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Abstract 

Despite the growing complexity of SEM applications in tourism, it is surprising that most 

applications have estimated these models without accounting for unobserved heterogeneity. In 

this paper we aim to discuss the concept of unobserved heterogeneity in more detail, 

highlighting its serious threats to the validity and reliability of SEMs. We describe a Bayesian 

finite mixture modeling framework for estimating SEMs while accounting for unobserved 

heterogeneity. We provide a comprehensive description of this model, and provide guidance on 

its estimation using the Winbugs software. We illustrate the importance of unobserved 

heterogeneity and the finite mixture modeling framework using a didactic application on brand 

equity where heterogeneity is likely to play an important role due to the differences in how 

consumers perceive the different dimensions of brand equity. We compare between various 

models and illustrate the differences between the standard and heterogeneous SEM, and 

discuss the implications for research and practice. 
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1. INTRODUCTION 

Over the last decade, structural equation models (SEMs) have been increasingly popular across 

many tourism disciplines (Nunkoo et al. 2013; do Valle and Assaker, 2015), such as sustainable 

tourism (Zhang and Lei, 2012), tourism marketing (Chi and Qu, 2008), and tourism management 

(Yoon and Uysal, 2005; Hallmann et al. 2015). These models are highly flexible and powerful in 

the sense that they allow researchers to model and test complex patterns of relationships 

between latent and observed variables that would not be possible using other methods 

(Reisinger and Turner, 1999). Though progress continues to be made in the application of these 

models in tourism, most studies are still often simplistic and based on the implicit assumption 

that the sample is drawn from a single population.  

Several researchers have warned about the issue of estimating homogenous models when 

testing, for example, theories of customer satisfaction, as customer decisions may vary across 

different segments or groups (Fonseca, 2009; Sarstedt and Ringle, 2010). As emphasized by 

Becker et al. (2013), ignoring unobserved heterogeneity across various groups can bias 

parameter estimates, resulting in incorrect hypothesis testing. For example, while a 

homogenous SEM may reveal a strong goodness-of-fit index, leaving the researcher satisfied 

that the model is valid, the parameters of the model might still be severely biased if 

unobserved heterogeneity exists and not properly recognized in the estimation. The seminal 

paper by Jedidi et al. (1997), for instance, emphasized this issue with an application from 

marketing, where they compared between two models with one that accounted for 

unobserved heterogeneity and the other that failed to recognize unobserved heterogeneity. 

They showed that while the fit statistics were perfect for the homogeneous model, the results 

were meaningless and the structural parameters were severely biased. More seriously, they 

emphasized that the “traditional fit statistics do not provide diagnostic information alerting the 

researcher to the presence of unaccounted unobserved heterogeneity in the sample” (Jedidi et 

al. 1997, p. 40). In addition, there is a serious threat to major types of model validity such as 

internal and instrumental validity, as illustrated by recent simulation evidence (Becker et al. 

2013). Moreover, as ignoring heterogeneity can result in biases and inconsistencies in all 
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parameters estimates, the effect of covariates or mediating variables cannot also be 

meaningful.   

While all these issues are now well established in marketing and management, it is surprising 

that the topic is yet to gain strong foothold in tourism research. Though recent tourism models 

have acknowledged the importance of unobserved heterogeneity (Mazanec and Strasser, 

2007), the focus in tourism tends to be more on observed rather than unobserved 

heterogeneity. The two concepts are different and should not be confused each other. 

Observed heterogeneity refers to a situation when the researcher has a priori theoretical 

knowledge about the group differences in the data (Becker et al. 2013). This happens, for 

example, when a tourism researcher includes particular moderators (e.g. age, income level, 

etc.) in research design to account for heterogeneity for the various relationships in SEM. 

Unobserved heterogeneity, in contrast, aims to capture situations when there is no clear 

theoretical account for heterogeneity in the data, despite potentially being present in the data 

(Becker et al. 2013). More specifically, unobserved heterogeneity mainly refers to either latent 

class membership1 or a violation of the usual iid assumption, i.e. that an observed variable is 

drawn not from a single population probability density function (PDF), but multiple PDFs and 

not observable variation, easily measurable by variance or IQR, or by staring at a histogram or 

boxplot. As an example in a panel data model yit=αi+βxit+uit, the variation due to xit is observed 

heterogeneity while variation in αi stands for unobserved heterogeneity. Unobserved 

heterogeneity can take the form of membership into different population PDF which is, for 

example, the case when an observation yi can belong to a population N(xiβ1,σ1
2) with 

probability π and a population N(xiβ2,σ2
2) with probability 1-π.  

The aim of this paper is to describe a modelling framework for accounting for unobserved 

heterogeneity in SEM tourism applications. We focus on (1) describing the heterogeneity 

concept in more detail, (2) presenting a finite mixture structural equation model (FMSEM) to 

handle unobserved heterogeneity in SEMs, (3) discussing how to test and identify the correct 

number of groups in the FMSEM by using the Bayesian approach. As the tourism literature 

                                                           
1 Note that latent class analysis is just another method of cluster analysis, with the same core conceptual basis: 
clusters are not “revealed”; they are constructed. 
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currently lacks a clear description of this model, we see possible merits in this approach for 

structural equation modeling in tourism research. The focus on how to estimate finite mixture 

models in a Bayesian framework is particularly important as the Bayesian approach introduces 

more flexibility in the estimation of more advanced version of finite mixture models.  

We discuss in this paper two versions of the FMSEM model including a standard FMSEM and an 

extended FMSEM. The latter allows the inclusion of covariates in the mixing probability, 

providing therefore more meaningful interpretation of the sources of heterogeneity between 

groups. We illustrate the model with an application from the tourism literature, and provide 

researchers with clear instructions on how to estimate the model using the Bayesian Winbugs 

software. In the following, section 2 discusses in more detail the concept of heterogeneity in 

SEM. Section 3 introduces the Bayesian finite mixture model. Section 4 presents an application 

example. Section 5 tests the robustness of the model. Finally, sections 6, 7 and 8 discuss the 

results, implications of our study, and suggested avenues for future research. 

2. OBSERVED vs. UNOBSERVED HETERGONEITY  

As mentioned, in the discussion of heterogeneity it is important to distinguish between 

observed and unobserved heterogeneity. The first reflects a situation where differences 

between groups or segments are expected a priori, and can be justified by incorporating 

individual-specific variables or moderators in the model (Becker et al. 2013). Studies in tourism, 

for example, have incorporated moderators such as “consumer product involvement” to 

explain the satisfaction-loyalty relationship (Chen and Tsai, 2008), “quality” to explain the 

perceived value-satisfaction relationship (Petrick, 2004), and “motivations” to explain the 

choice of tourism destinations (Nicolau and Mas, 2006). Observed heterogeneity is also 

commonly explained using demographic (Matzler et al. 2008) income (Barros and Machado, 

2010), education (Funk and Bruun, 2007) or time variables (Kim et al. 2013). 

Unobserved heterogeneity reflects a situation when heterogeneity exists in the model though 

not explicitly defined, or when the moderators or individual-specific variables in the model do 

not fully account for the sources of heterogeneity in the population (Becker et al. 2013). In such 

situations, researchers need to use appropriate modelling techniques to account for 
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unobserved heterogeneity and identify the number of segments or groups in the data 

(Hutchinson, Kamakura and Lynch, 2000; Horsky, Misra and Nelson, 2006). Such process can 

then be followed by a post hoc analysis to provide theoretical support for the grouping. Of 

course, in situations when theoretical explanations are not available to transform unobserved 

heterogeneity into observed heterogeneity, a researcher may use the number of identified 

groups to provide new theoretical directions to a certain framework (Becker et al. 2013).   

 

There are, for example, many situations when a researcher started with a certain theoretical 

belief about a model and later proven wrong as a result of accounting for unobserved 

heterogeneity (Ansari et al. 2000). The literature provides now enough evidence about the 

serious threats of ignoring unobserved heterogeneity not only in the context of SEMs but also 

in other modeling frameworks such as regressions or panel data models (Kahn and Raftery, 

1996; Wooldridge, 2005).  For SEMs the risk is two-sided as ignoring heterogeneity has an effect 

on both the measurement and structural parts of the model (Becker et al. 2013). Simulation 

evidence, for example, has shown that ignoring unobserved heterogeneity affects the sign and 

size of the structural parameters, provides misleading conclusions about the strength of the 

relationships, and decreases the overall power of the model (Jedidi et al. 1997; Lee and Song, 

2012; Becker et al. 2013). For the measurement side, ignoring heterogeneity can also bias the 

results for both formative and reflective models. With reflective models, for example, ignoring 

heterogeneity can affect the loadings as respondents “may provide information with different 

degrees of accuracy (e.g., variability in measurement error for any given scale item could differ 

across individuals)” (Ansari et al. 2000, p.329). In addition, when the construct’s measures are 

formative, ignoring heterogeneity can affect the indicators’ weights across groups leading to 

wrong interpretation about the importance of each of the different facets loadings into the 

main construct.  

 

The paper by Becker et al. (2013) provided a useful example on this issue using the famous 

service quality (SERVQUAL) model that was measured through these formative indicators: (1) 

“tangibles”, (2) “reliability”, (3) “assurance”, (4) “empathy”, and (5) “responsiveness” 
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(Parasuraman et al. 1985). In assessing this model, customers might be heterogeneous in the 

answers, as some might prefer the communication facets such as empathy and responsiveness, 

while others might prefer the trust facets such as assurance and reliability. Such heterogeneity 

in customers’ preferences might lead to different weights across the groups and, if not handled 

correctly, would lead to misleading conclusions. When pooling the sample, for example, a 

researcher is simply treating the two groups as equally important in their evaluation of 

SERVQUAL, ignoring the fact that this overall model does not represents either groups. In 

addition, because of this, the relationship between SERVQUAL and other potential constructs in 

the model such as customer satisfaction is also likely to be biased, not to mention that ignoring 

heterogeneity can also affect different types of SEM model validity such as internal validity, 

statistical validity and construct validity. The threat to internal validity, for example, happens 

because not accounting for unobserved heterogeneity can hide some new segments in the data 

that are not fully covered by the moderators or other individual specific variables, while the 

threat to statistical validity happens because ignoring unobserved heterogeneity can affect the 

size and sign of the coefficients and increase the standard error of the estimates. Finally, the 

threat to construct validity can result from not detecting the true group-specific measures of 

the constructs (see Becker et al. 2013 for more detailed discussion of these issues).  

 

While studies in marketing and management have started to pay strong attention to the above 

issues, the measurement of unobserved heterogeneity is still largely ignored in the tourism 

literature. Most theories tested in tourism (e.g. SERVQUAL, customer satisfaction) are complex 

and involve customer surveys and opinion on different constructs, which can be subject to 

unobserved heterogeneity. Often we see, for example, meta-analysis in tourism referring to 

conflicting findings due to the absence of some moderators or contextual variables from some 

studies (e.g. Weed, 2006; Stepchenkova and Mills, 2010). However, accounting for such 

moderators and other contextual variables can only address the observed heterogeneity part of 

the model. Tourism researchers need to be aware that conflicting results between studies that 

focus on the same theory can also result from unobserved heterogeneity. In other words, 
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unobserved heterogeneity can introduce new dimensions to existing theories that would help 

unveil some of the inconsistencies in the literature. 

 

3. APPROACHES TO ACCOUNT FOR HETEROGENEITY  
 

The literature offers several methods to handle observed and unobserved heterogeneity. As 

mentioned, if heterogeneity can be easily observed or defined a priori it is common to use 

moderators or other contextual factors to differentiate between various groups in the data. 

This approach for instance, is common in the tourism literature (Ekinci and Hosani, 2006; 

Ferrer-Rosell et al. 2014). Alternatively one can split the sample into groups and the data 

analysed with methods for multiple groups. Tourism researchers, for example, have commonly 

used multiple-group analyses or experimental controlled groups to compare explicitly defined 

groups such as gender groups, age groups, etc. (Jurowski and Gursoy, 2004; Okazaki and Hirose, 

2009; Oh and Hsu, 2014). Such approaches, however, are not appropriate in the context of 

unobserved heterogeneity. Here “the variables that cause the heterogeneity in the data are not 

known beforehand. Consequently, it is also not known to which of the subpopulations a 

participant belongs, and it is not possible to divide the sample into groups “(Lubke and Muthen, 

2005, p. 21). As the potential groups are not directly observed (i.e. latent) and have to be 

derived or inferred from the data (Jedidi et al. 1997; Lubke and Muthen, 2005), one simple 

solution to the problem would be to use a two-stage procedure combining cluster analysis in 

the first with multi-group analysis in the second. As theoretical and simulation evidence (Jedidi 

et al. 1997; Görz, Hildebrandt, & Anacker, 2000), however, have proved that such approach 

may provide biased conclusions, the recent literature has focused on two main methods to 

handle unobserved heterogeneity: the finite mixture SEM (FMSEM) and the Bayesian 

hierarchical SEM (BHSEM).  

The FMSEM was initially introduced by Jedidi et al. (1997) in the context of market 

segmentation. These models generalize the multigroup SEM to the context where groups 

cannot be observed a priori (i.e. unobserved heterogeneity). The FMSEM is highly popular and 

has been tested successfully across several fields including behavioural, social, medical and 

environmental sciences. The model “arises with a population which is a mixture of K 
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components (latent classes) with probability densities (  , 1,...,kf k K  and mixing 

proportions , 1,...,kπ k K ” (Lee and Song, 2012, p.162). Hence, FMSEM represents of 

heterogeneity in a finite number of components or latent classes. The difference between the 

FMSEM and the two-stage approach highlighted above is that the “FMSEM assigns the 

observations to a pre-specified number groups by means of fuzzy (probabilistic) clustering, 

thereby permitting the simultaneous estimation of group-specific parameters” (Becker et al., 

2013, p. 673). Hence, this avoids the bias with the two stage approach.  

 

The performance of the FMSEM has been tested in several studies (Temme et al. 2002). It is 

highly flexible in fitting models with skewness and non-standard distributional characteristics 

(Lee and Song, 2012). Simulation evidence and findings from related studies have also shown 

that using the FMSEM can prevent researchers from making wrong conclusions about the 

structural and measurement relationships in SEMs (Jedidi et al. 1997; Lee and Song, 2012). 

 

The Bayesian hierarchical SEM (BHSEM) has also been extensively used to handle unobserved 

heterogeneity. This model, originally introduced by Ansari et al. (2000), provides an important 

extension on multilevel models (also known as random coefficient models). For instance, in 

contrast to multilevel models which can only handle heterogeneity in mean structure (i.e. factor 

means, measurement mean intercepts), this model can also handle heterogeneity in structural 

parameters and covariance structures (Jedidi and Ansari, 2001; Preacher et al. 2010). As in most 

marketing and management applications heterogeneity exists beyond mean structure, the 

BHSEM provides hence a more comprehensive and robust assessment of heterogeneity (Ansari 

et al. 2000). Its main limitations, however, is that can work only with continuous data (Becker 

al. 2013). This model also requires panel data per individual as it measures heterogeneity at the 

individual level and not among a defined number of groups (Becker al. 2013).  In other words, it 

is more suitable for recursive SEMs. 
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Because of these limitations, the FMSEM has been used more extensively in the marketing and 

management literature. This model is more flexible and can be used for different types of data 

and applications (Lee and Song, 2003). Its statistical estimation is however not straightforward. 

Researchers for example have traditionally struggled to correctly identify the number of 

heterogeneous groups with the FMSEM (Nylund et al. 2007). While some solutions have 

become available, they mostly require more complicated estimation techniques such as the 

Bayesian approach. In addition, some modified versions of the FMSEM also necessitate more 

advanced estimation methods such as the Bayesian approach.  

 

Our focus in this paper is to simplify the description of the FMSEM and provide tourism 

researchers with complete guidance on how to estimate this model. Though a variety of 

estimation methods have been proposed to estimate FMSEM (e.g. method of moments, 

maximum likelihood (ML), minimum chi-square and Bayesian approach), the present paper 

focuses on the Bayesian approach. There are indeed computational reasons to use the Bayesian 

approach2 when it comes to mixture models. Classical techniques, for example ML, have a 

serious problem as the likelihood becomes unbounded when one variance goes to zero 

(variance = σ2 of a certain component in the mixture). We fully understand that the Bayesian 

approach is yet to gain a strong foothold in tourism research. In addition, there has been a lack 

of studies describing the Bayesian approach in the tourism literature. For this reason, we 

provide here a short description of the approach in the context of FMSEM and provide tourism 

researchers with clear guidelines on how to estimate the FMSEM in a Bayesian approach.  

 

 

 

 

 

 

 

                                                           
2 In particular, the Markov chain Monte Carlo (MCMC) in Bayesian inference. 
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4. THE MODEL 
 
4.1. FINITE MIXTURE STRUCTURAL EQUATION MODEL (FMSEM)  
 

To illustrate the difference between the FMSEM and the standard SEM3, we start first with a 

description of the latter. The measurement and structural parts of the standard SEM can be 

described in (1) and (2), respectively, as follows:  

 

  

  

     

where for (1), y is a random vector of observed indicators for  , a vector of latent variables,  is 

a vector of intercepts,   is an unknown matrix of loadings representing the relationship  

between y and  , and  is a vector of residuals.  For (2),    and   are random vectors 

representing the outcome and explanatory variables for w ,   and   are vector of regression 

coefficients that represent the effect on 
j , and   is a vector of residuals.  

 

While this model is simple to estimate, its main limitation is that it assumes that the sample is 

drawn from a population with homogenous characteristics (Becker et al. 2013). The FMSEM 

accounts for unobserved heterogeneity in the data using more flexible representations of the 

structural relationships between the latent variables and the implied distributions of the 

observed variables. In standard SEM, for example, it is typically assumed that there exists a 

single probability density function (e.g. standard normal distribution) from which the data are 

generated. In the FMSEM, however, this assumption is relaxed and instead it is assumed that 

the data are generated from a finite mixture multivariate normal density function4. Such 

                                                           
3 The standard SEM is the common SEM specification used in the tourism literature.  
4 Mixtures involve the assumption that the model is correct for a particular group of observations, that the 

coefficients of this group are different compared to those of other groups, and that the allocation of observations 
to groups is unknown a priori (Lee and Song, 2003). 
 

Λ                                                                                                    (1)

Π Γ +                                                                                  

y μ ω ε

η η ξ δ

= + +

= +                     (2)
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mixture distribution provides a natural representation of heterogeneity by dividing the whole 

population into sub-populations and for each subpopulation, the data can be modeled by a 

parametric distribution. 

For example, for the observed indicators
iy  we can write the mixture distribution as follows: 

 

   
1

             | , ,      1,...,                                                                                              (3) 
K

i k k i k k

k

f y f y i n


     

 

where K is the number of subpopulations or groups with different characteristics specified by 

parameter vector kθ , kπ  is the unknown mixing proportion or the probability of an individual 

belonging to the kth subpopulation or group with the constraint that 
1

1
K

kk



 , and 

 | ,k i k kf y μ θ is the conditional density given that the observation is from the kth group with 

unknown mean vector . 

 

Hence, for the kth group we can now write the measurement and structural parts described in 

(1) and (2) as:  

 

 

 

 

 

where 
iy , 

k , 
k , 

i , 
i , 

i , 
k , 

k , 
i  and   i are as defined under  (1) and (2) but here in terms of 

the kth group. Any of these parameters can be invariant across groups. However, “it is essential 

to assign a different k in the measurement equation of each component in order to effectively 

analyze data from the heterogeneous population that differ by their mean vectors” (Lee and Song, 2012, 

p.164).  

 

4.2. AN EXTENDED FMSEM  

 

                                                                                                            (4)

+ +                                                              

i k k i i

i k i k i i

y   

  

  

                                                   (5)
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In the FMSEM literature, researchers have recently highlighted the importance of allowing the 

mixing probability in the FMSEM to vary with a vector some exogenous covariates in order to 

explain the sources of unobserved heterogeneity between groups (Yuan and Bentler, 2010). For 

example, while the above FMSEM is enough to account for unobserved heterogeneity, it does 

not provide a rich interpretation on why different groups exist in the data.  

To illustrate, we can define kπ , the mixing probability in (3) as : 

  
 

 
1

exp
     |                                                                                            (6)

exp

T

k i

k i i K T

j ij

x
p z k x

x


  







 

where 
ix is a vector of covariates, 

iz is a latent allocation of iy , and k  is a vector of coefficients. 

Hence, in this model, the components probability of iy  and the mixing probability k  are 

related to a vector of covariates. These covariates can play an extremely helpful role in 

explaining the sources of differences between the various groups. The model hence adds 

increased flexibility to the standard FMSEM and allows for better and more parsimonious 

identification and description of heterogeneity. 

However, as this modified version of the FMSEM is more complicated and highly non-linear, 

studies have recommended estimating the model using a Bayesian approach (e.g. Nylund et al. 

2007). The traditional estimation methods such as maximum likelihood (ML), for example may 

not provide a good fit in such contexts (Cai et al. 2010).  

 

4.3. BAYESIAN ESTIMATION  

 

While different estimation methods (e.g. method of moments, maximum likelihood, Bayesian) 

have been proposed to estimate the FMSEM, we use in this paper the Bayesian approach for 

four main reasons. First, the Bayesian approach is well suited to handling the model in (6). The 

incorporation of covariates in the mixing probability, for example, complicates the FMSEM 

considerably and thus we need well-mixing procedures to perform the multivariate integrations 
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required by Bayesian analysis. In more complex models like (6), where, for example, latent 

variables enter the mixing probability, finding the covariance matrix becomes impossible or, at 

best, questionable as it uses various approximations.  

 

Second, the use of the Bayesian approach offers both theoretical and practical benefits over 

frequentist methods (e.g. maximum likelihood) when dealing with heterogeneity in SEMs (Li 

and Wang, 2010; Cai et al. 2010). From “a practical viewpoint, Bayesian methods allow the 

flexible incorporation of prior information about model parameters. In addition, Bayesian 

methods allow the estimation of individual-specific estimates while accounting for parameter 

uncertainty in such estimates. Specifically, in our modelling context, the Bayesian methodology 

provides individual-specific estimates of the factor scores, structural coefficients, and other 

model parameters” (Ansari et al. 2000, p. 330). From a statistical view point, Bayesian methods 

do not rely on asymptotic theory5, which is the foundation for sampling theory treatments and 

estimation of the SEM.  

Third, as mentioned, the Bayesian approach has also proven to be more reliable in identifying 

the correct number of groups in the FMSEM (Li and Wang, 2010). When estimating the model 

with maximum likelihood it is common to use the likelihood ratio test to compare between 

several FMSEMs with different groups and then select the best model based on the value of this 

ratio. Recent evidence, however, have shown that the likelihood ratio test performs poorly in 

the context of FMSEM. The Bayesian approach offers different modelling comparison criteria 

such as the Bayes factor or Deviance Information Criterion (DIC) that can be used to compare 

models and that have all proven to be highly reliable in the context of the FMSEM (Cai et al. 

2010). These modelling criteria are also known to yield minimum risk discrimination among 

models or between hypotheses (Kass & Raftery, 1995).  

                                                           
5 It is important to emphasize here that with the Bayesian approach, we use normality of certain disturbances or 
normality of certain priors but this does not mean we do it because of asymptotic theory. We do it because 
normality is convenient and factor nicely with the likelihood (Coelli et al. 2005).  If we change the priors, we will 
not obtain different results in large samples. The issue is that assuming normality for disturbances is not the same 
as asymptotic theory. Asymptotic refers to convergence of certain estimators to a certain distribution (most often, 
the normal). But posterior distributions need not be normal. 
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Finally, the Bayesian approach delivers results (for example, about posterior group 

classification) that are fully robust to parameter uncertainty. Likelihood ratio and other tests, 

on the contrary, condition on the ML estimates ignoring statistical variations in the 

parameters6. 

 

5. APPLICATION 

To illustrate the importance of accounting for unobserved heterogeneity, we apply the model in 

(4), (5) and (6) to a brand equity model recently proposed in the lodging industry by Hsu et al. 

(2011). This model (Figure 1) suggests that “brand loyalty” affects positively “brand choice 

intention” (i.e., the traveller’s willingness to choose the same brand in the presence of 

competitor). The study defines the following five positive determinants of brand loyalty: 

Perceived quality, brand awareness, brand image, management trust and brand reliability. For 

detailed conceptual discussions, model specification, and measurement properties, refer to Hsu 

et al. (2011) 

While the study by Hsu et al. (2011)7 has specified the model in (1) using a homogenous SEM, 

there are many reasons to believe that unobserved heterogeneity exists in such types of 

models. For example, studies in marketing have discussed the importance of accounting for 

unobserved heterogeneity when modelling brand-choice data, as consumers are 

heterogeneous in the way they respond to the dimensions of brand choice intention (Horsky et 

al. 2006). There are also differences in “the underlying preferences consumers have for various 

brands” (Horsky et al. 2006, p. 322). Hence a failure to account for such heterogeneity might 

lead to inconsistent and biased results. In the following section, we present our results for both 

the homogeneous SEM (i.e. estimated without any account of unobserved heterogeneity) and 

                                                           
6 Specifically, likelihood tests condition on a particular estimate (for example the maximum likelihood estimate). By 
so doing, the variation in the parameter is ignored. In Bayesian analysis there is the well-known saying of Jeffreys 
that often a hypothesis is rejected (by a p-value) because it did not predict what we do not observe. Moreover, in 
p-values one allows for sampling variation that is variation in data that we did not observe. 
7 We thank the authors for making the data of this study available for our illustration in this study.  
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the FMSEM. We illustrate the differences in findings between the two models and discuss the 

implications for practice.  

6. DATA AND RESULTS  

The sample for the model in Figure 1 includes 1346 observations collected from domestic and 

foreign visitors staying at 32 Chinese hotel properties. Tables 1 presents the items used to 

measure each of the constructs in Figure 1. These items were defined based on focus groups 

conducted by the authors as well as previous studies in the literature. We confirmed that the 

measurement model fit the data well as indicated by Hsu et al. (2011). The final items and their 

descriptive statistics are reported in Table 1.  

 

6.1. HOMOGENEOUS SEM 

Before presenting the results from the FMSEM, and for purpose of comparison, we present first 

the result from the homogenous (i.e. standard) SEM. In order to be consistent with the FMSEM 

we also estimate this model in a Bayesian framework8. We rely on the Winbugs software, which 

is highly reliable for Bayesian estimation and has been used in many recent management and 

marketing studies (Chen, Fay and Wang, 2011; Rust and Verhoef, 2005). We checked for model 

fit using the Posterior Predictive p-value (PPP), which is highly common with Bayesian 

estimation and has also been used in the context of SEM (Muthen and Asparouhov, 2012). 

Specifically, the PPP “uses the estimated posterior distribution and evaluates how that 

posterior distribution and the model fit the data” (Asparouhov and Bengt Muthen, 2010, p. 20), 

with values close to 0.5 indicating strong fit (Lee and Song, 2012)9.  

 

In our context the PPP was around 0.52, confirming that the model fits the data well. The 

parameter estimates for this model are illustrated in Figure 2. As it is clear, there is a positive 

and statistically significant relationship between each of the six structural paths and brand 

loyalty, confirming previous theoretical expectations (Hsu et al. 2011). The relationship 

                                                           
8 Note that it is common in the tourism literature to estimate this model by using the Maximum Likelihood method 
available in, for example, LISREL or AMOS.  
9 For more details on how to calculate the PPP refer to Muthen and Asparouhov (2011). 
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between brand loyalty and brand choice intention is particularly strong confirming that 

travellers “who are loyal to a hotel brand should show a strong willingness to choose the same 

brand among many competitor brands available” (Hsu et al. 2011, p.85). 

 
 
 
6.2. THE FMSEM 

6.2.1. DETERMINING THE NUMBER OF GROUPS 

As part of the FMSEM estimation, and after confirming the model fits the data well (PPP=0.51), 

we first conducted some model comparison to determine how well the model performed 

against the homogenous SEM. It was also crucial to identify the number of groups required for 

the estimation of the FMSEM. A challenging and still unresolved aspect in the estimation of 

FMSEM, for instance, is to determine the number of unobserved heterogeneous groups in the 

data. There is contradiction in the literature regarding the best modelling criteria to use for 

determining the number of groups, though there has been some important progress in this 

area. Nylund et al. (2007), for example, showed through a simulation study that the Bayesian 

Information Criteria (BIC) was a reliable and consistent tool for correctly identifying the number 

of groups in finite mixture models. Lee and Song (2012) illustrated the reliability and 

importance of the Deviance Information Criterion (DIC) in determining the number of groups 

when estimating the FMSEM10. The authors also emphasized the importance of using the 

Bayesian approach and the DIC particularly when estimating complicated versions of the 

FMSEM such as the one illustrated in (6). The Maximum Likelihood (ML) approach-and its 

related tests (e.g. likelihood ratio test) – for instance, usually encounters serious difficulties due 

to the non-linearity of the FMSEM.  

  

The DIC generalizes the Akaike Information Criterion (AIC), and is a “devised selection criterion 

which combines the Bayesian measures of complexity level and of how well the model fits the 

data” (Cai et al., 2009, p. 1865). Usually models with lower DIC are considered a better fit. The 

                                                           
10 As highlighted by Richardson and Greem (1997), the Bayesian approach in general is very suitable to the problem  
when K is unknown. 
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DIC results are illustrated in Table 2. Along with the homogenous SEM, we estimated two 

FMSEMs, one assuming two groups and the other assuming three groups in the data. We can 

see first that the DIC for both FMSEMs is lower than the homogenous SEM, with the two-group 

model being the lowest in DIC, suggesting that (1)FMSEM is a better fit than the homogenous 

SEM in our branding example and (2) unobserved heterogeneity indeed exists in the data.  

Between the two FMSEMs we can see that the model with two groups outperforms that with 

three groups, hence a mixture model with two groups should be chosen. Before proceeding 

further and in order to confirm that the model is behaving well and revealing the true number 

of groups, we also conducted Monte Carlo Simulation, for which the details are provided in 

Appendix 2. The results clearly indicate that the Bayesian approach performs well across 

different sample size and the model is revealing with high confidence the true number of 

groups even in small sample size. 

 

6.2.2. TESTING EQUIVALENCE 

Now that the number of groups has been determined, we conducted a test for equivalence to 

ensure that the groups can be meaningfully compared. For instance, it is common in the 

FMSEM literature (Zyphur, Chaturvedi, & Arvey 2008) to ensure that the items are measuring 

the same constructs across the groups. Such equivalence in measurement can be tested by 

constraining the same factor loading to be equal across the groups. If equivalence does not 

exist, comparing between the structural parameters is meaningless as the groups come from 

different populations. In other words, we need to guarantee that “the same construct is 

assessed in different groups and that this construct has the same metrics characteristics among 

groups” (Elosua, 2011, p. 404).  

This paper tests the between-group measurement equivalence by using the following 2   

statistic. Suppose, first, that 
yvec       and that the dimensionality of the vector is d  (i.e. the 

total number of elements in matrix y . In the case of FMSEM the correct notation is 
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 
 g

yg
vec   

 
  for a given group. In the case of two groups (which turns out to be best in our 

application), define 
   1 2

     . The statistic: 

1q V   

 

where ( )V Cov  , will follow a 2  distribution. The null hypothesis of the test is that there is 

equivalence between the two groups.  From the results, we found that that the p-value of the 

test is equal to 0.83. Hence, there is clear support for equivalence in the factor loadings. 

Moreover as the construct in both groups is measured on the same scale and using the same 

observed variables, we then have a solid base to compare between the two groups in our data 

set.  

6.2.3. GROUP COMPARISON 

The Bayesian estimates for both FMSEM groups are illustrated in Figures 3 and 4. As expected, 

most variables relate positively, as in the original model. There are, however, important 

differences between the two groups in terms of the size and significance of some coefficients. 

For example, we can see that both “perceived quality” and “brand awareness” do not have a 

significant impact on brand loyalty in Group 1 (see the dotted arrows), while brand image does 

not have a significant impact on brand loyalty in Group 2 (see the dotted arrow).  We can also 

observe important differences in the size of the loadings between the two groups and also 

between each group and the homogeneous SEM in the figures11.  

 

6.2.4. COVARIATES OF UNOBSERVED HETEREGONEITY 

Before discussing further the above results, we report in Table 3 the parameter estimates of the 

covariates that entered the mixing probability of the model in (6). As explained in (6), the 

                                                           
11 We further confirmed this issue by monitoring the difference between the loadings of the various models in 
Winbugs. In most cases we confirmed (based on the posterior mean and the standard deviation) that there are 
significant differences between these loadings. 
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inclusion of these covariates was essential to provide richer interpretations of the sources of 

heterogeneity in the data, and to provide more clear justifications on the differences that 

existed between the two groups. Inclusion of covariates, in general, helps not only account for 

the background conditions for the functioning of a particular theory, but also develops a richer 

understanding of the theory and its boundary conditions. 

For the selection of covariates in the FMSEM context, the researcher has the option to choose 

either the variables that exist completely outside the model (e.g. age, income, etc.) or the 

exogenous variables that were already included in the model. For illustration purposes in the 

present context, we tried to assess the impact of all exogenous variables that existed in the 

model (i.e. perceived quality, brand awareness, brand image, management trust and brand 

reliability). Such inclusion of the exogenous variables as covariates is well justified in the 

FMSEM literature (Cai et al. 2010; Lee and Song, 2012) in that their theoretical role in the 

model logically supports their immediate, additional roles as explanatory variables for 

classifying the sample into one of the two groups according to the mixing probability.  

The results summarized in Table 3 represent the differences between groups 1 and 2 in terms 

of each of these variables, based on group 2 as the reference group for comparisons. Of the five 

covariates, two appeared to significantly determine group membership characteristics, in 

addition to their roles as antecedents to brand loyalty. For example, we can see that the 

respondents belonging to group 1 tend to have higher perceptions of overall quality (i.e. 

perceived quality) than those classified into group 2. However, group 1 respondents seem to 

have significantly lower perceptions of the overall image (i.e., brand image) than group 2. There 

is no difference between the two groups in terms of the other three variables. 

These results indicate that in this study perceived quality and brand image were the main 

determinants of the underlying heterogeneity between the two groups. This, in fact, reflects 

how the hotel market is structured along the level of product and service quality, as implied in 

the industrywide star or diamond ratings. That is particularly true as perceived quality often 

becomes a main source forming the hotel’s brand image and, combined, they impact customer 

attitudes in a distinct manner (Homer, 2008; Wu, Yeh, & Hsiao, 2011). Given their close 
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relationship, both conceptually and empirically, perceived quality and brand image could forge 

a powerful synergy to detect the underlying, effective heterogeneity and drive the mixing 

probability of classifying the sample into one of the two groups. In contrast, such classification 

power was absent in the concepts of brand awareness, management trust, and brand reliability 

even if their role in the conceptual model in Figure 1 was significant each. 

Some important theoretical and practical implications are in order for discussions about these 

findings and FSMSEM in general. As to theoretical implications, the discriminatory grouping 

power of the exogenous variables (and covariates in this study) like these could not be 

uncovered by merely examining the homogenous SEM model. Models based on a homogeneity 

assumption may undermine reliability and validity of study results to the extent which the 

unveiled heterogeneity influences parameter estimates of the model, thereby leading to weak 

power in hypothesis testing as well as inconsistent results in future applications. In addition, 

recognizing the unobserved heterogeneity could alter our understanding of the relationships 

among the model constructs significantly. For example, the group-specific estimation of the 

model in Figures 3 and 4 produced some revealing differences in parameter estimates (see 

perceived quality, brand awareness, and brand image, in particular). In reality, empirical 

representation of a phenomenon, especially that of tourist behaviour, is likely to be an inverse 

function of imposing a homogeneity assumption on a population. Such a “generalist” approach 

tends to pose threat to rich theoretical development over time. We argue that hospitality and 

tourism research generally needs more conceptual and empirical investigations into underlying 

mechanisms such as unobserved heterogeneity we illustrated in this paper for at least two 

reasons. One is that our better understanding of tourist behaviour, for example, is likely to 

hinge upon often unobservable patterns of individual decisions making. Cultivating such 

underlying driving decision forces and structuring them into highly interpretable knowledge 

systems are at the core of theory building and scientific progress. Another reason relates to 

generalizability of research findings. Over-generalization of findings is pervasive in the 

hospitality and tourism literature and it comes partly from the ignorance of unobserved 

heterogeneity, among others, in many behavioural phenomena. As we mentioned earlier, a 

growing use of methods such as SEM is likely to serve our needs to examine the underlying 
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tourist behaviour process; yet, we find that the majority of SEM applications to date is centred 

on the data of one sample. Given the global and cross-cultural bearings of tourist behaviours, 

we need more concerted efforts to account for such vagaries as unobserved heterogeneity 

resulting from individual as well as cultural differences (Oh & Hsu, 2014).     

Practical implications of understanding underlying heterogeneity relate largely to effectiveness 

of business strategies and policies. An explicit modelling of latent heterogeneity can assist in 

not only building rich theories around the topic in future studies but also improving precision in 

strategy design and policy implementation. For instance, identification of the variables that 

drive the group heterogeneity benefits market segmentation and targeting studies 

immediately, allowing destination marketers to fashion their market strategies to the 

customer’s needs more precisely. As the degree of customization increase in strategy design, 

organizations will be able achieve their business goals more effectively by avoiding misaligned 

resource allocations. Such effective strategy alignment may certainly derive from proper 

positioning of the destination to the target market segments defined by powerful underlying 

heterogeneity.  

7. Conclusions 

This paper presented a thorough discussion of observed and unobserved heterogeneity 

illustrating the difference between the two. While observed heterogeneity is well established in 

the tourism literature, research so far has largely ignored unobserved heterogeneity. This paper 

discussed how unobserved heterogeneity can bias the results of SEM and affect the validity and 

reliability of the estimates. We introduced and tested a Bayesian FMSEM for handling and 

interpreting unobserved heterogeneity. Mixture models are quite useful in terms of “improving 

fit” and have been proven to be highly reliable in dealing with unobserved heterogeneity. The 

model we introduced is also unique in the sense that it allows the mixture probability to 

depend on covariates, providing a better alternative for modeling heterogeneity that admits 

interpretation. Such a model can be used routinely in practical applications as it allows for an 

interpretable and coherent improvement of fit.  
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As argued above, the use of the Bayesian approach to estimate FMSEM represents also another 

key contribution to the tourism literature. While different versions of finite mixture models are 

available in some SEM software such as Mplus, those are mostly not available in a Bayesian 

framework and do not allow the mixture probability to depend on covariates. As mentioned, 

the use of the Bayesian approach is essential to handling the complexity of our proposed 

model. It also provides flexibility to use the DIC when comparing different models. DIC have 

advantages over ML ratio tests as they are known to yield minimum risk discrimination among 

models or between hypotheses (Kass & Raftery, 1995).  

The paper provided detailed instructions on how to estimate FMSEM in a Bayesian framework, 

as the estimation of the model is not possible in a standard SEM software such as LISREL, AMOS 

or Mplus. We relied on the Winbugs software, which started to gain increased popularity across 

the marketing and management disciplines. Tourism researchers can apply the code used in 

this paper to estimate FMSEM in other research contexts or at least to test for unobserved 

heterogeneity. The code can also be simply updated to estimate the simple SEM or other 

simpler versions of FMSEM such as the one without covariates in the mixing probability.  

We illustrated the importance of FMSEM by using an example from the hospitality branding 

literature. We showed that in the context of our application FMSEM outperforms the standard 

SEM. We also illustrated that estimating the model using standard SEM when unobserved 

heterogeneity is present can bias the structural relationships of SEM. We argue that tourism 

researchers should always keep unobserved heterogeneity in mind, particularly if there are 

some theoretical indications that data are heterogeneous. If available, researchers should also 

test the existing model for unobserved heterogeneity on data sets grounded in substantive 

theories. In other words, it would be wise to test FMSEM on other data sets where authors 

have already identified the number of groups based on some existing theories or previous 

literature. In this case, FMSEM can serve as a post hoc modeling framework to test the validity 

of the group identity in the data. Given its flexible, yet robust modeling capabilities and given 

the fact that the tourism phenomenon is replete with preferential as well as destination 

diversities, FMSEM awaits much more exciting and creative applications in this discipline. 
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Figure 1. A Lodging Brand Equity Model 
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Table 1. Data Characteristics 

Construct and Measurement Item Mean SD Skewness Kurtosis 

Brand choice intention     
Even if other competing brands are not different from XYZ 

in any way, it seems smarter to choose an XYZ hotel. 
5.09 1.24 -0.54 0.33 

An XYZ hotel is always a superior choice to its rival hotels. 4.99 1.25 -0.36 0.04 
It makes sense to choose XYZ instead of any other hotel 

brand, even if they are the same. 
4.90 1.32 -0.38 0.10 

XYZ is my favorite brand of all competing hotel brands.     
Brand loyalty     

I will choose XYZ hotels over and over again without 
hesitation. 

4.90 1.42 -0.52 -0.11 

I feel good and positive when I think about staying at an 
XYZ hotel. 

5.20 1.25 -0.58 0.20 

Thinking about the XYZ hotel makes me feel pleasant. 5.17 1.29 -0.56 0.18 
I would not choose other hotel brands if a XYZ hotel is 

available when I need accommodation. 
    

Brand quality     
XYZ is of high quality. 5.55 1.07 -0.58 0.33 

XYZ sets quality standards other hotels should follow. 5.32 1.17 -0.57 0.32 
I consider XYZ’s quality to be of the highest standard. 5.17 1.25 -0.75 0.66 

XYZ is regarded as a leader in quality.     
Brand awareness     

I know what the XYZ symbol or logo looks like. 5.24 1.52 -0.86 0.32 
I know what an XYZ hotel looks like. 5.17 1.35 -0.75 0.34 

I can easily recognize XYZ hotels among other competing 
hotels. 

5.17 
1.41 -0.72 0.17 

XYZ is unique and different from other hotel brands.     
Brand image     

The XYZ brand is prestigious. 5.24 1.20 -0.63 0.55 
The XYZ hotels tend to attract sophisticated people as 

guests. 
5.18 1.22 -0.61 0.42 

Staying at an XYZ hotel makes me feel special. 5.05 1.28 -0.60 0.30 
I have a clear image of the type of people who would stay 

at an XYZ hotel. 
4.74 1.38 -0.39 -0.21 

Management trust     
I trust the XYZ management. 5.44 1.15 -0.60 0.35 

The XYZ management knows how to do the hotel business. 5.42 1.15 -0.54 0.18 
The XYZ implements good management practices other 

hotels can learn. 
5.29 1.20 -0.51 0.15 

XYZ management is sophisticated enough not to ignore 
customer problems. 

    

Brand reliability     
The XYZ will meet my expectations every time. 5.25 1.18 -0.52 0.20 

My experience with XYZ will be consistent every time I 
stay. 

5.27 1.16       -0.45 0.07 

The XYZ will not disappoint me every time. 5.13 1.22 -0.54 0.33 
I feel safe and secure when staying at XYZ hotel.     

*Items in italics were dropped from the estimation. 
* This table is adapted partly from Hsu et al. (2013). 
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Figure 2. Homogenous SEM 
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Table 2. Deviance Information Criterion (DIC) for Model Comparison 

Model DIC 

Homogeneous SEM 60396 

The FMSEM with two groups 32334 

The FMSEM with three groups 35339 
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Figure 3. The FMSEM: Group 1 
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Figure 4. The FMSEM: Group 2 
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Table 3. Covariates of Unobserved Heterogeneity 

Variable Estimate Standard deviation 

Perceived Quality 0.45* 0.27 

Brand Awareness 0.23 0.27 

Brand Image                -1.18** 0.30 

Management Trust                -0.23 0.18 

Brand Reliability 0.19 0.32 
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Appendix 2: Monte Carlo Experiment 

As mentioned to further validate the performance of our model we conducted a Monte Carlo 

experiment using the same data on the regressors from our application. In this simulation experiment 

we consider as true values of the parameters the posterior means obtained from the Bayesian 

estimation of our models. Our interest focuses on whether the Bayesian techniques can recover the true 

number of groups with N=1,346 and also N=2,700, N=800, N=400 and N=100 using the DIC criterion. We 

use 10,000 Monte Carlo replications and we use 5,000 preliminary draws followed by another 10,000 to 

obtain posterior statistics. The true data generating process is taken to be a homogeneous SEM and an 

SEM with two and three groups. The Monte Carlo experiment consists of estimating the three models by 

MCMC and computing the DIC as well as the mean squared error (MSE) of the parameters (relative to 

the “true” parameters that we set for the Monte Carlo experiment). For the methods to perform well it 

must be the case that (i) MSEs are “small” and fall as the sample size increases and (ii) the number of 

times the true model is selected using the DIC is “large” and increases with the sample size.  In Table A.1 

we report the number of Monte Carlo samples for which the true process is selected using the DIC 

statistic. Reported also are average mean squared errors of all estimated parameters. It turns out that 

even in samples as small as 100, the Bayesian approach can be used profitably to select the true model 

with probability 72.17% for homogeneous models, 65.23% for models with 2 unobserved groups and 

58.23% for models with three groups. This probability goes up to 77.23% in samples of size 400 and 

88.97% when the sample size is 800 –closer to what we actually observe in the typical case. The mean 

squared errors (MSEs) of parameters are small and drop roughly as the squared root of N. Clearly, the 

Bayesian approach is quite useful in the sense that in samples of size 800 or higher, the DIC’s 

discriminatory power is substantial (88.97%) in models with three groups. Using the results of the 

Monte Carlo simulation we can be fairly confident that the homogenous model is not true and that our 

model is revealing the true number of groups. Our evidence is reinforced by the fact that our Monte 

Carlo experiment uses the same data as the data that we use in our empirical application and the 

estimated parameters. 

Table A1. Monte Carlo results 

 True Data Generating Process 

 Homogenous SEM Two Groups Three Groups 

N=100 72.17%(1) 0.103(2) 65.23%(1) 0.253 58.23%(1) 0.355 

N=400 87.21%(1) 0.049 81.35%(1) 0.107 77.23%(1) 0.145 

N=800 93.21%(1) 0.035 91.10%(1) 0.088 88.97%(1) 0.091 

N=1,346(3) 100%(1) 0.027 98.17%(1) 0.073 95.21%(1) 0.081 

N=2,700 100%(1) 0.019 100%(1) 0.063 99.77%(1) 0.070 

Notes: (1) represents the percentage of Monte Carlo samples for which the true process is selected 

using the DIC statistic. (2) represents average mean squared errors (MSEs) of all estimated parameters, 

collectively. (3) N=1,346 corresponds to the sample size in our application and N=2,700 to, roughly, 

twice this sample size. 


