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H.S. Lee,27 S.W. Lee,52 W.M. Lee,45 X. Lei,42 J. Lellouch,14 D. Li,14 H. Li,74 L. Li,43 Q.Z. Li,45 J.K. Lim,27

D. Lincoln,45 J. Linnemann,57 V.V. Lipaev‡,34 R. Lipton,45 H. Liu,72 Y. Liu,4 A. Lobodenko,35 M. Lokajicek,8

R. Lopes de Sa,45 R. Luna-Garciag,28 A.L. Lyon,45 A.K.A. Maciel,1 R. Madar,19 R. Magaña-Villalba,28 S. Malik,59

V.L. Malyshev,31 J. Mansour,20 J. Mart́ınez-Ortega,28 R. McCarthy,64 C.L. McGivern,41 M.M. Meijer,29, 30

A. Melnitchouk,45 D. Menezes,47 P.G. Mercadante,3 M. Merkin,33 A. Meyer,18 J. Meyeri,20 F. Miconi,16

N.K. Mondal,25 M. Mulhearn,74 E. Nagy,12 M. Narain,70 R. Nayyar,42 H.A. Neal,56 J.P. Negret,5 P. Neustroev,35

H.T. Nguyen,74 T. Nunnemann,22 J. Orduna,70 N. Osman,12 A. Pal,71 N. Parashar,50 V. Parihar,70 S.K. Park,27

R. Partridgee,70 N. Parua,49 A. Patwaj ,65 B. Penning,40 M. Perfilov,33 Y. Peters,41 K. Petridis,41 G. Petrillo,63

P. Pétroff,13 M.-A. Pleier,65 V.M. Podstavkov,45 A.V. Popov,34 M. Prewitt,73 D. Price,41 N. Prokopenko,34

J. Qian,56 A. Quadt,20 B. Quinn,58 P.N. Ratoff,39 I. Razumov,34 I. Ripp-Baudot,16 F. Rizatdinova,68 M. Rominsky,45

A. Ross,39 C. Royon,8 P. Rubinov,45 R. Ruchti,51 G. Sajot,11 A. Sánchez-Hernández,28 M.P. Sanders,22

A.S. Santosh,1 G. Savage,45 M. Savitskyi,38 L. Sawyer,54 T. Scanlon,40 R.D. Schamberger,64 Y. Scheglov,35

H. Schellman,69, 48 M. Schott,21 C. Schwanenberger,41 R. Schwienhorst,57 J. Sekaric,53 H. Severini,67 E. Shabalina,20

V. Shary,15 S. Shaw,41 A.A. Shchukin,34 V. Simak,7 P. Skubic,67 P. Slattery,63 G.R. Snow,59 J. Snow,66 S. Snyder,65
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The lifetime of the B0
s meson is measured in the decay channel B0

s → J/ψ π+π− with 880 ≤
Mπ+π− ≤ 1080 MeV/c2, which is mainly a CP-odd state and dominated by the f0(980) resonance.
In 10.4 fb−1 of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the
B0
s meson is measured to be τ(B0

s ) = 1.70± 0.14 (stat)± 0.05 (syst) ps. Neglecting CP violation in
B0
s/B̄

0
s mixing, the measurement can be translated into the width of the heavy mass eigenstate of

the B0
s , ΓH = 0.59± 0.05 (stat)± 0.02 (syst) ps−1.

PACS numbers: 14.40.Nd, 13.25.Hw

The B0
s and B̄0

s mesons are produced as flavor eigen-
states at hadron colliders, but the particles propagate as
mass eigenstates. There are two mass eigenstates, the
so-called heavy and light states, which are linear com-
binations of the flavor eigenstates. In the absence of
CP-violation in mixing, the mass eigenstates are also CP
eigenstates, with the heavier state expected to be the
CP-odd state. The lifetimes of the two mass eigenstates
can be different from each other and different from the
average B0

s lifetime. A measurement of the B0
s lifetime in

either a pure CP-odd state or pure CP-even state would
give important additional information about the B0

s sys-
tem.

The B0
s → J/ψf0(980) decay channel corresponds to a

pure CP-odd eigenstate decay due to angular momen-
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tum conservation, since the parent B0
s is spin 0, the

f0(980) has JPC = 0++, and the J/ψ has JPC = 1−−.
Throughout this Letter, the appearance of a specific
charge state also implies its charge conjugate. This de-
cay channel was first observed by the LHCb collabora-
tion [1], and later confirmed by the Belle [2], CDF [3]
and D0 [4] collaborations. A measurement of the B0

s

lifetime in this channel gives access to the lifetime of
the heavy mass eigenstate. The lifetime measurement
can be transformed into a measurement of the param-
eter ΓH , the decay width of the heavy B0

s mass eigen-
state. CDF [3] and LHCb [5] have measured this life-
time, reporting τ(B0

s ) = (1.70 ± 0.12 ± 0.03) ps and
τ(B0

s ) = (1.70 ± 0.04 ± 0.026) ps respectively, which are
in good agreement with each other and somewhat longer
than the mean lifetime τ(B0

s ) = (1.52± 0.007) ps [6].

In this analysis, we report the lifetime of the B0
s

meson measured in the decay channel B0
s → J/ψ(→

µ+µ−)π+π− with 880 ≤ Mπ+π− ≤ 1080 MeV/c2, which
is dominated by the f0(980) resonance and which is CP-
odd at the 99% level [7, 8]. The data used in this analysis
were collected with the D0 detector during Run II of the
Tevatron collider at a center-of-mass energy of 1.96 TeV,
and correspond to an integrated luminosity of 10.4 fb−1.

The D0 detector is described in detail elsewhere [9].
The detector components most relevant to this analysis
are the central tracking and the muon systems. The for-
mer consists of a silicon microstrip tracker (SMT) and a
central scintillating fiber tracker (CFT) surrounded by a
2 T superconducting solenoidal magnet. The SMT has a
design optimized for tracking and vertexing for pseudo-
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rapidity of |η| < 3 [10]. For charged particles, the reso-
lution on the distance of closest approach as provided by
the tracking system is approximately 50 µm for tracks
with pT ≈ 1 GeV/c, where pT is the component of the
momentum perpendicular to the beam axis. It improves
asymptotically to 15 µm for tracks with pT > 10 GeV/c.
Preshower detectors and electromagnetic and hadronic
calorimeters surround the tracker. The muon system
is located outside the calorimeter, and consists of mul-
tilayer drift chambers and scintillation counters inside
1.8 T iron toroidal magnets, and two similar layers out-
side the toroids. Muon identification and tracking for
|η| < 1 relies on 10 cm wide drift tubes, while 1 cm mini-
drift tubes are used for 1 < |η| < 2. We base our data
selection on reconstructed charged tracks and identified
muons. Events used in this analysis are collected with
both single muon and dimuon triggers. To avoid a trig-
ger bias in the lifetime measurement, we reject events
that satisfy only impact parameter-based triggers. We
simulate signal events with PYTHIA [11] and EvtGen
[12], followed by full detector simulation using GEANT3
[13]. To correct for trigger effects, we weight simulated
events so that the pT distributions of the muons match
the distributions in data.

The B0
s reconstruction begins by reconstructing J/ψ

candidates followed by searching for π+π− candidates.
To reconstruct J/ψ → µ+µ− candidates, events with at
least two muons of opposite charge reconstructed in the
tracker and the muon system are selected. For at least
one of the muons, hits are required in the muon system
both inside and outside of the toroids. Both muons must
have hits in the SMT and have pT >2.5 GeV/c. The
muon tracks are constrained to originate from a common
vertex with a χ2 probability greater than 1%. Each J/ψ
candidate is required to have a pT greater than 1.5 GeV/c
and a mass in the range 2.80–3.35 GeV/c2.

We require two oppositely charged tracks, assumed to
have the pion mass, each with at least two SMT hits and
at least two CFT hits, and at least eight total hits in the
tracking system. These two tracks are constrained to a
common vertex with a χ2 probability greater than 1%.
Each π+π− candidate is required to have a mass in the
range 880 ≤ Mπ+π− ≤ 1080 MeV/c2 and a pT greater
than 1.5 GeV/c. The B0

s candidates are reconstructed
by performing a constrained fit to a common vertex for
the two pions and the two muon tracks, with the latter
constrained to the J/ψ mass of 3.097 GeV/c2 [6]. The
B0
s candidates are required to have a mass within the

range 5.1–5.8 GeV/c2, and to have a pT greater than 6.0
GeV/c.

To determine the decay time of the B0
s , the distance

traveled by the candidate projected in a plane transverse
to the beam direction is measured, and then a correction
for the Lorentz boost is applied. The transverse decay
length is defined as Lxy = Lxy ·pT /pT , where Lxy is the
vector that points from the primary vertex [14] to the B0

s

decay vertex, and pT is the transverse momentum vector
of the B0

s candidate. The event-by-event value of the
proper transverse decay length, λ, for the B0

s candidate
is given by:

λ = Lxy
cMB

pT
, (1)

where MB is the world average mass value of the B0
s

meson [6]. In order to remove background, B0
s candidates

are required to have λ > 0.02 cm and uncertainties on λ
of less than 0.01 cm.

A simultaneous unbinned maximum likelihood fit to
the mass and proper decay length distributions is per-
formed to measure the lifetime. The likelihood function
L is defined by:

L =

N∏
j=1

[
NsigF jsig +NcombFjcomb +NxfF jxf +NB+F jB+

]
,

(2)
where N is the total number of events and Nsig, Ncomb,
Nxf and NB+ are the expected number of signal, com-
binatorial background, cross-feed contamination and
B± → J/ψK± events in the sample, respectively. All
these parameters are determined in the fit. The different
background contributions are discussed below.

The functions F are the product of three probability
density functions that model distributions of the mass
m, the proper transverse decay length λ, and the uncer-
tainty on the proper decay length σλ for the signal, com-
binatorial background, cross-feed contamination, and B±

events

F jα = Mα(mj)Tα(λj |σλj )Eα(σλj );

α = {sig, comb, xf, B+}, (3)

where mj , λj , and σλj represent the mass, the transverse
proper decay length, and its uncertainty, respectively, for
a given event j. The use of the probability density func-
tions T and E follows the method of reference [15]. The
specific models and parameters used in the fit are de-
scribed below.

For the signal, the mass distribution is modeled by a
Gaussian function , Msig(mj) = G(mj ;µm, σm), where

G(mj ;µm, σm) =
1√

2πσm
e−(mj−µm)2/(2σ2

m), (4)

with µm and σm the mean and the width of the Gaussian,
determined from the fit.

The combinatorial background is primarily due to ran-
dom combinations of J/ψ’s with additional tracks in the
event, and its mass distribution is described by an expo-
nential function

Mcomb(mj ; a0) = ea0mj , (5)
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with a0 determined from the likelihood fit.
The physics cross-feed contamination is mainly pro-

duced by the combination of J/ψ mesons from b hadron
decays with other particles produced in the collision, in-
cluding from the same b hadron. Other b hadron decays
with final states such as B0 → J/ψKπ, B0 → J/ψππ
and B0

s → J/ψKK are reconstructed at mass below the
signal of the B0

s , either due to the lower mass of the B0 or
the incorrect mass assignment of the pion mass to a kaon
track. Simulations of these decays show that the cross-
feed contamination can be described by a single Gaussian
component

Mxf(mj) = G(mj ;µxf, σxf), (6)

where µxf and σxf are the mean and the width of the
Gaussian, determined from the likelihood fit.

The final contribution arises from B± → J/ψK± de-
cays in which the kaon has been assigned a pion mass,
and an additional track accidentally forms a vertex with
the J/ψK±. The candidate mass is reconstructed in the
region of real B0

s events. If the higher pT non-muon track
in B0

s candidates is assigned a kaon mass, a clear B± sig-
nal emerges. Events in this B± mass peak, when inter-
preted as J/ψππ, are used as a template [16] to determine
the shape of the mass distribution of the B± → J/ψK±

contamination in the B0
s candidates.

The λ distribution for the signal is parameterized by an
exponential decay convoluted with a resolution function

Tsig(λj |σλj ) =
1

λB

∫ ∞
0

G(x;λj , σλj ) exp

(
−x
λB

)
dx, (7)

with λB = cτ of the B0
s to be measured. The λ distri-

bution for the background components is parametrized
by the sum of two exponential decay functions model-
ing combinatorial background Tcomb(λj), an exponential
decay for the cross-feed contamination Txf(λj), and an
exponential decay function that describes TB+(λj) for
B± contamination.

The distribution of the λ uncertainty Esig(σλj ) is de-
scribed by a phenomenological model, using an exponen-
tial with decay constant 1/ζ, convoluted with a Gaussian
with mean ε and width δ:

Esig(σλj ; ζ, ε, δ) =
1

ζ
e−σλj /ζ ⊗G(σλj ; ε, δ), (8)

where the parameters ζ, ε and width δ are determined
from the fit in the sample of events. The uncertainties
in λ for the background components are treated in the
same manner.

The fit yields cτ(B0
s ) = 504± 42 µm and the numbers

of signal decays to be 494±85. Figure 1 shows the mass,
λ and λ uncertainty distributions for data with the fit re-
sults superimposed. Figure 2 shows the M(π+π−) mass
distribution for events with M(µ+µ−π+π−) within one
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FIG. 1: Distributions of (a) invariant mass, (b) proper trans-
verse decay length, and (c) proper transverse decay length un-
certainty for B0

s candidates, with the fit results superimposed.
Each of the different background components is indicated in
the figure. The fit yields cτ(B0

s ) = 504± 42 µm.
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FIG. 2: M(π+π−) distribution for events with
M(µ+µ−π+π−) within ±1σ of the B0

s mass.

σ of the B0
s mass. The M(π+π−) distribution is fit with

a Flatté function [17–19] and a polynomial background.
Table I summarizes the systematic uncertainties con-

sidered for this measurement. The contribution from pos-
sible misalignment of the SMT detector has been previ-
ously determined to be 5.4 µm [20]. The invariant mass
window used for the π+π− distribution is varied from its
nominal value of 200 MeV/c2 to 160 and 240 MeV/c2 and
the fit is performed for each new mass window selection.
This results in a systematic uncertainty of 8 µm. We test
the modeling and fitting method used to estimate the life-
time using data generated in pseudoexperiments with a
range of lifetimes from 300 to 800 µm. A bias arises due
to imperfect separation of signal and background. Since
the background has a shorter lifetime than the signal,
the result is a slight underestimate of the signal lifetime.
The bias has a value of -4.4 µm for an input lifetime of
500 µm and 500 signal events. We have corrected the
lifetime for this bias and a 100% uncertainty on the cor-
rection has been applied to the result. We estimate the
systematic uncertainty due to the models for the λ and
mass distributions by varying the parameterizations of
the different components: (i) the cross-feed contamina-
tion is modeled by two Gaussian functions instead of one,
(ii) the exponential mass distribution for the combinato-
rial background model is replaced by a first order polyno-
mial, (iii) the smoothing of the non-parametric function
that models the B± contamination is varied, and (iv) the
exponential functions modelling the background λ distri-
butions are smeared with a Gaussian resolution similar
to the signal. To take into account correlations between
the effects of the different models, a fit that combines
all different model changes is performed. We quote the
difference between the result of this fit and the nominal
fit as the systematic uncertainty.

Several cross-checks of the lifetime measurement are
performed. The mass windows are varied, the recon-

TABLE I: Summary of systematic uncertainties in the B0
s

lifetime measurement. The total uncertainty is determined
by combining individual uncertainties in quadrature.

Source Variation (µm)
Alignment 5.4
π+π− invariant mass window 8.0
Fit bias 4.4
Distribution models 12.5
Total 16.4

structed B0
s mass is used instead of the world average [6]

value, and the data sample is split into different regions
of pseudorapidity and of azimuthal angle. All results
obtained with these variations are consistent with the
nominal measurement. Using the B± background sam-
ple extracted from the data, we performed a fit for the
lifetime of this component of the background. The re-
sult is in good agreement with the values obtained from
the global fit. We have also fit the lifetime of the cross-
feed contamination from the simulation and again good
agreement with the global fit is observed.

In order to estimate the effect of a small non CP-odd
component in the analysis, we performed the fit with
two exponential decay components for the signal, with
the lifetime of one of them fixed to the world average of
the CP-even B0

s lifetime [6], and its fraction to be 0.01
as found by the LHCb experiment [5]. The lifetime fit
finds a variation of 1 µm with respect to the nominal fit
result.

In summary, the lifetime of the B0
s is measured to be:

cτ(B0
s ) = 508± 42 (stat)± 16 (syst) µm, (9)

from which we determine:

τ(B0
s ) = 1.70± 0.14 (stat)± 0.05 (syst) ps, (10)

in the decay channel B0
s → J/ψπ+π− with 880 ≤

Mπ+π− ≤ 1080 MeV/c2. In the absence of CP viola-
tion in mixing, this measurement can be translated into
the width of the heavy mass eigenstate of the B0

s :

ΓH = 0.59± 0.05 (stat)± 0.02 (syst) ps−1. (11)

This result is in good agreement with previous measure-
ments and provides an independent confirmation of the
longer lifetime for the CP-odd eigenstate of the B0

s/B̄
0
s

system.
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