Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption:a 3-D model study

Dhomse, S. S. and Chipperfield, M. P. and Feng, W. and Hossaini, Ryan and Mann, G. W. and Santee, M. L. (2015) Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption:a 3-D model study. Geophysical Research Letters, 42 (8). pp. 3038-3047. ISSN 0094-8276

Full text not available from this repository.

Abstract

Following the eruption of Mount Pinatubo, satellite and in situ measurements showed a large enhancement in stratospheric aerosol in both hemispheres, but significant midlatitude column O3 depletion was observed only in the north. We use a three-dimensional chemical transport model to determine the mechanisms behind this hemispheric asymmetry. The model, forced by European Centre for Medium-Range Weather Forecasts ERA-Interim reanalyses and updated aerosol surface area density, successfully simulates observed large column NO2 decreases and the different extents of ozone depletion in the two hemispheres. The chemical ozone loss is similar in the Northern (NH) and Southern Hemispheres (SH), but the contrasting role of dynamics increases the depletion in the NH and decreases it in the SH. The relevant SH dynamics are not captured as well by earlier ERA-40 reanalyses. Overall, the smaller SH column O3 depletion can be attributed to dynamical variability and smaller SH background lower stratosphere O3 concentrations.

Item Type:
Journal Article
Journal or Publication Title:
Geophysical Research Letters
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1900
Subjects:
ID Code:
80423
Deposited By:
Deposited On:
29 Jul 2016 08:38
Refereed?:
Yes
Published?:
Published
Last Modified:
26 May 2020 05:03