster rate (Rosegrant and Cline, 2003) than the 

gains being realised (Miralles and Slafer, 2007, Fischer, 2007, Shearman et al., 2005).   
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 Possible solution 6.1.2

To increase yield, we need to increase grain biomass, and for this we would therefore 

need to increase photosynthesis. Total crop photosynthesis is dependent on three 

factors, 1, the amount of light captured by the canopy, 2, the duration of light capture, 

and 3, photosynthetic capacity and efficiency. Agronomic crops such as wheat which 

are grown through high-input systems, and therefore light capture from the canopy has 

ultimately been optimised, leaving few improvements to be made. A way to increase 

the duration of light capture would be to either encourage earlier flag leaf growth, or 

to extend the photosynthetic period using an “evergreen” phenotype. However, given 

the inefficiencies observed in crop photosynthesis, the greatest improvements are 

likely to be attained by optimisation of photosynthetic capacity and efficiency.  

As mentioned in chapter 1, the most distinct difference between crop photosynthesis 

(C3) and more efficient models (C4) is the CO2 fixation pathway, catalyzed by the bi-

functional carboxylase enzyme called RubisCO. C4 plants have several advantages 

over C3 plants. Firstly, by concentrating CO2 in C4 leaves, more CO2 is fixed per 

photon absorbed due to an increase in RubisCO carboxylation (Skillman, 2008). 

Increased carbon concentration also increases the partial pressure of CO2 around 

RubisCO, which results in the enzyme functioning at a maximal catalytic rate. This in 

turn ensures a smaller protein investment into RubisCO at any given CO2 assimilation 

rate, hence increasing the CO2 assimilation rate per unit of leaf nitrogen. Secondly, 

PEP carboxylase in C4 plants uses bicarbonate formed by carbonic  (CA) rather than 

CO2 in C3 plants. Because of this, PEP carboxylase can satisfy the C4 pump at 

intercellular carbon concentrations lower than that in C3 plants, consequently leading 

to C4 plant having greater transpiration efficiencies. Thus, a combination of all the 

above attributes results in C4 plants able to fix more carbon per unit of light, nitrogen, 

and water. Wheat is a C3 plant. Therefore in theory, if wheat can be modified to 

photosynthesise with more C4 type characteristics, yield can be increased. 

Targets for improving photosynthesis have been discussed in chapter… One of these 

targets is intercellular carbon concentration. As discussed above, increasing the partial 

pressure of CO2 surrounding RubisCO results in an increase in carbon fixation. 

Introducing a carbon concentrating mechanism (CCM) into the chloroplast of wheat, 

would in theory increase carbon fixation and biomass accumulation. C3 crops grown at 

elevated carbon concentrations in the field demonstrate an increase in yield, however 
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at a far lesser increase than is theoretically possible (a third in some instances, (Long 

et al., 2006a) 

 

  Cyanobacterial carbon concentrating mechanisms 6.1.3

Extant cyanobacterial species and chloroplasts share common ancestry. Due to their 

evolutionary relationship, research into cyanobacterial photosynthesis has advanced 

our understanding of photosynthesis significantly. Cyanobacterial carbon fixation 

provides a rich source for information when devising biotechnological ideas for 

improving photosynthesis in C3 plants. One aspect of the CCM involves active and 

passive transporters of inorganic carbon (HCO3
-). Cyanobacteria exist in aquatic 

environments where the solubility of bicarbonate ions is much higher than that of 

CO2, with the natural hydration/dehydration equilibrium favouring the formation of 

HCO3
-. It comes as no surprise that cyanobacteria have thus evolved several 

mechanisms in the form of transporters for the import of HCO3 along with CO2. Once 

transported into the cyanobacteria, these inorganic carbons are fixed into 3-

phosphoglycerate (3-PGA) in the carboxysomes, specialised semi-permeable protein 

shells that concentrate CO2 around the encapsulated RubisCO. Plant chloroplasts do 

not contain carboxysomes, instead RubisCO is free within the stroma. However, one 

can theorise that if inorganic carbon transporters can be introduced into plant 

chloroplast membranes, thus increasing the concentration of CO2 surrounding 

RubisCO following conversion of bicarbonate via stromal carbonic anhydrase, this 

would likely increase the rate of photosynthetic carbon fixation. One such protein, 

designated as inorganic carbon transporter B (IctB), discovered in Synechococcus 

elongatus PCC 7942, was originally thought to be a HCO3
- transporter (Bonfil et al., 

1998).  
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 ictB 6.1.4

Inorganic carbon transporter B (ictB) is a protein first discovered in S. elongatus PCC 

7942. Cyanobacteria, such as S. elongatus PCC 7942, possess an inducible mechanism 

to concentrate inorganic carbon (iC) within the cells. A high CO2 requiring mutant of 

S. elongtus PCC 7942 was isolated and found to exhibit inhibited HCO3
- uptake, 

which was attributed to a mutation in the ictB gene (ORF467)(Bonfil et al., 1998). 

ictB mutants grew almost as wild type (WT) under normal CO2 concentrations, 

however were unable to grow under low CO2 due to the deficiency in HCO3
- 

transport. This combined with the ictB protein having 12 predicted membrane 

spanning domains, a high homology to several transporter proteins, and it being 

located on the inner membrane of the cell, ictB was believed to be a HCO3
- 

transporter. Although the correlation between ictB expression and iC accumulation in 

S.elongatus PCC 7942 is clear, and ictBs importance in iC uptake in Sunechocystis sp. 

PCC 6803 has been demonstrated, how it achieves this is not yet fully understood 

(Shibata et al., 2002), and the likelihood of ictB functioning as a HCO3
- transporter is 

highly unlikely (Xu et al., 2008). Despite the lack of evidence supporting ictB’s 

function as a HCO3
- transporter, expression of ictB in Arabidopsis thaliana and 

Nicotiana tabacum resulted in a photosynthetic rate phenotype that was faster than 

that observed in the WT under limiting conditions, but not under saturating conditions 

(Lieman-Hurwitz et al., 2003). Both A. thaliana and N. tabacum ictB transgenics also 

showed a lower CO2 compensation point (5-9 ppm) compared to WT, suggesting a 

higher accumulation of CO2 in close proximity to RubisCO in the transgenics. Even if 

ictB is not functioning as a HCO3
- transporter, it clearly has a carbon concentrating 

mechanism, even when expressed in the nucleus and targeted to the chloroplasts 

(Lieman-Hurwitz et al., 2003). The question we have asked in this chapter, is what 

effects on photosynthesis would ictB have when expressed in the chloroplasts of a C3 

plant, in this case, N. tabacum.  

 

 Aims 6.1.5

• Produce homoplasmic tobacco plants containing the cyanobacterial ictB gene. 

• Analyse the effect of ictB expression on internal carbon concentration, 

photosynthesis, and growth. 
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6.2  Material and methods 

 Chloroplast transformation of tobacco via Biolistic bombardments 6.2.1

For information on explant preparation, bombardment, and selection parameters, see 

chapter 2.1 

 

 pBNG1  6.2.2

pBNG1 is a tobacco chloroplast transformation vector (Fig 6.1) 

 
Fig 6.1 pBNG1. Gift from Prof Maureen Hansen (Cornell University, Ithaca, NY, 

USA). A chloroplast transformation vector targeted to the trnI/trnA gene region 

(purple flanking arms), with ampicillin resistance (orange). Transformation cassette 

contains a T7g10 5’UTR (red), tobacco psbA 3’UTR (yellow), loxP sites (light blue), 

tobacco psbA promoter (blue), aadA gene (pink), and the trps16 3’UTR (black). A 

multiple cloning site is located between the T7g10 5’UTR and tobacco psbA 3’UTR.  
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 Cloning of pBNG1-ictB 6.2.3

 ictB amplification 6.2.3.1

The ictB gene was amplified from the nuclear transformation vector pRRes_ictb (Dr 

Steven Driever) using PCR as described in Chapter 2. Primers used for amplification 

are described in Table 6.1 PCR primers were designed to add an NdeI and NotI 

restriction endonuclease site to the 5’ and 3’ end of the amplicon respectively. 

 

Primer Sequence 
Restriction 

site 

Tm 

°C 

ictB F1 

ictB R1 

CATATGACTGTCTGGCAAACTCTGACTTTTGC 

GCGGCCGCCTACATTTTTTCGTCTGAATGCTC 

Nde I 

Not I 
60 

Table 6.1 Primers used for the amplification of ictB from pRRes_ictb. Red bases 

indicate engineered restriction sites. Expected amplicon size is 1418bp. 

 

 DNA extraction of ictB amplicon from agarose gel 6.2.3.2

Using ultraviolet light, a DNA band was first identified in the agarose gel, and then 

excised with a clean sharp blade. As much as possible of the agarose was removed at 

the time of excision. The excised band was then placed in a 2ml eppendorf, and DNA 

extracted from the band using a Wizard® SV gel and PCR clean up kit (Promega 

Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA), following 

manufacturer’s instructions.  

 

 Cloning into the pGEM®-T easy vector and pBNG-1. 6.2.3.3

Poly-A tailing of ictB amplicon was conducted as described in 2.3.1. Cloning of poly-

A tailed ictB into pGEM®-T easy vector was conducted as per manufacturer’s 

instructions, or as described in Chapter 2.3. 

 Molecular characterisation of transplastomics 6.2.4

To determine successful integration of transgenes into tobacco chloroplasts, DNA 

from leaves from resistant plantlets were extracted as described in 2.2.1. PCR was 

then conducted as described in 2.2.2 and 2.2.3. Primers for determining successful 

integration are detailed in table… 
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Primer pair Sequence (5’-3’) Tm°C 

Band size 

(bp) w/o 

insert 

Band size 

(bp) with 

insert 

16s rRNA F1 

pBNG1-ictB R1 

CGAATCCTCTTGAAAGA 

CTGTAGGTGAGGATCAGA 
52 0 2480 

16s rRNA F1 

Tob 23s R1 

CGAATCCTCTTGAAAGA 

CTAGGTATCCACGTAAG 
53 2653 5476 

Table 6.2 Primer pairs used to determine successful integration of exogenous DNA 

into the tobacco plastome.  

 

 RNA isolation, cDNA synthesis, and qPCR 6.2.5

Total RNA was extracted from 100mg of snap-frozen leaf tissue from N. tabacum WT 

and transplastomic lines using the Ribopure™ Kit (Ambion®) according to the 

manufacturer’s instructions. RNA was quantified using a Nanodrop 

spectrophotometer and integrity of RNA was visualised using denaturing agarose gel 

electrophoresis (Sambrook et al. 2000). DNA was removed using RQ1 RNase-free 

DNase (Promega). cDNA was synthesised using SuperScript® III First-Strand 

Synthesis System (ThermoFisher Scientific) using 2ug of total RNA and oligodT 

primers according to the manufacturer’s instructions. Gene expression was quantified 

using SYBR Green chemistry on a Real-Time PCR system 7500 (Applied 

Biosystems). Total reaction size was 20µl containing 10µl SYBR® Green 

Jumpstart™ Taq ReadyMix™ (Sigma Aldrich), 2µl cDNA and 0.5mM primers. PCR 

used an initial denaturation stage of 95°C for 2 mins, followed by 40 cycles of 95°C 

for 15s (denaturation), 60°C for 1 min (annealing and extension). The specificity of 

products was confirmed by performing a temperature gradient analysis of products at 

temperatures ranging from 55°C to 95°C at 0.5°C increments. Two technical 

replicates were completed for each sample. Data was normalised using the nuclear 18s 

rRNA gene, and the chloroplast 16s rRNA gene. Primers were designed using 

Geneious software, and are described in Table 6.3 
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Primer pair Sequence (5’-3’) Tm°C Band size (bp) 

ictB qPCR    

ictB-qPCR F1 

ictB-qPCR R1 

ictB-qPCR F2* 

ictB-qPCR R2* 

GTGTCTACGGCCTCAACCAA 

CGCGACTGTAGGTGAGGATC 

GTGGCTTCTTGCTTGCTGTC 

CCGCTAGGGCAAAAACCAAC 

 

60 

 

60 

 

 

255 

 

264 

 

16s qPCR    

16srRNA-qPCR F1 

16srRNA-qPCR R1 

CTGAACAGACTGCCGGTGAT 

GTATGGCTGACCGGCGATTA 
60 219 

18s rRNA qPCR    

18srRNA-qPCR F1 

18srRNA-qPCR R1 

GTGCAACAAACCCCGACTTC 

CCTTGGATGTGGTAGCCGTT 
60 254 

Table 6.3. qPCR primers. * Alternative primer pair tested but not used for qPCR. 

 Measurement of photosynthesis 6.2.6

Leaf photosynthesis, stomatal conductance, transpiration, and intercellular carbon 

concentration measurements were made simultaneously using a portable leaf gas 

exchange and fluorescence system (LI-6400XT; LI-Cor, Lincoln, NE, USA), as per 

manufacturers instruction. 

The measurements were made during the daylight hours of 9am-3pm. Fully expanded 

fourth leaves were clamped on the 2cm2 chamber. Leaves were allowed to stabilize 

for 2 mins at these following conditions in the cuvette: Cooler block temperature 

(Tblock) of 20 °C, Flow set to 200 µmol s-1, Chamber fan speed at 5, CO2 

concentration in the cuvette (Ca) of between 200-400 µmol mol-1, and Photosynthetic 

Active radiation (PAR) of 1500	µmol m-2 s-1. Statistics on data was carried out using a 

students t-test. Significance was determined as p=0.05. 
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 Measurement of plant height, biomass, leaf length, and leaf width 6.2.7

Heights of transplastomic N. tabacum and WT plants were measured using a tape 

measure, starting from the base of the plant, to the tip. The fourth expanded leaf was 

measured for leaf length and width. Leaf lengths were determined by running string 

from the leaf base to the blade tip, and then measuring the string. Leaf widths were 

measured at the widest point of the leaf blade using a 30cm ruler. Biomass was 

calculated by drying transplastomic and WT plants in an oven at 80°C until 

completely dry, then weighed on a scientific balance. Statistics on data was carried out 

using a students t-test. Significance was determined as p=0.05. 
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6.3  Results 

 Production of pBNG1-ictB 6.3.1

The ictB gene (derived from cyanobacterium Synechococcus PCC 7942) was 

amplified from a monocot codon-optimised sequence located in the pRRes_ictb 

nuclear transformation vector. PCR products were run on an agarose gel (Fig 6.2, 

left), and ictB amplicons were gel extracted, poly-A tailed, and cloned into the 

pGEM®-T easy vector to give pG-ictB. The pG-itcB vector was amplified and DNA 

extracted using a plasmid mini-prep kit. Isolated pG-ictB was double digested with 

ndeI and notI to release the ictB gene (Fig 6.2, centre). The ictB gene, with the 

engineered 5’ and 3’ ends, was gel extracted and cloned into linearised pBNG1 (also 

double digested with ndeI and notI) to give pBNG1-ictB (Fig 6.3).  A diagnostic 

restriction digest with pvuII demonstrated successful integration of ictB into pBNG1 

(Fig 6.2 right). Sequencing also confirmed sequence integrity.  

 

 
Fig 6.2 Construction of pBNG1-ictB. Left, amplification of ictB from pRRes_ictb. 

Expected amplicon is 1418 bp in size. Centre, pG-ictB digested with ndeI and notI to 

release the ictB gene (white arrow, 1418bp) from the pGEM®-T easy vector backbone 

(red arrow, 3015bp). Right, digestion with pvuII of pBNG1 (Lane 1) to give 3 bands 

of 939, 2364, and 2525bp, and pBNG1-ictB (Lane 2) to give 3 bands of 939, 2364, 

and 3654bp.  
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Fig 6.3 The cloning of ictB into pBNG1 (a) to give (b) pBNG1-ictB. T-trnI, tobacco 

trnI gene; T-trnA, tobacco trnA gene; PpsbA, Tobacco psbA promoter. pBNG1 is 

described in… 

 Production of ictB transplastomic tobacco plants 6.3.2

Tobacco leaves were bombarded with the pBNG1-ictB chloroplast transformation 

vector. Two individual bombardment studies were conducted, with each study 

containing 10 bombarded plates (1 leaf/plate). Following approximately 4-6 weeks on 

selective RMOP, shoots from callus started to form (Fig 6.4). During the same period 

of time, resistant cell masses formed from callus (Fig. 6.5), however some of these did 

not produce shoots. Diagnostic PCR on total DNA from resistant shoots/cell masses 

with appropriate primers determined successful integration of exogenous 

transformation vector DNA into plastome. Total resistant shoots/cell masses were 

cultured further and grown into plants (Fig 6.6). Five successful transplastomic lines, 

designated ictB-1, ictB-2, ictB-3, ictB-4, and ictB-5, were grown to seed. Seeds were 

extracted from dried seed pods, and allowed to dry further for 2 weeks. 
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Fig 6.4 Resistant shoots forming from calli after a, 4 weeks and b, 6 weeks on 

selective RMOP. 

 

Fig 6.5 Resistance cell masses (black arrows) developing from callus on selective 

RMOP. Some masses (a) did not go on to produce regenerated plants, whereas others 

(b) did.  
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Fig 6.6 Regeneration of transplastomic plants from resistant shoots. After 

identification of resistant shoots/cell masses on selective RMOP, they were separated 

from the callus and cultured further on selective RMOP for up to 2 weeks before 

being transferred to a magenta box containing selective RMOP (a). Confirmation of 

successful cassette integration was conducted by extracting DNA from shoot sections, 

and performing PCR with primers described in Table 6.2. Once the shoot has 

developed into a plantlet (b), it was transferred to selective MS to encourage root 

formation. When sufficient roots were formed, the transplastomic plantlet was 

transferred to soil and allowed to develop into a plant (c).  
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 Molecular characterisation of transplastomics 6.3.3

The seeds from the 5 transplastomic lines were sown, and the plantlets of these were 

tested for successful integration of pBNG1-ictB vector DNA. The forward primer (16s 

rRNA F1) binds to a location outside of the left flanking arm, while the reverse primer 

(pBNG1-ictB R1) binds to a location within the ictB gene itself. From the results (Fig 

6.7), it is clear that the cassette has successfully integrated into the plastome. 

 

 
Fig 6.7 PCR analysis of DNA extractions from the 5 transplastomic lines. White 

arrow indicates a band at the expected 2480bp, confirming integration of the 

chloroplast transformation cassette. L, 1 Kb ladder; 1, WT; 2, blank; 3, ictB-1; 4, ictB-

2; 5, ictB-3; 6, ictB-4; 7, ictB-5; 8, blank. 

 

To determine homoplasmy (that all plastomes have been transformed), a second PCR 

was conducted with the forward primer (16s rRNA F1) and the reverse primer (Tob 

23s R1) both binding outside of the region of the chloroplast transformation flanking 

arms, but within the area of IR region (Fig 6.8). Here we can once again confirm that 

the transformation cassette has successfully integrated within the plastome of all lines. 

However, as amplification also produced a band at approximately 2653bp, which is 

present in WT, we cannot definitively say that the transplastomics are homoplasmic.  
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Fig 6.8 PCR analysis of DNA extractions from the 5 transplastomic lines. White 

arrow indicates a band at the expected 5476bp, confirming integration of the 

chloroplast transformation cassette. Red arrow indicates a band at the expected 

2653bp following amplification of WT. L, 1 Kb ladder; 1, WT; 2, ictB-1; 3, ictB-2; 4, 

ictB-3; 5, ictB-4; 6, ictB-5. 

 

 qPCR for the expression levels of ictB 6.3.4

Primers to be used for qPCR analysis were first tested on DNA extractions from ictB-

1 (Fig 6.9). All primer pairs produced bands of expected sizes.  

 
Fig 6.9 Testing of qPCR primers. DNA extractions of ictB-1 were used as the 

template to test the qPCR primer pairs 1, ictB-qPCR F1/ictB-qPCR R1; 2, ictB-qPCR 

F2/ictB-qPCR R2; 3, 16srRNA-qPCR F1/16srRNA-qPCR R1; and 4, 18srRNA-qPCR 

F1/18srRNA-qPCR R1. L, 1 Kb ladder. See Table 6.3 for corresponding amplicon 

sizes.  
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From the qPCR data (Fig 6.10), when compared to expression levels of the nuclear 

18s rRNA and plastid 16s rRNA genes, it is clear that ictB is being expressed within 

the chloroplasts of each transplastomic line.  

 
Fig 6.10 Relative expression of ictB in transplastomic lines compared to a, 18s rRNA 

and b, 16s rRNA transcript levels.  
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When compared to 18s rRNA expression, ictB-2 and 4, appear to have the greatest 

level of ictB expression, and ictB-1, 3, and 5 have similar levels of expression. When 

compared to 16s rRNA expression, ictB-4 shows greatest ictB expression, while ictB-

3 shows the least ictB expression.  

 Phenotype of transplastomic ictB plants 6.3.5

The confirmed expression of ictB within transplastomic lines indicates the successful 

transcription of ict. To see what affect this has upon the phenotype of transplastomic 

lines compared to WT, I looked at changes to photosynthetic parameters and growth 

characteristics.  

  Effects of ictB on photosynthesis 6.3.5.1

The photosynthetic rates of all ictB transplastomic lines were lower than that for WT, 

with the greatest decrease in rate seen in ictB-1 at both ambient (400ppm) and low 

(200ppm) CO2 concentrations (Fig 6.11 and Fig 6.12). On average, photosynthetic 

rates in ictB lines were 1.658 (7.5%) and 0.69 (6.5%) µmol CO2 m-2 s-1 lower than that 

for WT at ambient and low CO2 concentrations respectively.  

 

 
Fig 6.11 Percentage decrease of photosynthetic rates in ictB lines compared to WT at 

200ppm (grey) and 400ppm (black) concentrations of CO2. 6 biological replicates and 

4 technical replicates per measurement.  
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Fig 6.12 Photosynthetic (a) and transpiration (b) rates of WT and ictB lines at 200 

(grey) and 400ppm (black) CO2. 6 biological replicates and 4 technical replicates per 

measurement. 
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Intercellular carbon concentrations (Ci) are elevated in all transplastomic lines 

compared to WT at both 200 and 400ppm CO2 (Fig 6.12). On average, ictB lines 

demonstrated increased Ci of 5.46% and 5.99% compared to WT at 200 and 400ppm 

CO2 respectively. Transplastomic lines ictB-2, 3, and 5 show the largest increases in 

Ci at both 200 and 400ppm CO2 (Fig 6.13). Both ictB-1 and ictB-4 showed lowest 

increases in Ci at 200ppm than at 400ppm. This was opposite for ictB-2,3 , and 5, 

which showed the highest increases in Ci for 200ppm than at 400ppm CO2. 

 

 
Fig 6.13 Percentage increase in intercellular CO2 concentration of ictB lines compared 

to WT at 200 (grey) and 400 ppm (black) CO2. 6 biological replicates and 4 technical 

replicates per measurement. 

 

Transpiration rates and stomatal conductance (Fig6.14) share the same trend, with 

ictB-2 and 3 showing the greatest elevation of transpiration at both 200 and 400ppm 

CO2, and ictB-2, 3, and 5 showing the greatest increases in stomatal conductance at 

both 200 and 400ppm CO2. 
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Fig 6.14 Intercellular carbon concentrations (a) and stomatal conductance (b) of WT 

and ictB lines at 200 (grey) and 400ppm (black) CO2. 6 biological replicates and 4 

technical replicates per measurement. 
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 Effects of ictB on plant growth 6.3.5.2

All ictB transplastomic lines were smaller in height than WT, and produced a lower 

biomass than WT (Fig 6.15 and 6.16). On average, ictB lines were 32.3% shorter than 

WT, and produced 43.8% less biomass, with ictB-4 being the tallest and creating the 

greatest amount of biomass out of all ictB lines. Variation in physiological 

characteristics between different transplastomic lines would be expected.  

 

 
Fig 6.15 Effect of ictB on plant growth. From left to Right, WT, ictB-1, ictB-2, ictB-3, 

ictB-4, ictB-5. 

 

 
Fig 6.16 Effect of ictB on plant height (a) and biomass (b) in ictB lines compared to 

WT. 6 biological replicates per measurement.  
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On average, ictB lines had a 1.6% shorter leaf length, and a 10.13% increase in leaf 

width. The ictB line with the longest leaf length compared to WT was ictB-3, and the 

lines with the widest leaves compared to WT were ictB-3, 4, and 5 (Fig 6.17).   

 

 
Fig 6.17 Effect of ictB on leaf length (a) and leaf width (b) in ictB lines compared to 

WT. 6 biological replicates per measurement. 

 

 Other observations 6.3.5.3

All ictB lines started to develop seed pods on average 7 days earlier than WT, with 

ictB-2 and ictB-5 producing seed pods up to 10 days prior to WT.  
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6.4 Discussion 

In this chapter I have demonstrated the successful chloroplast transformation of N 

.tabacum with a cyanobacterial gene, ictB encoding a carbon concentrating function. 

This is the first example of the integration of a cyanobacterial CCM gene into the 

chloroplast of a higher plant. PCR data cast some doubt on the homoplasmic nature of 

these transplastomic lines. However the PCR data does suggest the vast majority of IR 

regions of the plastome does contain the transformation cassette. In addition, qPCR 

data shows the expression of ictB within all ictB lines. Although correct transcript 

processing was not confirmed in this study, the clear phenotype difference suggests 

that the ictB gene is being successfully transcribed and translated into functional 

protein.  

From the above results, the expression of ictB appears to slightly reduce the overall 

photosynthetic rate for all ictB lines, however, none of these results were significant. 

There was also no significant difference between stomatal conductance between WT 

and ictB lines at both 200 (low) and 400 (ambient) ppm CO2. When comparing 

transpiration rates, ictB-2 was the only line to show a significant increase compared to 

WT at both low and ambient CO2. Given that the ictB lines were expressing a carbon 

concentrator in the plastid, I would expect to see an increase in intercellular 

concentrations of CO2. This is indeed what I observed for all transplastomic lines, at 

both low and ambient CO2. However, the difference from control plants was 

significant only for lines ictB-2, 3, and 5 at 200ppm and ictB-2 and 3 at 400ppm CO2. 

There was a strong correlation between increases in intercellular carbon 

concentrations and the levels of transgene expression at both low and ambient carbon 

concentrations. The data shows that the increased intercellular carbon in ictB-2, 3, and 

5, is correlated with an increase in transpiration rate and stomatal conductance (Fig 

6.18 and Fig 6.19). This is not surprising as the most likely source of inorganic carbon 

(iC) is CO2 diffusion from the atmosphere via the stomata. However, the mechanisms 

that link ictB expression and increased stomatal conductance remain unclear. 

ictB lines showed significant differences in height, and biomass, with ictB-2, 3, and 5 

on average having a 38.1% decrease in height and a 48.1% decrease in biomass. There 

was no significant difference seen in the leaf length for any of the ictB lines compared 

to WT, however leaf width was significantly greater in ictB-3 (18.6%) and ictB-5 

(14.8%).  
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Fig 6.18 Correlation between Ci (intercellular CO2 concentrations) and stomatal 

conductance between WT (red) and ictB transplastomic lines, ictB-1 (yellow), ictB-2 

(green), ictB-3 (blue), ictB-4 (lilac) and ictB-5 (orange) at 200 (a) and 400 (b) ppm 

CO2. 

 

 
Fig 6.19 Correlation between Ci (intercellular CO2 concentrations) and transpiration 

rate between WT (red) and ictB transplastomic lines, ictB-1 (yellow), ictB-2 (green), 

ictB-3 (blue), ictB-4 (lilac) and ictB-5 (orange) at 200 (a) and 400 (b) ppm CO2.  
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The questions posed by results for ictB-2, 3, and 5 are (a) what mechanisms link the 

increased expression of ictB and increase in stomatal conductance/transpiration, (b) if 

the extra intercellular carbon is not driving carbon assimilation (net photosynthesis), 

then where is it going, and (c) how can we explain the physical differences observed 

in plant growth between ictB transplastomics and WT,  

 

The exact function of ictB remains unclear. Originally the gene product was reported 

as a likely HCO3
- transporter, following data obtained from a CO2 requiring mutant of 

Synechococcus sp. strain PCC 7942, IL-2, derived from an inactivation library. 

Genomic analysis showed a single crossover recombination in ORF467, designated 

ictB, which resulted an impaired HCO3
- transport phenotype (Bonfil et al., 1998). 

Despite subsequent research determining that ictB is unlikely to be a HCO3
- 

transporter (Shibata et al., 2002, Price et al., 2004, Xu et al., 2008), transgenic N. 

tabacum and A. thaliana overexpressing ictB produced a 5-9ppm decrease in the CO2 

compensation point, and in Arabidopsis showed a higher relative growth rate in 

comparison to WT (Lieman-Hurwitz et al., 2003). The hydrophobic structure and 12 

membrane spanning domains of ictB certainly implies its function as a membrane 

protein. In 3 of the 5 ictB transplastomic lines tested, the intercellular concentrations 

of carbon are significantly higher than controls. This most certainly implicates ictB as 

a carbon concentrator, however without knowing its exact location within the plastid, 

or analysing HCO3
- uptake into plastids from the cytosol, the mechanisms by which 

ictB increases intercellular CO2 and thus stomatal conductance, remains to be 

elucidated.  

To answer (b), we must first understand the internal carbon environment of a C3 leaf 

cell, and the initial carboxylation reactions that begin carbon assimilation. C3 plants 

have significant diffusion resistance for CO2, that is, the prevention of CO2 diffusion 

from the air, through the stomata, cell walls and cytoplasm, and eventually through to 

the chloroplast (Evans et al., 2009). This creates a large drawdown or deficit in the 

steady state CO2 concentration in the chloroplast relative to ambient air, despite 

evolutionary adaptations aiming to reduce this (Evans and vonCaemmerer, 1996). 

This (relatively) low intercellular carbon concentration results in reduced RubisCO 

mediated plant photosynthetic carbon metabolism. Plant photosynthetic carbon 

metabolism is composed of two connected pathways, (1) the C3/Calvin cycle 

(reductive), and (2) the C2/photorespiratory pathway (oxidative). Both are dependent 
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on RubisCO converting RuBP into 3-phosphoglycerate (3-PGA). However, 

oxygenation of RuBP results in the formation of 3-PGA and of 2-phosphoglycolate 

(2-PGA) (Fig 6.20. It must be noted that the ratio of 3-PGA : 2-PGA is determined by 

CO2/O2 ratio in the chloroplast and the CO2/O2 specificity factor of RubisCO). The 

photorespiratory cycle then recycles 2-PGA into 3-PGA, with the loss of 1 molecule 

of ATP and CO2 per conversion. Both cyanobacterial and C4 crops reduce the effect 

of photorespiration by increasing the concentration of carbon surrounding RubisCO. 

For an in-depth analysis of photorespiration, see Maurino and Peterhansel (2010). 

 
Fig 6.20 A simplified diagram of reductive photosynthesis (black) and 

photorespiration (red). 3-PGA, 3-phosphoglycerate; 2-PGA, 2-phosphoglycolate; 2-

GA, 2 Glycoltate, G3P, Glyceraldehyde 3-phosphate, RuBP, Ribulose-1,5-

bisphosphate. Grey arrows and text indicate losses from system, dashed arrows 

indicate reactions that use up one molecule of ATP. Green square, chloroplast; blue 

square, peroxisome; orange square, mitochondrion. 

 

The ictB lines 2, 3 and 5 all have a significantly higher concentration of intercellular 

carbon in comparison to WT. Presumably this is because ictB is increasing the 

transport of HCO3
- within the chloroplast, and stromal carbonic anhydrase is 

converting HCO3
- into CO2. In theory, as the pumping of iC into the chloroplasts 

addresses the natural drawdown observed in C3 plant cells, this should increase the 
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concentration of carbon surrounding RubisCO, and thus reducing carbon, nitrogen, 

and energy loss via photorespiration (Parry et al., 2011, Hibberd et al., 2008). This 

would lead to an increased level of photosynthetic carbon assimilation, and hence 

overall photosynthetic rate and plant growth. However, our results do not show this. 

We see no significant change to overall photosynthetic rate. One reason for this may 

be that, although there is an increase in carbon concentration within the cell, we do not 

know whether this concentration is occurring around RubisCO. One large gap in our 

current knowledge is the diffusion properties of the chloroplast envelope and plasma 

membrane/cell wall (Evans et al., 2009). It could be that the excess carbon is simply 

diffusing away from the site of RubisCO and out of the chloroplast. The reason why 

cyanobacteria are able to maintain the concentration of CO2 around RubisCO is 

because they have a multi-level carbon concentrating mechanism (CCM). The initial 

level is constituted by the iC pumps/symporters/transporters, such as ictB. As 

demonstrated in the ictB lines, iC transporters increase the concentration of HCO3
- 

within the chloroplast. Cyanobacteria also have well placed CA. CA can rapidly 

convert HCO3
- into CO2, and vice versa (as it is a reversible reaction), and if located 

within the cytosol of the cyanobacteria, would rapidly catalyse the forward reaction of 

HCO3
- into CO2, allowing CO2 to diffuse away into the external medium (Price and 

Badger, 1989). However, as the CA is located within the carboxysome and thus 

disconnected from the cytosol, this coupled with the thylakoid membrane (located in 

the cytosol) converting CO2 into HCO3
-, maintains a large concentration of HCO3

- 

within cyanobacteria and CO2 in close proximity to RubisCO (also located within the 

carboxysome). This represents a second level to the CCM. Thus, introducing iC 

transporters into C3 plants, as with the ictB lines, may not be enough to increase 

photosynthetic rates. Compartmentalising CA and RubisCO into a carboxysome 

within C3 plants is also necessary, which would be the next step of engineering better 

C3 photosynthesis. Although the expression of structurally correct α-carboxysomes 

within E. coli has been demonstrated (Bonacci et al., 2012), construction of a 

carboxysome in higher proves to be problematic (Kanevski et al., 1999). Indeed, the 

process of introducing a CCM within higher plants has been considered and been 

planned out (Price et al., 2013), with the engineering of iC transporters and 

carboxysomes into C3 plants considered as phase 1a and phase 1b respectively. For 

further steps on engineering cyanobacterial CCM into C3 chloroplasts, please refer to 

Price et al, 2013. 
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Fig 6.21 Summary of what might be happening to imported CO2. CO2 is readily 

converted to HCO3
- in the cytosol by carbonic anhydrase (CA), and pumped into the 

chloroplast via ictB (could be using a sodium symport mechanism, or ATP). HCO3
- is 

rapidly converted to CO2, thus increasing the carbon concentration within the plastid. 

(1) Excess CO2 diffuses out of the chloroplast and out of the cell.  (2) Alterntively, 

CO2 is utilised by RubisCO (R) for carbon assimilation. However due to the increased 

efficient, signals via assimilated carbon signal/feed back to the nucleus (N) to reduce 

rbcS transcription, and (3) reduce plastid transcription/translation of rbcL.   

 

Another hypothesis for the absence of photosynthetic increase in the presence of 

elevated carbon may be due to a reduction in RubisCO transcription/translation. Up to 

25% of leaf nitrogen is invested in RubisCO formation (Evans, 1989). If, at elevated 

internal CO2 concentrations, the RubisCO is working more efficiently, the cell may 

choose to reduce RubisCO translation, as it does not require the energy and nitrogen 

investment. Long term exposure to high levels of atmospheric CO2 does result in 

reduced RubisCO protein accumulation, and reduced transcription of rbcL and rbcS, 

as well as other key enzymes of reductive photosynthesis (Cheng et al., 1998, Drake et 

al., 1997). Although, overexpression of ictB in tobacco and arabidopsis showed no 
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change in amounts of RubisCO (Lieman-Hurwitz et al., 2003), in order to make a 

conclusive hypothesis, transcript levels of RubisCO subunits and final protein 

RubisCO accumulation levels would need to be analysed in ictB transplastomic lines.  

 

All ictB lines were smaller and of lower biomass compared to WT. Apart from the 

significant difference in height, plants appeared phenotypically normal and healthy. 

The observation that ictB lines produced seed pods up to 10 days earlier than WT is 

intriguing. This would need to be repeated again in order to confirm such an important 

and significant phenotype, especially as similar results were not observed in nuclear 

overexpression of plastid-targeted ictB (Lieman-Hurwitz et al., 2003) where enhanced 

photosynthesis and growth only occurred under limiting conditions. However, my 

results may indicate that an increase in efficiency of RubisCO activity is occurring. 

Rather than investing carbon in producing taller plants, assimilated carbohydrates may 

get pushed to achieve faster plant maturation and thus seed formation (possibly due to 

a change in the normal sink-source relationship). Plants had the same number of 

leaves as compared WT, and leaves analysed were of similar length. However there 

was a significant observation of wider leaves in ictB-3 and 5. Changes of internal 

structure of leaves can occur when grown under elevated CO2 levels (Pritchard et al., 

1999). Although results vary, larger leaf size is likely to be due to increased cell 

expansion rather than increased cell division. Without conducting further investigation 

into the anatomy of the leaves from ictB transplastomic lines, and performing more 

accurate measurements on total leaf area and leaf thickness, we cannot form a robust 

mechanistic explanation for this observation.  
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7 Concluding Remarks 
Developing chloroplast transformation in any new species is a considerable 

endeavour. Achieving this technology in the monocots is made even harder due to the 

recalcitrance of adult tissues containing chloroplasts. In my thesis, I have 

demonstrated a robust method for the plant regeneration of wheat from a previously 

undescribed, metabolically active, chloroplast rich tissue, the primary inflorescence 

leaf sheath (piLS). Although streptomycin appears unsuitable as a selectable marker, 

others such as kanamycin can be tested in the future. I have also demonstrated the 

regeneration of plants from piLS in two varieties of wheat, Apogee and Cadenza. 

Through optimisation, it is likely that this protocol can be made more effective for 

Apogee and Cadenza, as well as other wheat varieties. Achieving chloroplast 

transformation in wheat will require a number of novel tissue targets, and selectable 

markers. I have provided one such target in this thesis (piLS), however a more 

embryogenic target would increase the possibility of achieving chloroplast 

transformation. For example, having a cell line like the maize Hi II Type II 

embryogenic callus, which can be taken through tissue culture for a considerable 

length of time.  

 

If one day, chloroplast transformation is routinely made possible in the monocots, 

plastid biotechnology can be used to attempt “supercharging” photosynthesis in the 

cereals. In terms of improving photosynthesis in C3 crops, the results from my thesis 

suggest that a single gene solution is unlikely to achieve the desired results. Adapting 

an effective CCM into C3 plants will most likely require a multi gene approach, 

whether it is by incorporating a carboxysome into the plastids along with inorganic 

carbon (iC) transporters, or by introducing “Kranz” like C4 anatomy. An interesting 

advancement from my work would be to cross, once produced, a nuclear transformed 

tobacco line expressing a functional carboxysome, with one of the highest iC 

transporting ictB transplastomic tobacco lines described in this thesis. This will then 

provide a greater indication of the feasibility for improving photosynthesis in C3 

crops. It must be noted that I did not perform any experiments on the ictB tobacco 

transplastomic lines under limiting conditions, which the literature indicates are the 

conditions where ictB provides a growth advantage compared to WT. Thus in a world 

where growing conditions are becoming more hostile, having such genes incorporated 
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into the chloroplasts of our agronomic crops, albeit via the nucleus, may still provide a 

growth advantage.   

 

Finally, plastid biotechnology is an exciting area for the production of exogenous 

proteins. Being able to produce a number of proteins from a polycistron has a number 

of advantages, however, repetition of promoters increases the likelihood of loss of 

genetic information through rearrangement. In my thesis I have demonstrated the first 

use of a monocot plastid promoter, the wheat Prrn (WPrrn), in a dicot plastid. The 

WPrrn differs in sequence with its tobacco (TPrrn) counterpart by approximately 

30%, which is sufficiently different to prevent rearrangement should both the WPrrn 

and TPrrn be included in a polycistronic plastid transformation cassette. The strength 

of the Wprrn in comparison to Tprrn is yet to be elucidated, however from my work 

(results not included) the number of transplastomic plants recovered per bombardment 

using the Wprrn was greater than those using Tprrn. This suggests that the Wprrn is at 

least as efficient as the Tprrn, and can be considered for use in future monocistronic or 

polycistronic plastid biotechnology studies. 

 

I would like to thank the examiners for taking time to review the last four years of my 

work. I hope they have found the experimental results interesting, and are a positive 

contribution to the research area. 
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