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ABSTRACT  1 

At a world scale, tomato is an important horticultural crop, but its productivity is highly 2 

reduced by drought stress. Combining the application of beneficial microbial 3 

inoculants with breeding and grafting techniques may be key to cope with reduced 4 

tomato yield under drought. This study aimed to investigate the growth responses 5 

and physiological mechanisms involved in the performance under drought stress of 6 

four tomato recombinant inbred lines (RIL) after inoculation with the arbuscular 7 

mycorrhizal (AM) fungus Rhizophagus irregularis and the plant growth promoting 8 

rhizobacteria (PGPR) Variovorax paradoxus 5C-2. Results showed a variation in the 9 

efficiency of the different tomato RILs under drought stress and a differential effect of 10 

the microbial inoculants, depending on the RIL involved. The inoculants affected 11 

plant parameters such as net photosynthetic capacity, oxidative damage to lipids, 12 

osmolyte accumulation, root hydraulic conductivity or aquaporin abundance and 13 

phosphorylation status. RIL66 was the one obtaining maximum benefit from the 14 

microbial inoculants under drought stress conditions, due likely to improved CO2-15 

fixation capacity and root hydraulic conductivity. We propose that RIL66 could be 16 

selected as a good plant material to be used as rootstock to improve tomato growth 17 

and productivity under water limiting conditions. Since RIL66 is highly responsive to 18 

microbial inoculants, this grafting strategy should be combined with inoculation of R. 19 

irregularis and V. paradoxus in order to improve plant yield under conditions of 20 

drought stress. 21 

 22 
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1. Introduction 1 

Drought stress has a major impact on plant growth and development, limiting 2 

crop production throughout the world. It has been estimated that nearly one third of 3 

soils are too dry to support normal plant development and productivity (Golldack et 4 

al., 2014). Moreover, global climate change is spreading this problem of water deficit 5 

to regions where drought impacts were negligible in the past (Trenberth et al., 2014).  6 

 To cope with environmental stresses, plants have developed a variety of 7 

strategies (Dobra et al., 2010). Under drought stress plants regulate the permeability 8 

of tissues to water movement, use osmotic adjustment and enhance their antioxidant 9 

systems. The first of these processes is based on modifying membrane water 10 

permeability, a process in which aquaporins are involved (Maurel et al., 2008; 11 

Chaumont and Tyerman, 2014). Aquaporins are water channel proteins that facilitate 12 

and regulate the passive movement of water molecules down a water potential 13 

gradient (Maurel et al. 2015), affecting directly the radial water flow through the cell-14 

to-cell pathway. Under conditions of low transpiration, such as under drought stress, 15 

this pathway is predominant for water movement in plants (Steudle and Peterson, 16 

1998). Among plant aquaporins, the plasma membrane intrinsic proteins subfamily 17 

(PIPs1 and PIPs2) is critical for whole plant water transport (Javot and Maurel, 2002; 18 

Chaumont and Tyerman, 2014). Since plants undergo frequent environmental 19 

changes, the activity of PIPs must be regulated by mechanisms that allow rapid 20 

responses to these changes. Post-translational modifications are necessary to 21 

achieve such rapid regulation (Vandeleur et al., 2014), including phosphorylation/de-22 

phosphorylation of specific serine residues, the first post-translational regulation 23 

mechanism found in aquaporins. This generates conformational changes allowing 24 

aquaporin gating (Johansson et al., 1998; Prado et al., 2013) or modifying the 25 
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subcellular localization of PIPs in the membrane (Prak et al., 2008) and may be a 1 

mechanism to prevent water loss (Bárzana et al., 2015).  2 

 The accumulation of compounds such as soluble sugars, proline, glycine 3 

betaine, pinitol or mannitol allows plants to osmotically adjust to maintain cell turgor 4 

(Morgan, 1984; Bheemareddy and Lakshman, 2011). Proline, a non-protein amino 5 

acid that accumulates in most plant tissues subjected to water stress, is one of the 6 

most common osmolytes accumulated (Kishor and Sreenivasulu, 2014) and can be 7 

readily metabolized upon recovery from drought (Singh et al., 2000). Besides acting 8 

as an osmoregulatory compound, proline also serves as a sink for energy, regulating 9 

redox potentials, as a scavenger of hydroxyl radicals, as a means of reducing acidity 10 

in the cell, and as a solute that protects macromolecules against denaturation (Kishor 11 

and Sreenivasulu, 2014).  12 

 Under drought stress, several metabolic pathways are uncoupled and 13 

electrons are transferred to molecular oxygen to form reactive oxygen species (ROS) 14 

(Noctor et al., 2014). ROS are toxic molecules capable of causing oxidative damage 15 

to lipids, proteins and DNA (Miller et al., 2010). However, at low levels, ROS can act 16 

as signalling molecules for stress responses and its generation is an early plant 17 

stress response (Singh et al., 2011). Antioxidant systems aim to eliminate excessive 18 

ROS production under stress conditions (Gill and Tuteja, 2010). The scavenging of 19 

ROS is achieved through the action of non-enzymatic compounds and different 20 

enzymatic systems. Non-enzymatic mechanisms include compounds able to 21 

scavenge directly several ROS, such as ascorbic acid (AsA), glutathione (GSH), or 22 

-tocopherol. Enzymatic antioxidants include superoxide dismutase (SOD), 23 

glutathione reductase (GR), catalase (CAT), ascorbate- or thiol-dependent 24 
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peroxidases, and the enzymes of the ascorbate-glutathione pathway (Scheibe and 1 

Beck, 2011).  2 

At a world scale, tomato is the most important horticultural crop, and the 3 

second most important vegetable consumed after potato. Tomato is a major dietary 4 

component in many countries and constitutes an important source of vitamins, 5 

sugars, minerals, and antioxidant compounds. However, its productivity is highly 6 

reduced by abiotic stresses, including drought (Schwarz et al., 2010). While climate 7 

change is reducing crop productivity, world agriculture must increase its productivity 8 

by 60% to feed the expected population of 9.6 billion people in 2050 (Cabot et al., 9 

2014). Therefore, drought tolerance is a target trait in breeding programs, particularly 10 

for rootstocks. Combining breeding techniques with grafting techniques and the 11 

application of beneficial microbial inoculants will play a key role in developing a more 12 

profitable horticulture to address this challenge (Asins et al., 2010; Albacete et al., 13 

2015b). The rootstock effect to ameliorate abiotic stress tolerance in tomato was 14 

previously tested in a population of recombinant inbred lines (P-RILs) (Albacete et al., 15 

2015a,c). 16 

Grafting is a biotechnological tool to improve not only the amount and 17 

uniformity of crop yield, but also stress tolerance (reviewed by Albacete et al., 2015b). 18 

Nowadays, most fruit crops and many horticultural species are grown as scion-19 

rootstock combinations. This strategy allows desired features such as stress 20 

tolerance to be conferred by a suitable rootstock, while retaining excellent fruit yield 21 

and quality traits of a given scion (Asins et al., 2010). Thus, to start a grafting 22 

program to improve tomato drought tolerance, the selection of suitable genotypes to 23 

be used as rootstocks is the first necessary step.  24 
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Many studies have shown that the arbuscular mycorrhizal (AM) symbiosis and 1 

plant growth-promoting rhizobacteria (PGPR) may enhance host plant stress 2 

tolerance, including to drought (Azcón et al., 2013; Malusá et al., 2013; Zoppellari et 3 

al., 2014). Indeed, plant symbiotic relationships with mycorrhizal fungi greatly 4 

increase the surface area over which plant root systems take up water and nutrients. 5 

Soil bacteria on the root surface alter root phytohormone status thereby increasing 6 

growth, and can make nutrients more available to the plant. Studies have also shown 7 

that these beneficial microorganisms improve plant osmotic adjustment and 8 

antioxidant responses, as well as, water status throughout regulation of plant 9 

aquaporins (Marulanda et al., 2010; Dodd and Ruiz-Lozano, 2012; Azcón et al., 10 

2013; Ruzzi and Aroca, 2015; Kaushal and Wani, 2016). Combining these two 11 

groups of microorganisms can increases crop resource use efficiency and 12 

productivity under stressful environmental conditions (Dodd and Ruiz-Lozano, 2012).  13 

 In spite of the positive effects of AM fungi and PGPR on plant productivity, no 14 

studies have dealt with the use of breeding techniques in combination with these 15 

microorganisms to improve plant productivity under stressful conditions. Thus, we 16 

hypothesize that combining the use of a selected group of RILs having specific traits 17 

with microbial inoculants with a proved ability to improve drought tolerance will be 18 

useful to combine drought tolerance features coming from both the plant genotype 19 

and its interaction with AMF and PGPR and, thus, will improve tomato performance 20 

under drought. This study aimed to investigate the growth and physiological 21 

response of four P-RILs after root colonization by AMF and PGPR. The tomato lines 22 

obtaining maximum benefit from the microbial inoculants and performing best under 23 

drought stress conditions will be identified and selected as the most suitable in 24 

grafting programs directed toward improved tomato productivity under drought. The 25 
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study also aims to understand the underlying physiological mechanisms involved in 1 

the improved plant performance.  2 

The RILs used represent a valuable resource that has already been used to 3 

identify a specific QTL conferring salinity resistance (Asins et al., 2010, 2015). The 4 

AM fungus Rhizophagus irregularis DAOM 197198 was formerly known as Glomus 5 

intraradices. It was reassigned to G. irregulare by Stockinger et al. (2009) and then 6 

as Rhizophagus irregularis (Kruger et al. 2012). This fungus is widely used in abiotic 7 

stress studies, being one of the most effective in drought stress alleviation (Ruiz-8 

Lozano et al., 2012; Azcón et al., 2013). Variovorax paradoxus 5C-2 is a PGPR that 9 

promotes tomato root length in vitro irrespective of bacterial load (Belimov et al., 10 

2007) and stimulates root and shoot growth of another Solanaceae (potato) grown in 11 

both well-watered and drying soils (Belimov et al., 2015).  12 

 13 

2. Materials and methods 14 

2.1. Plant materials and experimental design  15 

The experiment consisted of a complete randomized factorial design with four 16 

tomato recombinant inbred lines (RIL20, RIL40, RIL66, RIL100) plus one commercial 17 

cultivar (Boludo) used as reference (Solanum lycopersicum L. cv. Boludo F1, 18 

Monsanto). These RILs belong to a population of F10 lines (P population) derived by 19 

single seed descendent from a cross between a salt sensitive genotype of Solanum 20 

lycopersicum var. Cerasiforme (formerly L. esculentum) and a salt tolerant line from 21 

S. pimpinellifolium L. (formerly L. pimpinellifolium) (Monforte et al., 1997). P 22 

population has been extensively studied as rootstock of Boludo cultivar to ameliorate 23 

tolerance to several abiotic stresses (Albacete et al., 2015a,c; Asins et al., 2015). 24 
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Plants remained as uninoculated controls or were inoculated either with the 1 

AM fungus Rhizophagus irregularis MUCL 41833 - DAOM 197198 (AM fungus), the 2 

plant growth promoting bacteria Variovorax paradoxus 5C-2 (PGPR) or a 3 

combination of both microorganisms (AM fungus+PGPR). Ten replicates of each 4 

treatment totaled 200 pots (one plant per pot), with half of the plants cultivated under 5 

well-watered conditions throughout the entire experiment and the other half subjected 6 

to drought stress for four weeks before harvest.  7 

 8 

2.2. Soil and biological materials 9 

A loamy soil was collected at the grounds of Instituto de Investigación y 10 

Formación Agraria y Pesquera de Andalucía (IFAPA, Granada, Spain), sieved (2 11 

mm), diluted with quartz-sand (<1 mm) (1:1, soil:sand, v/v) and sterilized by steaming 12 

(100°C for 1 h on 3 consecutive days). The soil had a pH of 8.1 (water); 1.5% organic 13 

matter, nutrient concentrations (g kg-1): total N, 1; total P, 1 (NaHCO3-extractable P); 14 

total K, 11. The soil texture comprised 38.3% sand, 47.1% silt and 14.6% clay.  15 

Four RILs from the above-described P population were selected in previous 16 

assays for this study under drought stress conditions, on the basis of their good 17 

levels of root colonization by the AM fungus R. irregularis and the PGPR V. 18 

paradoxus, as well as, positive growth responses. Seeds from the different lines and 19 

the commercial cultivar (Boludo) were pre-germinated on sand for ten days and then 20 

transferred to 1.5 L plastic pots filled with 1200 g of the soil/sand mixture described 21 

above.  22 

Mycorrhizal inoculum was provided by INOQ GmbH (http://inoq.de/) and 23 

consisted of sand containing spores, mycelia and AM fungi-colonized root fragments. 24 

The density of inoculum was estimated to 220000 propagules L-1. Approximately 40 25 
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mL (circa 80 g) of the AM inoculum were applied to the appropriate pots, following 1 

manufacturer’s recommendations. Plants that were not inoculated with the AM 2 

fungus, received the same amount of sand together with a 3 mL aliquot of a filtrate 3 

(<20 µm) of the AM inoculum to provide a general microbial population free of AM 4 

propagules.  5 

 The Variovorax paradoxus 5C-2 inoculum was also provided by INOQ GmbH 6 

in liquid medium (108 cfu/mL), so that 1.5 mL of the purified bacterial culture was 7 

diluted with sterile water in a final volume of 15 mL and applied to the appropriate 8 

pots, according to manufacturer’s recommendations. Thus, each pot received 9 

1.5x108 cfu.  10 

 11 

2.3. Growth conditions  12 

The experiment was carried out under greenhouse conditions with 13 

temperatures ranging from 19 to 25ºC, 16/8 h light/dark period, a relative humidity of 14 

50-60% and an average photosynthetic photon flux density of 800 µmol m-2 s-1, as 15 

measured with a light meter (LICOR, Lincoln, NE, USA, model LI-188B).  16 

Plants were cultivated for 9 weeks. After week 3, plants received weekly 15 17 

mL per pot of Hoagland’s nutrient solution (Hoagland and Arnon, 1950) containing 18 

only 25% of P, to prevent inhibition of AM root colonization. The plants were 19 

cultivated under well-watered conditions for 5 weeks. At that point, half of the pots 20 

per each of the inoculation treatments were left well-watered, and the other half 21 

subjected to drought stress for additional four weeks before harvest.  22 

Soil moisture was controlled with the ML2 ThetaProbe (AT Delta-T Devices 23 

Ltd., Cambridge, UK). Water was supplied daily to maintain soil at 100% of field 24 

capacity (corresponding to 22% volumetric soil moisture measured with the 25 
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ThetaProbe, as determined experimentally in a previous experiment using a pressure 1 

plate apparatus) during the first 5 weeks after sowing. Then half of the plants were 2 

allowed to dry until soil water content reached 60% of field capacity (two days 3 

needed), while the other half were maintained at field capacity. This soil water 4 

holding capacity corresponds to 9% volumetric soil moisture measured with the 5 

ThetaProbe (also determined experimentally with a pressure plate apparatus in a 6 

previous assay). The level of drought stress (60% of field capacity) was selected on 7 

the basis of previous studies in order to subject tomato to a sharp drought stress 8 

(Ruiz-Lozano et al. 2016). The soil water content was measured daily with the 9 

ThetaProbe ML2 before rewatering (at the end of the afternoon), reaching a minimum 10 

soil water content around 55% of field capacity. The amount of water lost was added 11 

to each pot to keep the soil water content at the desired level (Porcel and Ruiz-12 

Lozano, 2004). Plants were maintained under such conditions for 4 additional weeks 13 

before harvesting.  14 

 15 

2.4. Parameters measured 16 

2.4.1. Biomass production and symbiotic development 17 

The shoot dry weight (SDW) was measured as an integrative index of plant 18 

performance under the growing conditions assayed. At harvest time (9 weeks after 19 

transplanting), shoots were de-topped from roots, and fresh weights recorded. 20 

Samples were kept to measure dry weight after drying in a forced hot-air oven at 70 21 

0C for two days.  22 

The percentage of mycorrhizal root colonization was estimated in five roots 23 

per RIL line and treatment combination. Approximately 0.5 g of root tissues were 24 

cleared in 10% KOH and stained with 0.05% trypan blue in lactic acid (v/v). The 25 
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extent of mycorrhizal colonization was calculated according to the gridline intersect 1 

method (Giovannetti and Mosse, 1980). 2 

To quantify bacterial root colonization as previously described (Belimov et al., 3 

2015), fresh tomato root samples were weighed and homogenized in sterile tap water 4 

with a sterile mortar and pestle. Homogenates were serially diluted in 10-fold steps 5 

and 20 µL aliquots were plated in three replicates on LB agar supplemented with 30 6 

µg mL-1 kanamycin and 20 µg mL-1 rifampicin, to which V. paradoxus 5C-2 naturally 7 

shows resistance, and 40 µg mL-1 nystatin to prevent fungal growth. The 8 

characteristic colonies of V. paradoxus 5C-2 were counted after incubation at 28 °C 9 

for 3 days. 10 

 11 

2.4.2. Plant CO2 assimilation rate and leaf chlorophyll content 12 

The CO2 assimilation rate was measured 2 h after sunrise on the second 13 

youngest leaf from each plant. We used a portable infrared gas analyzer LI-6400 (LI-14 

COR Biosciences, Inc., Lincoln, NE, USA), which allows environmental conditions 15 

inside the chamber to be precisely controlled, with 400 ppm CO2 concentration, a 16 

humidity of 50% and a light intensity of 1000 E m-2 s-1. The photosynthetic 17 

parameters were calculated by using LI-6400 6.1 software.  18 

Leaf chlorophyll contents were estimated 4 hours after sunrise using a SPAD, 19 

model 502 (Minolta, München, Germany) on the second youngest leaf for each plant.  20 

 21 

2.4.3. Oxidative damage to lipids and proline content 22 

Oxidative damage to lipids was measured by grinding 500 mg of fresh leaf 23 

tissues with an ice-cold mortar and 6 ml of 100 mM potassium phosphate buffer (pH 24 

7). Homogenates were filtered through one Miracloth layer and centrifuged at 15,000 25 



12 
 

g for 20 min. The chromogen was formed by mixing 200 mL of supernatants with 1 1 

mL of a reaction mixture containing 15% (w/v) trichloroacetic acid (TCA), 0.375% 2 

(w/v) 2-thiobarbituric acid (TBA), 0.1% (w/v) butyl hydroxytoluene, 0.25 N HCl and by 3 

incubating the mixture at 100 ºC for 30 min. After cooling at room temperature, tubes 4 

were centrifuged at 800 g for 5 min and absorbance of the supernatant was 5 

measured at 532 nm. Lipid peroxidation was estimated as the content of 2-6 

thiobarbituric acid-reactive substances (TBARS) and expressed as equivalents of 7 

malondialdehyde (MDA). The calibration curve was made using MDA in the range of 8 

0.1-10 nmol. A blank for all samples was prepared by replacing the sample with 9 

extraction medium, and controls for each sample were prepared by replacing TBA 10 

with 0.25 N HCl. In all cases, 0.1% (w/v) butyl hydroxytoluene was included in the 11 

reaction mixtures to prevent artefactual formation of 2-thiobarbituric acid-reactive 12 

substances (TBARS) during the acid-heating step of the assay. 13 

Free proline was extracted from 1 g fresh tissues in sulfosalicylic acid 5% (w/v). 14 

Proline was estimated by spectrophotometric analysis at 515 nm of the ninhydrin 15 

reaction, according to Bates et al. (1973).  16 

 17 

2.4.4. Root hydraulic conductivity 18 

Root hydraulic conductance (Kr) was measured with a high pressure flow 19 

meter (HPFM Dynamax Inc., Houston). Kr measurements utilized the transient mode, 20 

where the pressure increases over a range and Kr is calculated from the slope of flow 21 

versus pressure. For that, detached tomato roots were connected to the HPFM using 22 

compression couplings, and water was perfused at increasing pressures ranging 23 

from 0 to 500 kPa. Root volume was calculated after the measurements as in Calvo-24 
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Polanco et al. (2012) and hydrostatic root hydraulic conductivity (Lpr) determined by 1 

dividing Kr by the root volume.  2 

 3 

2.4.5 PIP aquaporins abundance and phosphorylation status  4 

We analyzed PIP1 and PIP2 proteins abundance and the PIP2 5 

phosphorylation state in root samples. We checked accumulation of these proteins 6 

since aquaporin gene expression is not always correlated with protein abundance, 7 

and aquaporin activity can be regulated by phosphorylation events (Prado et al., 8 

2013). The phosphorylation of PIP2 aquaporins was quantified by the use of two 9 

different antibodies that recognize a phosphorylated Serine residue at position 280 10 

(PIP2280) or two phosphorylated Serine residues at positions 280 and 283 (PIP2280-11 

283) in the C-terminal end (Calvo-Polanco et al., 2014a,b). It has been previously 12 

shown that the phosphorylation of PIP2 aquaporins at Ser280 and Ser283 was linked 13 

to the regulation of hydraulic conductivity in plants (Prado et al., 2013).  14 

Microsomes were isolate from three different tomato roots per RIL and 15 

treatment combination, as described in Hachez et al. (2006). Two micrograms of the 16 

protein extracts were used for ELISA analyses to determine the abundance of the 17 

different tomato proteins, as described in Calvo-Polanco et al. (2014a,b). We used 18 

four different primary antibodies (at a dilution of 1:1000), two antibodies that 19 

recognize several PIP1s and PIP2s, and two antibodies that recognize the 20 

phosphorylation of PIP2 proteins in the serine residue at the C-terminal end, Ser280 21 

(PIP2280) or in two serine residues at the C-terminal end (Ser 280 and Ser 283 - 22 

PIP2280/283) (Prado et al., 2013; Calvo-Polanco et al., 2014a,b). All antibodies were 23 

designed against the most conservative regions of these aquaporin groups. To detect 24 

PIP1 aquaporins, we used the first 26 amino acids of the N-terminal part of the 25 
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PvPIP1;3 protein (accession No. DQ855475). To detect PIP2 aquaporins, we used 1 

the last 12 amino acids of the C-terminal part of the PvPIP2;1 protein (accession No. 2 

AY995195). To detect phosphorylated PIP2, we used the same protein PvPIP2;1 as 3 

the amino acid sequence but with one or two serine groups phosphorylated, 4 

AIKALG{pSER}FR{pSER}NA (Abyntek Biofarma SL, BiotechSpain), as described by 5 

Calvo-Polanco et al (2014b). A goat anti-rat IgG coupled to horseradish peroxidase 6 

(Sigma-Aldrich Co., USA) was used as secondary antibody at 1:10,000 for PIP1. 7 

Goat anti-rabbit IgG coupled to horseradish peroxidase (Sigma-Aldrich Co., USA) 8 

was used as secondary antibody at 1:10,000 for PIP2 and PIP2280, and PIP2280/283. 9 

Protein quantification was carried out in three different independent root samples per 10 

treatment (n=3), replicated three times each. The specificity of the PIP2 and 11 

phosphorylated antibodies PIP2280, and PIP2280/283 is described in Calvo-Polanco et 12 

al. (2014b). The equal loading of proteins in the different treatments was confirmed 13 

by staining a gel blot loaded with the same quantities used for the ELISA 14 

measurement with Coomassie brilliant blue and also by Bradford quantification 15 

(Bradford, 1976). 16 

 17 

2.5. Statistical Analysis 18 

Within each recombinant inbred line, data were subjected to analysis of 19 

variance (ANOVA) with the Proc MIXED procedure in SAS (version 9.2, SAS institute 20 

Inc., NC, USA) together with the post-hoc Tukey’s test to detect significant 21 

differences among treatment means. The different inoculation treatments and water 22 

regimes were the sources of variation (Table 1S).  23 

 24 

 25 
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3. Results 1 

 2 

3.1. Microbial root colonization 3 

The percentage of root length colonized by the AM fungus ranged from 26% in 4 

RIL100 to 67% in RIL66 when co-inoculated with the PGPR bacterium (Figure 1S A). 5 

The commercial line Boludo, also exhibited high mycorrhizal root colonization, 6 

reaching 62% of root length colonized. However, the co-inoculation of Boludo plants 7 

with the PGPR decreased the AM root colonization as compared to plants inoculated 8 

with the AM fungus alone. In RILs 66 and 100, the co-inoculation of the PGPR had a 9 

positive effect on AM root colonization under well-watered conditions. No AM root 10 

colonization was observed in uninoculated plants.  11 

The bacterial colonization of inoculated tomato roots in the different RILs was 12 

estimated as the number of colony-forming units (CFU) g-1 root fresh weigh (RFW) 13 

and ranged from 5×105 CFU g-1 RFW in RIL20 to 30x107 CFU g-1 RFW in cv. Boludo, 14 

with most plants having an average of 6x106 CFU g-1 RFW (Figure 1S B). No 15 

colonies were recovered from non-inoculated plants.  16 

 17 

3.2. Plant biomass  18 

The inoculation of the different tomato lines had different effects on SDW 19 

according to the genotype studied (Figure 1). Under well-watered conditions, the 20 

different inoculation treatments did not affect the SDW of Boludo and RIL40 plants 21 

(Figure 1). However, the AM fungus and AM fungus+PGPR treatments increased the 22 

SDW of RIL66 plants and decreased the SDW of RIL20 and RIL100 plants (Figure 1).  23 

 After 4 weeks of drought treatment, there was a general reduction of SDW in 24 

Boludo and RIL20 plants, with no significant differences between the various 25 
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inoculation treatments and the uninoculated control plants. Drought decreased SDW 1 

of RIL66 plants by 79%, but plants treated with the different microbial inoculants had 2 

significantly higher SDW than the control plants, with the maximum values in the AM 3 

and AM fungus+PGPR treatments (Figure 1). Therefore, RIL66 clearly obtained 4 

beneficial effects from PGPR and AM inoculation under drought conditions. In RIL40, 5 

drought stress and PGPR treatment reduced SDW by 71% and 75%, respectively, 6 

while the presence of AM fungus recovered the SDW values as in well-watered 7 

control plants (Figure 1). A negative effect was observed for RIL20 only under well-8 

watered conditions.  9 

 10 

3.3. Plant CO2 assimilation rate and leaf chlorophyll content 11 

Drought stress considerably decreased CO2-assimilation rate in most of the 12 

RILs (Figure 2A), but this effect was counteracted in some RILs. Thus, inoculating 13 

RIL20 with the AM fungus enhanced the CO2-assimilation rate under drought stress. 14 

Plants from RIL40 exhibited a similar CO2-assimilation rate under drought stress 15 

conditions, regardless of the microbial treatment. The PGPR inoculation enhanced 16 

this parameter only under well-watered conditions. In plants from RIL66, both the AM 17 

fungus and the AM fungus+PGPR treatments maintained a high CO2-assimilation 18 

rate, which was similar to that under well-watered conditions. Plants from RIL100 19 

exhibited similar CO2-assimilation rate under well-watered and under drought stress 20 

conditions, regardless of the microbial treatment, but this rate was lower than in the 21 

other RILs.  22 

 Leaf chlorophyll content increased under drought stress treatment in Boludo 23 

and RIL20 plants, with no significant changes as compared to control plants in RIL40, 24 

RIL66 and RIL100 (Figure 2B). In any case, under drought stress, there was little 25 
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effect of the different inoculation treatments, except for the increase in leaf 1 

chlorophyll content in the AM plants from RIL40 and RIL66 (Figure 2B). 2 

 3 

3.4. Shoot oxidative damage to lipids and proline content 4 

Oxidative damage to lipids was considerably enhanced by drought stress in 5 

Boludo plants, in plants from RIL20 inoculated with the PGPR and in those from 6 

RIL100 (Figure 3A). However, plants from RIL40 and RIL66 exhibited the lowest 7 

values of oxidative damage either under well-watered or under drought stress 8 

conditions. No protective effect by the microbial inoculants was observed on this 9 

parameter at any of the RILs assayed. 10 

Drought stress induced a general increase of shoot proline content in the 11 

entire RILs studied (Figure 3B). Under drought stress conditions, Boludo plants 12 

accumulated higher amounts of proline but it was significantly reduced by the 13 

different inoculation treatments (Figure 3B). The same trend was observed in RIL66 14 

plants, where PGPR and AM fungus treatments (alone or in combination) halved 15 

proline content. In RIL20 and RIL40, only the dual inoculation of PGPR plus AM 16 

fungus decreased proline accumulation under drought stress.  17 

 18 

3.5. Root hydraulic conductivity 19 

The root hydraulic conductivity (Lpr) of plants that were cultivated under well-20 

watered conditions showed little variation between RILs and microbial treatments 21 

(Figure 4). Under drought stress, the inoculation with the PGPR, the AM fungus or 22 

combination of both microorganisms decreased Lpr in Boludo plants, as comparted to 23 

the uninoculated control. In RIL20 only the inoculation with the PGPR alone 24 

enhanced Lpr under drought stress conditions, as comparted to the uninoculated 25 
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control. In contrast, the dual inoculation of the PGPR plus the AM fungus decreased 1 

this parameter to values similar to uninoculated control plants. In plants from RIL40, 2 

Lpr was enhanced only by the inoculation with the AM fungus alone. In RIL66, Lpr 3 

was enhanced over uninoculated control when plants were inoculated with the AM 4 

fungus in combination with the PGPR, reaching the highest values of Lpr under such 5 

conditions. In contrast, microbial treatments did not affect Lpr of RIL100 plants.  6 

 7 

3.6. Accumulation of PIPs in roots of tomato plants 8 

Abundance of PIP1 aquaporins proteins in the Boludo cultivar was little 9 

affected by the microbial treatments or the watering conditions (Figure 5A). Only a 10 

slight decrease was observed in AM plants, both under well-watered or under 11 

drought stress conditions. In RIL20 and RIL40 the accumulation of PIP1s was 12 

significantly enhanced by drought stress, mainly in uninoculated control plants. 13 

However, under drought stress, the accumulation of these proteins decreased after 14 

inoculation with either the PGPR or the AM fungus. In RIL66 and RIL100, the trend 15 

was different since PIP1s accumulated more in plants that were inoculated with the 16 

PGPR or the AM fungus and subjected to drought stress.  17 

The abundance of non-phosphorylated PIP2s proteins in Boludo cultivar was 18 

also little affected by the microbial or watering treatments (Figure 5B). Again, only a 19 

decrease in the abundance of these proteins was observed in AM plants, both under 20 

well-watered or under drought stress conditions. In RIL20 the presence of PIP2s was 21 

induced by drought stress only in plants inoculated with the PGPR. However, in AM 22 

plants (alone or in combination with the PGPR) these proteins were less abundant. In 23 

uninoculated RIL40 and RIL66 plants, the accumulation of PIP2s was enhanced by 24 

drought. However, in RIL40 the inoculation of the PGPR further enhanced the 25 
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abundance of PIP2s, while in RIL66 it reduced the accumulation as compared to 1 

droughted uninoculated plants. In both RILs the inoculation with the AM fungus 2 

avoided the drought-induced accumulation of these aquaporins. In RIL100 there was 3 

almost no effect of the microbial or the watering treatments on the accumulation of 4 

non-phosphorylated PIP2s (Figure 5B).  5 

In the case of phosphorylated PIP2s, the patterns of protein accumulation 6 

were similar for both kinds of antibodies used (Figures 6A and 6B). Thus, drought 7 

stress induced the accumulation of phosphorylated PIP2s in uninoculated control 8 

plants or in plants singly inoculated with the PGPR in RILs 20, 40 and 66. Such an 9 

effect was not observed in plants from Boludo cultivar and was no consistent in 10 

plants from RIL100. A common effect was observed in plants from all lines. Indeed, 11 

drought-induced accumulation of phosphorylated PIP2s was avoided when plants 12 

were inoculated with the AM fungus, either alone or in combination with the PGPR. 13 

Furthermore, these treatments exhibited lower abundance of phosphorylated PIP2s 14 

than uninoculated control plants. This reduction of protein abundance in AM roots 15 

was observed in most RILs even under well-watered conditions and was particularly 16 

evident in RIL66.  17 

 18 

4. Discussion 19 

The reduction in plant biomass production caused by drought stress has been 20 

linked to direct effects on the plant photosynthetic capacity due to reduced stomatal 21 

conductance. This, in turn, results in low CO2 supply to Rubisco. Thus, maintaining a 22 

high stomatal conductance allows the plant a higher CO2 uptake for photosynthesis 23 

(Davies et al., 1993; Sheng et al., 2008).  24 
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Although inoculating tomato plants with the AM fungus R. irregularis MUCL 1 

41833 or the PGPR V. paradoxus 5C-2 resulted in high root colonization rates in the 2 

different RILs considered, the responses of these RILs to the presence of the AM 3 

fungus and the PGPR (alone or in combination) varied considerably. One of the main 4 

benefits of AM or AM + PGPR inoculation for RIL66 plants under drought stress 5 

conditions was the maintenance of high photosynthetic rates as compared to non-6 

inoculated plants. Increased photosynthetic activity or water use efficiency have been 7 

reported in AM plants growing under drought stress (Birhane et al., 2012; Liu et al., 8 

2015), which was attributed to mycorrhizal enhancement of plant water status, rather 9 

than to a direct influence on the efficiency of photosystem II (Sheng et al., 2008). 10 

However, in salinized tomato and rice plants, mycorrhization improved photosynthetic 11 

activity by both elevating stomatal conductance and protecting PSII photochemical 12 

processes (Hajiboland et al., 2010; Porcel et al., 2015). Stomatal changes in AM 13 

plants have been linked to altered plant hormone status (Augé, 2000) or to a higher 14 

capacity for CO2 fixation. Indeed, mycorrhizal grapevines showed higher Rubisco 15 

activity than non-AM ones during drought episodes (Valentine et al. 2006), as did 16 

salinized rice plants (Porcel et al., 2015).  17 

Drought decreases both soil water potential and the soil-root gradient of water 18 

potential favouring root water uptake, thereby reducing the water flow toward roots. 19 

To counter this effect, many plants increase their osmotic potential by synthesizing 20 

and accumulating compatible osmolytes such as proline, to maintain root water 21 

uptake (Porcel and Ruiz-Lozano, 2004; Flowers and Colmer, 2008). Under drought 22 

stress, proline accumulation was higher in most of the RILs, but this accumulation 23 

was reduced by the presence of microorganisms, especially in RIL66 plants. This 24 

suggests that AM- and PGPR-inoculated plants were less strained by the drought 25 
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stress applied, due to other drought-avoidance mechanisms such as water uptake by 1 

fungal hyphae or hormonal-mediated regulation of stomatal conductance, and that 2 

they had a lower need for osmotic adjustment. While non-AM lettuce plants 3 

accumulated more proline in their shoots than AM plants under drought, AM plants 4 

accumulated more proline in the roots than non-AM plants (Ruíz-Lozano et al., 2011). 5 

Thus, in root tissues, AM plants accumulate more proline in order to cope with the 6 

low water potential of drying soil and to keep a water potential gradient favourable to 7 

water entrance into the roots, as was also found in soybean (Porcel and Ruíz-Lozano, 8 

2004). Proline homeostasis may be important to sustain growth under long-term 9 

stress, since proline accumulated during a stress episode can be degraded to 10 

provide a supply of energy to drive growth once the stress is relieved (Kishor and 11 

Sreenivasulu, 2014).  12 

The differences in proline accumulation among RILs and microbial treatments 13 

may also be related to hormonal changes in these plants or due to the microbial 14 

treatments. ABA, auxins and salicylic acid are known to up-regulate proline synthesis, 15 

while cytokinin down-regulates proline accumulation (Kishor and Sreenivasulu, 2014).  16 

Drought stress generates a secondary oxidative stress in plant tissues due to 17 

the accumulation of ROS. Cytotoxic ROS can destroy normal metabolism through 18 

oxidative damage of lipids, proteins and nucleic acids (Miller et al., 2010; Noctor et al., 19 

2014). In the present study drought significantly increased the level of oxidative 20 

damage to lipids, which was accentuated when cv. Boludo received the AM and 21 

AM+PGPR treatments. Generally, the RILs showed lower levels of drought-induced 22 

oxidative damage, except in RIL100. Generally, the microbial treatments applied did 23 

not alter the rates of oxidative damage in the RILs. The differences observed are only 24 

due to the own RIL used. Thus, RIL66 must have additional mechanisms to respond 25 
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to the drought-induced oxidative stress as compared to Boludo, which seems quite 1 

sensible. It is known that ROS accumulation depends on the balance between its 2 

production and its elimination (Miller et al., 2010; Scheibe and Beck, 2011). Thus, the 3 

ROS scavenging systems may be more effective in plants from RIL40 or RIL66 than 4 

in those from RIL100 or the Boludo cultivar.  5 

A fine control of water transport is of key importance for plant survival under 6 

drought stress conditions, as it decreases Lpr (Aroca et al., 2012), a process in which 7 

PIPs play a fundamental role (Maurel et al. 2015). In addition, AM fungi can affect the 8 

Lpr of host plants through regulation of plant aquaporins (Bárzana et al., 2014; Calvo-9 

Polanco et al., 2014a; Sánchez-Romera et al., 2016), being this effect considered as 10 

an important factor in the regulation of water relations in mycorrhizal plants (Lee et al., 11 

2010; Ruiz-Lozano et al., 2012). PIP2s are usually considered as the main 12 

aquaporins responsible for the major water transport capacity in plants (Chaumont et 13 

al., 2000). However, PIP1 aquaporins have also been shown to play a role in water 14 

transport in plants (Zou et al., 2010) in combination with PIP2 proteins via 15 

heteromerization (Zelazny et al., 2007; Li et al., 2013), and in the trafficking of PIP 16 

proteins to the plasma membrane (Zelazny et al., 2007; Hachez et al., 2013).  17 

Generally, the microbial treatments did not alter Lpr under well-watered 18 

conditions, but more pronounced effects were seen in droughted plants. Taking 19 

RIL20 and RIL66 as lines with contrasting responses to the microbial inoculants it is 20 

evident that Lpr was unaltered by microbial treatments under well-watered conditions. 21 

In contrast, under drought stress conditions, plants from RIL20 and RIL66 also 22 

exhibited contrasting effects of the microbial inoculants on Lpr. Indeed, plants from 23 

RIL20 enhanced the Lpr only when inoculated with the PGPR alone, but the dual 24 

inoculation with the AM fungus avoided this increase (Figure 4). In contrast, in RIL66, 25 
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the highest Lpr values were achieved under drought stress conditions in plants dually 1 

inoculated with the PGPR and the AM fungus. Inhibiting root ethylene production 2 

reversed the limiting effect of P-deprivation on Lpr (Li et al., 2009) and it is plausible 3 

that the impact of the ACC-deaminase containing PGPR in decreasing root ethylene 4 

production (Belimov et al., 2015) enhanced Lpr.. Why this effect should occur only in 5 

RIL20 is not clear, although PGPR root colonization under drought was lowest in this 6 

line, and physiological impacts of ACC-deaminase containing PGPR can be dose-7 

dependent (Belimov et al., 2007). 8 

The correlation between the measured Lpr values and PIP accumulation 9 

patterns was not evident for most of the RILs analyzed, as previously observed 10 

(Boursiac et al., 2005; Aroca et al., 2007; Ruiz-Lozano et al., 2009). This is not 11 

surprising since symplastic movement of water via plasmodesmata may also 12 

contribute significantly to hydraulic conductivity (Galmés et al., 2007), and aquaporin 13 

regulation occurs at both transcriptional and post-transcriptional levels (Zelazny et al., 14 

2007).  15 

In any case, in RIL20 Lpr showed a significant statistical correlation with the 16 

accumulation of PIP1s, non-phosphorylated PIP2s and both phosphorylated PIP2s 17 

(Table 1). Thus, in RIL20 the variation in Lpr by the PGPR and the AM fungus under 18 

drought stress seems to be directly related to the regulation of PIPs aquaporins 19 

(Chaumont and Tyerman, 2014). Conversely, in RIL66 Lpr followed a significant 20 

negative correlation with accumulation of non-phosphorylated PIP2s and both 21 

phosphorylated PIP2s (Table 1). This suggests that in RIL66 the enhanced root 22 

hydraulic conductivity of plants inoculated with the PGPR and the AM fungus was 23 

rather related to altered apoplastic water flow in these plants. It must be taken into 24 

account that the values of Lpr measured in this study includes both apoplastic and 25 
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symplastic water flow. In this regards, the presence of mycorrhizal fungi within the 1 

roots may have greatly contributed to the increase of the apoplastic water flow within 2 

the roots as previously reported (Lehto and Zwiazek, 2011; Barzana et al., 2012). 3 

Increased water uptake by mycorrhizal plants under drought has been related to the 4 

increased absorbing surface of growing hyphae, and mycorrhizal ability to take up 5 

water from soil pores inaccessible to roots, as AM hyphae represent a low-resistance 6 

way for water movement until root cells (Ruiz-Lozano, 2003; Allen, 2009; Lehto and 7 

Zwiazek, 2011). Thus, water movement through AM fungal hyphae under such 8 

conditions can be critical to improve the water supply to the plant and, therefore, cell-9 

to-cell and apoplastic pathways increase (Barzana et al., 2012). On the other hand, 10 

AM fungal aquaporins have been related to water transport in the extraradical 11 

mycelium and in the periarbuscular membrane (Li et al., 2013). Thus, in AM plants, 12 

the enhanced root hydraulic conductivity could be also due to the activity of the own 13 

fungal aquaporins (Bárzana et al., 2014; 2015). 14 

 15 

5. Conclusions  16 

Results obtained clearly demonstrate a variation in the performance of the 17 

different tomato RILs under conditions of drought stress, as well as, a differential 18 

effect of the microbial inoculants (AM fungus and/or PGPR) on plant performance, 19 

depending on the RIL involved. Thus, RIL66 is the one obtaining the maximum 20 

benefit from inoculation with the AM fungus and the PGPR. In contrast, RIL20 or 21 

RIL100 received little benefit from the microorganisms applied under conditions of 22 

drought stress. This genetic diversity in microbial response may be exploited 23 

commercially, particularly if a selected RIL is used as stress-tolerant rootstock.  24 
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We propose that RIL66 could be selected as a good plant material to be used 1 

as rootstock in a grafting program to improve tomato growth and productivity under 2 

water limiting conditions. Since RIL66 is highly responsive to microbial inoculants, 3 

this grafting strategy should be combined with inoculation of the AM fungus R. 4 

irregularis MUCL41833 and the PGPR V. paradoxus 5C-2 in order to improve plant 5 

productivity while reducing water and fertilizer inputs under conditions of drought 6 

stress.  7 
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Table 1. Pearson correlations between root 1 
hydraulic conductivity (Lpr) and PIP root protein 2 
abundance and phosphorylation state in plants from 3 
RIL20 and RIL66.  4 

RIL20  PIP1  PIP2  PIP2280  PIP2280‐283 

Lpr  0.687  0.590  0.637  0.629 

P  0.0001*  0.0004*  0.0001* 0.0001* 

RIL66  PIP1  PIP2  PIP2280  PIP2280‐283 

Lpr  ‐0.012  ‐0.693  ‐0.688  ‐0.562 

P  0.9678  0.0059*  0.0064* 0.0364* 

 5 

 6 

 7 

  8 
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Fig. 1S. (A) Percentage of mycorrhizal root length and (B) number of bacteria on 1 

roots of tomato plants (estimated as Log CFU g-1 root fresh weight). A commercial 2 

tomato cultivar (Boludo) and four tomato recombinant inbred lines (RIL20, RIL40, 3 

RIL66 and RIL100) remained as uninoculated controls (Control) or were inoculated 4 

either with the arbuscular mycorrhizal fungus Rhizophagus irregularis (AM), the plant 5 

growth promoting rhizobacteria Variovorax paradoxus 5C-2 (PGPR) or a combination 6 

of both microorganisms (AM+PGPR). Plants were cultivated under well-watered 7 

conditions or subjected to drought stress for four weeks. Bars represent means ± 8 

standard error (n=5). Within each recombinant inbred line, different letters indicate 9 

significant differences (P<0.05), as determined by Tuckey’s test. CFU, colony forming 10 

units. 11 

 12 

Fig. 1. Shoot dry weight of tomato plants. A commercial tomato cultivar (Boludo) and 13 

four tomato recombinant inbred lines (RIL20, RIL40, RIL66 and RIL100) remained as 14 

uninoculated controls (Control) or were inoculated either with the arbuscular 15 

mycorrhizal fungus Rhizophagus irregularis (AM), the plant growth promoting 16 

rhizobacteria Variovorax paradoxus 5C-2 (PGPR) or a combination of both 17 

microorganisms (AM+PGPR). Plants were cultivated under well-watered conditions 18 

or subjected to drought stress for four weeks. Bars represent means ± standard error 19 

(n=5). Within each recombinant inbred line, different letters indicate significant 20 

differences (P<0.05), as determined by Tuckey’s test. 21 

 22 

Fig. 2. (A) Net photosynthetic activity and (B) relative chlorophyll content in tomato 23 

plants. See legend for Figure 1.  24 

 25 
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Fig. 3. (A) Oxidative damage to lipids and (B) proline content in shoots of tomato 1 

plants. See legend for Figure 1.  2 

 3 

Fig. 4. Root hydraulic conductivity in tomato plants. See legend for Figure 1.  4 

 5 

Fig. 5. (A) Relative amounts of un-phosphorylated PIP1 proteins and (B) un-6 

phosphorylated PIP2 proteins in roots of tomato plants (n=3). See legend for Figure 1.  7 

 8 

Fig. 6. (A) Relative amounts of phosphorylated PIP2 proteins at Ser280 and (B) 9 

phosphorylated PIP2 proteins at Ser280/Ser283 in roots of tomato plants (n= 3). See 10 

legend for Figure 1.  11 

 12 


