Carrick, Tom and Rashid, Awais and Taylor, Paul Jonathon (2016) Mimicry in online conversations : an exploratory study of linguistic analysis techniques. In: Advances in Social Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM International Conference on :. IEEE, USA. ISBN 9781509028474
asonam_mimicry.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (159kB)
Abstract
A number of computational techniques have been proposed that aim to detect mimicry in online conversations. In this paper, we investigate how well these reflect the prevailing cognitive science model, i.e. the Interactive Alignment Model. We evaluate Local Linguistic Alignment, word vectors, and Language Style Matching and show that these measures tend to show the features we expect to see in the IAM, but significantly fall short of the work of human classifiers on the same data set. This reflects the need for substantial additional research on computational techniques to detect mimicry in online conversations. We suggest further work needed to measure these techniques and others more accurately.