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Abstract 13 

 14 
 15 
Robert Rosen's (M,R) system is an abstract biological network architecture that is 16 

allegedly both irreducible to sub-models of its component states and non-17 

computable on a Turing machine.  (M,R) stands as an obstacle to both reductionist 18 

and mechanistic presentations of systems biology, principally due to its self-19 

referential structure.  If (M,R) has the properties claimed for it, computational 20 

systems biology will not be possible, or at best will be a science of approximate 21 

simulations rather than accurate models.  Several attempts have been made, at both 22 

empirical and theoretical levels, to disprove this assertion by instantiating (M,R) in 23 

software architectures.  So far, these efforts have been inconclusive.  In this paper, 24 

we attempt to demonstrate why - by showing how both finite state machine and 25 

stream X-machine formal architectures fail to capture the self-referential 26 

requirements of (M,R).  We then show that a solution may be found in 27 

communicating X-machines, which remove self-reference using parallel 28 

computation, and then synthesize such machine architectures with object-29 

orientation to create a formal basis for future software instantiations of (M,R) 30 

systems. 31 

 32 

1. Introduction 33 

The quest for mechanistic explanation in biology reflects a long-standing 34 

commitment to avoid the error of Molière’s physician, who explained opium’s sleep-35 
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inducing properties as being caused by its virtus dormitiva (Molière, 1673).   36 

Mechanism asks the question: “how does it work?” and expects a non-tautologous 37 

answer couched in some kind of machine-like analogy.  If the mechanistic 38 

explanation is also a reductionist one, it will situate that machine-like analogy at a 39 

lower level of biological organization.  “How does an organism work?” might be 40 

explained in terms of the mechanism of organs; “how does an organ work?” in terms 41 

of the mechanism of cells; and “how do cells work?” in terms of molecular 42 

mechanisms.  Intermediate levels are easy to insert – gene or metabolic regulatory 43 

networks might be placed between molecules and cells, or organelles between cells 44 

and molecules.  The layered hierarchy of explanations is mirrored by a corresponding 45 

hierarchy of research disciplines, from population biologists at the top, through 46 

organismal zoologists and botanists to physiologists, then cell biologists, systems 47 

biologists and biochemists, with molecular biophysicists occupying the layer where 48 

biology shades imperceptibly into quantum organic chemistry. 49 

 50 

The concept of levels of understanding of the natural world and their corresponding 51 

inter-dependent allocation of scientific labour goes as far back as Auguste Comte in 52 

the early 19th century (Comte, 1830; Lenzer, 1998), and a recognisably modern 53 

formulation emerged from the interwar Vienna Circle group of philosophers (Carnap, 54 

1934), but its central place in the minds of modern biologists was finally cemented 55 

by Francis Crick (1966; 1981) and Jacques Monod (1971).  Such reductionism has 56 

always had its critics (Elsasser, 1998; Polanyi, 1968; Rosen, 1991; Waddington, 1968), 57 

and their successors have grown bolder since the advent of an explicitly anti-58 

reductionist strand in systems biology (reviews by Gatherer, 2010; Mazzocchi, 2012).  59 
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 60 

Even if current “how does it work?” questions in systems biology can no longer rely 61 

so heavily on reductionist answers, it is harder to dispense with mechanistic ones.  62 

Even if a modern systems biologist does not believe that the function of a particular 63 

regulatory network can be understood in terms of a composite understanding of its 64 

parts, nevertheless a non-reductive explanation will still be likely to contain 65 

machine-like analogies of some kind.  The roots of mechanistic explanation in biology 66 

are even deeper than those of reductionism, perhaps as far back as the 17th century 67 

(reviewed by Letelier et al., 2011) – otherwise the audiences of 1673 could scarcely 68 

have appreciated Molière’s joke concerning virtus dormitiva - and were completely 69 

in the ascendency by the early 20th century (Loeb, 1912).  In the era of molecular 70 

biology, opposition to mechanism has been sporadic and muted. 71 

 72 

Robert Rosen made it his life’s work to question both reductionist and mechanist 73 

strategies in biology.  Developing the mathematical techniques of relational biology 74 

originated by Rashevsky (1973), Rosen conceived an abstract model, (M,R), always 75 

written with brackets and usually in italics (Figure 1), which he claimed encapsulated 76 

the properties of a living system but was irreducible to its component parts (Rosen, 77 

1964a; 1964b; 1966; 1991; 2000).  Goudsmit (2007) redrew the (M,R) diagram in a 78 

way that is more comprehensible to biochemists, implicitly recasting (M,R) as a 79 

representation of a biochemical network consisting of three reactions, each of which 80 

produces a catalyst for one of the other reactions.  Rosen’s intentions were more 81 

general, presenting (M,R) as consisting of three broad processes found in all living 82 

systems: metabolism, repair and replication.  Metabolism is represented by the A→B 83 
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process, repair by B→f and replication by f→ϕ, generating respectively the catalysts 84 

necessary for metabolism, and in turn the catalysts for synthesis of those catalysts. 85 

 86 

Figure 1 a: The Goudsmit representation of the (M,R) system.  b: (M,R) diagram of 87 

Rosen. In the Goudsmit representation, productive reactions are shown using the 88 

black arrows and catalytic requirements using the red dotted arrows.  In the (M,R) 89 

diagram of Rosen, the productive reactions are presented as open-headed arrows 90 

and the catalytic reactions as fill-headed arrows.  The placement of the catalytic 91 

arrowheads is also on the substrate of the productive reaction. 92 

 93 

The essence of Rosen’s argument (Rosen, 1991) is that although each of the 94 

components of (M,R) can be understood as a machine, and therefore may be 95 

susceptible to mechanistic explanation, the whole cannot and may not.  96 

Furthermore, a model of the whole cannot be built additively from models of the 97 
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components.  (M,R) is thus not only non-mechanistic but also irreducible, and insofar 98 

as (M,R) is an accurate general model of a living system, much of modern biology 99 

therefore relies on an explanatory framework that is deemed unfit for purpose. 100 

 101 

An attempt to prove Rosen’s argument has been advanced by Louie (2005; 2007b; 102 

2009), who has used category theory to express (M,R) in terms of sets of mappings, 103 

and to demonstrate that (M,R) contains an impredicative set, rendering it non-104 

computable in finite time on a Turing machine (Radó, 1962; Turing, 1936; Whitehead 105 

and Russell, 1927).  There is no space here to reproduce Louie’s proof but, in 106 

summary, impredicativity is the condition arising when a set is a member of itself, 107 

and impredicativity may emerge in any mathematical analysis of a system that is self-108 

referential.  The individual processes within (M,R) are computable in finite time but, 109 

when assembled, self-reference is unavoidable and the whole (M,R) ceases to be 110 

computable.  (M,R)’s irreducibility to computable software components mirrors life’s 111 

irreducibility to mechanistic sub-processes. 112 

 113 

Relational biology, in the form conceived by Rosen and Louie, has been vigorously 114 

debated (Chu and Ho, 2006; 2007a; 2007b; Goertzel, 2002; Gutierrez et al., 2011; 115 

Landauer and Bellman, 2002; Louie, 2004; 2007a; 2011; Wells, 2006), and the alleged 116 

non-computability of (M,R) has also inspired various attempts to instantiate it in 117 

software systems (reviewed in Zhang et al., 2016).  Relational biologists do not deny 118 

that an approximation to (M,R), capable of running on a Turing computer, could be 119 

created.  Crucially, however, such an approximation would not capture all the 120 

properties of the (M,R) system.  It would be merely a simulation, rather than a true 121 
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model.   The distinction between simulation and model is central to relational 122 

biology’s critique of computational systems biology.  Simulations may accurately 123 

mirror the inputs and outputs of a system, and indeed would need to do so to be 124 

judged as good simulations, but their internal causal factors – their entailment 125 

structures, in Rosen’s terminology – could merely be arbitrary approximations, 126 

“black boxes” which may be pragmatically useful but essentially are the creation of 127 

the programmer.  A true model, by contrast has entailment structures which logically 128 

mirror those of the real world, and correctly formed models are necessary for a 129 

genuine understanding of the system being modelled (Louie, 2009; Rosen, 1991; 130 

2000).  Weather forecasting, for instance, is largely conducted by simulation, with 131 

computers processing current weather data in the light of previous records and 132 

making a prediction for the future.  Rocketry, by contrast, calculates the future 133 

position of a space satellite on the basis of data on its current physical situation and 134 

precise models derived from the laws of physics.  Both may require complex 135 

calculations, but the weather forecaster does not pretend to understand, or 136 

calculate, every influence on the weather.  Rocketry, by contrast, does claim a true 137 

understanding of all factors influencing the rocket’s trajectory in space.  Rocket 138 

science uses a model, weather forecasting uses a simulation.  Relational biologists 139 

would claim that our current approach to the analysis of complex biological systems 140 

has much more in common with weather forecasting than rocket science. 141 

 142 

In keeping with this, Louie (2011, section 2) has judged some of the software 143 

instantiations of (M,R) produced so far to be simulations rather than models, and 144 

this has been acknowledged by some of the authors concerned (Gatherer and 145 
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Galpin, 2013; Prideaux, 2011).  Similarly, other mathematical re-workings of (M,R) 146 

which provide theoretical bases for computability, if not actual software 147 

instantiations (Landauer and Bellman, 2002; Mossio et al., 2009), have been likewise 148 

found lacking in various necessary aspects (Cardenas et al., 2010; Letelier et al., 149 

2006). 150 

 151 

Much of the controversy is dependent on Rosen’s original definition of machine and 152 

mechanism (Rosen, 1964a; 1964b; 1966; 1991) which essentially stems from that of 153 

Turing (1936).  However, since then, an expanded conception of the nature of 154 

machines has begun to develop, in particular the notion of X-machines (Coakley et 155 

al., 2006; Holcombe, 1988; Kefalas et al., 2003a; 2003b; Stamatopoulou et al., 2007).  156 

We believe that the current impasse over the irreducibility of (M,R) may be resolved 157 

by reconsidering (M,R) in terms of a communicating X-machine, and that is the 158 

subject of this paper. 159 

 160 

In the Methods section we show how various formal machine architectures – namely 161 

finite state machine, stream X-machine and communicating X-machine - are 162 

conceived in abstract terms.  We show how these formal architectures exist in a 163 

series – stream X-machines expanding on finite state machines, and communicating 164 

X-machines representing a further widening in scope and properties.  We then 165 

repeat this process, casting (M,R) in terms of each formal machine architecture, 166 

pointing out the difficulties where appropriate.  The stream X-machine is shown to 167 

add flexibility to the finite state machine, but nevertheless still fails to express all the 168 

properties of (M,R).  Then, the communicating X-machine composed of stream X-169 
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machine components is shown to be the best fit, dispensing in particular with the 170 

self-reference that is the central obstacle to computability.  Finally, we discuss the 171 

kind of computer architecture necessary to implement such a formal machine 172 

architecture.  173 

 174 

2. Methods 175 

 176 
We follow Coakley et al. (2006) in building our communicating X-machine model 177 

through an iterative process of adding increasing levels of granularity regarding the 178 

underlying mechanistic behaviours of the system.  We attempt as far as possible to 179 

reproduce the notation used in that paper, but make some small changes for two 180 

reasons: a) some of the symbols of Coakley et al. (2006) duplicate those used in 181 

(M,R), in which case alternatives are introduced, b) we alter some symbols to 182 

emphasise points of similarity and difference between finite state machines and X-183 

machines.  The first step is to define the (M,R) system as a finite state machine (see 184 

section 2.1), before adding the concept of memory (stream X-machine; see section 185 

2.2); and ultimately the individual instantiation, as stream X-machines in their own 186 

right, of the different system components, along with the resulting communications 187 

between them (communicating X-machines; see section 2.3) . 188 

 189 

2.1 Finite State Machine 190 

𝐹𝐹𝐹𝐹𝐹𝐹 = (Σ,𝑄𝑄, 𝑞𝑞0,𝐹𝐹,𝑇𝑇) 
A 5-tuple where: 191 

• Σ is a finite alphabet of input symbols 192 
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• Q is the finite set of system states 193 

• q0 ∈ Q is the initial system state 194 

• F ⊂ Q is a set of final (or accepting states) 195 

• T is the transition function (T: Q x Σ → Q) 196 

The transition function governs the change from one system state, qx ∈ Q, to the 197 

next, qx+1 ∈ Q, according to the input received, σx ∈ Σ.  We expand the transition 198 

function, adapting Keller (2001): 199 

• T = {(Ti)i=1…..H,Q,Σ} 200 

• q ⊂ Q 201 

• σ ⊂ Σ 202 

TH(qH-1, σ) is thus the final transition function in a series of H state transitions, after 203 

which the system enters state F, equivalent to qH. 204 

 205 

Figure 2 illustrates in graphical form the principles of the finite state machine, 206 

illustrating the interaction of current state and input within one or more functions to 207 

produce the next state in the series. 208 

 209 
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 210 

Figure 2: Finite state machine in graphical representation.  Here only a single state 211 

transition is represented for clarity, but if the final state is recycled to the initial 212 

state, the process can iterate until an accepting state is reached.  213 

2.2 Stream X-Machine 214 

𝑋𝑋 = (Σ, Γ,𝑄𝑄,𝑀𝑀, 𝑞𝑞0,𝑚𝑚0,𝑇𝑇,𝑃𝑃) 

An 8-tuple, where: 215 

• Σ is a finite alphabet of input symbols (as for the finite state machine) 216 

• Γ is a finite alphabet of output symbols  217 

• Q is the finite set of system states (as for the finite state machine) 218 

• M is an infinite set of memory states 219 

• q0 ∈ Q and m0 ∈ M are the initial system state and initial memory state, 220 

respectively 221 
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• T is the type of the machine X, defined as a set of partial functions (T: M x Σ 222 

→ M x Γ) 223 

• P is the transition partial function (P: Q x T → Q) 224 

The X-machine expands the finite state machine by virtue of the presence of stored 225 

memory states, M and output alphabet Γ.  The output alphabet can be thought of as 226 

a set of signals circulating within the system or transmitted beyond the system 227 

(Stamatopoulou et al., 2007). The transition partial function of the X-machine, P, 228 

thus depends on current system state, qx, and another partial function, T, dependent 229 

on current memory and input and which produces modified memory and output.  P 230 

is therefore expressible as a 2-dimensional state transition diagram.  By contrast the 231 

transition function of the finite state machine depends only on current system state 232 

and input. 233 

 234 

Figure 3 illustrates in graphical form the principles of the stream X-machine.  The 235 

“state” component is equivalent to the finite state machine (Figure 2), with the 236 

stream X-machine having an added “memory” component.  237 

 238 
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Figure 3: Stream X-machine in graphical representation.  As in Figure 2, only a single 239 

state transition is represented for clarity.  If the new state becomes the current 240 

state, and the new memory the current memory, the machine will iterate until an 241 

accepting state is achieved.  At each iteration a new output signal is also generated. 242 

 243 

 244 

2.3 Communicating X-Machine 245 

Stream X-machines as defined above have no capacity to communicate with each 246 

other.  Unlike finite state machines, they store memory and signal to the outside 247 

world, but have no capacity to identify and interact with other similar stream X-248 

machines in that exterior environment.  The functionality to allow communication 249 

between individual X-machines is added via a communication relation, R, as follows:  250 

((𝐶𝐶𝑖𝑖𝑥𝑥)𝑖𝑖=1..𝑛𝑛,𝑅𝑅) 

Where: 251 

• 𝐶𝐶𝑖𝑖𝑥𝑥  is the i-th X-machine 252 

• R is a communication relation between n X-machines 253 

R is expressible as a matrix of cells(i,j) each defining specific communication rules 254 

between the i-th and j-th X-machine or, less prescriptively, as a list of generic 255 

communication rules that govern interaction of any X-machine with any other 256 

(Coakley et al., 2006). 257 

 258 

Figure 4 illustrates in graphical form the principles of the communicating X-machine.  259 

The “state” and “memory” components together are equivalent to the stream X-260 
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machine (Figure 3), with the communicating X-machine having an added 261 

“communication” component consisting of a list of rules governing how the X-262 

machines interact.  263 

 264 

Figure 4: Communicating X-machine in graphical representation.  As in Figure 3, 265 

iteration of the system via conversion of the new state to the current state, is 266 

omitted for clarity.  The input-output stream of the stream X-machine is replaced by 267 

a set of communications. 268 

 269 

3. Results 270 
 271 

3.1 Finite State Machine 272 

Figure 1 shows how (M,R) consists of three components involved in productive 273 

reactions: A, B and f.  A is converted to B, B converted to f and f converted to ϕ.  274 

However, these reactions must be catalysed.  In one reaction this is relatively 275 
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straightforward: B→f requires ϕ.  However, the other two catalysts are more 276 

complicated.  B can be seen as dual-function, being the substrate for the B→f 277 

reaction and also the catalyst for the f→ϕ reaction.  Likewise, f is both the substrate 278 

for the f→ϕ reaction and the catalyst for the A→B reaction.  This issue has been 279 

discussed in some detail in the (M,R) literature (Cardenas et al., 2010; Letelier et al., 280 

2006; Louie, 2011; Mossio et al., 2009).  We therefore define b as the catalytic 281 

component of B, and f’ as the catalytic component of f. 282 

 283 

Mass flows within the (M,R) system from A to B/b, from B to f/f’ and from f to ϕ.  284 

Our first step is therefore to attempt to express this mass flow as a finite state 285 

machine using the generic definition (Coakley et al., 2006) given in section 2.1, as 286 

follows. 287 

 288 

Input: Σ = {b, f’, ϕ} 289 

System states: Q = {A, B, b, f, f’, ϕ} 290 

Initial system state: q0 = {A} 291 

Accepting states: F = {b, f’, ϕ} 292 

Transition functions: T, of variants x ∈ {B, b, f, f’, ϕ} such that: 293 

• T = {(Ti
x)i=1…..H,Q,Σ}, specifically 294 

• T1
B = {T: A x f’ → B} 295 

• T1
b = {T: A x f’ → b} 296 

• T2
f  = {T: B x ϕ →  f} 297 
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• T2
f' = {T: B x ϕ →  f’} 298 

• T3
ϕ = {T: f x b → ϕ} 299 

 300 

The input set, Σ, to the finite state machine are the catalysts, which trigger the state 301 

transition functions T, but are not transformed by them.  The catalysts b and f’, if 302 

defined in this way, are themselves also products of the metabolic reactions, but 303 

never substrates, hence their appearance as accepting states, F.  The choice of 304 

function Tx
B over Tx

b, or Tx
f  over Tx

f', must be regarded as a stochastic choice.   305 

 306 

The difficulties posed for finite state machines by (M,R) relate firstly to this necessity 307 

to enter a stochastic element into the transition process, and also to the role of 308 

catalysts in the generic state transition function T: Q x Σ → Q.  T implies a separation 309 

between system state and signal, between system and environment, but catalysts 310 

are required here to be both entailments in processes, i.e. input, and also the results 311 

of those processes, i.e. system states.  In Rosen’s definition of a finite state machine, 312 

the entailments are all external, whereas in attempting to express (M,R) as a finite 313 

state machine, we require the entailments – the input signals Σ - to be states of the 314 

system itself, and for the system thereby to be self-referential.  Since finite state 315 

machines cannot have this property, we therefore produce an entity which cannot 316 

be a finite state machine if it is to instantiate (M,R) and cannot be (M,R) if it is a 317 

satisfactory finite state machine.   318 

 319 
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More generally, it can also be seen that mass flow trajectories through the finite 320 

state machine as defined here will only encompass a subset of system states before 321 

reaching their accepting states.  For instance, A → B → f→ ϕ does not include f’ or b 322 

among the states through which it transits.  Likewise, A → B → f’ does not include b 323 

or ϕ, and A → b  reaches an accepting state after a single state transition, and so on.  324 

Finite state machines can at best only describe sub-systems within (M,R), and cannot 325 

furnish a complete description of its entirety. 326 

 327 

3.2 Stream X- Machine 328 

Repetition of the above exercise, expanding the finite state machine representation 329 

of (M,R) into a stream X-machine using the generic definition (Coakley et al., 2006) 330 

given in section 2.2, does not appreciably improve the situation.  Although the 331 

stream X-machine benefits from the potential to possess memory states and 332 

generate an output alphabet, it is not clear what these properties represent in the 333 

context of (M,R).  For instance, memory may be used in order to allow each of the 334 

catalytic elements in the system, b, f’, ϕ, to be re-used, by storing a value 335 

corresponding to the number of times that catalyst operated on a substrate.  If H re-336 

uses of each catalyst were allowed, this would effectively expand the system state 337 

list to: 338 

• Q = {A, B, b0...bH-1, f, f’0...f’H-1, ϕ0...ϕH-1, Ω} 339 

Ω is added to signify the state after the H iterations have finished.  The input 340 

alphabet expands correspondingly: 341 

• Σ = {b0...bH-1, f’0...f’H-1, ϕ0...ϕH-1} 342 
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And the output alphabet is: 343 

• Γ = {b1...bH-1, f’1...f’H-1, ϕ1...ϕH-1, Ω} 344 

The number of accepting states reduces to: 345 

• F = {Ω} 346 

 347 

We can then proceed to define the stream X-machine type, T: M x Σ → M x Γ, and 348 

the partial transition functions dependent on that type, P: Q x T → Q.  The mappings 349 

from memory and input to memory and output constituting the type, T, are best 350 

visualised in tabular form (Table 1).  Memory, M, is defined as a variable that allows 351 

for H re-uses of each catalyst prior to the accepting state Ω. 352 

 353 

  

  Σ   
bn f'n ϕn 

  0 b1+M1 f'1+M1 ϕ1+M1 
M n bn+1+Mn+1 f'n+1+Mn+1 ϕn+1+Mn+1 
  H Ω+M0 Ω+M0 Ω+M0 

 354 

Table 1: T-functions for the stream X-machine realization of (M,R).  Rows M define 355 

memory states over n = zero to H.  Columns Σ define the inputs also over n = zero to 356 

H-1.  Table values define the output and next memory state. 357 

 358 

Table 1 illustrates the re-use of catalytic elements for H occasions.  Each time a 359 

catalyst is used, the memory state of the system is ratcheted up by one, and the 360 

catalyst re-emerges as output.  On the Hth occasion the system dies, Ω is returned 361 
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and memory is reset to zero.  Table 1, representing T: M x Σ → M x Γ, can then be 362 

combined with system states in the state transition diagram, P: Q X T → Q (Table 2) 363 

 364 

  

        Q   
A B b0...bH-1 f f'0...f'H-1 ϕ0...ϕH-1 

  bxMx       ϕ     
T f'xMx B/b           
  ϕxMx   f/f'         

 365 

Table 2: P-functions for the stream X-machine realization of (M,R).  Columns Q 366 

define system states.  Rows T define the T-functions (Table 1), over x=1 to x=H-1.  367 

Table values define the next system state.  Empty cells indicate invalid Q/T 368 

combinations, thus generating null returns on system state. 369 

 370 

The rows of Table 2, T, are a compaction of Table 1, representing each combination 371 

of input Σ and memory M at time x and how it interacts with the set of system 372 

states, Q, to produce a new system state.  Table 2 is a sparse state transition diagram 373 

as {b0...bH-1, f’0...f’H-1, ϕ0...ϕH-1} ⊂ Q do not generate state transitions.  As with the 374 

transition functions of the finite state machine (Section 3.1), the partial functions 375 

acting on A and B will produce either B or b, or f or f’, respectively with stochastic 376 

distribution of probabilities.  Expansion of the finite state machine to a stream X-377 

machine therefore does not immediately suggest a solution to the problems of 378 

defining entailment and state, or of self-reference, and therefore again falls short of 379 

a mechanistic realization of (M,R).  380 

 381 
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3.3 Communicating X-Machine 382 

Communicating X-machines (section 2.3) build upon the concept of stream X-383 

machines so that they may be used to model at the component or sub-system level, 384 

and allow communication between these individual components/sub-systems to 385 

facilitate emergent behaviour at the level of the entire system. As such, 386 

communicating X-machine systems are comprised of multiple instantiations of the 387 

different types of stream X-machine components.  For (M,R), their interactions may 388 

be abstractly represented in matrix form (Table 3): 389 

 390 

        i       

  
A B bx f f'x ϕx 

  A 
    

B/b+ f'x+1 
   B 

     
f/f'+ϕx-1 

  bx 

   
ϕ+ bx+1 

  j f 
  

ϕ+ bx+1 
     f'x B/b+ f'x+1 

       ϕx 
 

f/f'+ϕx+1 
     391 

Table 3: Communication relations, R, between the ith and jth stream X-machines in 392 

a communicating X-machine.  Entries describe the system states of the ith and jth 393 

stream X-machines after each interaction.  Empty cells indicate non-interacting 394 

combinations, thus generating null returns on system states. 395 

 396 

Unlike Table 2, which shows state/memory transitions within a single stream X-397 

machine, Table 3 shows the rules governing the interaction of two stream X-398 

machines.  The entailments are thus external to each stream X-machine but internal 399 
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to the communicating X-machine of the entire system.  Table 3 only presents the 400 

consequences of communication between two stream X-machines in terms of their 401 

system states.  Their memory states and other internal properties will alter as 402 

described in section 3:2.  Table 3 assumes that the memory value, x, can increase 403 

indefinitely, but where x = H, states f'x+1 , bx+1 and ϕx+1 will be Ω. 404 

 405 

Crucially, there is no self-reference represented within Table 3.  The entailments 406 

operating on each individual stream X-machine are external, i.e. emanate from other 407 

stream X-machines.  An individual stream X-machine will not undergo a state 408 

transition unless it encounters another stream X-machine that can deliver the 409 

appropriate signal. 410 

 411 

3.4 Object-Oriented Communicating X-Machine 412 

We previously attempted (Zhang et al., 2016) to represent (M,R) using Unified 413 

Modelling Language (UML) which provides various tools for object-oriented systems 414 

analysis.  Correctly formed UML constitutes a basis for representation of the 415 

modelled system in any object-oriented programming language.  Using UML, we 416 

were able to construct UML state machine diagrams for individual classes in (M,R), 417 

where A, B, b, f, f’ and ϕ are classes composed of objects of that type (Figure 6 of 418 

Zhang et al. (2016)).  We also constructed a UML communication diagram (Figures 4 419 

and 5 of Zhang et al. (2016)) which we noted bore a strong resemblance to Rosen’s 420 

original (M,R) diagram.  The UML communication diagram is conceptually equivalent 421 

to the communication relations matrix, R, presented here in Table 3.  To attempt to 422 
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synthesise the communicating X-machine and object-oriented approaches to (M,R), 423 

we begin with the cartoon diagram of Figure 5, which illustrates an (M,R) system, 424 

arbitrarily bounded for clarity, populated by a selection of the relevant objects using 425 

a simplified UML class notation.  426 

 427 

Figure 5: Object-oriented (M,R) instantiation. Objects of the six classes A, B, b, f, f’ 428 

and ϕ as defined by Zhang et al. (2016) contained within an arbitrary system 429 

boundary. 430 

 431 

Each of the objects within Figure 5 is represented in the simplified UML class 432 

notation with its functions below the horizontal line.  For instance, an object of class 433 

f has a function +produceϕ(), indicating that this object can be transformed into an 434 

object of class ϕ, which will then possess the function +catalyseRepair(B): f/f’, 435 
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indicating that it will catalyse the production of f or f’, by stochastic choice previously 436 

discussed, from B. Representing the objects as individual communicating X-437 

machines, with all of the associated syntax for inputs, memory, states, functions and 438 

outputs (not shown), resulted in an overwhelmingly complicated diagrammatic 439 

model.  As such, we have developed the cartoon diagram in Figure 6, which  440 

integrates  the object-oriented (M,R) diagram in Figure 5 with the communication 441 

relations matrix in Table 3, and also adds a memory component (as in Figure 4) to 442 

those objects that require it. 443 

 444 

445 
Figure 6:  Object-oriented (M,R) instantiation as communicating X-machine. Detail 446 

of Figure 5, with the addition of the communication relations matrix, R, (Table 3) as 447 

inset.  Arrows indicate interactions as specified by R. 448 
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 449 

In Figure 6, each object is connected by a double-headed arrow to each other object 450 

with which it is capable of communication, as specified by the communications 451 

relations matrix, R.  Notice that the object of class b does not have any 452 

communication relation within this frame, since it can only interact with objects of 453 

class f - not shown in Figure 6 simply for reasons of space.  Figure 6 differs from 454 

Figure 5 in that each object has its memory state added in the form Mx, following 455 

Table 1.  This extends the original class diagrams given in Figure 2 of Zhang et al. 456 

(2016).  Mx corresponds to the memory component of the communicating X-machine 457 

(Figure 4). 458 

 459 

This concludes our presentation of (M,R) as three formal machine architectures.  The 460 

first of these, the finite state machine, cannot capture self-reference and therefore 461 

obviously fails to instantiate (M,R).  The second, the stream X-machine, permits 462 

some additional detail to be added to the system in terms of memory states, which 463 

assists with issues such as the number of times a catalyst can be reused, but 464 

nevertheless does not solve the problem of self-reference.  Only the third formal 465 

architecture, the communicating X-machine, allows us to transcend this impasse.  It 466 

does so by treating each component of (M,R), rather than the entire system, as a 467 

stream X-machine, and then forcing all entailments to be between individual stream 468 

X-machines in the form of messages.  The problem of self-reference, and the 469 

consequent mathematical impredicativity and Turing non-computability that is the 470 

central argument of relation biology as conceived by Rosen and Louie, is therefore 471 
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sidestepped.  Object-orientation is a useful framework within which to build the 472 

(M,R) communicating X-machine.  473 

 474 

4. Discussion 475 
 476 

One of Rosen’s early papers on (M,R) (Rosen, 1964a) involved the analysis of (M,R) 477 

systems as sequential machines (Ginsburg, 1962), very close to finite state machines 478 

as defined in section 2.1.  Comparing the two, he remarked (pp. 109-110 of that 479 

paper):  480 

 481 

“in the theory of sequential machines […..] it is generally possible to extend the input 482 

alphabet without enlarging the set of states: that we cannot do […] directly in the 483 

theory of (M,R)-systems [which] points to a fundamental difference between the 484 

two theories.” 485 

 486 

This is essentially the same conclusion we draw in section 3.1 – in (M,R), states and 487 

input cannot be separated, thus making instantiation of (M,R) as a finite state 488 

machine impossible.  Expansion of the finite state machine to a stream X-machine is 489 

also inadequate, as the same problem of disentangling entailments from system 490 

states remains despite the addition of memory and output signalling functions.  491 

Generally, finite state machines and stream X-machines are designed at the system-492 

level, and are therefore abstractions of machines that receive their entailments from 493 

the environment.  (M,R), by virtue of its entirely internal entailment relations and 494 

consequent self-referential nature, cannot fit either simple finite state machine or 495 



Palmer et al (2016)  (M,R) as X-machine 
 

26 
 

stream X-machine requirements.  A machine that adequately represented (M,R) 496 

would require the capacity to be in two states simultaneously, or to have no states 497 

at all - in Rosen’s own words, to have “entailment without states” (Rosen, 1991).  498 

Since both of these defy our common-sense logic concerning machines, this would 499 

seem to re-inforce the general refutation of mechanism in biology that stems from 500 

Rosen’s work on (M,R). 501 

 502 

However, this conclusion rests on two premises: 503 

1) (M,R) is represented as a single machine. 504 

2) That machine representation of (M,R) is processed sequentially. 505 

Communicating X-machines are by definition composites of individual stream X-506 

machines.  For a communicating X-machine model composed of n stream X-507 

machines with memory maximum H, each stream X-machine may have states: 508 

• Q = {A, B, b0...bH-1, f, f’0...f’H-1, ϕ0...ϕH-1, Ω} 509 

as outlined in section 3.2, producing a total of 3H+4 possible states for each stream 510 

X-machine and a total state space, Q, of n(3H+4) for the communicating X-machine.  511 

For n = 100 and H = 3, Q = 1026.  Exhaustive permutation of the entire state space of 512 

the communicating X-machine therefore runs into technical problems - a single 513 

processor at 1010 FLOPS would require 1016 seconds, or 3.17 x 108 years to traverse 514 

all the possibilities.  Parallel processing is thus required, both from a standpoint of 515 

computational tractability, and arguably also because parallel activity is intuitively 516 

more in keeping with the nature of living systems (see Gatherer, 2007; Gatherer, 517 

2010 for further exploration of this issue). 518 

 519 
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The communicating X-machine paradigm is therefore of necessity a massively 520 

parallel machine architecture, composed of individual stream X-machines, that 521 

permits all entailments to be internal to the system as a whole, but where for each 522 

individual X-machine within that system, the entailments are external, i.e. they are 523 

transmitted as communications from other stream X-machines in the collective.  524 

Each component stream X-machine at any moment has a system state which can 525 

also represent an entailment for any other component stream X-machine that it 526 

encounters within the system.  The communicating X-machine paradigm is the only 527 

formal machine architecture that is capable of representing (M,R).  Rosen’s 528 

insistence that (M,R) cannot be instantiated as a machine on account of its circular 529 

entailment structures and the paradoxes that arose from attempting to impose 530 

states onto it – which led to Rosen’s statement that (M,R) is state-free – can be seen 531 

to be consequences of a limited definition of a machine.  The use of the 532 

communicating X-machine architecture also deals with problems arising in our 533 

previous (Zhang et al., 2016) object-oriented analysis of (M,R), for instance our 534 

inability to produce a convincing UML state machine diagram for the entire system.  535 

We were, however, able to produce UML state machine diagrams for individual 536 

classes of objects, and these could provide the basis for their treatment as individual 537 

stream X-machines within a communicating X-machine environment.  The 538 

communicating X-machine provides the missing element in our object-oriented 539 

analysis of (M,R). 540 

 541 

Some problems nevertheless remain.  As with our previous attempted practical 542 

instantiation of (M,R) in process algebra (Gatherer and Galpin, 2013), this theoretical 543 
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instantiation as a communicating X-machine forces us to take a literal stance 544 

towards the Goudsmit (2007) representation of (M,R) (Figure 1).  A, B, f and ϕ are no 545 

longer interpretable as general descriptions of metabolic or replacement functions 546 

but are sets of interacting molecules and the arrows within the (M,R) diagram 547 

represent events happening to such individual molecules.  Also, we are still faced 548 

with the problem of how dual-function components of (M,R) are to be defined 549 

within the system.  The relation between B as substrate and b as catalyst has been 550 

the subject of much discussion (Cardenas et al., 2010; Letelier et al., 2006; Louie, 551 

2011; Mossio et al., 2009), mainly because it is poorly defined with the relational 552 

biology literature stemming from Rosen and his disciples.  If we have not answered 553 

this issue it is because we are still unsure of the question.  The resulting compromise, 554 

used by us here and previously (Gatherer and Galpin, 2013; Zhang et al., 2016), is 555 

simply to allow a stochastic choice of catalytic or substrate product for the A→B and 556 

B→f reactions.  For some this may be a fatal flaw, but we submit that living systems 557 

are stochastic to some extent. 558 

 559 

The communicating X-machine paradigm expands the definition of a machine to 560 

something massively parallel, complex yet self-contained.  It is a more life-like 561 

machine than the limited definitions of the 20th century.  (M,R) was not one of those 562 

old machines, but something else entirely.  Rosen’s error was to conclude that it 563 

could not be a machine of any kind.  We can now see what kind of a machine it is.  It 564 

is also reducible.  Understanding of the properties of the individual stream X-565 

machines does lead to an understanding of the whole system through its 566 
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representation as a communicating X-machine.  Systems biology may yet turn out to 567 

be both mechanist and reductionist. 568 
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