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Abstract 11 

Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This 12 

study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, 13 

affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes (Pomacentrus 14 

moluccensis, P. amboinensis and Dischistodus perspicillatus, with decreasing reliance on coral). Patch reefs 15 

were constructed to simulate present-day reefs that are vulnerable to climate-induced coral bleaching versus 16 

reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming 17 

climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment 18 

period. Results showed that climate-robust reefs had lower total species richness of coral-reef fishes than 19 

climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (both across 20 

all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive 21 

chases, varied according to coral composition: on climate-robust reefs, juveniles used the substratum less often 22 

to avoid aggression from competitors, and interspecific aggression became relatively more frequent than 23 

intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance 24 

of coral composition as a determinant of behaviour and diversity of coral-reef fishes. 25 

Keywords: Benthic composition, habitat degradation, intraspecific and interspecific 26 

aggression, species richness, community dynamics 27 

  28 



Introduction 29 

 The species composition of communities is changing in a wide variety of ecosystems 30 

worldwide (Dornelas et al. 2014), and many of these changes are likely attributable to habitat 31 

degradation. For example, habitat degradation has caused many endemic species in 32 

biodiversity hotspots to become extinct or threatened with extinction (Brooks et al. 2002). 33 

Habitat degradation can influence organisms directly, for example through impaired 34 

performance under adverse conditions. Alternatively, indirect effects can occur when changes 35 

in the quality and/or quantity of resources result in changes in the intensity of competition and 36 

predation, in the demographic rates of species, like fecundity, or in the behaviour of 37 

individuals (Fahrig 2003; Fischer and Lindenmayer 2007). To date, studies examining habitat 38 

degradation have been largely observational, describing how communities have changed 39 

(Fahrig 2003; Dornelas et al. 2014), while empirical studies examining the mechanisms 40 

responsible for these changes are limited. High-diversity coral-reef ecosystems are 41 

vulnerable to climate change and habitat degradation (Hughes et al. 2003; Wilson et al. 2006; 42 

Graham et al. 2015). Globally, coral cover and structural complexity are declining (Gardner et 43 

al. 2003; Bellwood et al. 2004; Alvarez-Filip et al. 2009), due to a variety of stressors, 44 

including storm dislodgement, declining water quality, and coral bleaching induced by high 45 

seawater temperatures (Bellwood et al. 2004; De’ath et al. 2012). For instance, coral cover in 46 

the Indian Ocean declined on average by 46% following the 1998 global mass-bleaching 47 

event (Hoegh-Guldberg 2004). Coral taxa show clearly defined differential susceptibility to 48 

stressors (Hughes and Connell 1999), like coral bleaching (Marshall and Baird 2000; Loya et 49 

al. 2001) and storm-related mortality (Madin et al. 2014). The frequency and severity of 50 

climate-induced coral bleaching is expected to increase over the coming decades due to 51 

increases in ocean temperatures (Hoegh-Guldberg 1999). As a result, coral communities are 52 

expected to display long-term shifts from currently abundant and bleaching-vulnerable coral 53 



taxa to more bleaching-robust taxa (Marshall and Baird 2000; Hughes et al. 2003; Graham et 54 

al. 2014), with associated losses in coral cover and structural complexity. 55 

 Shifts in coral-species composition are expected to cause associated changes in coral-56 

reef fish communities, in terms of abundance, diversity and species composition of fishes. 57 

Mechanisms driving the effects of coral-reef degradation on reef-fish communities potentially 58 

include changes in recruitment of juvenile fishes  (Feary et al. 2007; Coker et al. 2012a), 59 

emigration of fish from degraded to healthy habitats (Coker et al. 2012b), direct fish mortality 60 

due to habitat degradation, and indirect mortality through increased predation and/or 61 

competition as the availability of suitable or optimal habitat decreases (Pratchett et al. 2008). 62 

Loss of live-coral cover has strong and immediate, yet selective, negative effects on fish that 63 

directly depend on live coral for food and shelter (e.g., reviewed by Wilson et al. 2006; 64 

Pratchett et al. 2008; Pratchett et al. 2011). Loss of structural complexity can also cause 65 

general declines in fish abundance and diversity (reviewed by Pratchett et al. 2008). Many 66 

fishes that do not depend on live-coral cover specifically, still depend on topographic 67 

structural complexity provided by corals, as complexity is thought to moderate the 68 

interactions between  individuals (Graham and Nash 2013). However, it is largely unknown 69 

how the changes in coral composition anticipated in the future will affect the abundance and 70 

interactions between coral-reef fishes. 71 

 Aggressive behaviour is commonly observed in coral-reef fishes (e.g., Myrberg and 72 

Thresher 1974; Bay et al. 2001; McCormick and Weaver 2012) and direct interactions among 73 

individuals, like interference competition and territoriality, are often mediated by aggressive 74 

behaviour (Peiman and Robinson 2010). Coral-reef fish often use aggression to secure 75 

resources (e.g., Myrberg and Thresher 1974; McCormick and Weaver 2012), including food 76 

(Jones 1986), territories (Myrberg and Thresher 1974) and refuge from competitors and 77 

predators (Shulman 1984). For example, juveniles and small fish, which are especially 78 



vulnerable to predation, aggressively interact for feeding locations close to the reef, where 79 

both food and refuge from predation are available (McCormick 2009). Aggression can affect 80 

an individual's fitness by influencing resource intake, growth, survival, and reproductive 81 

success (Peiman and Robinson 2010), and the ratio of intraspecific to interspecific aggression 82 

indicates whether the negative effects of aggression primarily influence conspecific or 83 

heterospecific individuals. 84 

 Loss of structural complexity can potentially increase aggression, by increasing the 85 

frequency with which individuals encounter each other, and/or because there are fewer 86 

resources available, which leads to enhanced aggression to obtain resources (Schoener 1987; 87 

Barley and Coleman 2010). Indeed, a decrease in the availability of refuges led to more 88 

intense aggression in temperate reef fish (Basquill and Grant 1998) and freshwater fish (Baird 89 

et al. 2006; Barley and Coleman 2010). Loss of coral health increased the intensity of intra- 90 

and interspecific aggression in juvenile coral-reef fishes (McCormick 2012), with smaller and 91 

competitively inferior individuals being pushed further from refuges, exposing them to higher 92 

predation-induced mortality (McCormick 2009,2012). Further research is required to assess 93 

whether and how intra- and interspecific aggression is likely to change on future coral reefs 94 

given predicted changes in coral community composition and associated declines in structural 95 

complexity and live-coral cover.  96 

 In this study, coral composition was manipulated on patch reefs in a coral-reef lagoon 97 

to mimic climate-change impacts, and differences in abundance and diversity, and aggressive 98 

behaviour, of juvenile coral-reef fishes were monitored. Juveniles of three reef-fish 'focal' 99 

species were investigated (Pomacentrus moluccensis, P. amboinensis and Dischistodus 100 

perspicillatus, representing species with decreasing order of reliance on live coral). 101 

Specifically, we assessed if differences in coral composition lead to (1) a decrease in total fish 102 

abundance and diversity (pooled across all species and life-history stages), and a decrease in 103 



focal juvenile fish abundance, and (2) an increase in the intensity, and changes in the nature 104 

of, aggressive interactions instigated by juvenile coral-reef fish. These results provide insight 105 

into how habitat degradation is likely to affect fish abundance and behaviour.  106 

 107 

Materials and methods 108 

Experimental design and study site 109 

 To examine how changes in coral composition under climate change affected 110 

abundance and diversity of coral-reef fishes, and the incidence of aggressive behaviour within 111 

and between juvenile reef-fish species, patch reefs were constructed in October 2013 at Lizard 112 

Island, northern Great Barrier Reef (GBR), Australia (14°41'S, 145°27'E). Sixteen patches 113 

were constructed with two distinct treatments: (1) 'climate-vulnerable' patch reefs (n=8), 114 

which consisted of six coral species that are currently abundant and relatively sensitive to 115 

coral bleaching, and (2) 'climate-robust' patch reefs (n=8), which consisted of six coral species 116 

that have moderate or low susceptibility to coral bleaching, simulating what coral 117 

assemblages may consist of in the future (Table 1). The coral species for these assemblages 118 

were chosen based on their bleaching vulnerability according to recent studies that have 119 

recorded the response of coral taxa and coral community-composition after large-scale natural 120 

bleaching events (Marshall and Baird 2000; Loya et al. 2001; McClanahan et al. 2007). For 121 

the present study, all chosen coral species were also naturally abundant at the study location.  122 

 Patch reefs were constructed using live corals on a rubble base, on a shallow sand flat 123 

in the lagoon at Lizard Island, in water between 2.5 and 5 m deep. The percentage cover of 124 

live coral was measured using line-intercept transects, in which a transect line was placed 125 

over each patch reef, and subsequent coral cover calculated as the ratio between the length of 126 

the transect covering live coral, compared to the total length of the transect. Structural 127 



complexity was defined as the physical three-dimensional structure of the patch reef, and was 128 

expressed as a rugosity index, displaying the ratio between the linear distance covered when 129 

the chain was pulled taught, compared to the distance when the chain was draped over the 130 

contours of the reefs (Graham and Nash 2013), meaning a higher rugosity ratio indicated 131 

higher structural complexity. Because coral composition, coral cover, and structural 132 

complexity co-vary in nature, we did not attempt to separate these three variables in our study. 133 

Hence, manipulating coral composition meant that coral cover and structural complexity were 134 

significantly higher on climate-vulnerable than on climate-robust patch reefs (coral cover, 135 

log10(x+1)-transformed data: t-Test, t2,14=-6.08, p<0.0001; structural complexity, log10(x+1)-136 

transformed data: Welch Modified two-sample t-Test, t2,12.31=-3.33, p<0.01).  On average, 137 

coral cover was 53.5% (SE ±1.46) on climate-vulnerable reefs, compared to 31.3% (SE ±3.4) 138 

on climate-robust reefs. All patch reefs showed moderate structural complexity, but this was 139 

higher (mean 2.04 SE ±0.05) on climate-vulnerable reefs compared with climate-robust reefs 140 

(mean 1.73 SE ±0.08).  This difference meant there was a substantially lower availability of 141 

refuges for fishes on climate-robust reefs.  Treatment was randomly allocated to the patch 142 

reefs. Patch reefs were on average 1.5 m in diameter, and separated by at least 15 m of sand 143 

from other patches and natural reefs. Patches were constructed immediately before the main 144 

part of the fish recruitment season, which takes place on the GBR between November and 145 

January (e.g., Kerrigan 1996). Data for the present study were collected at the end of the main 146 

recruitment season, in January - February 2014. Juveniles living on the patch reefs were 147 

assumed to have naturally recruited during previous months, as juvenile movement between 148 

separated patches of reef tends to be minimal (Doherty 1982; Almany and Webster 2006).  149 

 150 



Focal species 151 

 Preliminary surveys conducted in early December 2013 indicated that 18-40 fish 152 

species were present on the patch reefs, with a total abundance of 46-213 fish per patch reef. 153 

Focal species for the present study were selected based on their abundance on these reefs, and 154 

also on whether they interacted aggressively, and differed in their dependence on live-coral 155 

habitat. This project focused on aggressive interactions instigated by juveniles, because 156 

aggressive behaviour is common between juveniles (e.g., McCormick 2012), and juveniles 157 

have a critical role in replenishing adult populations. Three focal species were selected: (1) 158 

Pomacentrus moluccensis, (2) Pomacentrus amboinensis and (3) Dischistodus perspicillatus. 159 

P. moluccensis is an obligate coral-dweller, P. amboinensis is a coral associate and D. 160 

perspicillatus is a non-coral associate (Randall et al. 1997; Coker et al. 2014). P. moluccensis 161 

and P. amboinensis are both planktivores that feed in the water column, preferentially settle 162 

onto live, healthy coral (McCormick et al. 2010) and compete for shelter at settlement 163 

(McCormick and Weaver 2012). Within two months after settlement, these two species 164 

occupy distinct microhabitats: P. moluccensis occupies live coral at the top of the reef, while 165 

P. amboinensis occupies the base of the reef (McCormick and Weaver 2012). D. 166 

perspicillatus is associated with sand and rubble, feeds on algae and detritus (Randall et al. 167 

1997) and aggressively defends its territory from adult conspecifics and heterospecifics 168 

(Randall et al. 1997; Bay et al. 2001).  P. moluccensis reaches a maximum adult length of 7.5 169 

cm, P. amboinensis 11 cm, and D. perspicillatus 20 cm (Randall et al. 1997). Juveniles of P. 170 

amboinensis on the patch reefs were found to be between 1.5 - 6 cm, P. moluccensis 1.5 - 6.5 171 

cm, and D. perspicillatus 1.5 - 7 cm (see Electronic Supplementary Material). The few 172 

individuals larger than these size thresholds were assumed to have migrated to the reef 173 

patches from nearby reefs, and were excluded from analysis. Preliminary surveys indicated 174 

that adults of the focal species used the habitat distinctly different from juveniles (see 175 



Electronic Supplementary Material), and that aggressive interactions between adults and 176 

juvenile conspecifics were rare.   177 

 178 

 179 

Initial fish abundance and diversity and focal juvenile abundance through time 180 

 To examine how changes in coral composition affected total fish diversity and 181 

abundance, the abundance and size of all fish (all species and life-history stages) was sampled 182 

by visual census on SCUBA on all patches on 28/29 January 2014. Differences in total fish 183 

abundance and diversity between patch reef treatments were analysed using t-tests on 184 

log10(x+1)-transformed data. To examine changes in abundance through time of focal 185 

juveniles, and whether these changes were consistent between treatments, the abundance and 186 

size of focal species were sampled on each patch reef every 4-5 days for 20 days (at t=0, t=4, 187 

t=10, t=15, t=20 days). Variation in initial abundance through time for juveniles of the focal 188 

species was tested using a linear mixed effects model, with dependent variable 189 

log10(abundance+1), with reef included as a random factor to account for repeated measures 190 

of reefs, and independent variables time, treatment and species.  191 

 192 

Intensity and nature of aggressive interactions 193 

 Video observations were used to examine how changes in coral composition affected 194 

the intensity and nature of aggressive interactions. Go Pro Hero 3 cameras were mounted on a 195 

small concrete block that was positioned approximately 20 cm above the sand and 50 cm 196 

away from patch reefs. The cameras were deployed on the side of the patch where most 197 

juvenile focal species were present. Video observations were made in the morning while fish 198 

were actively feeding. At the beginning of each video, a measuring stick of one meter was 199 



placed at several positions on the reefs to serve as a scale bar to enable later estimation of fish 200 

size from the videos, enabling juveniles to be distinguished from adults. Video recording was 201 

continuous for at least 50 minutes per patch and was replicated two times per patch reef, on 7-202 

8 February 2014, and again on 17-18 February 2014, with video recordings of four reef 203 

patches per treatment per day. 204 

 During subsequent video analysis, the number and characteristics of aggressive chases 205 

were analysed. Aggressive chases were characterised as rapid movement in the direction of 206 

another fish accompanied by flaring of the fins, and could be easily distinguished from 207 

general swimming activities on the videos. For each video, a random ten minute fragment was 208 

viewed, at least ten minutes into the recording period and 20 minutes from the end, to 209 

minimize effects of diver presence. From each video segment the following variables were 210 

recorded for each aggressive chase: fish species of the chaser and chased fish, and if the 211 

chased fish used the substratum (coral or rubble) to find refuge from or divert the chaser. 212 

Refuges were used by both the chaser and the chased fish during aggressive interactions, but 213 

could also be used to hide from nearby predators. However, because predator-associated 214 

refuge use was rare in our data (it was only observed once), and this was not the direct focus 215 

of this paper, this specific behaviour was excluded from analysis. The nature and intensity of 216 

aggressive interactions of juvenile focal fish on reefs with differing coral composition was 217 

characterised with the following variables: (1) total number of chases instigated by a juvenile 218 

focal species (regardless of species identity of the chased fish), (2) total number of chases 219 

instigated by a juvenile focal species, standardised for total fish abundance (across all species 220 

and life-history stages), (3) intraspecific:interspecific ratio of aggressive chases, (4) use of 221 

substratum (coral or rubble) by a chased juvenile focal species to find refuge from or divert 222 

the chaser.  223 



The number of chases was used as a proxy for the intensity of aggression. Where fish 224 

go when they are chasing or being chased has potential implications for mortality, because 225 

fish that do not use the substratum during aggressive chases are potentially more vulnerable to 226 

predation, especially when they are less vigilant while chasing or being chased (Carr et al. 227 

2002). In addition, predation rates tend to be higher on bleached and dead coral (rubble) 228 

compared to live coral, as fish are generally more visible against the pale/white background of 229 

dead coral (Coker et al. 2009). Hence, a loss of live-coral cover, structural complexity and 230 

refuges may indirectly increase predation rates. Reefs where abundance of a focal species was 231 

zero were excluded from analysis of aggressive interactions instigated by that particular 232 

species. Differences between treatments in the total number of chases, and number of chases 233 

standardised by total fish abundance were analysed using two linear mixed effects models, 234 

with dependent variables respectively log10(x+1) number of chases and standardised number 235 

of chases, independent variables treatment and species, and reef included as a random effect. 236 

There was quite high variation in the amount of aggressive chases between replicate samples 237 

of each reef. In addition, the intensity of intraspecific compared with interspecific aggression 238 

was expressed as a ratio (intraspecific:interspecific). This ratio and the use of substratum 239 

during aggression on climate-vulnerable and climate-robust reefs were expressed as relative 240 

frequencies and analysed using Pearson's Chi-squared tests on untransformed data.  241 

 242 

Results 243 

Effect of coral composition on fish abundance and richness 244 

 Total fish abundance (across all species and life-history stages) was not significantly 245 

different between climate-vulnerable and climate-robust reefs (Fig. 1a) (t2,14=-2.07, p=0.057). 246 

Similar overall abundances of fishes on the climate-robust versus climate-vulnerable reefs 247 



were also related to the fact that some species were equally abundant on both reef types (e.g., 248 

P. amboinensis), some species decreased in abundance on climate-robust reefs (e.g., Apogon 249 

doederleini) and other species increased in abundance (e.g., Apogon cyanosoma). Residual 250 

variation in fish abundance was not correlated with the variation in structural complexity or 251 

coral cover between reefs within treatments. Total fish species richness (across all species and 252 

life-history stages) was significantly higher on climate-vulnerable reefs (t2,14=-3.31, p<0.01), 253 

which had, on average, 1.6 times more species than climate-robust reefs (Fig. 1b). These 254 

results indicate that reefs with climate-vulnerable coral species, and therefore high coral cover 255 

and high topographic complexity, support more fish species per unit area, but approximately 256 

equivalent (and variable) fish abundances.  257 

 The abundance of juveniles of all focal species was largely consistent across the 258 

sampling period, regardless of coral composition (i.e., no ‘time’ effect, Table 2). However, 259 

coral composition had species-specific effects on juvenile fish abundance: P. moluccensis was 260 

7.5 times more abundant on climate-vulnerable reefs, while the abundance of P. amboinensis 261 

and D. perspicillatus were approximately equal between treatments (species*treatment 262 

interaction, Table 2; Fig. 2).  263 

 264 

Effect of coral composition on aggressive interactions  265 

 On climate-vulnerable reefs, the total number of chases instigated by juveniles of the 266 

three focal species was not statistically significant different between climate-vulnerable and 267 

climate-robust reefs (Table 3).. P. amboinensis instigated a significantly higher number of 268 

total chases than P. moluccensis and D. perspicillatus (Fig. 3a; Table 3). When the number of 269 

aggressive chases was standardised for total fish abundance on each patch reef, differences 270 

between treatments were reduced and remained non-significant (Fig. 3b; Table 4).  271 



 The ratio between intra- and interspecific aggressive chases ('who chases who') 272 

significantly differed among the focal species and coral-composition (Fig. 4). Chases 273 

instigated by juvenile P. moluccensis were mainly interspecific, and the proportion of 274 

interspecific chases compared to intraspecific chases was significantly higher on climate-275 

robust compared with climate-vulnerable reefs (χ2=5.22, df=1, p<0.05) (Fig. 4). However, the 276 

intraspecific:interspecific ratio was approximately equal across treatments for P. amboinensis 277 

(χ2=1.56, df=1, p=0.21) and D. perspicillatus (χ2=0.36, df=1, p=0.55) (Fig. 4).  278 

 On climate-robust and climate-vulnerable reefs, there were differences in substratum 279 

use to find refuge from chasers for all three focus species, and the focal species also showed 280 

differential use of the substratum among each other(P. moluccensis: χ2=12.84, df=2, p<0.01; P. 281 

amboinensis: χ2=152.89, df=2, p<0.0001; D. perspicillatus: χ2=7.97, df=2, p<0.05) (Fig. 5). The 282 

proportion of chases in which the chased fish sought refuge from aggression in live coral was ~2 283 

– 3 fold higher on climate-vulnerable reefs for all species (Fig. 5). The proportion in which 284 

rubble was used in aggressive chases was higher on climate-robust than on climate-vulnerable 285 

reefs for P. amboinensis (Fig. 5), whereas the opposite trend was observed for D. perspicillatus. 286 

In contrast, chased P. moluccensis were not observed to use rubble on climate-vulnerable reefs, 287 

and only in a very small proportion of the cases on climate-robust reefs (Fig. 5). 288 

 289 

Discussion 290 

 The coral species compositions of climate-vulnerable and climate-robust patch reefs 291 

used in this study reflect a plausible future composition of coral species under ocean warming 292 

scenarios. This is the first study actively manipulating coral composition to mimic climate-293 

impacts that examines the abundance of, and interactions between, juvenile coral-reef fishes. 294 

Results showed that climate-robust reefs support a lower total species richness of reef fishes 295 



compared to climate-vulnerable reefs, but have similar overall abundances, likely because 296 

responses to coral-composition are species-specific. Between coral compositions, there were 297 

differences in the nature of aggressive interactions, in terms of who chases who and where 298 

fish go when they are being chased: the intra:interspecific ratio of aggression was lower for 299 

the obligate coral-dwelling fish (P. moluccensis), and juvenile fish used the substratum less 300 

often to avoid aggression from competitors on climate-robust reefs. However, the overall 301 

intensity of aggression did not differ between climate-vulnerable and climate-robust reefs, 302 

congruent with the consistent total fish abundance across both coral compositions. 303 

 Coral composition expected under climate-change supported lower total species 304 

richness than on present-day reefs. This finding is congruent with other studies that have 305 

found negative effects of habitat degradation on species richness, both in coral-reef fishes (as 306 

reviewed by Pratchett et al. 2011), and in other taxa, including invertebrates (Dean and 307 

Connell 1987), birds (MacArthur and MacArthur 1961; Karr and Roth 1971) and insects 308 

(Lawton 1983). However, total abundance of coral-reef fishes (across all species and life-309 

history stages) was consistent across coral compositions. Loss of live-coral cover seems to 310 

have selective effects on coral-reef fishes, based on their dependence on live coral for food 311 

and refuges (as reviewed by Wilson et al. 2006; Pratchett et al. 2008; Pratchett et al. 2011). 312 

Hence, the absence of an effect of coral composition (and related lower coral cover and 313 

structural complexity) on total fish abundance may be because some species can increase in 314 

abundance following coral loss while others decrease. However, to resolve the effects of 315 

changing coral composition on the relative abundances of reef fishes in general, future studies 316 

are required that manipulate coral composition and monitor the community composition of 317 

coral-reef fish over a longer time period.   318 

 Coral composition affected the ratio of intraspecific to interspecific aggression ('who 319 

chases who'). On climate-robust reefs, the relative importance of interspecific interactions was 320 



higher than on climate-vulnerable reefs for juveniles of the obligate coral-dweller P. 321 

moluccensis, while overall aggression was independent of reef type. The high interspecific 322 

aggression on climate-robust reefs instigated by P. moluccensis may have been an effect of 323 

the lower abundance of this species on these reefs compared to the climate-vulnerable reefs. 324 

Although it was beyond the scope of this study, the ratio of intraspecific to interspecific 325 

aggression may ultimately have important implications for fish community composition, 326 

because it indicates whether the negative effects of aggressive interactions will tend to 327 

exclude conspecifics or heterospecifics from reef patches. To understand the relative impacts 328 

of intra- versus interspecific aggression on individuals and populations, longer term studies 329 

are required, monitoring recruitment, growth and survival of tagged individuals. Also, future 330 

studies are required to determine whether and how local abundances of particular species and 331 

their competitors mediate the levels of intraspecific and interspecific competition, and how 332 

such patterns depend on resource availability.  333 

 This is the first study to demonstrate that coral-reef fish use the substratum differently, 334 

in terms of where they go to avoid aggressive interactions under different coral compositions. 335 

On climate-robust reefs, juvenile reef fish seem to partly compensate for a lower availability 336 

of coral by using rubble more frequently than on climate-vulnerable reefs. However, the 337 

number of 'unsheltered' chases was also higher on climate-robust reefs, likely as a result of the 338 

lower structural complexity on these reefs. On future reefs, this lower frequency of shelter-use 339 

could lead to higher predation-related mortality rates. Small-bodied fishes, like the juveniles 340 

examined in this study, are highly susceptible to predation, and often depend on specific 341 

microhabitats to evade predators (Hixon and Beets 1993; Beukers and Jones 1997), making 342 

them especially vulnerable to habitat degradation and changes in coral composition. Although 343 

no changes in fish abundance were observed over time during the course of this study, the 344 

limited availability of refuges on climate-robust reefs may result in higher predation mortality 345 



in the longer term compared to reefs with present-day coral composition (Beukers and Jones 346 

1997; Almany 2004b; Graham et al. 2007), in particular, if fish are less vigilant to predators 347 

while chasing or being chased (Carr et al. 2002).  348 

 Contrary to expectations, the overall intensity of aggressive interactions was 349 

approximately equal on climate-vulnerable and climate-robust reefs.. This indicates that 350 

aggression may be more strongly related to fish abundance compared with coral composition 351 

and other habitat limitations. To date, no studies have examined the effect of coral 352 

composition on aggression dynamics in fishes, but some studies have been conducted on the 353 

effect of declining habitat complexity (Basquill and Grant 1998; Baird et al. 2006; Barley and 354 

Coleman 2010) and coral health (McCormick 2012) on aggression. In contrast to our results, 355 

declining habitat complexity has been associated with an increase in the rate of aggression 356 

(Basquill and Grant 1998; Baird et al. 2006), the total time spent interacting with competitors 357 

and chasing competitors (Baird et al. 2006; Barley and Coleman 2010), number of bites 358 

directed at subordinate fish (Barley and Coleman 2010) and monopolization of food (Basquill 359 

and Grant 1998) for temperate reef fish and freshwater fish. Also, as coral health declined, the 360 

intensity of aggression of a coral-reef fish toward a competing species increased (McCormick 361 

2012). The abundance of fish on the patch reefs used in this study was much higher than 362 

observed in previous studies on (artificial) temperate reefs (Basquill and Grant 1998), on 363 

small patch coral-reefs (McCormick 2012) and in freshwater systems (Baird et al. 2006; 364 

Barley and Coleman 2010), where sometimes only two individuals per trial were used. As the 365 

costs of aggression are known to outweigh the benefits when abundance of competitors is 366 

high (Grant 1993), the absence of an effect of coral composition and subsequent differences in 367 

habitat complexity on the intensity of aggression in the present study might be driven by the 368 

relatively high abundance of fish across treatments.  369 



 While this study increases our understanding of behavioural interactions between 370 

individuals in coral-reef fishes under climate-induced changes in coral composition, the study 371 

also has several limitations.  First, unambiguously assigning causality in this study is 372 

complicated: coral composition, coral cover and habitat complexity all varied between 373 

climate-vulnerable and climate-robust reefs. This was a deliberate choice of the study design, 374 

as these variables are confounded in nature. Quantifying the relative importance of 375 

complexity versus coral composition on reef fish competition would require further studies 376 

using an experimental set up of coral reefs with the same complexity but different coral 377 

species composition. Second, there was quite high variation (error bars 12-48% of the mean 378 

number of chases) in the total number of aggressive interactions between reefs within 379 

treatments. Video analysis was used in this study because aggressive interactions are 380 

numerous on these reefs and occur too quickly to be observed accurately on SCUBA. More 381 

frequent sampling would help to resolve the drivers of changes in fish behaviour as coral 382 

community composition changes. Third, aggressive interactions among individuals can have 383 

important effects on outcomes other than abundance, as has for example been shown for 384 

feeding rates, growth rates, weight and body condition (Jones 1987; Höjesjö et al. 2004; 385 

McCormick and Lönnstedt 2013). As body size and fecundity are closely related in most 386 

coral-reef fishes (Kuwamura et al. 1994; Hobbs and Munday 2004), longer term studies 387 

monitoring growth and adult fecundity will be useful to determine longer-term effects of 388 

aggressive behaviour on vulnerable and robust reefs on community composition of reef fishes. 389 

Fourth, the presence and abundance of adult fishes can have major effects on the recruitment, 390 

behaviour and abundance of fishes (Almany 2004a,b; Lecchini et al. 2005). Hence, future 391 

studies examining the effect of coral composition under climate-change on recruitment, 392 

priority effects and post-recruitment survival and behaviour will give a more comprehensive 393 

understanding of how habitat change affects coral-reef fishes.  394 



 This study highlights the importance of coral composition for coral-reef fishes in terms 395 

of species richness and  interactions between fishes. This is the first study to show that 396 

specific differences in coral composition that are independent of coral health, and are 397 

mimicking present-day coral composition and coral composition predicted under climate 398 

change, are linked to species-specific differences in the ratio of intra:interspecific aggression, 399 

and where fishes go in the substratum when they are being chased. Predictions of how 400 

community composition of reef fishes will change as a result of climate change depends on 401 

understanding what mechanisms are driving the effects of climate-induced changes in coral 402 

composition on reef fish communities. To contribute to addressing this knowledge gap, the 403 

present study has shown that changes in coral composition affected the nature and intensity of 404 

aggression in juvenile reef fishes.  405 
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Figure legends 545 

Fig. 1 (a) Total fish abundance, across all species and life-history stages, expressed as average number of fish 546 

per patch reef, and (b) species richness, pooled across all fish species and life-history stages, expressed as 547 

average number of fish species per patch reef, both including all species of reef-fish and life-history stages, on 548 

climate-vulnerable and climate-robust reef patches. * indicates a significant difference between treatments at 549 

p=0.05 or lower; error bars indicate standard errors. 550 

Fig. 2 Average abundance of juvenile Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus 551 

on climate-robust and climate-vulnerable reefs. Values are the number of juvenile focal species per patch reef. * 552 

indicates a significant difference between treatments at p=0.05 or lower.  553 

Fig. 3 (a) Average total number of chases, and  (b) average number of chases standardised for total fish 554 

abundance, instigated by a juvenile focal species, on climate-robust and climate-vulnerable reefs. Values indicate 555 

number of aggressive chases per ten minute video fragment per patch reef.  556 

Fig. 4 Relative frequency of intraspecific and interspecific aggressive chases instigated by juveniles of the three 557 

focal species, on climate-robust and climate-vulnerable reefs. * indicates a significant difference between 558 

treatments for that particular species at p=0.05. 559 

Fig. 5 Relative frequency with which chased individuals of the focal species use the substratum to seek refuge 560 

from, or divert juvenile focal chasers on climate-robust and climate-vulnerable reefs. * indicates a significant 561 

difference between treatments for that particular species at p=0.05 or lower. 562 
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