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Abstract

The need to find related images from big data streams is shared by many pro-
fessionals, such as architects, engineers, designers, journalist, and ordinary
people. Users need to quickly find the relevant images from data streams
generated from a variety of domains. The challenges in image retrieval are
widely recognised and the research aiming to address them led to the area
of CBIR becoming a ’hot’ area. In this paper, we propose a novel com-
putationally efficient approach which provides a high visual quality result
based on the use of local recursive density estimation (RDE) between a given
query image of interest and data clouds/clusters which have hierarchical dy-
namically nested evolving structure. The proposed approach makes use of
a combination of multiple features. The results on a data set of 65,000 im-
ages organised in two layers of an hierarchy demonstrate its computational
efficiency. Moreover, the proposed Look-a-like approach is self-evolving and
updating adding new images by crawling and from the queries made.

Keywords: recursive density estimation (RDE), dynamically evolving
hierarchy of data clouds, content-based image retrieval (CBIR)

1. Introduction

The last decade has witnessed an enormous growth in the amount of dig-
ital images on Internet (it was recently estimated that the number of images
on the Web is over 100 Billion [1], a figure which some observers consider to
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be an underestimate). Everyday millions of new images are being generated
creating an enormous multi-dimensional data stream. They play an im-
portant role in the fields of entertainment, education, advertising, etc. For
instance, photographers or designers often request images with a particular
colour or texture; therefore, developing a system which automatically de-
rives requested and similar images is essential. Using the World-wide Web,
users are able to access these images from anywhere in the World which
creates a huge stimulus to quickly find images that user needs.

Since images are in a digital form this opens new prospects to organise
them in a convenient to manipulate form. However, the information that
they contain is unstructured and there is no universal established and sta-
ble approach to convert this information into an easy to manipulate form.
For example, text can be organised alphabetically, music using notes, etc.
Images, however, are significantly more unstructured by nature. It is a
challenge to organise a huge and dynamically growing amount of images in
a structure that is convenient to search quickly. It is possible to identify
and retrieve desired images from a small database; however, the difficulties
become more vivid for big and dynamically growing data streams with var-
ied images. Another challenge is to use an effective measure of similarity
between the query image and another image or a set of similar images.

The methods for retrieving similar images based on features such as
colour, texture, or shape are usually referred to as Content-Based Image
Retrieval (CBIR). The early use of CBIR system was introduced by Kato
[2] in 1992. This research area has since been widely investigated by many
researchers.

Although, CBIR technology has started to be used in the form of com-
mercial products - such as TinEye [3], QBIC [4], Yandex Image Search [5],
etc. and research projects like NETRA [6], Photobook [7] - still suffers from
the lack of maturity. It is obvious from the (lack of) effectiveness of exist-
ing CBIR systems, especially when handling real-time scenario on the Web
(handling 1011 images). There are still many open research issues to be
addressed before taking a full advantage of fast and reliable CBIR systems
in practice.

Searching images on the Web is a complex problem. Search engines
like Google and Yahoo are still not capable of providing efficient CBIR
systems and sometimes they are too computationally expensive to operate
on the Web, returned results are often not relevant or based on indexing
and tagging instead of visual similarity. In addition, storing huge history of
images and processing them in the memory is one of the toughest challenge.
As a result, users still need to apply considerable efforts to find images they
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are looking for.
In order to address some of the issues mentioned above, a new fast

method called Look-a-like for finding visually similar images in big data
streams is proposed in this paper which is using a combination of features
of different nature, a dynamically evolving hierarchically nested structure
of image clouds and a single formula of recursive density estimation (RDE)
[8, 9] applied locally (per image cloud). The proposed approach is compu-
tationally and time-wise very efficient due to the combination of the hierar-
chically nested image clouds structure and the use of the local RDE.

Dynamically evolving character of the problem is addressed by a con-
stant update of the proposed nested hierarchical structure using the re-
cently introduced ELM [10] clustering method at the back-end server of the
overall system. This approach is very computationally efficient and robust
and provides visually meaningful results due to the combination of features
of various nature. The local RDE provides the exact information about
the similarity between any given query image and all images from a given
image clouds. The proposed approach Look-a-Like is capable of real-time
image retrieval from a huge number of images. (For example, 1012 images
which is approximately the amount of images on Internet can be organised
automatically using ELM in 6 layers of hierarchy with approximately 100
clusters/data clouds in each layer and the search will then only require to
calculate 6 × 100 = 600 times the local RDE which takes less than a sec-
ond on a PC. The performance of the proposed approach was evaluated
on a database containing 65,000 images with over 600 classes. The results
demonstrate that Look-a-like method introduced here is computationally
very efficient and fast. Furthermore, the images returned as a result of the
search were visually very similar to the query image and the time required
was very low, especially with the hierarchically nested structure. In addi-
tion, a GUI for a desk-top application was also developed.

The remainder of the paper is organised as follows. First, in section 2
the related work on CBIR is analysed. The proposed approach, Look-a-like,
is described in section 3. Section 4 details the experimental results. Finally,
Section 5 provides conclusions and outlines the future works.

2. State-of-the-art of CBIR

There have been extensive studies to investigate and address the chal-
lenges that the CBIR systems face. In this section, we will briefly analyse
the proposed techniques in this area.
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Eakins and Graham [11] categorised three types of queries in CBIR sys-
tems. The first type includes extracting primitive features such as colour,
texture, shape or the spatial location of image elements. The most common
query is the query by example; for instance, users are interested to find im-
ages that are similar to a certain query image. The second type, concerns
retrieval of specific object of given type identified by extracted features, with
some degree of logical inference [12]. For instance, users intend to find a pic-
ture of a bus. The third type includes retrieval by abstract attributes. It
involves a considerable amount of high level reasoning regarding the purpose
of the objects including pictures with emotional significance, special event,
etc. For example, users may want to find pictures of a cheerful crowd. The
second and third types are referred to as ’semantic image retrieval’ and the
difference between them is called ’semantic gap’ [11]. Image retrieval of the
first type requires users to submit an example/query image; on the other
hand, semantic image retrieval supports query by keywords in case users do
not have a query image.

In this paper we focus on the first two types of image retrieval where
the search is based on a query image and visual similarity, not semantic
one. There are three main steps of the process, namely, feature extraction,
organisation of the available images, and evaluating the similarity between
images.

Feature extraction is a very important element of any CBIR system.
Features can be extracted from the specific region of an image or from the
entire image. Since colour spaces are closer to the human perception, they
are widely used as features in CBIR systems. For different applications
different colour spaces can be used such as colour histograms, moments,
covariance matrices, dominant colours, etc. [13]. For instance, if objects in
an image have homogeneous colour, extracting average colour is not a good
option, specifically for face recognition applications [12, 14]. As opposed
to colour, texture is not well defined and many systems do not use it as a
feature [14, 15]. However, texture refers to the pattern recognitions that have
properties of homogeneity that can not be determined from the presence of
intensity or a single colour only [16]. Texture provides important information
in image classification and describes the content of images such as clouds,
sea, fabric, skin, etc. Therefore, it gained popularity in the area of pattern
recognition and image processing. Fourier transform, wavelet transform [17],
and Gabor filters [18] are used often for texture analysis. Shape is another
important feature used in computer vision; however, due to inaccuracy of
segmentation it is difficult to determine and has not been as widely used as
colour and texture. The representation of the shape can be divided into two
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categories known as; a) region-based, and b) boundary-based. In region-
based techniques, the entire region is used while in the boundary-based
approach only the outer boundary is taken into account [19]. For different
applications scale, rotation or translation invariance can be used to represent
the shape.

Another very important element of CBIR, especially, when applied to
the Internet is the organisation of images. Different clustering algorithms
has been used for this purpose such as the mean-shift, k-means, and hier-
archical clustering methods [20]. BenHaim et al. in [21] used HSV colour
histogram to extract features and cluster images based on the offline iter-
ative mean-shift clustering algorithm. The cluster that corresponds to the
largest number of parent images is selected and referred to as the ’significant’
cluster. In [22] the BOO-clustering algorithm and GDBSCAN is utilised to
extract colour clusters of each image. Once these are determined, the ob-
jects are formed by selecting one or a few colour clusters of the image in
an interactive manner. K-means clustering approach and indexing structure
B+ tree is used in [23] to group relevant images in a CBIR system. For
the retrieval process, images from the closest cluster and from other nearby
clusters are considered to retrieve similar images even if the query image is
mis-clustered; however, an important drawback of this approach is that the
number of clusters, K has to be predefined and is not changing afterwards
(is fixed); thus, the number of image groups in the dataset should be known
in advance. Another disadvantage is the computational complexity of the
k-means approach which is iterative, for large number of images it becomes
prohibitive.

In [24] a hybrid clustering technique is used based on k-means clus-
tering and Linde-Buzo-Gray (LBG) clustering methods. Initially, this algo-
rithm assumes that one large Gaussian represents all images in the database.
This is later iteratively split and re-estimated to obtain a mixture of Gaus-
sians. The authors tested their algorithm on 12,000 images from 100 classes
collected from Google Image search; however, the result of only one class
has been illustrated and no comparison with other methods has been done.
Same disadvantages as for the previous approach can be attributed to this
approach plus the unrealistic assumption of Gaussian distribution.

In order to tackle the ’semantic gap’ problem, Chen and Wang [25] pro-
posed an unsupervised learning technique based on clustering. In their ap-
proach, image clusters are obtained based on the feature similarity of re-
trieved images to the query image and also on how the retrieved images
are similar to each other. The main drawback of this approach is that the
clusters are fixed and not evolving; therefore, if add even a single new im-
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age to the database the whole procedure, including the clustering has to
be repeated ’from scratch’. In addition, this approach has not been and
cannot be applied to a large number of images (e.g. Internet) because it is
computationally expensive.

Searching through large image collections especially on the Web with
over 100 billion images can be a tedious work. Developing a hierarchical
organisation can significantly speed up the search which is essential. In [26]
authors developed a hierarchical annular histogram (HAH) and tested it
on images from prostate cancer. They consider the hierarchy of image to
sub-images and not a hierarchy of nested clusters/image clouds as in the
proposed paper and applied their technique to a small amount of images
from a specific area only. On the other hand, Distasi et al. [27] applied a
hierarchical entropy-based representation (HER) to a database containing
several shapes represented by their closest contour in curvilinear coordinates
to be used in a CBIR system. A tree-based structure of representation of
images was proposed by Chow et al. [28] where a root node contains the
global features, as opposed to child nodes which contain the local features.
Authors also used multi-layer self-organising map to form the tree structure.
In [29] a multi-level hierarchy was proposed and applied to text retrieval
and natural language. Finally, in [30] a hierarchical structure to which
dynamic indexing and guided search are applied using wavelet-based scheme
for multiple features extracted from images in a warehouse. The hierarchy
is, however, over the image colour, palm and face etc. Features are not over
nested clusters/clouds of images. This approach will also struggle in terms
of computational complexity for huge amount of images and sub-images or
features.

Although, forming hierarchical structures for retrieving images has been
explored by other researchers, their goals for doing so differ from our pro-
posed method. We offer a hierarchy of nested clusters of mean values, not
images and sub-images or features.

Last, but not least, it is important to select appropriate proximity and
similarity measure used for clustering and search. Traditionally, Euclidean,
Mahalonobis, cosine, Manhattan/city distance measures are used. In Look-
a-Like, we use relative Manhattan (L1) distance. However, all of these are
distances between a given data sample and another data sample (e.g. image).
There are also linkages between clusters (distance or dissimilarity measure
between groups of images). In addition, the density in the data space as
introduced and defined in [8, 9] provides an exact value between 0 and 1 of
the similarity between a given data sample (e.g. image) and all images from
a data cloud (or cluster). In the proposed approach, Look-a-like we uniquely
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use such measure of similarity which is not the same as the distance between
two data samples (images) nor between groups of images, nor between an
image and a mean of a cluster (mean of a cluster is often not an existing
image, but an abstraction) only. Data density as defined in [8, 9] is a unique
measure which allows quickly to be computed (because is recursive and in
the proposed approach can be calculated in a hierarchically nested setting)
the exact (not approximate) similarity between a given query image and as
many other images as needed (e.g. 100 billion or 100 etc.).

3. The Proposed Approach Look-a-Like

The aim of the proposed approach is to provide an efficient and fast
CBIR system to deal with big data streams in the form of images. Look-a-
like is a quick strategy for search and retrieval of images in big dynamically
evolving data streams. It is subject of a pending patent application [31]. It
consist of three main elements:

(a) multiple features extracted from images which represent them in a com-
putationally compact form in a unique way (that is, an image is con-
verted to a vector of less than 700 floating point numbers per image);

(b) a hierarchically nested dynamically evolving data clouds (cluster-like)
structure which facilitates the computationally efficient search and logi-
cal organisation of the images and is dynamically updated with each new
available image including the query image using evolving local means
(ELM) algorithm [10]:

(c) computationally efficient RDE formula for evaluating the similarity be-
tween a query image and a huge number of other images. The proposed
approach is also using relative Manhattan (L1) distance.

The proposed approach builds automatically a dynamically evolving hi-
erarchically nested image clouds/clusters structure from unstructured big
data streams (e.g. billions of images) facilitating the search of most relevant
similar images using local density (see Fig. 1). From the computing realisa-
tion point of view, the proposed Look-a-Like can be realised as a client-server
system (see Fig.2) which can be offered as a web service.

Maximum local density indicates the image cloud with mean values (if
at the higher levels of the hierarchy) or images (if at the lower hierarchical
level). Going down through the levels of the hierarchy, a cloud with a
reasonably small (but not pre-defined) number of visually similar images
can be identified for a very small amount of time (less than a second) from
a big image (billions of images) stream. Look-a-like works with vectors of
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Figure 1: Schematic representation of the hierarchically nested data clouds structure, each
square in layer one represents features of an image a described in section 3.1; µ and X
denote mean values and scalar products which are abstract values and are described in
section 3.3

multi-features (less than 700 floating point numbers per image) and means
and accumulated scalar products. It is not using pixels directly; finally, it
is using efficient local (per cloud) RDE formula [8] and relative Manhattan
distance.

In what follows, we will, first, describe the set of features that has been
used to achieve a high discrimination power. Next, we will recall the evolv-
ing local means algorithm, ELM [10] to form the data clouds. ELM is
using the similar basic concept as the widely used mean-shift clustering al-
gorithm; however, the local variance and local mean in ELM is calculated
recursively and it is a non-iterative, one pass algorithm which makes it sig-
nificantly faster (in orders of magnitude), especially for big data streams.
The search itself is performed by calculating the local recursive density esti-
mation (RDE) in regards to the query image and the data clouds (initially
at the top layer of hierarchy, then between the query image and the data
clouds that correspond to the winning data cloud of the top layer and all
data clouds linked to it and so on going down to the lower layer of the hi-
erarchical structure. Finally, a threshold, ε separates the images that are
returned to the user from the data clouds of the lower level of hierarchy
associated with the winning data cloud of the higher level of hierarchy as
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illustrated further.
It has to be stressed that local RDE calculates the exact similarity be-

tween a query image and all images from the winning data clouds recursively
and, thus, computationally efficiently. Due to the recursive calculations, the
proposed approach is very efficient computation- and time-wise. Further-
more, the proposed method involves search in an ordered multi-layer hierar-
chy (Fig. 3) such that search process is speeded up by orders of magnitude.
The results show that the performance is very high quality and very fast for
big data streams even on ordinary laptop using Windows OS and Matlab
(using Linux OS and C/C++ language as well as parallelisation or use of GP
GPU can further improve significantly the performance). The main reason
is that by introducing the hierarchical organisation of the images combined
with the RDE the number of comparisons is dramatically reduced yet the
full and exact information of the comparison with all images from a data
cloud is kept intact, Fig. 2.

3.1. Feature Selection

Having a selection of representative features is very important for the
quality of the algorithm. In Look-a-Like we use a combination of multiple
feature sets of different nature, with size of 697 floating point digits: F ={
FG;FHSV ;FM ;FC ;FLG;FW

}
[32].

The first feature is GIST [33] which extracts the global features of the
image and gives an impoverished and coarse version of the principal contours
and textures of the image which is still detailed enough to recognize the
image. It is computationally efficient and there is no need to parse the image
or group its components in order to represent the spatial configuration of
the scene. The fundament of GIST approach is Gabor filters. Several Gabor
filters with selected channels are computed on a grid of the image (4 × 4)
and indexed into an array with 512 features, FG.

The second feature is a colour HSV histogram. To extract colour his-
togram, each pixel of an image is associated to a specific histogram bin on
the basis of its own colour. HSV colour space is used for histogram gen-
eration where each pixel contributes its intensity and improves perceptual
uniformity. Each image is quantised in the HSV colour space into 8× 2× 2
equal bins, which creates a feature vector with 32 features, FHSV .

Since it has been proven [34] that colour moments are more robust and
have a better performance in comparison with the colour histogram, they
are selected as a third set of extracted features. Three central moments
(mean, standard deviation and skewness) can be used for image’s colour
distributions [35]. In Look-a-Like, we define 9 moments (3 moments for
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Figure 2: Schematic representation of the proposed approach Look-a-like
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Figure 3: Schematic representation of the hierarchical data cloud structure (in fact, we
use matrices of feature vectors instead of the actual images). In layer2 and above we store
the mean values of the data clouds in terms of those features which do not necessarily
(and usually) represent an image. The principle of ’winner takes all ’ based on maximum
local RDE value at each layer is used to find the winning data cloud. Finally, all images
from the layer1 winning data cloud are displayed which may be optionally restricted by a
threshold ε (suggested value for ε is around 20).
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each colour channel), FM . The c-th colour channel of the i-th image pixel
Pci is defined by:

i the average colour value in an image:

Mc =
1

A

A∑
i=1

pci (1)

where A = H ×W H = height, W = width

ii the variance

σc =

√√√√ 1

A

A∑
i=1

(pci −Mc)
2 (2)

iii the skewness which is a measure of the degree of asymmetry in the
distribution:

Sc = 3

√√√√ 1

A

A∑
i=1

(pci −Mc)3 (3)

The colour auto-correlogram is the fourth extracted feature set which
describes how the spatial correlation of colour changes with the distance.
If the distance d ∈ [n] is a fixed priori, the correlogram of an image, I is
defined for i, j ∈ [m] positions of pixels,k ∈ d as [36]:

βkci,cj (I) ≡ Pr
[
|p1 − p2| = k, p2 ∈ ICj |p1 ∈ ICi

]
(4)

where |p1 − p2|
∆
= max {|x1 − x2| , |y1 − y2|}

Given any pixel of colour Ci in the image I, βkci,cj gives the probability
that a pixel at distance k away from the given pixel’s colour [36]. For each
pixel in the image, the auto-correlogram method applies to all the neighbours
of that pixel. If the distance is large, a large area will be covered and more
information will be collected from the image; however, the computational
complexity will increase. In order to address the computational complexity,
the setS is used which is a subset of d(S = 1; 3; 5; 7)[34] resulting in a 64
features vector, FC which are added/appended to F.

The next set of features which is being used is based on the texture rep-
resentation. Gabor wavelet transform is widely used to represent texture of
images and has been demonstrated to be very efficient. However, the band-
width of the Gabor filter is limited to one octave; therefore, a large number
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of filters is required to obtain wide spectrum coverage. In addition, their
response is symmetrically distributed around the centre frequency, which
results in redundant information in the lower frequencies that could instead
be devoted to capturing the tails of images in the higher frequencies.

The log-Gabor function is used as an alternative to Gabor function [37]
designed as Gaussian functions on the log axes. It has been proven that
log-Gabor filter outperforms the standard Gabor filter in order to verify an
object inside an image [38]. Their symmetry on the log axes results in a
more effective representation of the uneven frequency content of the images.
Furthermore, log-Gabor filters do not have a DC component, which allows
an increase in the bandwidth which results in fewer filters to cover the same
spectrum. The log-Gabor filters are defined in the log-polar coordinates of
the Fourier domain as shifted from the origin Gaussians [39]:

G(s,o)(ρ, θ) = exp

(
−1

2

(
ρ− ρs
σρ

)2
)

exp

(
−1

2

(
θ − θ(s,o)

σθ

)2
)

(5)

ρs = log2(n)− s

θ(s,o) =

{ π
no
o if s is odd

π
no

(o+ 1
2) if s is even

(σρ,σθ) = 0.996
(√

2
3 ,

1√
2
π
no

)
(6)

where s and o specify the scale and orientation of the wavelet, respec-
tively (s = 0, 1, ..., ns;t = 0, 1, ..., no); and (ρ, θ) are the log-polar coordi-
nates.

(
ρs, θ(s,o)

)
are the coordinates of the centre of the filter and (σρ, σθ)

are the bandwidths. Let F denote the Fourier transform of the input image.
The convolution of Gs,o and F is obtained by [40]:

Let F denote the Fourier transform of the input image. The convolution
of Gs,o and F is obtained by [40]:

Vs,o = F ∗Gs,o (7)
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An array of magnitudes is obtained as:

Es,o =
∑
i

∑
j

|Vs,o(i, j)| (8)

where (i, j) denotes the 2D coordinates of a pixel pi,j .

These magnitudes represent the energy content at different scale and
orientation of the image. The main goal of the texture-based retrieval is
to find images or regions with similar texture. It is assumed that we are
interested in images or regions that have homogenous texture; therefore,
the following mean, µso and standard deviation, σso of the magnitude of the
transformed coefficient are used to represent the homogenous texture of the
region as a feature:

µso =
Es,o
N

(9)

σso =

√∑
i

∑
j

(|Gso(i, j)| − µso)2

N
(10)

A feature vector is constructed using µs,o and σs,o. In our experiment
the scale was set to 5 and orientation to 6 which results in a feature vector
FLG, of size 30 for each µs,o, σs,o.

The wavelet transform is a multi-resolution analysis technique for an
image and it has been proven to work well in both space and frequency
domain [41]. It is used as the final set of features. Any decomposition of
the image into a wavelet involves a pair of waveforms; the high frequency
components correspond to the details of an image while the low frequency
components correspond to its smooth parts [42]. Discrete Wavelet Trans-
form (DWT) of an image as a 2D signal can be derived from a 1D DWT,
implementing 1D DWT to every row then implementing a 1D DWT to ev-
ery column. Any decomposition of the 2D images into a wavelet involves 4
sub-band elements representing LL (Approximation), HL (Vertical Detail),
LH (Horizontal Detail), and HH (Detail), respectively [42]. The DWT of a
signal x is calculated by passing it through a low pass filter with impulse
response h and high pass filter g. The outputs giving the detail coefficients
(from the low pass and high-pass filter) and approximation coefficients.
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wlow[n] =
∞∑

k=−∞
x [k]h [2n− k] (11)

whigh[n] =

∞∑
k=−∞

x [k] g [2n− k] (12)

After resizing the image into 256 × 256 matrix, we applied a 4-level
wavelet transformation. The upper left 16 × 16 matrix is stored and also
divided into its high and low frequency components, as part of the feature
vector. Finally, we calculated the mean and standard deviation of the 16×16
matrix to construct the feature vector. The final size of the feature vector
is composed of two sets of 16 features each (32 in total), FW .

As a result of applying these six sets of features a vector with size 697
is formed as F =

{
FG, FHSV , FM , FC , FLG, FW

}
[32].

3.2. Forming data clouds

Similarity comparison between the query image and each image from a
large collection can be computationally prohibitive and very slow. In addi-
tion, it is impossible to compare the query image with all the images in the
World Wide Web with its vast and increasing size individually. Therefore,
automatically arranging/structuring of the images based on their similarity
is essential, especially when the users need to narrow down their requirement
to a particular subset. In this sense, it is useful to arrange the images into
simple genres forming data clouds. Arranging massive amount of images in
the World Wide Web generated every second is the toughest challenge. This
is where one of the main innovation aspects of the proposed new Look-a-
like approach lies. If we try to implement some of the classical clustering
algorithms such as k-means, fuzzy C-means etc. this is not practical due to
their fixed structures and pre-defined number of clusters, prohibitive com-
putational costs etc. In addition, storing the huge amount of image data
in the memory and processing them is another challenge that needs to be
addressed. Moreover, the amount of images in the World Wide Web is not
limited or fixed and traditional approaches would require the task to be re-
solved each time again and again, which is also prohibitive. Therefore, we
need a computationally efficient, recursive and dynamically evolving algo-
rithm for data partitioning/forming data clouds.

In Look-a-like we use the recently introduced ELM [10] algorithm (using
the feature vectors of size 697 floating point values as described above and
in [32], however, an alternative is the recently introduced DDCAR method
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[43]. The advantage of DDCAR is that it is fully autonomous and does not
require any parameter to be pre-specified (for comparison, even ELM does
require the radius, r to be pre-specified).

ELM is based on the concept of non-parametric gradient estimate of
the density function using local (per data cloud/rubric) means [10]. The
local means are being updated for each new coming feature vector/image
descriptor allowing for the data set to evolve/expand (as is the case with
the World Wide Web, for example). New data clouds are being formed if
the density pattern changes, a cloud is created. In that case, the evolving
nature of ELM can be useful if new images are added to the database. For
each image cloud, i that is being formed we can calculate the local mean,
µi and variance, σi. The mean does not necessarily (and usually) represent
a meaningful image but is rather an abstraction/focal point of the cloud.
Details of the ELM approach are provided in [10]. Initially a radius of the
data cloud is being defined. In terms of the feature vector which was defined
in the previous sub-section [32], the initial radius value was chosen to be 150
for the lower hierarchical layer and 250 for the higher/top layer (the units
are related to the unnormalised feature vector. As a new image (feature
vector) is being processed, the distance/dissimilarity to all existing data
clouds is computed. If the following condition is satisfied, then the image I
is assigned to the data cloud i :

di < (max (‖σi‖ , r) + r) (13)

where di is the distance from image I to the data cloud mean µi. r is a
pre-specified radius of the cloud.

If this condition for the image I is true for more than one data cloud,
the nearest data cloud is selected. After assigning the new coming image to
an existing data cloud, the mean of the data cloud µi and the variance, σi
are updated recursively as detailed in [10].

3.3. Similarity measure based on the local RDE

The next step after forming the clouds and the hierarchical structure is
to find the cloud which contains the most similar images to the query. In
order to do that, we use local recursive density estimation, RDE [8, 9]. An
alternative is the recently introduced typicality measure [44]. Both of them
give an estimate of the similarity between the query and all images from
the clouds, Fig. 4. Such a recursive technique makes possible that each
image is considered only once and discarded once it has been processed and
not kept in the memory, but the information is still exact (not approximate)
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Figure 4: Computing similarity between a given query image, Q and clouds using local
density at the highest hierarchical level

in terms of similarity between the query and each individual image from
the clouds [8, 9]. Only the information concerning the density (mean, µ
and the scalar product, X ) is accumulated and stored for each cloud in
the memory. Moreover, it makes possible to use a significantly smaller (in
orders of magnitude) amount of computations. Due to recursive nature of
the algorithm, if compare with the case when the query image is compared
with each image from the cloud individually, it is computationally efficient
and fast.

In Look-a-Like, the degree of similarity of a query image to all images
inside a cloud is measured by the relative density in regards to the query
image:

γik =
1

1 +
∥∥Fk − µik∥∥2

+Xi
k −

∥∥µik∥∥2 (14)

In practice, it is more convenient (and in accordance with the typicality,
[44]) to consider the accumulated proximity, π:

πik =
1

γik
− 1 (15)

where F = {f1, . . . , f697} is the representation of the image with its
feature vector, k = 1, 2, . . . ,Mi; i = 1, 2, . . . , C, Mi is the number of images
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Figure 5: Computing local density γi of a query image to all images in ith cloud

within the ith cloud; C is the number of clouds.
Both, the mean, µk and the scalar product, Xk can be updated recur-

sively as follows [9]:

µk =
k − 1

k
µk−1 +

1

k
Fk; µ1 = F1 (16)

Xk =
k − 1

k
Xk−1 +

1

k
‖Fk‖2; X1 = ‖F1‖2 (17)

The cloud with the maximum local density in respect to the query image
is the winner which contains images that are most relevant/similar to the
query image:

Ck
∗ = arg min

i=1

{
πik
}

(18)

Once the winning cloud is selected, the image that are contained in it are
re-ranked using relative Manhattan/L1 distance which yields best results
and gives the more significant difference between two images [32]. Small
distance implies that the corresponding image is more similar to the query
image and vice versa. The relative Manhattan distance between the query
image and images inside the selected cloud is computed as follows:
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d
(
Q, Ij

)
=

n∑
k=1

∣∣∣Qk − Ijk∣∣∣
1 +Qk + Ijk

; j = 1, . . . ,Mi (19)

where Mi is the number of images of a certain cloud; n is the number
of extracted features, in this work n=697 [32]. The final result includes all
images from the selected/wining cloud up to a certain threshold in terms of
d, ε (recommended values ∼ 20).

IF
(
d
(
Q, Ij

)
< ε
)
THEN

(
display Ij

)
(20)

4. Experimental Results

In this section, the experimental results are presented. The proposed
approach, Look-a-like has been evaluated in terms of the speed and accu-
racy. It was tested with an image database which includes 65,000 images
collected within the WANG database [45] by the visual Geometry group at
the University of Oxford [46]. The database contains over 600 classes which
makes it an ideal example to evaluate the performance of CBIR systems.
Some of the image classes are illustrated in Fig. 6. It should be noted that
the number of images is not the same for all classes.

The tests were performed on a standard PC with Intel Core i7, process-
ing power with 3.4 GHz CPU and 8 GB RAM running Windows 7 operat-
ing system. A graphical user interface (GUI) application was developed in
MATLAB environment (Fig. 7) to facilitate the evaluation work.

The test starts with the user uploading a query image and retrieving the
similar images. Users can select a threshold, ε to retrieve the most similar
images (we used ε=23). At the end, the final search result was saved in
HTML format and ready to publish on the Web. Execution time of the
proposed nested hierarchical system and an alternative of clustering and a
non-hierarchical system were also compared.

4.1. Speed evaluation of the proposed approach

The execution time of the proposed Look-a-Like was tested on several
randomly selected queries, such as bikes, planes, cars, and sharks. Figure 9
shows the execution time for the case of; a) direct comparison of the query
image with each of the 65.000 images (no clustering); b) with clouds when
no hierarchy of nested clouds is built up; c) when two-layer hierarchy is built
first using randomly selected query image. In the non-hierarchical system
the similarity value is computed between the query image and all the images
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Figure 6: Example images from the dataset that was used (65,000 images in total)

Figure 7: The interface of the test environment for the proposed approach
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Figure 8: All images from the winning cloud are shown after re-ranking

Table 1: A two layer example of the proposed hierarchically nested approach

Two Layer Hierarchically Nested Structure

Radius No. Clouds

Layer one 150 697

1-2 Layer two 250 36

or lower layer clouds. In the hierarchical system the comparison is made
only with the top layer clouds and after determining the winner cloud the
further search at the lower layers is performed only with the clouds which
correspond to that cloud significantly reducing the amount of comparisons.
ELM method is used for forming the clouds with radius set to 150 for the
lower layer and 250 for the upper layer. At the lower layer all 65,000 images
were grouped into 697 clouds. It has to be stressed that some of them have a
single image and were ignored. At the higher layer the means of the clouds at
the lower layer that were not eliminated due to the small number of images
which they contain were further grouped suing ELM and a radius of 250.
This resulted in 36 higher/top layer clouds, see Table 1.
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Figure 9: Execution times in seconds on different setups

Figure 10: Results for searching sharks (the value under each image represents the Man-
hattan distance as described earlier) The value of similarity is the local RDE value, eq.(14)
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Figure 11: Results for searching cars

5. Conclusion

In this paper, a new fast approach for organisation and search within
CBIR context has been proposed. Its main idea is to organise the otherwise
unstructured set of complex, multi-dimensional data (images) into a dy-
namically evolving hierarchically nested clouds structure using a combined
multiple sets of features and a computationally efficient local-RDE-based
similarity measure. The approach was tested on a data base which contains
65,000 images from about 600 different genres/rubrics. The proposed Look-
a-like approach was able to automatically form 697 lower layer clouds and 36
higher/top layer clouds and for a given query image it provided visually very
relevant results within few milliseconds making only about 50 calculations
of the local RDE formula. The approach is scalable and parallelisable in
nature (different data clouds can reside on different hardware or multi-core
application can benefit from parallelisation, too). It can be realised as a web
service. It is also possible to include user feedback in a future application.
The method is a subject of a patent application [31].
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