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Abstract—Electromagnetic mode profile shaping, would be a
very useful technique, with applications including in accelerator
science and data transmission. Two methods are proposed, one
using a negative permittivity, the other using a wire medium.

I. INTRODUCTION

Electromagnetic modes in a waveguide with uniform cross-
section have longitudinal profiles that are sinusoidal profiles.
However, there are many situation where non sinusoidal be-
haviour may be particularly useful. In accelerator science, for
example, one may wish to have a flatter profile, see Figs. 2-
4 which would accelerate a longer bunch, and therefore more
electrons, for a given peak power. By contrast a peakier profile,
Fig. 1 would accelerate shorter bunches for the same total
power. Also due to the steeper gradient, it would enable one
to give a shorter bunch more chirp which is necessary for
bunch compression. The peakier profiles would also be useful
for data transmission where one can have the higher peak
when the signal is being observed. The usual method for
modifying the profile is by modifying the boundary of the
waveguide, essentially converting it into a series of cavities. In
this article we examine an alternative approach by modifying
the constitutive relations, in particular the permittivity. Thus
we set ε = ε(ω, z). To simplify the analysis we consider
ε(ω, z) to be periodic in z.

In this article we consider two scenarios. The first is for
transverse waves, section II. In this case we can make ε to
be only temporally dispersive. There are many methods for
making such a medium. For example one can compose the
medium from many thin slices of media, each with a different
value of ε, thereby approximating the continuous variation.
Another method is to set up a standing wave in a non-
linear material. The linearised permittivity about this solution
would have the spatial dependence as desired. However for the
examples given in this article to work would require regions
to have negative permittivity, ε < 0 which would require some
kind of metamaterial. It also does not work for longitudinal
waves.

A second scenario, section IV, is to make ε spatially disper-
sive as well as inhomogeneous. That is we set ε = ε(ω, k, z)
where k is the Fourier conjugate variable associated with z.
It is natural to ask the meaning of a function depending on
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Fig. 1. A peakier solution to Mathieu’s equation: In (3) with q = −10.0 and
a = MathieuA(1,−10.0) = −13.937
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Fig. 2. A flatter solution to Mathieu’s equation: In (3) with q = 1.0 and
a = MathieuA(1, 1.0) = 1.8591

both k and z. This is addressed in [1]–[3]. The method, as de-
scribed below, is to replace the permittivity with a differential
equation. Making the corresponding material can be relatively
easy – a wire medium oriented along the propagation axis
as in fig. 5 is naturally spatially dispersive [4]–[8], and by
periodically varying the radius of the wires, will naturally
generate the correct spatial inhomogeneity.
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Fig. 3. An even flatter profile: A solution to the equation π2L−2E′′ +
(1.9266 − 2.2 cos(2πZ/L) + 0.4 cos(8πZ/L))E = 0.
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Fig. 4. Close up showing difference between the profiles in Fig. 2 and Fig. 3.

II. TRANSVERSE MODES PERIODIC INHOMOGENEOUS
PERMITTIVITY

Consider the single frequency transverse mode with E =
eiωtẼ(z)i, P = eiωtP̃ (z)i and H = eiωtH̃(z)j, together
with the permittivity ε(ω, z) = ε0εr(ω, z) and vacuum perme-
ability µ0. Then Maxwell’s equations give

Ẽ′′ + ω2c−2εr(ω, z)Ẽ = 0 (1)
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Fig. 5. Wire medium with a periodic variation in the radius of the wires. The
inter wire spacing are (by , bz) and the period of the longitudinal variation is
L.
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Fig. 6. One period of the set of Mathieu mode profiles E(z), for a range of
q ∈ [0, 1], and using the appropriately matching a parameter value.

where ′ = d
dz . Set

εr(ω, z) = π2c2ω−2L−2
(
a(ω)− 2q(ω) cos(2πz/L)

)
(2)

where L is twice the period of the ε variation: ε(ω, z) =
ε(ω, z + Lπ). Then we get the (rescaled) Mathieu’s equations

π−2L2Ẽ′′ +
(
a− 2q cos(2πz/L)

)
Ẽ = 0 (3)

The profiles of E(z) are given in Fig. 1 and Fig. 2. By using
higher spatial harmonics, we can make the wave even flatter.
See Fig. 3 and Fig. 4.

III. BANDSTRUCTURE AND MATHIEU MODES

From a physical perspective, obtaining a range of Mathieu
Modes from a periodic structure is straightforward: we can
specify the required periodic structure, and then solve for the
bandstructure and field profiles. This can be done either using
commercial software such as CST Studio, or open source
solvers such as MPB, both of which offer convenient ways
of extracting a bandstructure and field model profiles from
a given unit cell. Notably, MPB calculates fully-vectorial
eigenmodes of Maxwell’s equations with periodic boundary
conditions by preconditioned conjugate-gradient minimization
of the block Rayleigh quotient in a planewave basis [9].

However, just setting up the structural index and periodic
variation as a function of position, as compatible with eqn. (3),
is not sufficient to uniquely identify a chosen field profile from
the complete bandstructure and its modes. It is also necessary
to correctly specify either the mode energy or wavevector to
get the point on the bandstructure which matches the selected
mathematical waveform. Alternatively, the material properties
need to be set up with the correct frequency response, namely
going as 1/ω2.

This done, we can e.g. investigate the progression towards
the interesting flat-top profile seen in fig. 2. We generate a
series of structures with q increasing from zero to one, and
with the a chosen to match q, starting at a = 1 and q = 0,
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Fig. 7. Contour plot based on the stack of Mathieu mode profiles in E(z) as
shown in the previous figure. The profiles vary from sinusoidal for q = 0 on
the left side of this figure, through to the flat topped and/or more complicated
forms on the right as q increases. The flat topped profiles are characterised
by the increasing separation of the high-value contours (at e.g. |E| = 0.90
or 0.99), as is most easily seen around z ' L.

and extract the correct Mathieu mode from the bandstructure
information. The most simple situation is for a 1D structure,
which gives us the progression or waveforms seen in fig. 6.
However, despite the clear non-sinusoidal behavior for q ≥
0.85, more subtle features are less evident. Therefore fig. 7
provides a contour plot of the same data, which demonstrates
clearly the broadening of the peaks – as we would expect from
fig. 2 – and the attendant steepening of the transitions.

An extension of these numerical results to 2D and 3D
Mathieu-like structures, such as the wire medium discussed in
this paper, will also be shown in the conference presentation.

IV. WIRE MEDIA: LONGITUDINAL MODES WITH
SPATIALLY DISPERSIVE INHOMOGENEOUS PERMITTIVITY

Consider longitudinal modes so that the electric and polar-
ization fields are longitudinal and the magnetic field vanishes,
i.e. E = eiωtẼ(z)k, P = eiωtP̃ (z)k and B = 0, then
Maxwell’s equations are automatically satisfied if

ε0Ẽ + P̃ = 0 (4)

I.e. D = 0, thus we are looking for epsilon near zero (ENZ)
media. When the medium is homogeneous we will use an
empirical model of the permittivity via

ε(ω, k) = ε0 −
ε0k

2
p

L(ω)− β2k2
(5)

Combining (4) and (5) we obtain the dispersion relation

L(ω)− β2k2 = k2
p (6)

Taking the Fourier transform of P̂ (k) = ε(ω, k)Ê(k) with
respect to k using P̃ (z) =

∫∞
−∞ eikzP̂ (k)dk one obtains the

differential equation

β2Ẽ′′ + L(ω)Ẽ = kp(z)2Ẽ (7)

The simplest method to include an inhomogeneity in the
permittivity is to let the plasma frequency kp depend on
position z, that is kp = kp(z). Thus (7) becomes

β2Ẽ′′ +
(
L(ω) + kp(z)

)
Ẽ = 0 (8)

Again by choosing the appropriate periodic function for kp(z)
one can replace (8) by the Mathieu equation. This can be
achieved with a wire medium, as detailed in [6].

V. CONCLUSION

Two methods of mode profile shaping are suggested: one
using transverse waves and a varying permittivity, the second
is by using a wire medium with periodic variation. We have
observed that for the non spatially dispersive scenario in
section II, the example waves given in this article require
ε < 0. Although this is easy to implement numerically, it
would be much harder to construct the medium. As a result,
numerical investigations of the type shown in section III are
invaluable in working out how to minimize the technological
demands, especially when extended into a full 3D model. We
are currently implementing the wire medium, and optimising
the shapes of the wires to form the desired field profiles.
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