
Palmer et al (2016) (M,R) as X-machine

1

Rosen’s (M,R) System as an X-Machine 1

Michael L. Palmer1, Richard A. Williams2 and Derek Gatherer1* 2

 3

1Division of Biomedical & Life Sciences, Faculty of Health & Medicine, 4

Lancaster University, Lancaster LA1 4YW, UK 5

2Department of Management Science, Management School, Lancaster 6

University, Lancaster LA1 4YW, UK 7

 8

*Corresponding author 9

Email: d.gatherer@lancaster.ac.uk 10

 11

mailto:d.gatherer@lancaster.ac.uk

Palmer et al (2016) (M,R) as X-machine

2

 12

Abstract 13

 14
 15
Robert Rosen's (M,R) system is an abstract biological network architecture that is 16

allegedly both irreducible to sub-models of its component states and non-17

computable on a Turing machine. (M,R) stands as an obstacle to both reductionist 18

and mechanistic presentations of systems biology, principally due to its self-19

referential structure. If (M,R) has the properties claimed for it, computational 20

systems biology will not be possible, or at best will be a science of approximate 21

simulations rather than accurate models. Several attempts have been made, at both 22

empirical and theoretical levels, to disprove this assertion by instantiating (M,R) in 23

software architectures. So far, these efforts have been inconclusive. In this paper, 24

we attempt to demonstrate why - by showing how both finite state machine and 25

stream X-machine formal architectures fail to capture the self-referential 26

requirements of (M,R). We then show that a solution may be found in 27

communicating X-machines, which remove self-reference using parallel 28

computation, and then synthesize such machine architectures with object-29

orientation to create a formal basis for future software instantiations of (M,R) 30

systems. 31

 32

1. Introduction 33

The quest for mechanistic explanation in biology reflects a long-standing 34

commitment to avoid the error of Molière’s physician, who explained opium’s sleep-35

Palmer et al (2016) (M,R) as X-machine

3

inducing properties as being caused by its virtus dormitiva (Molière, 1673). 36

Mechanism asks the question: “how does it work?” and expects a non-tautologous 37

answer couched in some kind of machine-like analogy. If the mechanistic 38

explanation is also a reductionist one, it will situate that machine-like analogy at a 39

lower level of biological organization. “How does an organism work?” might be 40

explained in terms of the mechanism of organs; “how does an organ work?” in terms 41

of the mechanism of cells; and “how do cells work?” in terms of molecular 42

mechanisms. Intermediate levels are easy to insert – gene or metabolic regulatory 43

networks might be placed between molecules and cells, or organelles between cells 44

and molecules. The layered hierarchy of explanations is mirrored by a corresponding 45

hierarchy of research disciplines, from population biologists at the top, through 46

organismal zoologists and botanists to physiologists, then cell biologists, systems 47

biologists and biochemists, with molecular biophysicists occupying the layer where 48

biology shades imperceptibly into quantum organic chemistry. 49

 50

The concept of levels of understanding of the natural world and their corresponding 51

inter-dependent allocation of scientific labour goes as far back as Auguste Comte in 52

the early 19th century (Comte, 1830; Lenzer, 1998), and a recognisably modern 53

formulation emerged from the interwar Vienna Circle group of philosophers (Carnap, 54

1934), but its central place in the minds of modern biologists was finally cemented 55

by Francis Crick (1966; 1981) and Jacques Monod (1971). Such reductionism has 56

always had its critics (Elsasser, 1998; Polanyi, 1968; Rosen, 1991; Waddington, 1968), 57

and their successors have grown bolder since the advent of an explicitly anti-58

reductionist strand in systems biology (reviews by Gatherer, 2010; Mazzocchi, 2012). 59

Palmer et al (2016) (M,R) as X-machine

4

 60

Even if current “how does it work?” questions in systems biology can no longer rely 61

so heavily on reductionist answers, it is harder to dispense with mechanistic ones. 62

Even if a modern systems biologist does not believe that the function of a particular 63

regulatory network can be understood in terms of a composite understanding of its 64

parts, nevertheless a non-reductive explanation will still be likely to contain 65

machine-like analogies of some kind. The roots of mechanistic explanation in biology 66

are even deeper than those of reductionism, perhaps as far back as the 17th century 67

(reviewed by Letelier et al., 2011) – otherwise the audiences of 1673 could scarcely 68

have appreciated Molière’s joke concerning virtus dormitiva - and were completely 69

in the ascendency by the early 20th century (Loeb, 1912). In the era of molecular 70

biology, opposition to mechanism has been sporadic and muted. 71

 72

Robert Rosen made it his life’s work to question both reductionist and mechanist 73

strategies in biology. Developing the mathematical techniques of relational biology 74

originated by Rashevsky (1973), Rosen conceived an abstract model, (M,R), always 75

written with brackets and usually in italics (Figure 1), which he claimed encapsulated 76

the properties of a living system but was irreducible to its component parts (Rosen, 77

1964a; 1964b; 1966; 1991; 2000). Goudsmit (2007) redrew the (M,R) diagram in a 78

way that is more comprehensible to biochemists, implicitly recasting (M,R) as a 79

representation of a biochemical network consisting of three reactions, each of which 80

produces a catalyst for one of the other reactions. Rosen’s intentions were more 81

general, presenting (M,R) as consisting of three broad processes found in all living 82

systems: metabolism, repair and replication. Metabolism is represented by the A→B 83

Palmer et al (2016) (M,R) as X-machine

5

process, repair by B→f and replication by f→ϕ, generating respectively the catalysts 84

necessary for metabolism, and in turn the catalysts for synthesis of those catalysts. 85

 86

Figure 1 a: The Goudsmit representation of the (M,R) system. b: (M,R) diagram of 87

Rosen. In the Goudsmit representation, productive reactions are shown using the 88

black arrows and catalytic requirements using the red dotted arrows. In the (M,R) 89

diagram of Rosen, the productive reactions are presented as open-headed arrows 90

and the catalytic reactions as fill-headed arrows. The placement of the catalytic 91

arrowheads is also on the substrate of the productive reaction. 92

 93

The essence of Rosen’s argument (Rosen, 1991) is that although each of the 94

components of (M,R) can be understood as a machine, and therefore may be 95

susceptible to mechanistic explanation, the whole cannot and may not. 96

Furthermore, a model of the whole cannot be built additively from models of the 97

Palmer et al (2016) (M,R) as X-machine

6

components. (M,R) is thus not only non-mechanistic but also irreducible, and insofar 98

as (M,R) is an accurate general model of a living system, much of modern biology 99

therefore relies on an explanatory framework that is deemed unfit for purpose. 100

 101

An attempt to prove Rosen’s argument has been advanced by Louie (2005; 2007b; 102

2009), who has used category theory to express (M,R) in terms of sets of mappings, 103

and to demonstrate that (M,R) contains an impredicative set, rendering it non-104

computable in finite time on a Turing machine (Radó, 1962; Turing, 1936; Whitehead 105

and Russell, 1927). There is no space here to reproduce Louie’s proof but, in 106

summary, impredicativity is the condition arising when a set is a member of itself, 107

and impredicativity may emerge in any mathematical analysis of a system that is self-108

referential. The individual processes within (M,R) are computable in finite time but, 109

when assembled, self-reference is unavoidable and the whole (M,R) ceases to be 110

computable. (M,R)’s irreducibility to computable software components mirrors life’s 111

irreducibility to mechanistic sub-processes. 112

 113

Relational biology, in the form conceived by Rosen and Louie, has been vigorously 114

debated (Chu and Ho, 2006; 2007a; 2007b; Goertzel, 2002; Gutierrez et al., 2011; 115

Landauer and Bellman, 2002; Louie, 2004; 2007a; 2011; Wells, 2006), and the alleged 116

non-computability of (M,R) has also inspired various attempts to instantiate it in 117

software systems (reviewed in Zhang et al., 2016). Relational biologists do not deny 118

that an approximation to (M,R), capable of running on a Turing computer, could be 119

created. Crucially, however, such an approximation would not capture all the 120

properties of the (M,R) system. It would be merely a simulation, rather than a true 121

Palmer et al (2016) (M,R) as X-machine

7

model. The distinction between simulation and model is central to relational 122

biology’s critique of computational systems biology. Simulations may accurately 123

mirror the inputs and outputs of a system, and indeed would need to do so to be 124

judged as good simulations, but their internal causal factors – their entailment 125

structures, in Rosen’s terminology – could merely be arbitrary approximations, 126

“black boxes” which may be pragmatically useful but essentially are the creation of 127

the programmer. A true model, by contrast has entailment structures which logically 128

mirror those of the real world, and correctly formed models are necessary for a 129

genuine understanding of the system being modelled (Louie, 2009; Rosen, 1991; 130

2000). Weather forecasting, for instance, is largely conducted by simulation, with 131

computers processing current weather data in the light of previous records and 132

making a prediction for the future. Rocketry, by contrast, calculates the future 133

position of a space satellite on the basis of data on its current physical situation and 134

precise models derived from the laws of physics. Both may require complex 135

calculations, but the weather forecaster does not pretend to understand, or 136

calculate, every influence on the weather. Rocketry, by contrast, does claim a true 137

understanding of all factors influencing the rocket’s trajectory in space. Rocket 138

science uses a model, weather forecasting uses a simulation. Relational biologists 139

would claim that our current approach to the analysis of complex biological systems 140

has much more in common with weather forecasting than rocket science. 141

 142

In keeping with this, Louie (2011, section 2) has judged some of the software 143

instantiations of (M,R) produced so far to be simulations rather than models, and 144

this has been acknowledged by some of the authors concerned (Gatherer and 145

Palmer et al (2016) (M,R) as X-machine

8

Galpin, 2013; Prideaux, 2011). Similarly, other mathematical re-workings of (M,R) 146

which provide theoretical bases for computability, if not actual software 147

instantiations (Landauer and Bellman, 2002; Mossio et al., 2009), have been likewise 148

found lacking in various necessary aspects (Cardenas et al., 2010; Letelier et al., 149

2006). 150

 151

Much of the controversy is dependent on Rosen’s original definition of machine and 152

mechanism (Rosen, 1964a; 1964b; 1966; 1991) which essentially stems from that of 153

Turing (1936). However, since then, an expanded conception of the nature of 154

machines has begun to develop, in particular the notion of X-machines (Coakley et 155

al., 2006; Holcombe, 1988; Kefalas et al., 2003a; 2003b; Stamatopoulou et al., 2007). 156

We believe that the current impasse over the irreducibility of (M,R) may be resolved 157

by reconsidering (M,R) in terms of a communicating X-machine, and that is the 158

subject of this paper. 159

 160

In the Methods section we show how various formal machine architectures – namely 161

finite state machine, stream X-machine and communicating X-machine - are 162

conceived in abstract terms. We show how these formal architectures exist in a 163

series – stream X-machines expanding on finite state machines, and communicating 164

X-machines representing a further widening in scope and properties. We then 165

repeat this process, casting (M,R) in terms of each formal machine architecture, 166

pointing out the difficulties where appropriate. The stream X-machine is shown to 167

add flexibility to the finite state machine, but nevertheless still fails to express all the 168

properties of (M,R). Then, the communicating X-machine composed of stream X-169

Palmer et al (2016) (M,R) as X-machine

9

machine components is shown to be the best fit, dispensing in particular with the 170

self-reference that is the central obstacle to computability. Finally, we discuss the 171

kind of computer architecture necessary to implement such a formal machine 172

architecture. 173

 174

2. Methods 175

 176
We follow Coakley et al. (2006) in building our communicating X-machine model 177

through an iterative process of adding increasing levels of granularity regarding the 178

underlying mechanistic behaviours of the system. We attempt as far as possible to 179

reproduce the notation used in that paper, but make some small changes for two 180

reasons: a) some of the symbols of Coakley et al. (2006) duplicate those used in 181

(M,R), in which case alternatives are introduced, b) we alter some symbols to 182

emphasise points of similarity and difference between finite state machines and X-183

machines. The first step is to define the (M,R) system as a finite state machine (see 184

section 2.1), before adding the concept of memory (stream X-machine; see section 185

2.2); and ultimately the individual instantiation, as stream X-machines in their own 186

right, of the different system components, along with the resulting communications 187

between them (communicating X-machines; see section 2.3) . 188

 189

2.1 Finite State Machine 190

𝐹𝐹𝐹𝐹𝐹𝐹 = (Σ,𝑄𝑄, 𝑞𝑞0,𝐹𝐹,𝑇𝑇)
A 5-tuple where: 191

• Σ is a finite alphabet of input symbols 192

Palmer et al (2016) (M,R) as X-machine

10

• Q is the finite set of system states 193

• q0 ∈ Q is the initial system state 194

• F ⊂ Q is a set of final (or accepting states) 195

• T is the transition function (T: Q x Σ → Q) 196

The transition function governs the change from one system state, qx ∈ Q, to the 197

next, qx+1 ∈ Q, according to the input received, σx ∈ Σ. We expand the transition 198

function, adapting Keller (2001): 199

• T = {(Ti)i=1…..H,Q,Σ} 200

• q ⊂ Q 201

• σ ⊂ Σ 202

TH(qH-1, σ) is thus the final transition function in a series of H state transitions, after 203

which the system enters state F, equivalent to qH. 204

 205

Figure 2 illustrates in graphical form the principles of the finite state machine, 206

illustrating the interaction of current state and input within one or more functions to 207

produce the next state in the series. 208

 209

Palmer et al (2016) (M,R) as X-machine

11

 210

Figure 2: Finite state machine in graphical representation. Here only a single state 211

transition is represented for clarity, but if the final state is recycled to the initial 212

state, the process can iterate until an accepting state is reached. 213

2.2 Stream X-Machine 214

𝑋𝑋 = (Σ, Γ,𝑄𝑄,𝑀𝑀, 𝑞𝑞0,𝑚𝑚0,𝑇𝑇,𝑃𝑃)

An 8-tuple, where: 215

• Σ is a finite alphabet of input symbols (as for the finite state machine) 216

• Γ is a finite alphabet of output symbols 217

• Q is the finite set of system states (as for the finite state machine) 218

• M is an infinite set of memory states 219

• q0 ∈ Q and m0 ∈ M are the initial system state and initial memory state, 220

respectively 221

Palmer et al (2016) (M,R) as X-machine

12

• T is the type of the machine X, defined as a set of partial functions (T: M x Σ 222

→ M x Γ) 223

• P is the transition partial function (P: Q x T → Q) 224

The X-machine expands the finite state machine by virtue of the presence of stored 225

memory states, M and output alphabet Γ. The output alphabet can be thought of as 226

a set of signals circulating within the system or transmitted beyond the system 227

(Stamatopoulou et al., 2007). The transition partial function of the X-machine, P, 228

thus depends on current system state, qx, and another partial function, T, dependent 229

on current memory and input and which produces modified memory and output. P 230

is therefore expressible as a 2-dimensional state transition diagram. By contrast the 231

transition function of the finite state machine depends only on current system state 232

and input. 233

 234

Figure 3 illustrates in graphical form the principles of the stream X-machine. The 235

“state” component is equivalent to the finite state machine (Figure 2), with the 236

stream X-machine having an added “memory” component. 237

 238

Palmer et al (2016) (M,R) as X-machine

13

Figure 3: Stream X-machine in graphical representation. As in Figure 2, only a single 239

state transition is represented for clarity. If the new state becomes the current 240

state, and the new memory the current memory, the machine will iterate until an 241

accepting state is achieved. At each iteration a new output signal is also generated. 242

 243

 244

2.3 Communicating X-Machine 245

Stream X-machines as defined above have no capacity to communicate with each 246

other. Unlike finite state machines, they store memory and signal to the outside 247

world, but have no capacity to identify and interact with other similar stream X-248

machines in that exterior environment. The functionality to allow communication 249

between individual X-machines is added via a communication relation, R, as follows: 250

((𝐶𝐶𝑖𝑖𝑥𝑥)𝑖𝑖=1..𝑛𝑛,𝑅𝑅)

Where: 251

• 𝐶𝐶𝑖𝑖𝑥𝑥 is the i-th X-machine 252

• R is a communication relation between n X-machines 253

R is expressible as a matrix of cells(i,j) each defining specific communication rules 254

between the i-th and j-th X-machine or, less prescriptively, as a list of generic 255

communication rules that govern interaction of any X-machine with any other 256

(Coakley et al., 2006). 257

 258

Figure 4 illustrates in graphical form the principles of the communicating X-machine. 259

The “state” and “memory” components together are equivalent to the stream X-260

Palmer et al (2016) (M,R) as X-machine

14

machine (Figure 3), with the communicating X-machine having an added 261

“communication” component consisting of a list of rules governing how the X-262

machines interact. 263

 264

Figure 4: Communicating X-machine in graphical representation. As in Figure 3, 265

iteration of the system via conversion of the new state to the current state, is 266

omitted for clarity. The input-output stream of the stream X-machine is replaced by 267

a set of communications. 268

 269

3. Results 270
 271

3.1 Finite State Machine 272

Figure 1 shows how (M,R) consists of three components involved in productive 273

reactions: A, B and f. A is converted to B, B converted to f and f converted to ϕ. 274

However, these reactions must be catalysed. In one reaction this is relatively 275

Palmer et al (2016) (M,R) as X-machine

15

straightforward: B→f requires ϕ. However, the other two catalysts are more 276

complicated. B can be seen as dual-function, being the substrate for the B→f 277

reaction and also the catalyst for the f→ϕ reaction. Likewise, f is both the substrate 278

for the f→ϕ reaction and the catalyst for the A→B reaction. This issue has been 279

discussed in some detail in the (M,R) literature (Cardenas et al., 2010; Letelier et al., 280

2006; Louie, 2011; Mossio et al., 2009). We therefore define b as the catalytic 281

component of B, and f’ as the catalytic component of f. 282

 283

Mass flows within the (M,R) system from A to B/b, from B to f/f’ and from f to ϕ. 284

Our first step is therefore to attempt to express this mass flow as a finite state 285

machine using the generic definition (Coakley et al., 2006) given in section 2.1, as 286

follows. 287

 288

Input: Σ = {b, f’, ϕ} 289

System states: Q = {A, B, b, f, f’, ϕ} 290

Initial system state: q0 = {A} 291

Accepting states: F = {b, f’, ϕ} 292

Transition functions: T, of variants x ∈ {B, b, f, f’, ϕ} such that: 293

• T = {(Ti
x)i=1…..H,Q,Σ}, specifically 294

• T1
B = {T: A x f’ → B} 295

• T1
b = {T: A x f’ → b} 296

• T2
f = {T: B x ϕ → f} 297

Palmer et al (2016) (M,R) as X-machine

16

• T2
f' = {T: B x ϕ → f’} 298

• T3
ϕ = {T: f x b → ϕ} 299

 300

The input set, Σ, to the finite state machine are the catalysts, which trigger the state 301

transition functions T, but are not transformed by them. The catalysts b and f’, if 302

defined in this way, are themselves also products of the metabolic reactions, but 303

never substrates, hence their appearance as accepting states, F. The choice of 304

function Tx
B over Tx

b, or Tx
f over Tx

f', must be regarded as a stochastic choice. 305

 306

The difficulties posed for finite state machines by (M,R) relate firstly to this necessity 307

to enter a stochastic element into the transition process, and also to the role of 308

catalysts in the generic state transition function T: Q x Σ → Q. T implies a separation 309

between system state and signal, between system and environment, but catalysts 310

are required here to be both entailments in processes, i.e. input, and also the results 311

of those processes, i.e. system states. In Rosen’s definition of a finite state machine, 312

the entailments are all external, whereas in attempting to express (M,R) as a finite 313

state machine, we require the entailments – the input signals Σ - to be states of the 314

system itself, and for the system thereby to be self-referential. Since finite state 315

machines cannot have this property, we therefore produce an entity which cannot 316

be a finite state machine if it is to instantiate (M,R) and cannot be (M,R) if it is a 317

satisfactory finite state machine. 318

 319

Palmer et al (2016) (M,R) as X-machine

17

More generally, it can also be seen that mass flow trajectories through the finite 320

state machine as defined here will only encompass a subset of system states before 321

reaching their accepting states. For instance, A → B → f→ ϕ does not include f’ or b 322

among the states through which it transits. Likewise, A → B → f’ does not include b 323

or ϕ, and A → b reaches an accepting state after a single state transition, and so on. 324

Finite state machines can at best only describe sub-systems within (M,R), and cannot 325

furnish a complete description of its entirety. 326

 327

3.2 Stream X- Machine 328

Repetition of the above exercise, expanding the finite state machine representation 329

of (M,R) into a stream X-machine using the generic definition (Coakley et al., 2006) 330

given in section 2.2, does not appreciably improve the situation. Although the 331

stream X-machine benefits from the potential to possess memory states and 332

generate an output alphabet, it is not clear what these properties represent in the 333

context of (M,R). For instance, memory may be used in order to allow each of the 334

catalytic elements in the system, b, f’, ϕ, to be re-used, by storing a value 335

corresponding to the number of times that catalyst operated on a substrate. If H re-336

uses of each catalyst were allowed, this would effectively expand the system state 337

list to: 338

• Q = {A, B, b0...bH-1, f, f’0...f’H-1, ϕ0...ϕH-1, Ω} 339

Ω is added to signify the state after the H iterations have finished. The input 340

alphabet expands correspondingly: 341

• Σ = {b0...bH-1, f’0...f’H-1, ϕ0...ϕH-1} 342

Palmer et al (2016) (M,R) as X-machine

18

And the output alphabet is: 343

• Γ = {b1...bH-1, f’1...f’H-1, ϕ1...ϕH-1, Ω} 344

The number of accepting states reduces to: 345

• F = {Ω} 346

 347

We can then proceed to define the stream X-machine type, T: M x Σ → M x Γ, and 348

the partial transition functions dependent on that type, P: Q x T → Q. The mappings 349

from memory and input to memory and output constituting the type, T, are best 350

visualised in tabular form (Table 1). Memory, M, is defined as a variable that allows 351

for H re-uses of each catalyst prior to the accepting state Ω. 352

 353

 Σ
bn f'n ϕn

 0 b1+M1 f'1+M1 ϕ1+M1
M n bn+1+Mn+1 f'n+1+Mn+1 ϕn+1+Mn+1
 H Ω+M0 Ω+M0 Ω+M0

 354

Table 1: T-functions for the stream X-machine realization of (M,R). Rows M define 355

memory states over n = zero to H. Columns Σ define the inputs also over n = zero to 356

H-1. Table values define the output and next memory state. 357

 358

Table 1 illustrates the re-use of catalytic elements for H occasions. Each time a 359

catalyst is used, the memory state of the system is ratcheted up by one, and the 360

catalyst re-emerges as output. On the Hth occasion the system dies, Ω is returned 361

Palmer et al (2016) (M,R) as X-machine

19

and memory is reset to zero. Table 1, representing T: M x Σ → M x Γ, can then be 362

combined with system states in the state transition diagram, P: Q X T → Q (Table 2) 363

 364

 Q
A B b0...bH-1 f f'0...f'H-1 ϕ0...ϕH-1

 bxMx ϕ
T f'xMx B/b
 ϕxMx f/f'

 365

Table 2: P-functions for the stream X-machine realization of (M,R). Columns Q 366

define system states. Rows T define the T-functions (Table 1), over x=1 to x=H-1. 367

Table values define the next system state. Empty cells indicate invalid Q/T 368

combinations, thus generating null returns on system state. 369

 370

The rows of Table 2, T, are a compaction of Table 1, representing each combination 371

of input Σ and memory M at time x and how it interacts with the set of system 372

states, Q, to produce a new system state. Table 2 is a sparse state transition diagram 373

as {b0...bH-1, f’0...f’H-1, ϕ0...ϕH-1} ⊂ Q do not generate state transitions. As with the 374

transition functions of the finite state machine (Section 3.1), the partial functions 375

acting on A and B will produce either B or b, or f or f’, respectively with stochastic 376

distribution of probabilities. Expansion of the finite state machine to a stream X-377

machine therefore does not immediately suggest a solution to the problems of 378

defining entailment and state, or of self-reference, and therefore again falls short of 379

a mechanistic realization of (M,R). 380

 381

Palmer et al (2016) (M,R) as X-machine

20

3.3 Communicating X-Machine 382

Communicating X-machines (section 2.3) build upon the concept of stream X-383

machines so that they may be used to model at the component or sub-system level, 384

and allow communication between these individual components/sub-systems to 385

facilitate emergent behaviour at the level of the entire system. As such, 386

communicating X-machine systems are comprised of multiple instantiations of the 387

different types of stream X-machine components. For (M,R), their interactions may 388

be abstractly represented in matrix form (Table 3): 389

 390

 i

A B bx f f'x ϕx

 A

B/b+ f'x+1
 B

f/f'+ϕx-1

 bx

ϕ+ bx+1

 j f

ϕ+ bx+1
 f'x B/b+ f'x+1

 ϕx

f/f'+ϕx+1
 391

Table 3: Communication relations, R, between the ith and jth stream X-machines in 392

a communicating X-machine. Entries describe the system states of the ith and jth 393

stream X-machines after each interaction. Empty cells indicate non-interacting 394

combinations, thus generating null returns on system states. 395

 396

Unlike Table 2, which shows state/memory transitions within a single stream X-397

machine, Table 3 shows the rules governing the interaction of two stream X-398

machines. The entailments are thus external to each stream X-machine but internal 399

Palmer et al (2016) (M,R) as X-machine

21

to the communicating X-machine of the entire system. Table 3 only presents the 400

consequences of communication between two stream X-machines in terms of their 401

system states. Their memory states and other internal properties will alter as 402

described in section 3:2. Table 3 assumes that the memory value, x, can increase 403

indefinitely, but where x = H, states f'x+1 , bx+1 and ϕx+1 will be Ω. 404

 405

Crucially, there is no self-reference represented within Table 3. The entailments 406

operating on each individual stream X-machine are external, i.e. emanate from other 407

stream X-machines. An individual stream X-machine will not undergo a state 408

transition unless it encounters another stream X-machine that can deliver the 409

appropriate signal. 410

 411

3.4 Object-Oriented Communicating X-Machine 412

We previously attempted (Zhang et al., 2016) to represent (M,R) using Unified 413

Modelling Language (UML) which provides various tools for object-oriented systems 414

analysis. Correctly formed UML constitutes a basis for representation of the 415

modelled system in any object-oriented programming language. Using UML, we 416

were able to construct UML state machine diagrams for individual classes in (M,R), 417

where A, B, b, f, f’ and ϕ are classes composed of objects of that type (Figure 6 of 418

Zhang et al. (2016)). We also constructed a UML communication diagram (Figures 4 419

and 5 of Zhang et al. (2016)) which we noted bore a strong resemblance to Rosen’s 420

original (M,R) diagram. The UML communication diagram is conceptually equivalent 421

to the communication relations matrix, R, presented here in Table 3. To attempt to 422

Palmer et al (2016) (M,R) as X-machine

22

synthesise the communicating X-machine and object-oriented approaches to (M,R), 423

we begin with the cartoon diagram of Figure 5, which illustrates an (M,R) system, 424

arbitrarily bounded for clarity, populated by a selection of the relevant objects using 425

a simplified UML class notation. 426

 427

Figure 5: Object-oriented (M,R) instantiation. Objects of the six classes A, B, b, f, f’ 428

and ϕ as defined by Zhang et al. (2016) contained within an arbitrary system 429

boundary. 430

 431

Each of the objects within Figure 5 is represented in the simplified UML class 432

notation with its functions below the horizontal line. For instance, an object of class 433

f has a function +produceϕ(), indicating that this object can be transformed into an 434

object of class ϕ, which will then possess the function +catalyseRepair(B): f/f’, 435

Palmer et al (2016) (M,R) as X-machine

23

indicating that it will catalyse the production of f or f’, by stochastic choice previously 436

discussed, from B. Representing the objects as individual communicating X-437

machines, with all of the associated syntax for inputs, memory, states, functions and 438

outputs (not shown), resulted in an overwhelmingly complicated diagrammatic 439

model. As such, we have developed the cartoon diagram in Figure 6, which 440

integrates the object-oriented (M,R) diagram in Figure 5 with the communication 441

relations matrix in Table 3, and also adds a memory component (as in Figure 4) to 442

those objects that require it. 443

 444

445
Figure 6: Object-oriented (M,R) instantiation as communicating X-machine. Detail 446

of Figure 5, with the addition of the communication relations matrix, R, (Table 3) as 447

inset. Arrows indicate interactions as specified by R. 448

Palmer et al (2016) (M,R) as X-machine

24

 449

In Figure 6, each object is connected by a double-headed arrow to each other object 450

with which it is capable of communication, as specified by the communications 451

relations matrix, R. Notice that the object of class b does not have any 452

communication relation within this frame, since it can only interact with objects of 453

class f - not shown in Figure 6 simply for reasons of space. Figure 6 differs from 454

Figure 5 in that each object has its memory state added in the form Mx, following 455

Table 1. This extends the original class diagrams given in Figure 2 of Zhang et al. 456

(2016). Mx corresponds to the memory component of the communicating X-machine 457

(Figure 4). 458

 459

This concludes our presentation of (M,R) as three formal machine architectures. The 460

first of these, the finite state machine, cannot capture self-reference and therefore 461

obviously fails to instantiate (M,R). The second, the stream X-machine, permits 462

some additional detail to be added to the system in terms of memory states, which 463

assists with issues such as the number of times a catalyst can be reused, but 464

nevertheless does not solve the problem of self-reference. Only the third formal 465

architecture, the communicating X-machine, allows us to transcend this impasse. It 466

does so by treating each component of (M,R), rather than the entire system, as a 467

stream X-machine, and then forcing all entailments to be between individual stream 468

X-machines in the form of messages. The problem of self-reference, and the 469

consequent mathematical impredicativity and Turing non-computability that is the 470

central argument of relation biology as conceived by Rosen and Louie, is therefore 471

Palmer et al (2016) (M,R) as X-machine

25

sidestepped. Object-orientation is a useful framework within which to build the 472

(M,R) communicating X-machine. 473

 474

4. Discussion 475
 476

One of Rosen’s early papers on (M,R) (Rosen, 1964a) involved the analysis of (M,R) 477

systems as sequential machines (Ginsburg, 1962), very close to finite state machines 478

as defined in section 2.1. Comparing the two, he remarked (pp. 109-110 of that 479

paper): 480

 481

“in the theory of sequential machines […..] it is generally possible to extend the input 482

alphabet without enlarging the set of states: that we cannot do […] directly in the 483

theory of (M,R)-systems [which] points to a fundamental difference between the 484

two theories.” 485

 486

This is essentially the same conclusion we draw in section 3.1 – in (M,R), states and 487

input cannot be separated, thus making instantiation of (M,R) as a finite state 488

machine impossible. Expansion of the finite state machine to a stream X-machine is 489

also inadequate, as the same problem of disentangling entailments from system 490

states remains despite the addition of memory and output signalling functions. 491

Generally, finite state machines and stream X-machines are designed at the system-492

level, and are therefore abstractions of machines that receive their entailments from 493

the environment. (M,R), by virtue of its entirely internal entailment relations and 494

consequent self-referential nature, cannot fit either simple finite state machine or 495

Palmer et al (2016) (M,R) as X-machine

26

stream X-machine requirements. A machine that adequately represented (M,R) 496

would require the capacity to be in two states simultaneously, or to have no states 497

at all - in Rosen’s own words, to have “entailment without states” (Rosen, 1991). 498

Since both of these defy our common-sense logic concerning machines, this would 499

seem to re-inforce the general refutation of mechanism in biology that stems from 500

Rosen’s work on (M,R). 501

 502

However, this conclusion rests on two premises: 503

1) (M,R) is represented as a single machine. 504

2) That machine representation of (M,R) is processed sequentially. 505

Communicating X-machines are by definition composites of individual stream X-506

machines. For a communicating X-machine model composed of n stream X-507

machines with memory maximum H, each stream X-machine may have states: 508

• Q = {A, B, b0...bH-1, f, f’0...f’H-1, ϕ0...ϕH-1, Ω} 509

as outlined in section 3.2, producing a total of 3H+4 possible states for each stream 510

X-machine and a total state space, Q, of n(3H+4) for the communicating X-machine. 511

For n = 100 and H = 3, Q = 1026. Exhaustive permutation of the entire state space of 512

the communicating X-machine therefore runs into technical problems - a single 513

processor at 1010 FLOPS would require 1016 seconds, or 3.17 x 108 years to traverse 514

all the possibilities. Parallel processing is thus required, both from a standpoint of 515

computational tractability, and arguably also because parallel activity is intuitively 516

more in keeping with the nature of living systems (see Gatherer, 2007; Gatherer, 517

2010 for further exploration of this issue). 518

 519

Palmer et al (2016) (M,R) as X-machine

27

The communicating X-machine paradigm is therefore of necessity a massively 520

parallel machine architecture, composed of individual stream X-machines, that 521

permits all entailments to be internal to the system as a whole, but where for each 522

individual X-machine within that system, the entailments are external, i.e. they are 523

transmitted as communications from other stream X-machines in the collective. 524

Each component stream X-machine at any moment has a system state which can 525

also represent an entailment for any other component stream X-machine that it 526

encounters within the system. The communicating X-machine paradigm is the only 527

formal machine architecture that is capable of representing (M,R). Rosen’s 528

insistence that (M,R) cannot be instantiated as a machine on account of its circular 529

entailment structures and the paradoxes that arose from attempting to impose 530

states onto it – which led to Rosen’s statement that (M,R) is state-free – can be seen 531

to be consequences of a limited definition of a machine. The use of the 532

communicating X-machine architecture also deals with problems arising in our 533

previous (Zhang et al., 2016) object-oriented analysis of (M,R), for instance our 534

inability to produce a convincing UML state machine diagram for the entire system. 535

We were, however, able to produce UML state machine diagrams for individual 536

classes of objects, and these could provide the basis for their treatment as individual 537

stream X-machines within a communicating X-machine environment. The 538

communicating X-machine provides the missing element in our object-oriented 539

analysis of (M,R). 540

 541

Some problems nevertheless remain. As with our previous attempted practical 542

instantiation of (M,R) in process algebra (Gatherer and Galpin, 2013), this theoretical 543

Palmer et al (2016) (M,R) as X-machine

28

instantiation as a communicating X-machine forces us to take a literal stance 544

towards the Goudsmit (2007) representation of (M,R) (Figure 1). A, B, f and ϕ are no 545

longer interpretable as general descriptions of metabolic or replacement functions 546

but are sets of interacting molecules and the arrows within the (M,R) diagram 547

represent events happening to such individual molecules. Also, we are still faced 548

with the problem of how dual-function components of (M,R) are to be defined 549

within the system. The relation between B as substrate and b as catalyst has been 550

the subject of much discussion (Cardenas et al., 2010; Letelier et al., 2006; Louie, 551

2011; Mossio et al., 2009), mainly because it is poorly defined with the relational 552

biology literature stemming from Rosen and his disciples. If we have not answered 553

this issue it is because we are still unsure of the question. The resulting compromise, 554

used by us here and previously (Gatherer and Galpin, 2013; Zhang et al., 2016), is 555

simply to allow a stochastic choice of catalytic or substrate product for the A→B and 556

B→f reactions. For some this may be a fatal flaw, but we submit that living systems 557

are stochastic to some extent. 558

 559

The communicating X-machine paradigm expands the definition of a machine to 560

something massively parallel, complex yet self-contained. It is a more life-like 561

machine than the limited definitions of the 20th century. (M,R) was not one of those 562

old machines, but something else entirely. Rosen’s error was to conclude that it 563

could not be a machine of any kind. We can now see what kind of a machine it is. It 564

is also reducible. Understanding of the properties of the individual stream X-565

machines does lead to an understanding of the whole system through its 566

Palmer et al (2016) (M,R) as X-machine

29

representation as a communicating X-machine. Systems biology may yet turn out to 567

be both mechanist and reductionist. 568

 569

Acknowledgements and Data Access Statement 570

No raw data were generated in the course of this project. We thank numerous 571

colleagues who have critiqued this paper, without of course implying their joint 572

responsibility for any failings it may have. MLP performed this work as part of the 573

requirements for an MSci degree at Lancaster University. 574

 575

5. References 576
 577

Cardenas, M.L., Letelier, J.C., Gutierrez, C., Cornish-Bowden, A., and Soto-Andrade, 578
J., 2010. Closure to efficient causation, computability and artificial life. 579
Journal of Theoretical Biology 263, 79-92. 580

Carnap, R., 1934. The Unity of Science. Thoemmes Press, Bristol, 1995. 581
Chu, D., and Ho, W.K., 2006. A category theoretical argument against the possibility 582

of artificial life: Robert Rosen's central proof revisited. Artificial Life 12, 117-583
134. 584

Chu, D., and Ho, W.K., 2007a. Computational realizations of living systems. 585
Artificial Life 13, 369-81. 586

Chu, D., and Ho, W.K., 2007b. The localization hypothesis and machines. Artificial 587
Life 13. 588

Coakley, S., Smallwood, R., and Holcombe, M., Using X-machines as a formal basis 589
for describing agents in agent-based modelling, in: Hamilton, J. A., et al., 590
Eds.), Proceedings of the 2006 Spring Simulation Multiconference 591
(SpringSim' 06), The Society for Modeling and Simulation International, San 592
Diego, Calif. 2006, pp. 33-40. 593

Comte, A., 1830. Cours de philosophie positive. Bachelier, Paris,. 594
Crick, F., 1966. Of molecules and men. University of Washington Press, Seattle,. 595
Crick, F., 1981. Life itself : its origin and nature. Simon and Schuster, New York. 596
Elsasser, W.M., 1998. Reflections on a Theory of Organisms. Holism in Biology. 597

The Johns Hopkins University Press, Baltimore. 598
Gatherer, D., 2007. Less is more: the battle of Moore's Law against Bremermann's 599

Limit on the field of systems biology. BMC Syst Biol 1 supp.1, 53. 600
Gatherer, D., 2010. So what do we really mean when we say that systems biology is 601

holistic? BMC Systems Biology 4, 22. 602
Gatherer, D., and Galpin, V., 2013. Rosen's (M,R) system in process algebra. BMC 603

Systems Biology 7, 128. 604

Palmer et al (2016) (M,R) as X-machine

30

Ginsburg, S., 1962. An introduction to mathematical machine theory. Addison-605
Wesley, Reading, Mass. 606

Goertzel, B., Appendix 2. Goertzel versus Rosen: Contrasting views on the 607
autopoietic nature of life and mind., Creating Internet Intelligence, Kluwer 608
Academic/Plenum Publishers, New York 2002. 609

Goudsmit, A.L., 2007. Some reflections on Rosen's conceptions of semantics and 610
finality. Chemistry and Biodiversity 4, 2427-2435. 611

Gutierrez, C., Jaramillo, S., and Soto-Andrade, J., 2011. Some thoughts on A.H. 612
Louie's "More Than Life Itself: A Reflection on Formal Systems and 613
Biology". Axiomathes 21, 439-454. 614

Holcombe, M., 1988. X-Machines as a Basis for Dynamic System Specification. 615
Software Engineering Journal 3, 69-76. 616

Kefalas, P., Eleftherakis, G., and Kehris, E., 2003a. Communicating X-machines: a 617
practical approach for formal and modular specification of large systems. 618
Information and Software Technology 45, 269-280. 619

Kefalas, P., Eleftherakis, G., and Kehris, E., 2003b. Communicating X-machines: 620
From theory to practice. Advances in Informatics 2563, 316-335. 621

Keller, R.M., Computer Science: Abstraction to Implementation, Available: 622
http://www.cs.hmc.edu/~keller/cs60book/%20%20%20Title.pdf, Harvey 623
Mudd College 2001. 624

Landauer, C., and Bellman, K., 2002. Theoretical biology: Organisms and 625
mechanisms. AIP Conference Proceedings 627, 59-70. 626

Lenzer, G., 1998. Auguste Comte and positivism : the essential writings. Transaction 627
Publishers, New Brunswick, NJ. 628

Letelier, J.C., Cardenas, M.L., and Cornish-Bowden, A., 2011. From L'Homme 629
Machine to metabolic closure: Steps towards understanding life. Journal of 630
Theoretical Biology 286, 100-13. 631

Letelier, J.C., Soto-Andrade, J., Guinez Abarzua, F., Cornish-Bowden, A., and 632
Cardenas, M.L., 2006. Organizational invariance and metabolic closure: 633
analysis in terms of (M,R) systems. Journal of Theoretical Biology 238, 949-634
61. 635

Loeb, J., 1912. The Mechanistic Conception of Life. University of Chicago Press, 636
Chicago. 637

Louie, A.H., Rosen 1, Goertzel 0: Comments on the appendix “Goertzel versus 638
Rosen”, Available: http://panmere.com/rosen/Louie%20-639
%20GoetzelvsRosen.pdf, Vol. 2015. 2004. 640

Louie, A.H., 2005. Any material realization of the (M,R)-systems must have 641
noncomputable models. Journal of Integrative Neuroscience 4, 423-36. 642

Louie, A.H., 2007a. A living system must have noncomputable models. Artificial Life 643
13, 293-7. 644

Louie, A.H., 2007b. A Rosen etymology. Chemistry and Biodiversity 4, 2296-314. 645
Louie, A.H., 2009. More than Life Itself. A Synthetic Continuation in Relational 646

Biology. Ontos Verlag, Frankfurt. 647
Louie, A.H., 2011. Essays on More Than Life Itself Axiomathes 21, 473-489. 648
Mazzocchi, F., 2012. Complexity and the reductionism-holism debate in systems 649

biology. Wiley Interdiscip Rev Syst Biol Med 4, 413-27. 650
Molière, 1673. The Imaginary invalid ... Translated by Bert Briscoe, 1967. [With 651

plates.]. C. Combridge, Birmingham. 652
Monod, J., 1971. Chance and necessity; an essay on the natural philosophy of modern 653

biology. Knopf, New York,. 654

http://www.cs.hmc.edu/%7Ekeller/cs60book/%20%20%20Title.pdf
http://panmere.com/rosen/Louie%20-%20GoetzelvsRosen.pdf
http://panmere.com/rosen/Louie%20-%20GoetzelvsRosen.pdf

Palmer et al (2016) (M,R) as X-machine

31

Mossio, M., Longo, G., and Stewart, J., 2009. An expression of closure to efficient 655
causation in terms λ-calculus. Journal of Theoretical Biology 257, 489-498. 656

Polanyi, M., 1968. Life's irreducible structure: Live mechanisms and information in 657
DNA are boundary conditions with a sequence of boundaries above them. 658
Science 160, 1308-1312. 659

Prideaux, J.A., 2011. Kinetic models of (M,R)-systems. Axiomathes 21, 373-392. 660
Radó, T., 1962. On non-computable functions. Bell System Technical Journal 41, 661

877–884. 662
Rashevsky, N., A unified approach to physics, biology and sociology, in: Rosen, R., 663

(Ed.), Foundations of Mathematical Biology. 3: Supercellular Systems, Vol. 3. 664
Academic Press, New York 1973, pp. 177-190. 665

Rosen, R., 1964a. Abstract Biological Systems as Sequential Machines. Bulletin of 666
Mathematical Biophysics 26, 103-11. 667

Rosen, R., 1964b. Abstract Biological Systems as Sequential Machines. Ii. Strong 668
Connectedness and Reversibility. Bulletin of Mathematical Biophysics 26, 669
239-46. 670

Rosen, R., 1966. Abstract biological systems as sequential machines. 3. Some 671
algebraic aspects. Bulletin of Mathematical Biophysics 28, 141-8. 672

Rosen, R., 1991. Life Itself: A Comprehensive Inquiry into the Nature, Origin, and 673
Fabrication of Life. Columbia University Press, New York. 674

Rosen, R., 2000. Essays on Life Itself. Columbia University Press, New York. 675
Stamatopoulou, I., Kefalas, P., and Gheorghe, M., 2007. Modelling the dynamic 676

structure of biological state-based systems. Biosystems 87, 142-149. 677
Turing, A.M., 1936. On computable numbers, with an application to the 678

Entscheidungsproblem. Proc. London Math. Soc. 42, 230-265. 679
Waddington, C.H., The basic ideas of biology, in: Waddington, C., (Ed.), Towards a 680

Theoretical Biology. 1. Prolegomena, Vol. 1. Edinburgh University Press, 681
Edinburgh 1968, pp. 167-173. 682

Wells, A.J., 2006. In defense of mechanism. Ecological Psychology 18, 39-65. 683
Whitehead, A.N., and Russell, B., 1927. Principia Mathematica. Cambridge 684

University Press, Cambridge, 1963. 685
Zhang, L., Williams, R.A., and Gatherer, D., 2016. Rosen's (M,R) system in Unified 686

Modelling Language. Biosystems 139, 29-36. 687
 688
 689

