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Abstract 17 

The decline of coral reefs has been broadly attributed to human stressors being too strong and 18 

pervasive, whereas biological processes that may render coral reefs fragile have been sparsely 19 

considered. Here we review several ecological facets that can limit the ability of coral reefs to 20 

withstand disturbance. These include: i) many species lack the adaptive capacity to cope with the 21 

unprecedented disturbances they currently face; ii) human disturbances impact vulnerable life 22 

history stages, reducing reproductive output and the supply of recruits essential for recovery; iii) 23 

reefs can be vulnerable to the loss of few species, as niche specialization or temporal and spatial 24 

segregation makes each species unique (i.e., narrow ecological redundancy); in addition, many 25 

foundation species have similar sensitivity to disturbances suggesting that entire functions can be 26 

lost to single disturbances; iv) finally, feedback loops and extinction vortices may stabilize 27 

degraded states, or accelerate collapses even if stressors are removed. This review suggests that 28 

the degradation of coral reefs is due not only to the severity of human stressors but also the 29 

“fragility” of coral reefs. As such, appropriate governance is essential that aims to manage 30 

stressors while being inclusive of ecological process and human uses across trans-national scales. 31 

This is a considerable but necessary upgrade in current management if the integrity, and delivery 32 

of goods and services, of coral reefs is to be preserved. 33 

 34 

Introduction 35 

Coral reefs constitute one of the most diverse, socioeconomically important and threatened 36 

ecosystems in the world (Wilkinson 2002; Bellwood et al. 2004; Burke et al. 2011). Coral reefs 37 

harbor thousands of species (Reaka-Kudla 1997; Fisher et al. 2015) and provide food and 38 
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livelihoods for millions of people, while safeguarding coastal populations from extreme weather 39 

disturbances (Wilkinson 2002; Adger et al. 2005; Burke et al. 2011). Unfortunately, the world’s 40 

coral reefs are rapidly degrading (Wilkinson 2002; Bellwood et al. 2004; Burke et al. 2011), with 41 

~19% of the total coral reef area effectively lost (Wilkinson 2002) and 60% to 75% under direct 42 

human pressures (Wilkinson 2002; Burke et al. 2011; Mora 2015). While some coral reefs have 43 

shown the capacity to recover from major disturbances (Gilmour et al. 2013; Graham et al. 44 

2015), the majority of reefs are displaying a general decline in live coral cover (Gardner et al. 45 

2003; Bruno and Selig 2007; De'ath et al. 2012), and some have moved to “non-coral” states, for 46 

example dominated by macroalgae (Hughes 1994; Mumby et al. 2006; Graham et al. 2015).  The 47 

economic and ecological value of coral reefs makes understanding the causes of their decline 48 

imperative. 49 

 The decline of coral reefs has been broadly attributed to threats emerging from climate 50 

change and widespread human expansion in coastal areas, which has facilitated exploitation of 51 

local resources, assisted colonization by invasive species, and led to the loss and degradation of 52 

habitats through fishing and runoff from agriculture and sewage systems (Wilkinson 2002; 53 

Gardner et al. 2003; Hughes et al. 2003; Pandolfi et al. 2003; Bellwood et al. 2004; Bruno and 54 

Selig 2007; Norström et al. 2009; Dudgeon et al. 2010; Burke et al. 2011; De'ath et al. 2012; 55 

Erftemeijer et al. 2012; Graham et al. 2015). While the magnitude of human stressors is an 56 

obvious and commonly cited reason for the decline of coral reefs, this could be compounded by 57 

the less commonly and sparsely considered limits of ecological resilience in coral reefs. Here we 58 

undertake a review of these factors. This review makes clear that the decline of coral reefs is 59 

likely a mixture of having not only strong and spatially pervasive stressors, but having 60 

ecosystems that are “fragile”.  61 
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 62 

Limited adaptability 63 

It is possible that the relative historical stability of tropical environments inhabited by coral reefs 64 

has led to organisms and ecosystems poorly adapted to environmental change (McClanahan et al. 65 

2002). Consequently, contemporary human activities that change the intensity and spatial 66 

coverage of certain environmental variables (e.g., warming, acidification, etc), and/or introduce 67 

novel stressors (e.g. new species, fishing, pesticides, cyanide, heavy metals) can have profound 68 

impacts on coral reefs. Indeed physiological studies have revealed that many coral species have 69 

tolerances to temperature and pH very close to ambient temperature and pH (Hoegh-Guldberg et 70 

al. 2007; Hoegh-Guldberg and Bruno 2010), although considerable variation exists among 71 

species and geographic locations in bleaching susceptibility (Pandolfi et al. 2011; Palumbi et al. 72 

2014). Another well-known example of low resistance to human pressures is that of mega-fauna 73 

extinction due to exploitation [e.g., dugongs, sharks, etc, (Jackson 1997; Jackson et al. 2001; 74 

Pandolfi et al. 2003; Ward-Paige et al. 2010)]. These species typically experience limited natural 75 

mortality and thus have evolved life histories of slow growth and late sexual maturity, that make 76 

them highly vulnerable and prone to extinction due to even mild levels of human exploitation 77 

(Jackson 1997; Jackson et al. 2001; Pandolfi et al. 2003; Ward-Paige et al. 2010).  78 

Many species on coral reefs appear to lack adaptations to withstand recent extreme and 79 

unprecedented stressors. Available data for vertebrate species suggest that rates of adaptation to 80 

cope with projected climate change over the next 100 years would need to be >10 000 times 81 

faster than rates typically observed (Quintero and Wiens 2013), although some evidence suggests 82 

that acclimatization and adaptation to thermal stress (Palumbi et al. 2014), and ocean 83 
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acidification (McCulloch et al. 2012) can occur fairly quickly in some species of corals and reef 84 

fishes (Donelson et al. 2012; Miller et al. 2012). The capacity for acclimation and adaptation 85 

among species is currently poorly known, because much of this research is in its infancy and 86 

restricted to a handful of species. However, the observed declines of coral reefs so far indicates 87 

that coral reefs have and will modify their compositions and functioning based on the survivors 88 

to modern threats (Pandolfi et al. 2011; Graham et al. 2014). 89 

 90 

Impaired meta-populations 91 

Most species on coral reefs, including fishes and invertebrates, have a bi-partite life cycle, which 92 

includes a dispersive pelagic larval stage and a highly sedentary, benthic adult phase. These life 93 

history characteristics mean that the persistence, and hence functional roles, of most species on 94 

coral reefs inherently depend on meta-population dynamics (i.e., patches of habitats occupied by 95 

adults that are connected by larval dispersal). Unfortunately, coral reef meta-populations are 96 

highly vulnerable to human stressors. 97 

 98 

Meta-population connectivity 99 

Connectivity is an integral part of resilience in the face of chronic or stochastic disturbances, 100 

because it can maintain functions over broader scales and act as a store for replenishment, 101 

genetic supply, and adaptability potential (Nyström and Folke 2001; Nyström et al. 2008; 102 

Halford and Caley 2009). The interaction among human stressors on coral reefs can pose several 103 

double jeopardies to the dispersal and replenishment of reef fish population. For instance, habitat 104 
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loss can increase isolation among reef patches, whereas warming can accelerate larval 105 

development and settlement (Bergenius et al. 2005; Levin 2006); as a result, larvae will have 106 

larger distances to travel but shorter times to do so (Munday et al. 2009; Hoegh-Guldberg and 107 

Bruno 2010; Mora and Sale 2011; Figueiredo et al. 2014). Likewise, chronic local human 108 

stressors (e.g., fishing, pollution) could shift the structure of local assemblages towards long-109 

distance dispersers (given high mortality of self-recruiting species: Bellwood et al. 2004) and this 110 

could also be detrimental to recruitment because long-distance dispersers may face poor growing 111 

conditions (Swearer et al. 1999) and thus may face higher mortality upon recruitment (Bergenius 112 

et al. 2002). Pollutants can also prevent larvae from detecting settlement cues (Markey et al. 113 

2007; Wenger et al. 2015) and can act as a barrier to larval recruitment (Richmond 1993).  114 

 115 

Meta-population patches 116 

Local adult populations in meta-population patches are fundamental to the supply of the 117 

propagules necessary for recovery, but are the prime direct and indirect targets of human 118 

activities. Coastal  pollution (e.g. oil, heavy metals, pesticides), for instance, can interfere with 119 

chemical signals in corals leading to impaired reproductive synchrony among coral colonies 120 

(Peters et al. 1997) , possibly resulting in an Alleé effect despite a high density of colonies. 121 

Likewise, fishing directly removes individuals from local populations (Roberts 1995) preventing 122 

fish of reaching larger sizes and of producing more eggs [eggs are produced in proportion to a 123 

fish’s volume, which is proportional to the cube of its length (Lubchenco et al. 2003; Palumbi 124 

2004)]. Eggs from larger or older mothers can also be of better quality and thus have higher 125 

chances of survival (Lubchenco et al. 2003; Palumbi 2004). Experimental studies have also 126 
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demonstrated that intense fishing can reduce fish body size (Conover and Munch 2002) and lead 127 

to mal-adaptative strategies such as producing smaller and fewer eggs (Conover and Munch 128 

2002; Walsh et al. 2006; Conover et al. 2009). Likewise, the ongoing loss (Gardner et al. 2003; 129 

Bruno and Selig 2007) and homogenization of coral reefs (Pratchett et al. 2008; Alvarez-Filip et 130 

al. 2009; Rogers et al. 2014) can lead to the intensification of ecological interactions, such as 131 

predation and  competition, and thus a reduction of local populations and reproductive output 132 

(Pratchett et al. 2008; Forrester and Steele 2013; Rogers et al. 2014). This can occur for at least 133 

two reasons: 1) as reefs become architecturally simpler they provide fewer refuges from 134 

predation (Pratchett et al. 2008; Forrester and Steele 2013) and 2) because simpler reefs increase 135 

encounters among competitors thus increasing their exposure to predators (Hixon and Beets 136 

1993; Hixon and Carr 1997; Pratchett et al. 2008). The diminishing complexity and supply of 137 

refuges in the context of ecological interactions suggests that reef populations will experience 138 

density-dependent mortality, even as populations get smaller (Hixon and Beets 1993; Hixon and 139 

Carr 1997; Loreau 2004; Forrester and Steele 2013). 140 

 141 

 142 

Limited insurance in diverse systems 143 

In diverse ecosystems numerous species are expected to have similar functional roles (so-called 144 

redundancy), different tolerances to one (so-called response diversity) or several (so-called co-145 

tolerance) disturbances, such that the functional role of a lost species can be replaced by those 146 

that endure the disturbance (Nyström 2006; Nash et al. 2014). However, evidence for coral reefs 147 

often contrasts to those expected responses. 148 
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 149 

 150 

Limited functional redundancy 151 

It is intuitive to imagine that in a large pool of species there will be numerous species with 152 

similar ecological functions (Bellwood et al. 2004). In coral reefs, the idea of functional 153 

redundancy is supported by the fact that the number of functional groups saturates as the number 154 

of species increases; in other words, there are many more species than functional groups 155 

indicating that multiple species play similar functional roles: they are redundant  (Halpern and 156 

Floeter 2008; Mora et al. 2011). However, a saturating relationship between richness and 157 

functional diversity is not fully indicative of functional redundancy, as it fails to indicate the 158 

frequency of species within functional groups. For instance, exploration of the frequency 159 

distribution of species within functional groups has revealed strong right-skewed frequencies, 160 

with few functional groups having lots of species or large abundances, and most functional 161 

groups having a handful and at times single species or few individuals (Bellwood et al. 2004; 162 

Mouillot et al. 2013; Stuart-Smith et al. 2013). In the Caribbean, for instance, much of the 163 

historical rugosity of coral reefs was provided by Acropora cervicornis and A. palmata (Pandolfi 164 

and Jackson 2006), which have almost completely disappeared due to considerable damage by 165 

extreme hurricanes and disease outbreaks (Nyström et al. 2000). Likewise, the functional role of 166 

bioerosion on Indo-Pacific reefs is largely due to the giant humphead parrotfish (Bolbometopon 167 

muricatum), which is highly vulnerable to fishing due to its large size and life history (Bellwood 168 

et al. 2003).  169 
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The idea that diverse coral reefs have large redundancy of functional groups may also be 170 

ill-conceived, because of the gross classifications of functional groups. For instance, deeper 171 

exploration of morphological (Price et al. 2011) and dietary (Burkepile and Hay 2008) 172 

characteristics of species generally classified as herbivorous have revealed the existence of 173 

considerable differences among species. Such differences may result from niche specialization, 174 

and have non-trivial effects on resilience. For instance, variations in the palatability of algae 175 

(Littler et al. 1983) suggests that a broad portfolio of “herbivores” is required to keep algae in 176 

check [i.e. functional complementarity within a functional group, (Burkepile and Hay 2008; 177 

Rasher et al. 2013)] and that resilience could be highly dependent on a few species that 178 

specialize in the consumption of unpalatable algae (e.g., Bellwood et al. 2006a; Johansson et al. 179 

2013). This suggests that it is not the total diversity that matters for resilience, but how diversity 180 

is apportioned across different functional groups. 181 

Ecological redundancy can also be overestimated by the strong focus on single 182 

traits/characteristics (e.g., feeding behavior). When species within given functional groups are 183 

considered in the context of their home range, preferred feeding times and substrate, bite rates, 184 

reproductive rates, etc, the notion that species are redundant comes down significantly (Peterson 185 

et al. 1998; Isbell et al. 2011). Some species, for instance, can be classified as generalists based 186 

in their diet but be very specialized based on their foraging grounds (Brandl et al. 2015); the loss 187 

of such species may have critical effects on feeding functions in certain areas of the reefs. There 188 

is also evidence to show that even rare reef fish species often lack functional analogs, yet 189 

perform some key functions in ecosystems (Mouillot et al. 2013). Clearly, redundancy may not 190 

be as extensive in coral reefs as one would expect from their high diversity (Micheli and Halpern 191 

2005; Stuart-Smith et al. 2013), suggesting that entire functions, and by default, ecosystem 192 
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functioning, can be vulnerable to the loss of a handful of species (see also Jain et al. 2014). 193 

Functional redundancy has also been questioned because this could drive species to extinction 194 

mediated by competition (Loreau 2004). 195 

If ecological specialization is pervasive in coral reefs, it will imply that the ecological 196 

roles of many species can be unique to the functioning of coral reefs and that ecosystem 197 

functioning should increase exponentially with the addition of new species because resource use 198 

optimization rather than loss due to competitive interactions is likely to prevail (Mora et al. 199 

2014).  Indeed, Mora et al. (2011) found that standing biomass (used as proxy of functioning) 200 

increased exponentially with the addition of new species, indicating the unique contributions of 201 

species to ecosystem functioning. They also found that given similar levels of disturbance, 202 

standing biomass was significantly more reduced in more diverse ecosystems, further 203 

highlighting the lack of redundancy and high vulnerability of diverse coral reef ecosystems. 204 

There are multiple pieces of evidence to suggest that many species in coral reefs play unique 205 

roles  to the functioning of coral reefs (Bellwood et al. 2006a; Brandl and Bellwood 2014); even 206 

species that are rare can hold unique roles (Mouillot et al. 2013), and seemly “unimportant” 207 

species can become critically important under specific conditions (Bellwood et al. 2006a).  The 208 

large spatial variations in species richness across geographical regions suggest that levels of 209 

ecological redundancy can vary greatly among places, which may help to explain observed 210 

spatial variations in the resilience of coral reefs to similar human stressors (Bellwood et al. 2004; 211 

Roff and Mumby 2012). 212 

Our argument above is that the specialization that has been commonly argued to allow for 213 

the coexistence of many species in coral reefs (Sale 1977; Sale 1980; Wainwright and Bellwood 214 

2002) can lead to reductions in functional redundancy. It should be acknowledged, however, that 215 
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specialized morphological adaptations in other diverse ecosystems have not necessarily resulted 216 

in specialized habits [the so-called Liem’s paradox (Liem 1980)]. The flexibility to exploit 217 

resources beyond those to which species have specialized adaptations is possible if the 218 

specialized phenotype is still efficient in processing other resources, especially when preferred 219 

resources are low. In coral reef fishes, there is broad evidence of niche partitioning  along food 220 

(Robertson et al. 1979; Robertson and Gaines 1986) and habitat (Robertson and Gaines 1986; 221 

Brandl and Bellwood 2014) resources, as well as considerable declines in abundance when 222 

specific habitat (Munday 2004; Pratchett et al. 2012) and food items (Pratchett et al. 2008) have 223 

declined, suggesting that specialization does exists among some reef fishes. However, there is 224 

also evidence that specialized phenotypes do not necessarily have specialized diets, supporting 225 

Liem’s paradox (Bellwood et al. 2006b). Further studies showed, however, that while species 226 

with specialized morphological adaptions may have generalized diets, they may have subtle 227 

partitioning of feeding microhabitats cautioning the use of morphological adaptions to assess 228 

specialization (Brandl et al. 2015). This is not to say that there are not ecological roles that can 229 

be played by many species but that the functioning of coral reefs is vulnerable to the loss of few 230 

species with specialized functions (Brandl and Bellwood 2014). 231 

 232 

Limited response diversity and negative co-tolerance 233 

Inherent in the idea that biodiversity confers resilience is that similar functional species will have 234 

differential sensitivity to stressors to ensure ecosystem recovery by the more resistant species 235 

within a given functional group (Elmqvist et al. 2003). However, high diversity may offer 236 

limited resilience if all species within a functional group respond equally to the same stressor, 237 
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which may be common on coral reefs (Nyström et al. 2000; Bellwood et al. 2004; Nyström et al. 238 

2008). Fishing, for instance, can impose a similar detrimental impact over many species of larger 239 

predators and large herbivores on coral reefs (Roberts 1995; Nyström et al. 2000; Bellwood et al. 240 

2004; Micheli and Halpern 2005; Mora 2008; Mora et al. 2011). Similarly, branching and plating 241 

corals [e.g., Caribbean acropoids, (Nyström et al. 2000)], which provide most of the complexity 242 

of coral reefs, show comparable sensitivity to extreme hurricanes, warming and disease 243 

outbreaks (Nyström et al. 2000; Darling et al. 2013; Rogers et al. 2014). 244 

Resilience to co-occurring stressors should be maximized by biodiversity if adaptation to 245 

one stressor increases resistance to, or the number of species expected to survive, other stressors 246 

(i.e., positive co-tolerance) (Vinebrooke et al. 2004). For coral reefs, Darling et al. (2013) found 247 

limited evidence of positive co-tolerance. Fishing and bleaching events have filtered (i.e., 248 

selected against) different sets of coral species, although some species were equally susceptible 249 

to both stressors, leading to reefs dominated by few coral species (“survivors”) that are stress-250 

tolerant (i.e., typically slow growing massive species) or have opportunistic “weedy” life 251 

histories that allow fast colonization. For reef fishes, Graham et al. (2011) showed that while 252 

fishing often targets large fishes, warming (via its effect on habitat loss) exerts greater effects on 253 

small bodied and more coral-specialized species, resulting in the fish community being greatly 254 

reduced when both stressors co-occur. Failing to gain resilience to one stressor after facing 255 

another stressor is a considerable concern for the stability of coral reefs worldwide, given the 256 

overlapping extent and variety of human disturbances (Fig. 1). 257 

 258 

Feedback loops and extinction vortices 259 
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Resilience in coral reefs could be further compromised by numerous ecosystem, demographic 260 

and genetic feedback loops, operating independently of local diversity, that can stabilize 261 

degraded ecosystems or even accelerate the rate of decline (i.e., extinction vortices), even if 262 

stressors are subsequently removed. 263 

 264 

Stabilizing ecosystem feedbacks 265 

Several ecological processes can reinforce degraded ecosystem states (Hughes et al. 2010; 266 

Nyström et al. 2012; Shephard et al. 2012; Fung et al. 2013). For instance, a considerable loss of 267 

live coral cover (e.g. following hurricanes, coral bleaching episodes, disease) opens-up space, 268 

and if conditions are right, opportunistic fast-growing algae can reach an abundance beyond the 269 

grazing capacity of the standing stock of herbivores (Williams et al. 2001; Mumby et al. 2007a). 270 

Increasing algal abundance can enhance coral mortality and prevent coral recruitment and 271 

survival (Mumby et al. 2007b), directly by reducing suitable substratum for settlement, causing 272 

shadowing, overgrowing, causing chemically driven allopathic exclusions (Nyström et al. 2012), 273 

or indirectly by enhancing microbial communities and diseases (Smith et al. 2006). Some 274 

herbivorous fish species avoid patches of high algal density (Hoey and Bellwood 2011), further 275 

aggravating the challenge of maintaining cropped macroalgae (Williams et al. 2001). A similar 276 

stabilizing mechanism has been suggested for fish communities facing intense exploitation 277 

(Shephard et al. 2012; Fung et al. 2013). That is, juveniles of large fishes can face excessive 278 

competition and predation by more abundant smaller species whose abundances are “relaxed” 279 

from competition and/or predation due to the loss of larger fishes (Fung et al. 2013). In the 280 

longer term, the loss of corals can reduce structural complexity, potentially reducing the 281 
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populations of herbivores (Graham et al. 2006). Stabilizing feedback loops suggest that reversal 282 

of an ecosystem shift can be significantly impeded even after a stressor has been completely 283 

removed (Nyström et al. 2012; Shephard et al. 2012). 284 

 285 

Extinction vortices due to demographic feedback loops 286 

Extinction vortices can be triggered by demographic processes if low abundance results in 287 

individuals failing to find mates, leading to a reproduction shortfall as part of a process variously 288 

known as depensation, the Allee effect, and inverse density-dependence (Myers et al. 1995; 289 

Gascoigne and Lipcius 2004). For instance, in large broadcasting corals, which contribute 290 

substantially to reef structure, fertilization can drop considerably just three hours after the peak 291 

of spawning suggesting that isolated colonies may fail to mix gametes increasing the risk of 292 

recruitment failure (Oliver and Babcock 1992). Allee effects at reproduction, combined with 293 

heavy exploitation, may have been responsible for the extinction of giant clams (Tridacna gigas) 294 

from Fiji, Guam, New Caledonia and the Northern Marianas (Wells 1997). Deleterious effects of 295 

small population size on species also facing extensive exploitation should be more pronounced 296 

among sedentary species like Tridacna (Wells 1997), or species that already occur in low 297 

densities, such as sharks (Ward-Paige et al. 2010). Human impacts may also reverse naturally 298 

occurring Allee effects with detrimental effects on coral reef resilience. For instance, populations 299 

of the coral-eating crown-of-thorns starfish (Achantaster planci) are thought to be naturally low 300 

due to Allee effects (Dulvy et al. 2004). However, fishing of starfish predators (Dulvy et al. 301 

2004), in combination with greater nutrient loads that greatly increase growth and survival of 302 

starfish larvae (Brodie et al. 2005), have been implicated in preventing Allee effects and may 303 
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cause outbreaks of the crown-of-thorns, which in turn cause considerable reductions in live-coral 304 

cover. 305 

 306 

Extinction vortices due to genetic loss and “maladaptations” 307 

If populations are reduced considerably, genetic variation may be reduced, which can completely 308 

truncate (Swain et al. 2007) or significantly delay (Allendorf and Hard 2009) recovery, even if 309 

stressors are removed. This occurs because genes are lost through adaptation by means of 310 

anthropogenic selection, and can be hard if not impossible to replace (Swain et al. 2007). 311 

Reduced genetic diversity can also decrease populations’ adaptive potential to natural 312 

environmental variability, leading to higher genetic drift, or the random loss of important alleles, 313 

and cause inbreeding depression or increasing expression of recessive deleterious genes and 314 

over-dominant genes (Soulé and Mills 1998; Tanaka 1998; Amos and Balmford 2001).   315 

If population declines are caused by selective stressors, this could lead to directional 316 

selection and “maladaptations” that impair demographic processes and potentially cause 317 

extinction in what has been defined as “evolutionary suicide” (Rankin and Lopez-Sepulcre 318 

2005). Evidence of such “maladaptations”, or changes in life history traits induced by human 319 

stressors is diverse. For example, size-selective fishing can induce substantial declines in fish 320 

mean body size, fecundity, larval viability, and sex-ratios, which in turn detrimentally affect 321 

recruitment, yield, and biomass (Warner 2002; Walsh et al. 2006). Likewise, increasing warming 322 

has been related to reductions in body size, clutch size and accelerated early development in 323 

several marine organisms (reviewed by Hoegh-Guldberg and Bruno 2010). Although the extent 324 

to which such “maladaptations” occur in nature is largely unknown, this is likely to change as 325 
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new advances in genome-wide scanning improve our understanding of the genetic responses of 326 

organisms to anthropogenic stressors. 327 

 328 

Paving a future for coral reefs 329 

Evidence of the decline of coral reefs worldwide is relatively well documented (Wilkinson 330 

2002). While there are obvious stressors to coral reefs (e.g., fishing, coastal pollution, climate 331 

change, invasive species, diseases, etc.), our review shows that there are also many ecological 332 

mechanisms that considerably limit the capacity of coral reefs to cope with such stressors.  Coral 333 

reefs currently face a dangerous situation by being “fragile” while dealing with stressors that are 334 

not only intense but spatially pervasive (Nyström et al. 2000). There is also evidence to suggest 335 

that the more degraded a coral reef is, the harder it is to reverse the degradation. For instance, 336 

Mumby et al (2007a) modeled how reversing coral-algae phase shifts through the restoration of 337 

herbivorous fishes would require a fourfold increase of herbivores at coral covers of ~5%, but 338 

only a two- to three-fold increase at a coral cover of ~30%. 339 

Having ecosystems that are fragile poses a major challenge for conservation because it 340 

suggests that the intensity of disturbances have to be reduced considerably. This calls for 341 

governance initiatives that are regional in scope and integral in their assessment of stressors and 342 

ecosystem limits while balancing human uses. These strategies should better account for drivers 343 

of change (e.g. climate change, migration, fishing, trade), ecosystem processes (e.g. dispersal and 344 

connectivity), policies (e.g. fisheries management), and actors (e.g. fishers, coastal developers) 345 

and should transgress borders of individual nations. The Coral Triangle Initiative on Coral Reefs, 346 

Fisheries and Food Security (CTI) is an example of one such attempt. The intergovernmental 347 
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agreement covers six nations (i.e. Indonesia, Malaysia, the Philippines, Timor Leste, Papua New 348 

Guinea and the Solomon Islands) with a mission to govern common pool resources, and 349 

strategically coordinate marine protected areas and climate adaptation actions (Fidelman et al. 350 

2012). Strengthening similar stewardship over larger scales will be necessary for coral reefs to 351 

maintain their integrity and to continue delivering the many goods and services we obtain from 352 

them. 353 

 354 
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 607 

Fig. 1. Modification of coral reefs. Coral reefs are typified by high biological diversity and 608 

habitat complexity, largely provided by reef building corals (A). However, due to a plethora of 609 

anthropogenic stressors, such as fishing (B), climate change (C), nutrient and sediment inputs 610 

(D), and introduced species (E), many reefs around the world are in decline, and some have 611 

shifted to a new ecosystem state, such as one dominated by macroalgae (F). These shifts can 612 

become permanent due to several stabilizing feedback loops and even accelerate to more 613 

degraded systems by extinctions vortices. Photo credits: A and F - Nick Graham, E - Emily 614 

Darling, B and C – Wiki-commons, D - MODIS-Aqua satellite image, NASA OceanColor 615 

website. 616 


