On the complexity of Wafer-to-Wafer Integration

Bougeret, Marin and Boudet, Vincent and Dokka Venkata Satyanaraya, Trivikram and Duvillié, Guillerme and Giroudeau, Rodolphe (2016) On the complexity of Wafer-to-Wafer Integration. Discrete Optimization. ISSN 1572-5286

PDF (do21)
do21.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.

Download (441kB)


In this paper we consider the Wafer-to-Wafer Integration problem. A wafer can be seen as a pp-dimensional binary vector. The input of this problem is described by mm multisets (called “lots”), where each multiset contains nn wafers. The output of the problem is a set of nn disjoint stacks, where a stack is a set of mm wafers (one wafer from each lot). To each stack we associate a pp-dimensional binary vector corresponding to the bit-wise AND operation of the wafers of the stack. The objective is to maximize the total number of “1” in the nn stacks. We provide m1−ϵm1−ϵ and p1−ϵp1−ϵ non-approximability results even for n=2n=2, f(n)f(n) non-approximability for any polynomial-time computable function ff, as well as a View the MathML sourcepr-approximation algorithm for any constant rr. Finally, we show that the problem is View the MathML sourceFPT when parameterized by pp, and we use this View the MathML sourceFPT algorithm to improve the running time of the View the MathML sourcepr-approximation algorithm.

Item Type:
Journal Article
Journal or Publication Title:
Discrete Optimization
Additional Information:
This is the author’s version of a work that was accepted for publication in Discrete Optimization. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Discrete Optimization, ???, ?, 2016 DOI: 10.1016/j.disopt.2016.07.001
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
08 Aug 2016 10:34
Last Modified:
28 May 2023 03:18