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ABSTRACT 

Social support is a most powerful expression of human beings. It can make humans 

overcome barriers that seem impossible. Research shows that athletes, who are 

supported through being cheered on during events, perform better. However, up until 

recently, little could be done to cheer athletes during races unless supporters were 

physically present at the event. We investigate ways in which remote online spectators 

can support athletes in real-time. Is the support from remote spectators effective? How 

can we design systems for real-time support and what factors influence their 

effectiveness? 

To research this, we iteratively design online crowd interfaces, mobile applications, 

and devices that allow athletes to communicate with distributed spectators during 

sport activities. Athletes are able to broadcast their live performance to spectators 

through locative and biometric data sharing. Concurrently, remote spectators support 

the athletes by clicking a cheer button that instantly makes the athletes aware that a 

crowd is following their performance. We then conduct a series of investigations 

during multiple sport events, using different support modalities and diverse 

crowds. Results indicate that remote crowd support does motivate the athletes by 

making the athletes aware that they are being supported. More interestingly, if 

we categorise supporters into close relatives, acquaintances and unknown spectators, 

the most effective support seems to be that of acquaintances. This work also provides 

design guidelines for researchers and designers of remote crowd support systems. 
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1.1 Motivation 
Communication technology has changed profoundly in the last 50 years. Radically 

innovative infrastructures shaped the Internet by creating complex networks that allow 

many-to-many high-bandwidth communication to happen, in real-time across the 

globe. Today, processing power is ubiquitously embedded in what may have been 

unthinkable before, from cities to buildings to wearables, while devices got faster, 

cheaper and became mobile [30]. This resulted in a proliferation of social media 

applications, such as Skype, Facebook, LinkedIn, Twitter, and Weibo, which facilitate 

social interaction. These applications digitized many of the social communication 

processes within the real world.  

This new form of communication attracted the attention of researchers who studied 

how social networks get distant persons closer [179], build communities [90] and 

facilitate social support [195]. However, communication applications still have 

substantial shortcomings. Current communication technologies necessitate 

considerable attention from the parties involved and many were not designed for users 

who need to give or receive support while they are conducting a challenging task [48]. 

In sports for example, it is difficult for an athlete to report on a physically and 

mentally challenging sport activity as the event unfolds and receive support from his 

or her social network in real-time. Research shows that athletes who receive support 

from spectators during sporting events, perform better [2,28,59]. However, up until 

recently, supporters had to be at the same location as the athletes to show their 

support. If effective, applications that provide instant remote support promise huge 

impact on communities. Shin et al. [173] p.6 identify three key components that 

characterise real-time. 1) Time: tasks must be completed “before their deadlines. For 

example, messages are required to be sent and received in a timely manner between 
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interacting real-time tasks”. 2) Reliability is fundamental, 3) “The environment under 

which a computer operates is an active component of any real-time system. For 

example, for a drive-by-wire system it is meaningless to consider on-board computers 

alone without the automobile itself”. In this light, our view of real-time when applied 

to crowds supporting athletes, is that this support is sent to the athletes during and 

within the timeframe of the task, that is, before the task is completed. When applying 

this real-time approach to interaction, we use the term synchronous interaction. By 

this we refer to interaction in which the actions within the interaction can be reacted to 

(by a user or a system) instantaneously and this (may) trigger subsequent interaction. 

Through a thesis by publication model, in this work we investigate whether it is 

possible to remotely crowd-support persons that are conducting a challenging task, in 

real-time. As for the challenging task itself, we specifically look at athletes 

participating in a sporting event as there is already evidence that the support of co-

located spectators can have a positive effect on athletes [28,59].  

Designing systems for real-time remote social support is not a trivial task. Much 

research exists on asynchronous social support. For example, we find many 

applications for supporting users trying to stop smoking or improving health habits 

over social networks through peer support [37,134,148]. This cannot be said for social 

support that needs to occur in sync with the task - synchronous support. Most of the 

above referenced studies were in fact designed for social support that is received over 

a long time period following the activity. In some cases this consists of days or even 

weeks. Nevertheless, research in social psychology has repeatedly shown that short 

timeframes between the action and the external support is likely to provide a more 

positive reinforcement than otherwise [92]. In this context, synchronous support 

promises greater value than asynchronous support. 
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In this work, we argue that systems that elicit real-time crowd support necessitate 

three main functions. 1) They have to make the supporter aware of what is happening 

during the activity with minimal distraction to the athlete. 2) They need to allow the 

supporter to freely express support while the event is taking place and 3) they need to 

aggregate and communicate this support back to the athlete in a most effective 

approach. 

Currently, social network-based applications lack multitasking functionalities and 

make it particularly difficult for athletes who are engaged in highly challenging tasks, 

such as running a marathon, to interact with remote supporters. For example typing a 

Facebook text message while jogging is awkward at best. In hindsight, this seems to 

be a key reason why there are very limited applications that are designed to socially 

support users remotely as they are conducting challenging tasks. This contrasts with 

the real-world scenario where crowds on a racecourse cheer athletes as they enter line 

of sight. Nevertheless, can athletes tell their story to remote spectators live, such 

that spectators can build an understanding of their performance?  

The spectators’ understanding of the athlete’s performance is fundamental to the 

relevance or otherwise of the support. This understanding, influences the spectators’ 

engagement [153,154] and more importantly the athletes’ belief that the support is 

based on their performance [44], that is, the support is not random.  

If this were to be accomplished and remote spectators could indeed build an 

understanding of what is happening, can the support of remote spectators be 

aggregated and communicated back effectively to the athlete as the event 

unfolds? 
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We use the term “cheering” to refer to the social support that is show by spectators 

during sporting events. The Oxford English dictionary defines a cheer as “a shout for 

joy or in praise or encouragement”. During sporting events, crowds often encourage 

the athletes to perform better by externalising their feelings as cheers [59]. Cheers 

may consist of sounds (e.g. shouting spectators), gestures (e.g. hand waving) and 

vibrations (e.g. the subtle vibrations that a very large cheering crowd creates. 

Research shows that this cheering can influence an athlete’s performance during the 

game [59]. In this work, we convey remote support by communicating cheers in the 

form of sound and tactile feedback. 

1.2 HeartLink  
To investigate this, over a three-year period, we designed, prototyped and tested 

HeartLink, an online data sharing and feedback system (www.heartlink.co.uk). 

HeartLink lets remote spectators know how a sporting event is unfolding without 

distracting the athletes from their task. It broadcasts sensor-captured data from 

athletes, such as heart rate and geographic location, via mobile networks, to online 

spectators. Online spectators can in turn follow this data live on any Internet-

connected browser. Spectators can also click the Cheer button on their interface. The 

Cheer button sends an instant alert to the athletes through audible and haptic feedback. 

In this way the athletes get the awareness that a crowd is remotely following their 

performance. This simple communication modality is adopted on the hypothesis that 

this is effective enough to make the athletes aware of the spectators, yet at the same 

time, it provides minimal distraction to the athletes. In each of the deployments, 

remote spectators can also share comments with each other through a public 

Facebook-like frame on the same interface. This collective commenting creates a 

community around the event. Additionally, the posted comments provide the 
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researchers with valuable insights on the spectators’ understanding of the data. We 

then iteratively deploy HeartLink with groups of athletes and online spectators during 

different sporting events. These will be discussed in detail throughout this thesis 

together with their respective findings.  

1.3 State of the Art 

 

Figure 1: The process under observation 

The relevant literature and methodology for each chapter is presented within each of 

the next chapters. Here we briefly summarise the state of the art in the field. Figure 1 

shows the overall process under investigation that is composed of two components. A 

data sharing system communicates the athletes’ performance and a feedback system 

allows spectators to communicate their support. This brings us to touch with literature 

from different fields including theories of motivation, expectations management and 

social network theory. Theories of motivation help us understand the effect that the 

external support may have on the athletes [49,51,160]. Expectations management shed 

light on how the impact of the support is dependent on the support that the athletes 

expect to receive [21]. Social network theory helps us understand how this impact 

may also be dependent on the relationship between the supporters and the supported 

[70].  

 

 

Athlete's	
Real-,me	

Data	Sharing	

Crowds'	
Real-,me	
Feedback	

Collec&ve	Intelligence	Theory	of	Mo&va&on	

Social	Network	Theory	
Research	In	the	Wild	

Expecta&ons		
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Theory	of	Mind	
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On the other hand, our observed behaviour is guided by the Theory of Mind and 

Collective Intelligence. Theory of Mind describes the spectators’ understanding of the 

effort that the athlete/s are enduring [10,80]. Collective Intelligence helps us 

understand how the support and actions of the individual supporters create the crowds’ 

behaviour [108,162]. We explore this in a Research In–the-Wild (RIW) framework 

[15,157,158]. We will get back to this later on in this chapter.  

To the best of our knowledge, no commercial application allowed remote spectators to 

support athletes in real-time at the start of this study. More recently, popular mobile 

applications for sports like Runkeeper, Runtastic and Endomondo implemented 

remote crowd support features with which social network friends can send cheers in 

the form of sound effects or tactile feedback to athletes. These systems however, offer 

little insight, that goes beyond the corporate branding, on the effectiveness of these 

features. Since studies that involve both real-time data sharing and feedback from 

remote crowds’ are negligible in academia, we start by deriving insights from studies 

that looked into these approaches separately. 

1.3.1 Sharing real-time data 

In literature we find various studies that attempt to enhance the engagement of 

spectators by sharing live data [11,109,144,179,188]. Schnedelbach et al. [168] 

augment the experience of spectators by capturing and sharing telemetry data of 

participants at amusement rides. In their setup, telemetry data was projected to co-

located spectators. This data included acceleration, heart rate, electrocardiogram, and 

live video that was captured form head mounted cameras. Similarly, Kurvinen et al. 

[103] conduct a field test of a prototype that captures and shares heart rate data of 

soccer players with parents and coaches that are located at the boarder of the pitch. 

Hallberg et al. [76] takes this approach further and broadcast athletes’ telemetry data 
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to online spectators. They use custom-build location and heart rate telemetry devices 

and deploy them in a 90-kilometer skiing event. The results from these studies suggest 

that automated sharing of sensors-captured data can build engagement between 

participants. This is primarily through the build-up of curiosity and the actors’ urge to 

know more about what other social members are doing. These results are supported by 

other cases in literature that involve automated data sharing such as Comob [179] and 

CenceMe [126]. Unlike our objectives, providing two-way communication however 

was not within the scope of this work. In this regard, Jogging over a distance [131] is 

the closest representation to our work. Unlike earlier work, it is the first to provide a 

two-way communication system that connects two remote athletes during jogs. In this 

work, two joggers in different location hear each other and jog ‘together’. Results 

indicate that the joggers were able to support each other as the event unfolded. In our 

work we take this further and seek to connect athletes with a remote crowd that can 

provide instant support. Through this, we then investigate whether the cited results are 

replicated in the novel context of crowd-athlete interaction. 

1.3.2 Crowds’ Feedback 

For the support to be meaningful to the supported, the supporters must understand the 

context [189]. Research studies on social networking indicate that sharing personal 

data can be effective to facilitate social support [26]. However, the effects, if any, may 

be different in different contexts. For example, Beckmann et al. report that athletes’ 

performance can suffer from the pressure posed by live television broadcasts and co-

located spectators [13]. This motivates the need for a focused investigation to identify 

whether sharing data in real-time with a crowd that is supporting remotely, makes the 

athletes more or less involved in the activity being performed.  
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Many HCI researchers, particularly around long-term behaviour change, looked into 

supporting geographically distributed users who face challenging tasks by sharing 

one’s activity with others. Challenges explored include maintaining physical activity 

exercises [4,111], stop smoking [196] and stop alcohol consumption [192]. For 

example Fish’N’Steps is one such system where daily steps are shared over a social 

network and uses peer pressure as encouragement to increase daily activity. Results 

repetitively indicate that the encouragement received by others can influence 

behaviour [111]. We are interested in investigating whether this influence occurs 

when the participants are made aware of remote support during and in sync with their 

activities.  

Cheers are a very complex form of social interaction. Many academics investigated 

the dynamics and effects of this social behaviour both on the person who is cheering 

and on those who are cheered on [11,59,107]. The cheering behaviour is influenced by 

the reactions of the individual who is cheering. The behaviour of a group of cheering 

individuals creates the emergence of crowd behaviour [162]. This is expected to 

influence the performance of the athletes [59], who in turn, may influence the 

cheering crowd. While these phenomena have been explored within the co-located 

cheering context, we currently lack insight on how a remote cheering system could 

work. More importantly, we need to understand how the social network actors in such 

as system react. Additionally, we need to understand how the athletes experience 

being remotely cheered on and how a remotely located cheering crowd behaves. 

1.4 Research Questions 
We thus specifically investigate four research questions: 

RQ 1. What is the athletes’ experience when sharing data and receiving support 

from remote crowds during events? 
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Our position on ‘experience’ follows that proposed by Desmet et al. [52], namely, 

what is the perceived goodness or badness, pleasantness or unpleasantness when using 

the spectator support system in situ? Since the effect of the cheering on the athletes is 

dependent on the supporters’ behaviour, we are also interested in studying: 

RQ 2. What influences the behaviour of the remote supporters during a live 

sporting event? 

As regards ‘spectators’ behaviour’, we investigate cheering patterns, cheer quantity, 

time that spectators spent on the site supporting the athletes and the nature of the 

messages that spectators post during the event. 

RQ 3. What are the key incentives for stakeholders to use systems that facilitate 

remote support in real-time, if any? 

As stakeholders we consider 1) the athletes, 2) the spectators and 3) the event 

organisers. Finally, through the data collected, our observations and the experience 

gained while designing and deploying systems that facilitate real-time support from 

remote spectators, we contribute to the development of future systems by 

investigating: 

RQ 4. What are the key factors that need to be considered when engineering 

systems that facilitate support from remote spectators?  

1.5 Relevant Fields 
The complexity of this interdisciplinary exploration within Human-Computer 

Interaction brings us to touch with may research fields and theories. As early 

mentioned and depicted in Figure 1, in the course of this text we touch upon Theory of 

Motivation, Collective Intelligence, Theory of Mind, Social Network Theory and 

Expectations Management. The theories of motivation help us understand how 

receiving external encouragement makes athletes perform differently. Specifically, in 
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Chapter 6, we compare the observed athlete’s experience of being cheered on, to Deci 

and Ryan’s Self-Determination Theory (SDT) [50] and their more recent Organismic 

Integration Theory (OIT) [160]. OIT classifies extrinsic motivation, such as the 

motivation that may emerge from being cheered on, in four different categories 

ranging from least autonomous to most autonomous extrinsic motivation [160]. SDT 

identifies three ways in which extrinsic rewards can increase motivation: through 

increasing feeling of autonomy, competence or relatedness. Relatedness is the feeling 

of being part of a group or community and having a sense of belonging [75]. Cheering 

is expected to increase both the sense of competence and relatedness. The effect of the 

cheering on the athletes is expected to be influenced by the intensity of the cheering 

that the athletes expect to receive. Expectations management theory provides insight 

in this regard [21] (Chapter 6).  

In hindsight, the bringing of these diverse perspectives into one study presents 

challenges. We could have opted towards breaking down the research problem into a 

number of smaller sections and look at the each section individually. For example, we 

could have conducted a study in which users in the role of spectators are presented 

with dummy data while the researchers observe their reaction. However, while this 

would have provided more control, it would have been very different than the real 

application where crowds support athletes live. We are interested in looking at the 

macro level, that is, observe and understand the dynamics of the ecosystem when it is 

in operation. Looking at the system under observation as an ecosystem, is fundamental 

for this study, as this determined the methodological approach adopted, the framing of 

the research questions, the measurement techniques that are used and the study 

limitations. The earlier presented Figure 1 shows the macro view of this ecosystem.  
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The work in this study primarily adopts a realism research paradigm with research 

problems being more descriptive than prescriptive. Realism is not constrained by the 

limitations of constructivism or critical theory and leaves from the researcher’s 

objectivity [145]. Moreover, in this investigation, we were particularly interested in 

collecting non-technological motivations (for example experiences and social effects) 

on user influence and user motivation. These are external world phenomena that are 

often hard to quantify [81]. This approach is also adopted in existing research that 

involves spectator interaction or ‘remote support’ [76,103,168,183].  

Up until now, the Human Computer Interaction field and related communities were at 

the forefront of the research area under investigation. The methodologies adopted 

varied widely however qualitative approaches are by far the most adopted due to their 

appropriateness to handle complexities when measuring individual or crowd 

behaviour and quantifying the effects on, say, motivation or excitement. In this regard, 

Table 1 (p.15) lists relevant studies that involve broadcasting participant’s data to 

augment co-located or remote spectators’ experience. These studies were collected 

from the ACM Human Computer Interaction publications and the references within. 

The last column in the table shows the methodology adopted for each account. This 

denotes a predominance of qualitative processes and descriptive methodologies.  

Across the chapters, the literature review draws upon the online evolution of personal 

data sharing from areas of health [87,175], sport [76,131] and behaviour change 

[37,134]. We will review cases where personal data sharing is automated in ways that 

do not distract the data sharing user [166,183] and reference systems that allow real-

time data sharing and crowd feedback [111,141,176]. Thus, this work combines three 

research areas: Data Sharing, Crowd Support and Synchronous Interaction as shown 

in Figure 2. 
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Synchronous interaction refers to interaction that happens in real-time. This has 

attracted the attention of many researchers in recent years particularly within the 

computer supported collaborative work (CSCW) area. Most studies indicated that 

synchronous interaction often provides the user with a more engaging experience than 

asynchronous interaction. For example, Cao et al. show that providing students of an 

online course with synchronous interactions raises the overall student satisfaction 

[27]. Similar outcomes are identified by Khot et al. [194].   

 

Figure 2: Interrelated areas 

1.6 Methodological Considerations 
We answer these questions through a research in-the-wild approach. Unlike traditional 

experimental methods that take place within the lab [88], research in-the-wild goes 

beyond observing existing practice and presents an opportunity to evaluate novel 

technology in the place where the technology is intended to be used [128,158]. 

Research in the wild is an old practice. Centuries-old inter-continent expeditions that 

inform ship design may classify within the definition. However, over the last decade, 

research in-the-wild became a common research practice in HCI. As in our study, HCI 

researchers often seek to explore new technology, test prototypes in the location in 

Inves'ga'on	

Data	Sharing	

Crowd	Support	Synchronous	
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which they are intended for and understand how people interpret and appropriate the 

technology [36,38,134,155,174].  

Kjeldskov et al. question the relevance of research outside the lab claiming that any 

in-the-wild research can be done in a lab setting [95,96]. We disagree - particularly 

when participants’ behaviour may be influenced by complex real-life externalities. For 

example, Marshall et al. demonstrate that participants behave differently when using 

tabletop interfaces in public then in the lab [119]. Kieldskov’s framing of research in-

the-wild [95] seems to be limited to the evaluation of functionality of technological 

devices. In our case, we intend going beyond evaluating a specific system. We intend 

instantiating synchronous ecosystems where participants support other participants 

live during real sports activities in situ. An in ‘the wild’ setting is fundamental and 

part of the technology under observation itself.  

Our ‘in-the-wild’ approach is truly in the wild. Prototypes are deployed with 

participants in different cities, countryside pathways, cycle lanes, nature parks and 

inside a lake. For example, the final prototype deployment connects athletes running a 

170-mile race, from coast to coast, across the UK. In this setting, research in-the-wild 

allows us to compare and contrast the effect of mobile data connectivity on the 

proposed technology across different environments within the same deployment. This 

in-depth investigation would be hard to simulate in the lab. 

Evaluating technology in-the-wild poses a number of added challenges. These 

challenges go beyond the lack of comfort that out of the studio participants are 

presented with [63]. An in-the-wild study may suffer from lack of control that a lab 

facilitates [96]. Consequently, extrapolating specific effects becomes difficult and 

researchers need to interpret data that is influenced by several externalities and 
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First Author Year Title Motivation Context Main data collection 

Florian 'Floyd' 
Mueller 

2003 Exertion interfaces: Sports over a 
Distance for Social Bonding and Fun 

Social Support Jogging athletes) Questionnaire, interviews 

T Konberg 2003 Measuring Breathing and Heart Rate 
Data with Distribution over Wireless 
IP Networks 

Sport/ 
Entertainment 

Hockey players’ data is 
shared with spectators in 
real-time 

Research through design 

Stuart Reeves  2005 Designing the Spectator Experience Entertainment Sport, art, performance 
and Exhibitions 

Systems’ review 

Joseph Hallberg 2004 Enriched Media Experience of Sport 
Events 

Entertainment Skiing (athletes) Research through design, 
questionnaire 

Esko Kurvinen 2007 Are you alive? Sensor Data as a 
resource for social Interaction 

Entertainment Soccer match Observations, interviews 

Brandan Walker 2007 Augmenting Amusement Rides with 
Telemetry 

Entertainment Fairground rides Review of existing systems 

Holger 
Schnedelbach 

2008 Performing Thrill: Designing 
Telemetry Systems and Spectator 
Interfaces for Amusement Rides 

Entertainment Roller coaster ride Observations, interviews 

Rodrigo de 
Oliveira 

2008 TripleBeat: Enhancing Exercise 
Performance with Persuasion (Future 
work) 

Sport Behaviour change through 
smartphone application 

Quantitative performance 
measure, questionnaire 

Arttu Perttula 2010 Users as sensors: creating shared 
experience in co-creational spaces by 
collective heart rate 

Entertainment Hockey (spectators) Observations, 
questionnaire, heart rate 
measures 

Joe Marshall 2011 Breath Control of Amusement Rides Entertainment Ride control with 
biofeedback. 

Observations, Interviews 

Petr Slovak 2012 Understanding Heart Rate Sharing: 
Towards unpacking the physiosocial 
space 

Research Day-to day activities 
/Poker game 

Field-trial with 
observations and 
interviews 

Florian 'Floyd' 
Muller 

2012 Balancing Exertion Experiences Entertainment Review Observations, paired 
interviews 

Paul Tennent 2012 The machine in the Ghost: 
Augmenting Broadcasting with Bio 
data 

Entertainment Haunted building 
Exploration 

Observations 

Table 1: Key related literature 
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Figure 3: Research design phases: nChapters, nResearch Phases, nPrototyping, n/nMethods  
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interdependencies [158]. To compensate for this, we use multiple methods of data 

collection. Where possible, we triangulate findings across different data sources. Eight 

data collection methods are used throughout the study, namely, online surveys, a 

literature review, a focus group, semi-structured interviews with athletes, spectators 

and HCI researchers, content analysis of social network comments posted during 

deployments, quantitative data of online users’ interaction that is collected by the data 

server, observations, and research through designing four data telemetry prototypes 

and four online-crowd interfaces. Figure 3 shows the sequence of how these data 

collection methods were integrated. 

The challenges that research in-the-wild presents are widely documented in literature 

[31,38,88,95,158]. However, over and above these challenges, our work faces 

additional unusual dynamics. Each of these augments the complexity of running the 

study. Namely, 1) the need for co-ordinating a group of co-located participants that 

are conducting a challenging task in-the-wild (athletes), 2) the need of co-ordinating a 

group of globally distributed participants (remote supporters) and 3) the need for all 

activities to operate in real-time with synchronous interaction at a global scale. The 

latter does not afford the traditional lab recruitment approach where the researcher 

schedules participants at a time when it is most convenient for each participant. In our 

case, all the participants have to synchronise with the live event.  

In this context, recruiting participants, particularly online spectators, requires rigorous 

planning. Online spectators may be less difficult to recruit than co-located athletes 

since much less effort is needed when participating in an online task than when 

participating in a physically challenging task such as a long distance race. 

Additionally, there is typically no travelling involved. The participants do not feel 

they are being watched and they might do work in parallel to following or supporting 
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the athletes. For example, Manson points out that they might have coffee while 

engaging in an online event [120]. Another important aspect highlighted by Mason is 

‘Attrition’. In a lab experiment, it is very unlikely that a participant walks out of an 

experiment due to unstated pressure from being in a face-to-face situation. This does 

not apply to an online environment where participants may easily leave the 

experiment at the click of a button. The participants may also be distracted by various 

other factors such as surfing other websites, making errands or experience technical 

system failure, to mention a few. To monitor this, we follow recommendations by 

researchers [120] who suggest placing occasional prompts to monitor attention. The 

system then logs the time taken for each viewer to respond and this measure may then 

be compared to different participant groups and collected datasets.  

Additionally, to mitigate complexity, we start with a small-scale deployment that has 

few participants, to then increment the scale of the deployment iteratively. This 

approach promises 1) incremental improvement, 2) contains any emergent ethical 

issues and 3) minimises risk of failure. 

1.6.1 Innovation Management 

Our assumption is that this form of support is in an early design stage of its life cycle. 

Each of the four deployments is independent from each other. Each deployment 

adopts a different approach and attempts to explore the field as broadly as possible 

within the scope of a PhD study. This approach is inspired by the concept fan 

techniques that is often used in new product development [110]. A different approach, 

that was initially considered, was an iterative design approach [83]. In this case, each 

design iteration incrementally improves the previous design towards a single solution. 

Such an approach could have involved conducting a detailed ethnographic study of 

existing co-located spectators in order to understand their cheering patterns and 
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behaviours, and then, digitally replicate the identified user journey as close as possible 

to ‘real’ cheering. While this approach is valid, we felt that this approach risks 

limiting the innovation outcome to existing social dynamics in the analogue world. 

However, there could be new ways, both in process and modality of supporting an 

athlete remotely. These new processes and modalities might not exit because they are 

simply not possible in co-located cheering but might emerge in a remote-located 

cheering context. Secondly, a broad exploratory deployment (in contrast with an 

iterative design that is intended to refine a single approach) seems more appropriate 

for an exploration in an area that seems to be in the early life cycle of its innovation 

process. This approach promises a broader scanning of the horizon that would rapidly 

look at different design directions and concurrently highlight the directions that are 

most promising and merit further research.  

1.6.2 Participants 

All the deployments were conducted within a university context. Two different 

participant groups were recruited for each deployment; athletes and spectators. In all 

four studies, the athletes were regular long distance runners. In total 22 runners 

participated. 18 were university students and 4 were academics. On the other hand, 

spectators were recruited though word-of-mouth (Phase 1 and 2), advertisements 

within university social groups, for example, a university running club (Phase 3 and 

4), and through crowdsourcing (Phase 3). In total 418 spectators interacted with the 

athletes across the four phases. A more detailed account of the participants of each 

study will be presented within the respective phases. 
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1.7 Key Themes 

 

Figure 4: Word cloud for the text in Chapter 2 to 8 

Figure 4 shows a word-cloud for the corpus within Chapter 2 to 8. We place this here 

to give the reader an overview of the themes that this multidisciplinary research 

touches upon. Themes in data, sports, biometric data, distributed crowds, real-time 

interaction, communities and support emerge within this work in HCI. This work is 

primarily informed by existing literature in wearables, health (from an HCI 

perspective), quantified-self, ubiquitous computing (particularly research in the 

Internet of Things), gamification and mobile interfaces. Figure 5 positions the key 

themes across which this investigation sites. In Figure 5, themes are classified in sets. 

We must note that the delineation of these sets is blurred and the elements within them 

are often interrelated.  

Secondly, unlike co-located cheering, in the solutions that are deployed in this study, 

athletes and spectators are linked with technology. This is done through ubiquitous 

computing [8], mobile interfaces [79], synchronous interaction [135,164] and by 

designing and deploying a technology-enabled object as an Internet Of Things (IOT) 

device. In all the deployments, the spectators are distributed. Though distributed, the 

spectators form a crowd that is expected to demonstrate emergence of collective 
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behaviour [117].  In other words, the actions of the individual spectators, collectively, 

create the crowd’s behaviour that is not necessarily the sum of the individual actions 

[162]. Michael Bernstein uses the term Crowd-Powered Interfaces to refer to 

interfaces which are constructed by the actions of many. Through a number of cases 

studies, he highlights the technical and motivational challenges that lie within these 

interfaces [19]. In this work, Bernstein highlights the need of subdividing the crowds’ 

tasks, in our case the cheering, into small tasks. Secondly is the need to filter or 

review the results. If the interface is a real-time crowd powered interface, the latter 

becomes more challenging. Literature in crowd-powered interfaces presented 

numerous cases were system designers compensate for these issues by, say, limiting 

the influence of the crowd on the interface or averaging the interaction across multiple 

individuals [2,28,59].   

 
Figure 5: Related themes 

Over the last two decades, communities with diverse interests have been increasingly 

collecting and logging personal information thus giving rise to the quantified-self 
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movement [156]. Within sports, athletes logged data through different ad-hoc and 

generic devices such as smartphones, wearables and biometric sensors [114,181]. An 

increasing number of athletes not only logged this data for personal use but also 

started sharing this data with others [10]. The willingness of humans for self-

disclosure dates back to before the Internet era. In 1969 Worthy et al. conducted a 

series of experiments that concluded that the more intimate self-disclosure was, the 

more others liked them as assessed in a post-experiment assessment. Moreover, this 

liking was not influenced by whether the situation permitted eye contact or not [199]. 

The latter is relevant in our research as we attempt to digitise a social communication 

setting that traditionally involves eye contact. Similar outcomes are found in more 

recent times were data sharing is used as a form of engagement over social networks 

and to encourage nudging in applications that seek behaviour change [37].  

A common type of data that athletes collected and shared is data that is related to their 

performance and/or biometric data such as the athlete’s heart-rate. Most popular 

mobile sport applications such as RunKeeper, Runtastic and Nike+, allow users to 

collect and share performance data that is based on geographical location sensing (e.g. 

speed, pace and geographical position) and biometric data (e.g. sensing heart rate or 

respiration rate) [66]. There have been numerous studies that looked into the effect 

that sharing location-related data has on both the person sharing the data and the 

person seeing the data [85,87,103]. However, as we shall further elaborate upon in the 

next chapter, there have been very few studies that looked into the effect of sharing 

biometric data, such as heart rate, outside the medical domain. Consequently, in our 

work we are interested in seeing how presenting such data might influence cheering.  

1.8 Overview of Studies, Methods and Findings 
This thesis is composed of four key standalone phases as follows.  
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1) We first conduct a feasibility study to assess the viability of investigating real-

time support from remote crowds in a sporting context, identify any ethical 

issues that may arise from the study, and gather preliminary insights on how to 

design systems for remote spectator support. This feasibility study is 

composed of desktop research and two in-the-wild deployments during two 

sporting events (Chapter 2). 

2) With the insights gained in Phase 1, we then design and build BioShare, a 

customisable research tool that facilitates sharing live data over social 

networks and allows remote spectators to send instant feedback (Chapter 3). 

3) We deploy a customised version of BioShare called HeartLink, in an ad-hoc 

in-the-wild 5k event with 5 athletes and 140 remote spectators (Chapter 4, 5). 

4) Finally we conduct a fourth in-the-wild deployment during a 24-hour 170-mile 

relay race with 13 athletes and 261 spectators. This study compares and 

contrasts the effect of increased challenge and loneliness over the previous 

deployment (Chapter 6). 

The next sections briefly describe each of these phases and how each phase leads into 

the next. We present the methods used together with an overview of the learning 

outcomes from each of these phases.  

1.8.1 Phase 1: Feasibility study - desktop research, a pilot study and a 
user study 

Phase 1 assesses the viability of investigating remote crowd support. It also gathers 

insights on possible ethical issues that should be taken into consideration when 

deploying events in-the-wild within this context and captures requirements for system 

design.  

Through desktop research we first review existing commercial mobile phone 

applications that are designed for sports activities. We find that applications at the 

time of conducting the study, do not allow spectators to communicate with athletes 

during events. We also identify that academic research on sports applications is very 
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limited particularly when it comes to the sharing of live personal data. In this light, 

before conducting in-the-wild deployments, through an online survey we assess the 

readiness of participants from a university setting, to share personal data while 

conducting sports activities. 

A pilot study and a user study are then conducted. These seek to understand the 

technical issues involved when athletes share data in the wild. These also gather 

primary data on the athletes’ and the spectators’ experience. The pilot study takes 

place during a triathlon in the Lake District and focuses primarily on validating the 

technology. The user study is conducted during a charity run in Lancaster, UK. This 

focuses primarily on capturing the participants’ experience. Analysis of the data that 

was captured through observations, server-interaction logs, interviews and content 

analysis of online discussions during the events, indicated that research in remote-

crowd support is worth pursuing. However, the use of third-party communication 

applications that were used to share athletes’ data within an in-the-wild research 

context, presented a number of challenges that included a lack of control on data 

integrity and reliability. These also limited the ability to measure user experience and 

behaviour thus motivating the development of a bespoke data sharing system for 

researching remote spectator support: BioShare.  

In summary, this phase contributes 1) a confirmation that further research in remote 

crowd support is worth pursuing, 2) provides preliminary insights on how to build 

crowd support systems around the athletes and the spectators, and 3) highlights the 

need to create a dedicated tool for researchers working in this area. Further details on 

Phase 1 are presented in Chapter 2 as published in ACM CHI’13 proceedings [42]. 
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1.8.2 Phase 2: System Design and Development 

In Phase 2 we design and develop BioShare. The requirements capturing for 

developing Bioshare involve three stages.  

a. We first reanalyse the data collected in Phase 1 and identify key system 

requirements. 

b. We are interested in making Bioshare relevant for other researchers working in 

this area. Consequently, to validate whether the insights gained from our 

experience in deploying two in-the-wild studies match the requirements of 

researchers who developed closely related systems, we then compare and 

contrast our insights with those of closely related systems that are referenced 

in literature. 

c. We find that the systems that are referenced in literature lack details on how 

these systems were developed and details on issues that emerged during their 

development, if any. Thus, we further investigate past systems’ development 

by interviewing HCI researchers who created closely related data sharing 

systems for research applications. 

The developed system consists in a native Android mobile application that can 

broadcast locative and physiological data of users over mobile networks and receive 

feedback from online crowds. A web interface together with a dedicated backend 

allows distributed crowds to follow and communicate with the data-sharing users. 

BioShare is open-source and is designed such that it can be configured for different 

study requirements.  

In addition to contributing BioShare as a tool for researchers, this phase contributes a 

set of requirements for spectator support systems in the presented context. These 

include ethical considerations, design for adaptability and the need to give the user 

entire control over the shared data. A detailed account of Phase 2 can be seen in 

Chapter 3 as published in ACM DIS’14 proceedings [41]. 
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1.8.3 Phase 3: Deployment in an 5k-road race 

A customised version of BioShare, HeartLink, is then deployed in a 5k-road race with 

5 athletes and 140 remote spectators. In this deployment we seek to 1) capture the 

experience of athletes when sharing data and receiving remote support (RQ1) and 2) 

identify what influences supporters’ behaviour during a live sport event (RQ2). Pilot 

studies suggested that spectator engagement is influenced by both the data that is 

presented (e.g. the effort that the athlete is exerting) as well as the social relation 

between the athlete and the supporter. To validate this, we recruit two spectator 

groups. One spectator group was recruited through the athletes’ own social networks. 

Thus, the spectators in this group knew the athletes. A second spectator group was 

recruited from a crowdsourcing platform and thus these spectators had no social 

connection with the athletes. Additionally, to compare whether different data types, 

particularly heart rate data, influences the spectators’ engagement, all the spectators 

were randomly assigned to one of two conditions. One group was presented with 

locative data while a second group was presented with both locative data and heart 

rate data of the athletes. The results indicate that having a social tie with the athletes 

increases engagement in supporting the athletes. These spectators cheer more and 

spend more time supporting. Spectators who were presented with the additional heart-

rate data in their interface also cheer significantly more. Additionally, through a focus 

group, the athletes suggest that the motivation for athletes to use remote spectator-

support systems is dependent on the effort that the task entails and the degree of 

loneliness that the event presents. Thus to further investigate this, we conduct a fourth 

in-the-wild deployment during a 24-hour 170-mile long relay race across the UK. 

In summary, Phase 3 contributes the following: 
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1. Through quantitative data, it highlights differences in spectator behaviour 

across spectators who are presented with different visuals, and spectators who 

have different social relationships with the athletes. For example we find that 

spectators who are presented with additional information about the heart rate 

of the remote participants are likely to send more cheers. 

2. Through qualitative data, it identifies key motivations for using live remote 

cheering systems. For example, we identify that spectators’ behaviour depends 

on their understanding of why the athletes are conducting the task (e.g. egoistic 

vs. altruistic objectives in participating in an event). As regards the athletes’ 

motivation, we identify that the impact that the cheering has on the athletes is 

relative to their expectations. This and similar outcomes, will be supported 

through theories of expectations management [1] and self-determination theory 

[42]. 

3. It identifies the effect on athletes from sharing live data and being cheered on 

remotely. Athletes indicate that real-time remote support is more effective in 

non-competitive events (for example a charity run) that competitive events. 

A detailed account of Phase 3 is presented in Chapters 4 and 5. Chapter 4 is published 

in ACM CHI’15 proceedings [44] while Chapter 5 is currently under review. 

1.8.4 Phase 4: Deployment in a 170-mile relay race 

For this event, BioShare is customised and embedded in a running relay-baton form 

factor. This baton works as an interface between the remote crowd and the athletes. 

The baton’s form-factor also provides enough space to store the needed energy for the 

24-hour long event. Following a co-design process with the athletes, the prototyped 

baton collects and broadcast data in real-time and vibrates whenever a remote 

supporter clicks a cheer button on the web interface. Additionally the baton also calls 

out the name of the person who sent the cheer. In this way the athletes get an 

awareness of where the cheers come from.  
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This phase presents a number of contributions. Through these deployments, we further 

analyse and deduce user-motivations for using real-time crowd-support systems 

(RQ3). Athletes report motivation from: receiving remote support, building 

followship, having a proof of accomplishment, satisfying a social need to connect with 

others, democratising sport events and facilitating mindfulness about the event, among 

others.  

Additionally, the data collected through these deployments provide insight on key 

factors that need to be taken into consideration when engineering real-time crowd 

support systems (RQ4). These are presented in three categories:  

1) Spectators’ expressiveness i.e. the design of how spectators can 

externalize their support. This can range from a highly controlled form 

(e.g. simple binary ‘Likes’) to a more open approach such as user-

generated communication (e.g. live audio streaming of aggregate 

cheers from spectators’ microphones).  

2) Context applicability i.e. we identify contexts where remote spectator 

support seems most pertinent. Findings indicate that these systems 

seem to be most valuable in challenging events and where the athletes 

feel lonely (e.g. participating in an unaccompanied setting at 

nighttime). On the other hand remote support appears less useful in 

competitive events.  

3) The design of the data flows within the social network. Here designers 

need to consider how system users (athletes, spectators or organisers) 

communicate and design communication flow. 

Further details on Phase 4 are presented in Chapter 6. This is currently under review 

for publication in the ACM CHI’16 proceedings. 
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1.9 Revisiting the Research Questions with Findings 
In this section, we present the main findings of the study in relation to the research 

questions. 

RQ 1. What is the athletes’ experience when sharing data and receiving support from 
remote crowds during sporting events? 

In all the deployments, the athletes commented positively about having spectators 

follow their performance live and being cheered on (Chapter 2, 4, 6). Our findings 

indicated that spectator support systems are most effective in situations where the task 

is challenging and in contexts where the athletes might feel lonely due to the nature of 

the challenge itself (Chapter 6). The athletes also repetitively report that the system is 

more relevant in non-competitive events than competitive events as the cheering may 

distract the athletes from the needed mental concentration (Chapter 4). However, our 

finding also show that the users’ experience when sharing data and receiving support 

is dependent on individual personalities and expectations (Chapter 4). 

RQ 2. What influences the behaviour of the remote supporters during a live sporting 
event? 

In Chapter 4 and 5, we identify 4 key factors that influence the behaviour of remote 

supporters: 1) the social tie strength between the spectators and the athletes, 2) the 

type of data that is presented to the spectators, 3) the spectators’ belief of athletes’ 

motivation to participate in the race, and 4) the spectators’ incentive for recruitment.  

RQ 3. What are the key incentives for stakeholders to use systems that facilitate 
remote support in real-time, if any? 

We identify nine incentives. The presented systems can be use to 1) receive live 

support, 2) build a community of followers, 3) as a proof of accomplishment, 4) as a 

way to democratise support in sporting events, 5) to triggering support mindfulness, 6) 

to create new social connections, 7) to satisfy a social need to connect, 8) for reaching 
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a new audience, and 9) for event control (See Chapter 6 for a detailed review of these 

findings). 

RQ 4. What are the key factors that need to be considered when engineering systems 
that facilitate support from remote spectators?  

While each of the four in-the-wild deployments in this study contribute to RQ4, 

Chapter 3 empirically identifies and presents system requirements for remote crowd 

support applications. Chapter 6 presents key design considerations that should be 

taken into account when engineering these systems. This work highlights the need to 

1) design for ‘Spectator Expressiveness (i.e. how spectators express and communicate 

their emotions, 2) identify key contextual factors that influence the impact of remote 

crowd support (e.g. the difficulty of the task at hand) and 3) the design of the network 

configuration in this social context. 

1.10 Research Contribution 
Identifying technology-mediated designs to support others who are undergoing a 

challenging task just when the support is needed could have huge positive impact in 

sports and beyond. To conduct this study, we developed and deployed HeartLink, a 

systems that enables two-way communication between athletes and remotely located 

spectators. This allows fans that, say, do not afford to be physically present at the 

event’s location to support the athletes, or allows non-famous athletes to recruit 

support from their personal online social networks. In this work, we describe our 

experience of designing and deploying HeartLink in different contexts. The design 

process was driven by literature, insights collected through reflection, and interviews 

with HCI design experts, athletes and spectators. This experience could be relevant for 

future designers of these systems. Moreover, through evaluating the deployments in-
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the-wild during sporting events, we capture and present the athlete’s experience of 

being remotely cheered and identify factors that influence spectators’ behaviour.  

We use running as a challenging task as this provides conditions for repeatability, 

research observation and existing studies that show that supporting crowds can have a 

positive effect on co-located runners [28,59,168]. In future work, the insights that are 

drawn from this work could be compared and contrasted with applications outside 

sports where real-time remote social support features are needed. 

1.11 Related Work since Publications 
Since the publication of the papers that are presented in this study, a number of other 

researchers contributed to related areas or referenced this work. Google scholar lists 

42 peer-reviewed articles that cite these papers at the time of writing, indicating that 

our work has drawn attention from research in sports [99,129,142,185,191,200], social 

networks [91,123,143,175], personal informatics [56,57], activity sensing [101,102], 

engaging crowds [59,61], interaction design [74], crowdsourcing [76,103,115] and 

games [178].  

Similar work recently explored ways of engaging spectators during sporting events in 

a co-located context [61]. Run Spot Run is a research application that lets spectators at 

a racecourse record and tag video footage of the event. Quite successfully, a small 

group of co-located spectators (n=17) tagged 412 clips during a city marathon. We 

believe that systems like Run Spot Run could enhance applications like HeartLink 

where co-located spectators video-document the event and potentially stream the 

content live to remote spectators. 

Since our first deployment, the research community also presented new innovative 

materials that can now broaden the impact and effectiveness of systems like 
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HeartLink. Mauriello et al. study a set of innovative wearable textile displays that can 

give real-time feedback to athletes running together in groups [121]. They report that 

through real-time group feedback, ‘Social Fabric’ helps groups stay together and 

improves motivation in the activity. This and similar novel communication technology 

promises further novelty if combined with HeartLink. These wearable textile displays 

could mitigate some of the technical challenges that were captured during our 

deployments such as issues related to the weight of the devices used, form factor and 

ergonomics. Similar work was also done by Walmink et al. [191]. 

Finally, worth mentioning is the work of Woźniak et al. [200]. They explore remote 

cheering during amateur races through RUFUS. RUFUS is a prototype device that is 

carried by athletes together with smartphones, to alert them whenever remote 

spectators send cheers. Their results support our published findings (particularly 

Chapter 2 and 4). Following a deployment in a city marathon with live remote 

cheering, they report that athletes and spectators show ‘increase in motivation and 

enhanced race experience through feeling connected’.  

1.12 Thesis Structure 
The chapters in this document respect the time sequence in which the work is 

conducted. In the next chapter, Chapter 2, we present the preliminary work that is 

conducted to verify whether the planned research in crowd support is worth pursuing. 

This consists of a pilot study and a small user study that are conducted during a 

Triathlon in the Lake District and a Charity Run in Lancaster, UK. The results from 

this work provide insights that feed into the requirements capturing, design and 

development of Bioshare. This is presented in Chapter 3: System Design.  
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The developed system is then deployed in a 5k-road race with 5 athletes and 140 

online spectators. Here we analyse the effect that data sharing has on the crowd 

watching the live event and the effect of real-time feedback from the crowd on the 

athletes. These are presented in Chapter 4 and 5 respectively. Chapter 6 presents the 

fourth deployment that is conducted during a 170-mile relay race across the UK. Here 

we compare and contrast the effect of cheering during an event of a longer duration 

and increased loneliness. In this chapter, we also provide recommendations for 

designers of real-time crowd-support systems. The concluding chapter, Chapter 7, 

presents a summary of the findings, identifies research impact and gives direction for 

future work.  
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PILOT STUDY 
 

 

 

Published as: 

Curmi, F., Ferrario, M.A., Southern. J. & Whittle, J. HeartLink: Open 
Broadcast of Live Biometric Data to Social Networks, in CHI'13: 
Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, ACM Press (2013), pp. 1749-1758.  

 

 

 

 

  



 

 
 

35 

2.1 Abstract 
A number of studies in the literature have looked into the use of real-time biometric 

data to improve one’s own physiological performance and wellbeing. However, there 

is limited research that looks into the effects that sharing biometric data with others 

could have on one’s social network. Following a period of research on existing mobile 

applications and prototype testing, we developed a system, HeartLink, which collects 

real-time personal biometric data such as heart rate and broadcasts this data online. 

Insights gained on designing systems to broadcast real-time biometric data are 

presented. In this paper we also report emerging results from testing HeartLink in a 

pilot study and a user study that were conducted during sport events. The results 

showed that sharing heart rate data does influence the relationship of the persons 

involved and that the degree of influence seems related to the tie strength prior to 

visualizing the data.  

2.2 Introduction 
In recent years accessing one’s own biometric data has become relatively easy and 

unobtrusive yet there has been little use outside medical [98,113] and sports 

applications [147,198]. In addition, while various studies showed that sharing personal 

data over social networks could have positive effects on the user [134,175], there have 

been very few studies that went as far as sharing biometric data in real-time. 

Observing someone else’s biometric data is only recently becoming common with 

data sharing networks like Runkeeper or Endomondo. But is visualizing others’ 

biometric data in real-time engaging? 

To start exploring this perspective we designed, implemented and tested a system 

named HeartLink. HeartLink collects heart rate (HR) data as a biometric parameter 
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from athletes participating in sports events. This can be broadcast in real-time to 

viewers that have various social relationships with the participants.  

In this paper, we report emerging findings from a pilot study and a small user study 

which we conducted using HeartLink. The pilot study was conducted with athletes 

during a triathlon and focused on testing the system itself. The user study was 

conducted during a charity run.  It delved into the impact that real-time biometric data 

visualization can have upon the social network. Throughout this paper the term 

‘participants’ refers to the athletes wearing the biometric sensors and the term 

‘viewers’ refers to the individuals remotely observing the data.  

The results from the pilot study highlighted a number of challenges that are 

encountered when building systems that broadcast real-time biometric data in the 

wild. These include issues such as system latency and interface design. The results 

from the user study showed that the broadcasting of real-time biometric data made 

viewers feel closer to each other even though they were geographically far away from 

the participants. On the other hand, the participants were more motivated in the event 

due to a feeling of ‘being followed’.  

2.3 Related Work 

2.3.1 Personal data sharing 

In the last decade, there has been the emergence of a number of social media 

applications such as Twitter, Facebook and Tumbler that allow citizens to share 

personal information with family, friends and the wider social network. These have 

created a new phenomenon where millions of people share personal data on a scale 

that has never happened before. Studies showed various positive effects that such 

personal data sharing can have on aspects like social support [155,169,175], self-
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representation [137,186] and the social connectedness that is created across friends 

[9,137,197]. 

2.3.2 Autonomous data collection and sharing 

While the vast majority of these applications depend on the user to manually input the 

data being shared with friends [35,111,134], some recent applications are able to 

autonomously collect and transmit data on behalf of the user in real-time. This data is 

then used for sharing with friends or to interface with other passive or active datasets 

with minimal or no intervention from the user [132]. Mueller et al.’s research [132], 

for example, involved two joggers jogging at the same time in different places and 

communicating together via speech and ambient sound. To increase the social 

experience, each jogger heard the sound of the other jogger as if the other jogger was 

present. The spatial direction of the sound was depended on the heart rate of each 

jogger. Similar research applications used real-time GPS data for communicating the 

participants’ locations as in the case of Comob [179] or Miluzzo’s CenceMe [126] 

application. CenceMe looked into the effects of broadcasting data from sensor-

enabled mobile phones to social networks like Facebook and MySpace. Using the 

sensors, activities such as walking, standing, dancing or talking were automatically 

identified and shared over the individual’s social network in addition to randomly 

taken photos. In all of the three above-mentioned studies [126,132,179], the results 

showed that sharing of personal information could be helpful in creating engagement. 

They also generate curiosity and an urge to know more about what social network 

members are doing.  

2.3.3 Sharing biometric data 

The relatively few biometric data sharing applications that exist are predominantly 

from areas related to health [98,113] (see [97] for a recent literature review) and sport 
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[147,198]. In sports, mobile applications have been designed to help athletes monitor 

their performance through the collection of biometric data. For example Runkeeper 

and Endomondo, two popular mobile apps used by athletes to track their performance, 

allow the user to share bio data such as heart rate with selected friends. Related work 

explored the possibilities of augmenting interest in televised sport events by sharing 

the participants bio data (see [76,168,183]). We are similarly interested in exploring 

opportunities that arise when this very personal data is shared openly with everyone. 

In addition to this, we are interested in giving the viewers the possibility to cheer the 

data-sharing user in real-time thus proposing a real-time feedback loop. 

2.3.4 Real-time broadcast and crowd feedback 

Incentive theory states that when the positive reinforcing action closely follows the 

action that needs to be reinforced, the motivation is greater then otherwise [92]. Yet, 

with the exception of [132], in the above-mentioned studies which share bio data to 

gain encouragement from the social network, the motivation does not happen 

instantly. For example in [35] and [111] data is uploaded and shared only daily. In 

[132] while such feedback is instant, it is only shared with one co-participant and does 

not involve an online crowd. In our preliminary research we found that studies that 

combine both the sharing of biometric data with an online community and the 

aggregation of support from the same community in real-time, are hard to find. 

2.4 System Design 
To explore this, we needed a system that captures biometric data, such as HR data, 

from participants and broadcasts this data online in real-time. The system would then 

allow us to control the way the data is presented to the viewers and also log the 

interactions that the viewers have with the interface. While a few applications that 

share bio data in real-time do exist, these could not be used for this study as they do 
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not allow 1) customization such as changing the way the data is presented 2) logging 

of interactions with the system and 3) instant feedback from viewers. In this light, 

HeartLink was designed as a research tool with these design needs. To gather informal 

feedback and preliminary ideas, system design started with informal discussions with 

amateur athletes. This was followed by idea generation using the Scamper technique 

[55] and Brainstorming exercises with a group of PhD students at Lancaster 

University. An online survey then assessed the readiness of the respondents to share 

personal data. This survey also analysed the current levels of use of sports-related 

mobile applications.  

A pilot study and a main user study were conducted using HeartLink. The pilot study 

was primarily intended to test the reliability of the HeartLink system and gather 

feedback on ways in which the system could be improved. This study was conducted 

with three participants taking part as a team in the Windermere Triathlon and nine 

viewers (three viewers per athlete). These viewers were selected in such a way that 

there was diversity in the relationship of the viewers to the athletes. The user study 

was conducted during a Race For Life Event in aid of Cancer Research at Lancaster 

UK. In this event, one participant and eight viewers were recruited. Table 2 shows the 

social relationship between the participants prior to this event. In-depth interviews 

were carried out after the event. 

 
Table 2: Social relations of the participants prior to the user study. ‘2A’ is the athlete, ‘2B-2I’ are the viewers, ‘1’ 

represents participants that did not know each other, ‘2’ if the participants were friends, ‘3’ if they are work 
colleagues and ‘4’ if relatives 
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In the initial design stages, HeartLink had a number of design constraints. These 

included the need to have a low cost per participant and the need to be fast to 

implement and replicate. It was also important for the system to be unobtrusive and 

reliable such that it could be used in a wide range of environments like walking, 

cycling and swimming. This approach made HeartLink applicable to different 

research settings. Ultimately, HeartLink was designed to be highly modular such that 

existing third party hardware and software applications could be used where possible. 

This methodology shortened the time of implementation, since the system did not 

need to be built from scratch. This included using off-the-shelf HR sensors, mobile 

applications, point-to-point data links and data storage services.  

The specific selection of the third party modules that were used was grounded on 1) a 

survey that analysed the adoption of existing mobile applications among potential 

users, 2) the cost of using the system and 3) a decision matrix based on the features 

that were offered. We then coded the software to collect the data from the selected 

applications and display this data in a dynamic graphical visualization that we could 

design as needed. This rapid prototyping approach made it possible to design and 

implement the entire system in less than four weeks with a total of 164 coding hours. 

Most of the coding was done in PHP, Javascript and JQuery with data storage in a 

MySQL database.  We also used Google Chart Tools (developers.google.com/chart/) 

to handle the chart visualizations in the interface. These provided a rapid way of 

implementing charts, thus making it easier to experiment with alternative 

representations of the same data. Figure 6 represents the flow of data in HeartLink.  

Survey: The primary objective of the survey was to compile a list of the most 

commonly used mobile applications for tracking sports activities. Information 

regarding the eagerness of the participants to have their personal data shared with 
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Figure 6: System dataflow of HeartLink 

others was also collected. The survey asked participants if they tracked any personal 

information during sports activities and whether they were ready to share this data. 

Those who did track activities were asked how often they did this, the types of 

applications they used, if any, and if they were willing to participate in future 

experiments that involved interviews. 

The following are sample questions from the survey: 

• Do you share personal data from these applications with friends? 

• What made you select this mobile application? 

The participants were postgraduate students of Lancaster University. An email was 

sent to all postgraduate students asking them to volunteer in an online survey: 

http://goo.gl/mz9CU 

We had 52 valid responses returned with a participants’ average age of 26.3 years.  25 

of these were female, while 27 were male. 75% of the participants claimed to practice 
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sports at least once a month. Running, swimming and cycling were the most popular 

sport with 32%, 30%, 24% respectively (respondents could select more than one 

option). A total of 17 different sports-related mobile applications were mentioned by 

the participants with Runkeeper and Nike+ being the most common applications (3 

participants each).  When asked what type of friends’ data they would be interested to 

follow in real time during a sport event, Geographical Position (20) was the most 

popular, followed by Distance Covered  (17) and HR (14). 10 of the 52 respondents 

were willing to share personal data while 20 respondents were interested in observing 

other’s data.  

 
Figure 7: Decision Matrix for existing mobile applications with weighted criteria 

Decision Matrix: We used a decision matrix [138] to identify which application out of 

the 17 mentioned by the participants in the survey would be the best one to use as part 

of the prototype. Some of the mobile applications mentioned had multiple versions 
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(for example, Runkeeper and RunKeeper Elite). In such cases the different versions 

were included separately in the compiled list for a total of 24 smartphone applications. 

These were plotted on the x-axis of the decision matrix as shown in Figure 7.  

In parallel to producing this list, we compiled a list of criteria that were listed on the y-

axis. These varied from essential criteria to others that were ‘nice to have’. Essential 

criteria that were needed to answer the research questions included, the ability to 

broadcast data in real-time, the ability to capture biometric data reliably and that of 

having an application interface with which to access the data. We did not immediately 

eliminate the applications that did not have the essential criteria so that all options 

were kept open during the design stages. A weighting value from one to ten was then 

given based on an estimation of how many programming hours were need should we 

have to implement the non/existing features ourselves. It should be noted that these 

weighing numbers are nominal values and a value of 10 compared to 5 does not mean 

that an application is twice as good. The decision matrix was a useful tool to visualize 

and differentiate between the various options available in the set of mobile 

applications. Ultimately, each application was allotted the weighting score of the 

criteria: if that criteria was satisfied by the features offered and the negative value of 

the weighting if otherwise. This data was inputted in Microsoft Excel and color 

visualizations were added to highlight the strongest and weakest solutions.  The 

operating system of the mobile phones that we had access to (Android 2.2) determined 

the selection of the Polar (www.polar.fi) HR sensors. 

2.5 Wireless Infrastructure 
The wireless infrastructure was based on three different protocols. The Polar HR 

sensors captured data and transmitted this data using Bluetooth technology to 

smartphones that were carried by the participants. The smartphones added additional 
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data such as location through the GPS sensor and timestamp. This data was captured 

via RunKeeper (www.runkeeper.com), a third-party smartphone application, and was 

broadcast in real-time over mobile networks to the Health Graph 

(http://developer.runkeeper.com/healthgraph/home). The latter is an open database 

that stores personal health-related data together with social network relations.  

Online hosted servers then synchronized the data through the Health Graph 

Application Programming Interface (API) every 30 seconds. Other APIs besides 

Runkeeper were used to interact with participants and social networks such as 

Facebook, Twitter and Text Messaging. Moreover, the designed infrastructure 

supported the possibility of capturing data in different situations such as walking, 

running, cycling and swimming (Figure 8). The rapid prototyping approach decreased 

the cost of building the system, particularly since the number of devices needed was 

small. By using our own smartphones for capturing the data, the total expense we had 

for broadcasting each participant was £65. This excludes the coding time. All the code 

we developed however is open source and can be accessed at http://highwire-

dtc.com/franco/heartlink  

 
Figure 8: Sealing a smartphone in preparation for transmitting under water during the triathlon in the pilot study 
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2.6 Interface  
Two separate interfaces were designed. One allowed participants to register for 

broadcasting their biometric data. This consisted of a sequence of screens that asked 

the participants for permission to access Runkeeper, Facebook and Twitter accounts 

through the OAuth 2.0 protocol [172]. The second interface allowed the viewers to 

visualize the live data. This visualization showed the HR and the ‘Distance Covered’ 

by the participants in real-time. Additional parameters such as pace, average HR and 

total heartbeats were computed on the server and were also presented to the viewers. 

The selection of these parameters was based on the respondents’ interest, as shown in 

the survey. Geographical Positioning was also mentioned by the respondents; 

however, we opted not to include this as this area has already been researched in other 

studies of coproxmity [132,179].  

Before accessing this data, viewers were asked to optionally log in using their 

Facebook account details. A separate link to bypass the login stage was provided for 

users who wanted to remain anonymous. Interaction with the interface was then time 

stamped, logged and linked to the viewers’ Facebook public data. The collected 

dataset was later analysed for relationships between interface interactions and the 

changes in the biometric data of the participants. 

In addition, in the user study, the viewers could click on a Cheer button to motivate 

the runner. The ‘Cheer’ button was inspired from the Facebook ‘Like’ button. For 

every five cheers the runner would receive an alert through a vibration in the 

smartphone. The vibrations were limited to every five cheers since it was assumed that 

a constant clicking of cheers would ultimately annoy the runner. The number of cheers 

that the user could generate was also limited by making a ‘page refresh’ within the 

browser when the cheer button was pressed. In this way, the user would not be able to 
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do successive clicking, such as double or triple clicking. The viewers however had 

immediate feedback on the total number of Cheers that the athlete accumulated. 

The interface was developed around standard web browsers rather than designing for 

proprietary applications on specific mobile devices. With this approach, anyone 

having an internet-enabled device could follow the data in real-time. From an 

implementation perspective this methodology streamlined the development in one 

standardized format for all devices. For example we did not need to develop separate 

software for Windows, OS X and Android users. The use of a standard browser also 

shortened the learning curve needed by the users since most users are already familiar 

with such interfaces. Besides, this approach does not necessitate any installations, as 

would have been required had the system been implemented using a new custom-

made smartphone application. 

2.6.1 Instructions to viewers 

The viewers had different relationships with the participants. These varied from 

family members to persons who they did not know. An informal briefing was given to 

the viewers some days before the events when they were contacted individually. Two 

days before the event, they were sent reminders together with instructions via email. 

These instructions directed the viewers to the appropriate website for logging in a few 

minutes before the event started. They were told that the event would last around 

thirty minutes but they could follow for as long as they wanted to. It was possible to 

send motivational ‘Cheers’ to the participants when they felt like it. For our data 

collection purposes, the instructions also asked the viewers to take notes of their 

experience when watching the event or post comments on the site. These notes were 

later collected. 
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2.7 Insights From the Pilot Study and the Main User Study 
In both the pilot study and the main user study, data was collected from five sources: 

1) the interface presented to the viewers had an embedded Facebook frame in which 

the viewers posted comments during the events (see Figure 9), 2) the viewers were 

asked to write down notes during the events. These were later collected and analysed 

and included reflections that the viewers felt it was not appropriate to share online, 3) 

our observations of the viewers’ interaction with the system during the event, 4) time 

stamped data logged by the servers. This data included interactions with the interface, 

posting of comments online and the time when viewers logged in and out, and 5) a 

total of 12 semi-structured interviews conducted with the viewers and the participants. 

The following are sample questions from the semi-structured interviews: 

 

Figure 9: Embedded Facebook frame in the interface with selected comments posted by the viewers during the user 
study 
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• How long did you watch the event for? Did you do any other activities in 

between?  

• What did you find most interesting and why?  

• Would you use this system again and why?  

The qualitative data in the study was transcribed using InqSribe and analysed using 

Atlas.ti. The analysis was based on inductive coding from both the transcriptions and 

online comments together with group discussions among the authors to identify links 

between the research objective and the data.  

2.7.1 Insights from the pilot study 

The data broadcast in the technical trial was intermittent. This happened because 

Health Graph was not functioning well on that particular day. This seemed to be a 

consequence of disruptions on Amazon’s Cloud Computing service. This chain of 

dependent services has shown how vulnerable such a live broadcast system is. The 

Internet may give a perception of high reliability due to its networked configuration in 

comparison to traditional point-to-point broadcasting. Yet what happened in the pilot 

study showed that failure in the provision of one service disrupts the whole system. It 

is difficult to have redundancy on such services due to their scale and ubiquity. 

HeartLink integrates multiple large-scale third party systems such as RunKeeper, 

Amazon Web Services, Facebook, Health Graph, Mobile Networks and Global 

Positioning Systems (GPS). The pilot study also showed that when integrating 

multiple large-scale infrastructures, it is difficult to have control of the entire system. 

This makes the user exposed to unforeseen disruptions should one part fail. The 

reliability of HeartLink was also challenged by the unpredictability of the GPS and 

mobile phone coverage when performing live experiments ‘in the wild’ [31] and by 

numerous participants using similar wireless technologies and radio frequencies. In 
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Figure 10: Part of the interface presented in the user study 
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addition, the Bluetooth transmission between the HR sensors and the smartphone was 

very weak so the participants had to keep the phones close to the respective HR 

sensors. Similar difficulties have been commonly encountered when doing live 

experiments with biometric data [76,168,183,184].  

The pilot study provided insight also through the interviews particularly on the 

graphical visualizations used. The data in the visualization presented to the users was 

too detailed thus making it difficult to follow the changes that were happening. The 

data presentation was thus adapted for the user study. Where possible HeartLink 

presented the real-time data using charts instead of text. The most relevant parts in the 

visualization were highlighted by contrasting colours, distinct fonts and larger font 

sizes (see Figure 10). Three of the interviewees also pointed out the fact that it was 

awkward to have page refreshes in the browser each time the data was updated. This 

resets any personalization that the user would have made, for example the sorting of 

social network comments. Moreover, having updates every 30 seconds was too long 

and this did not give the perception of the data being updated in ‘real-time’. 

2.7.1.1 Generating nearest real-time data 

The data from the smartphone was transmitted to the Health Graph whenever there 

was any change in the data such as change of heart rate or GPS position. On average 

this occurred every 4.3 seconds. The dataset on the server was then updated from the 

Health Graph every 30 seconds due to limitations in the number of updates that we 

could technically do. The interface of each viewer within the browser would then 

refresh every 31 seconds. The extra second was to ensure that the data at the server 

had been refreshed. This approach created a number of issues. First, there was the 

awkwardness of having an entire page refresh within a web browser each time the data 

is updated. The viewers in the pilot study remarked on this. In most browsers, page 
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refreshes are not done in a seamless fashion. This page refresh also resets any 

personalization that the viewers might have carried out.  Secondly, updating data 

every 31 seconds reduced the possibility of giving the users a ‘real-time’ experience. 

It was crucial for the scope of this research to have the viewers feel that the data was 

in real-time. For the user study some parts in the HeartLink system were redesigned in 

ways that minimized the time between each update. This involved using JQuery 

instead of simple HTML. Using JQuery, the system updated the visualization of every 

user each second. The data at the server however was still updating every thirty 

seconds. To solve this issue from a visualization perspective, we used algorithms to 

calculate intermediate values. Thus each viewer’s interface predicted the current real-

time biometric values of the runner based on past trends that were extrapolated from 

previous data samples. Using this technique, the 30 second updates were distributed 

and presented to the viewers with one-second intervals rather then every thirty 

seconds. This approach made a tremendous improvement to the interface. This can be 

seen in the viewers’ comments during the user study when compared with those in the 

pilot study.  

There is still room for improvement in this ‘near real-time’ approach. The system was 

estimating current values based on past actual values. Thus, when the runner slowed 

down during a thirty seconds timeframe, the data would show a decrease in value 

upon update. In the case of the ‘distance covered’, for example, the value would have 

decreased when this was updated to the actual value. This caused a paradox each time 

it happened. In fact, the viewers’ comments reflected this. In future, simply using past 

values rather then predicting current values could solve this. This solution however 

will increment the latency by thirty seconds so that the data would be further away 

from the ‘true’ real-time than the one used in this user study; yet this would avoid 
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having backward jumps in the data upon update. An intermediate option could be that 

of using the same predictive PID loop technique but targeting for example, 85% of the 

predictive rate such that the probability of having an update with negative increments 

would be significantly decreased. Further research and experimentation will be needed 

to design and tune the algorithm that compensates for latency in the broadcasting 

infrastructure while still providing a true account of the data. Handling latency is very 

important particularly if there are viewers that are at the same event as the runner and 

are following the data on their smartphone device. Having a delay of 30 plus seconds 

will not be reasonable for most sports.  

2.7.2 Insights from the user study 

Visualizations: Figure 10 shows part of the visualization presented to the viewers in 

the user study. In the semi-structured interviews the viewers were asked to identify 

which part of this visualization they were most interested in during the event. All 

respondents stated that the percentage bar representing the ‘distance covered’ and the 

graph representing the heart rate were the most interesting followed by the ‘actual 

distance covered’ (numeric text), the ‘heart rate’ and the ‘average heart rate’. The 

‘pace’ and the ‘speed’ seemed only relevant to the viewers that were familiar with 

running.  This was probably due to the fact that they could give more meaning to the 

data than others. The total heartbeats seemed the least interesting as reported by the 

viewers in the same interviews. There also appears to be a learning curve that the 

viewers go through when seeing the visualization for the first time. The duration of 

this learning curve is dependent on the number of parameters presented and the 

viewer’s past experience of using biometric data.  

Technical Challenges - sense making from bio data: On the day of the event, data 

broadcasting from the runner to the servers started thirty minutes before the race 
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began. This allowed us to make sure that all the data links were working fine before 

starting the event. This pre-event broadcast gave us the opportunity to see whether or 

not the viewers were interested in the changes that took place before the race started.  

When the participant started broadcasting data, this data was collected in a continuous 

incrementing dataset from which parameters such as average heart rate were 

calculated. However, it was difficult to know from simply observing the data, when 

the race started, as there was no marker that showed the point at which the race had 

actually started. This was needed for some algorithms, such as the one that computes 

the average heart rate in the race. These algorithms were averaging the whole data in 

the dataset including the time before the race had started. To display the average heart 

rate for the race, additional coding of the data had to be done while the event was 

taking place. The averaging algorithms then ignored the data that had been received 

prior to the start of the race. 

A similar issue was encountered at the end of the race. Since the infrastructure was 

controlled from another geographical location over the net, the operator had no 

indication whether the race was completed or not. In the future this issue needs to be 

studied and catered for. It would be nice if there was no human interaction with the 

system and the broadcast was fully automated with precise understanding of the 

surroundings. An optional solution for example would be to have the system 

autonomously understand the precise timing (to the nearest heartbeat) of when the 

race started. This is essential for the data to be computed accurately. While it is very 

easy for a human, who is on location, to understand when the race would have started, 

it is not at all easy for a machine to do the same simple task on behalf of the user.  
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In future work, we plan to design ways of handling such issues by developing 

algorithms that detect ‘a race start’ based on say, an increase in the participant’s heart 

rate. While this is still to be tested, the hypothesis is that it will be highly difficult to 

differentiate between an increase in HR due to a warm-up exercise or the emotional 

stress when the run is about to start or the actual start. A different approach for a 

machine to understand the precise moment when the race started is to use the GPS 

data. This approach also seems challenging, as current off-the-shelf GPS technology 

tends to be considerably noisy. For example, the GPS updates prior to the start of the 

race had an average error margin of five meters on each sample. Thus the unfiltered 

GPS dataset that was received by the server in the 30 minutes before the start of the 

race wrongly stated that 514 meters had been covered even though the runner was for 

most of the time in the same spot. The incremented GPS errors from each sample 

created a virtual motion that did not entirely exist. Moreover, understanding if the race 

started from changes in the GPS position is also tricky as in the case of the HR 

analysis, the runner might be warming up. The real-time factor increases the difficulty 

of the task compared to say analysing the dataset after the event took place. For 

example, detecting a change in speed would only generate the trigger some time after 

the start, once the data classifiers have been processed; not in ‘real-time’. 

2.8 Emerging Results 
The results of the semi-structured interviews indicated that visualizing biometric data 

does influence social network ties. Various viewers have remarked that they felt more 

connected with the participant when viewing the real-time data. These remarks are 

found in both the comments sent during the event through the social network interface 

as well as in the follow-up semi-structured interviews. All the participants also felt 

this increase in connectedness even though they were not visualizing their own data. 



 

 
 

55 

The real-time broadcast of their data to their social network made them feel as if they 

are being observed: 

 “…it feels like a crowd is following you… in all three disciplines [swimming, cycling 

and running] you are quite on your own but with swimming you are really on your 

own with the water splashing around you and no one else… so [in this case] though 

you are on your own there is an environment where there are people around” 

[Participant 1A – from interview] 

Two of the participants also stated that this real-time observation from their social 

network increases their motivation during the event. This is consistent with existing 

literature on sharing personal data on social networks [161,187]. The interest in 

visualizing biometric data is also shown in the comments left by the viewers on the 

social network interface. A particular case is highlighted by the frustration shown 

when the live data was not available due to technical faults at certain instances in the 

pilot study: 

“L such a shame – hopefully it will come back up soon! Good luck to all” [Viewer 

1G – Facebook comment] 

“I was following while the event was running. It was kind of frustrating because it was 

not working… I could not see exactly what they were doing because there was no bio 

data…” [Viewer 1D – from interview] 

Prior to the user study we were unsure if visualizing the data would be interesting 

enough to generate some degree of engagement or not. In the recruitment process the 

participants were not asked to follow the live event through to the end. Most viewers 

however, after the events, commented that they ended up watching the entire event 

even though they initially were not planning to do so. This was confirmed by the data 
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on the server logs and shows that there is a level of engagement generated by the 

dynamic real-time data:  

“I found it more engaging than I thought I would … I expected to watch for 5 minutes 

then go away; ended up staying there most of the time though” [Viewer 2B – from 

interview] 

Our observations suggest that the degree of interest, which the viewer has, is related to 

the strength of the relationship between the participant and the viewer prior to 

visualizing the biometric data (Table 2). This indication however will need a larger 

sample of participants to determine with certainty. A large sample would make it 

possible to have enough subgroups of different network tie strengths for comparison.  

A common suggestion from the viewers was to have additional data like the precise 

total timing of the race and the final placing of the participant in the race. Participants 

stated that the interest in following the event was due to the HR being presented with 

other data such as the percentage completion of the event. Other combinations should 

be tested in the future such as GPS location and live video. We intend to experiment 

with live video streaming in combination with bio data. The runner would transmit 

this in order to augment the sense making of the viewers for the biometric 

visualization they see. The camera may face in the same direction as the runner such 

that the live video shows the surrounding environment. It would also be interesting to 

experiment with other biometric data besides the HR such as heart rate variability, 

electro-encephalography and electro-dermal activity.  

During follow up interviews, viewers were asked how and when they cheered.  Two 

of the viewers stated that they cheered five times in a row whenever they wanted to 

cheer. They wanted to send feedback to the runner (through vibration). We found that 
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other participants commonly carried out this pattern of clicking five successive cheers 

when we analysed the data logged by the server during the event. These punctuated 

clusters are visible in Figure 11 where the accumulative cheers submitted are plotted 

across time. This shows the eagerness of the viewers to have real communication with 

the runner not simple virtual cheers. In fact, in both follow-up interviews and online 

comments, viewers strongly requested the possibility of being able to interact with the 

runner during the race.  

 
Figure 11: Accumulative number of cheers submitted during the event. The data was collected from time-stamped 

server logs. Red markers represent the start and end of the race. 

Three respondents suggested the possibility of having some feedback from the runner 

or having the system itself telling them when motivation is most needed so they could 

send more cheers. An interesting area to explore in this regard is to have the system to 

automatically highlight ‘requests for cheers’ from the viewers, based on algorithmic 

analysis of the biometric patterns. If for example the pace is decreasing and the heart 

rate is increasing, the system will interpret this as the runner needing more motivation. 

Hence, it would highlight this information in the visualization presented to the 

viewers. In the study, the participants were also very keen to know what was being 

said online during their performance: 
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“I was so interested to know what my friends were chatting about [online] when I was 

running especially if there are not many people you know around you when you arrive 

at the finish line” [Participant B1: from interview]. 

Although the user study was conducted during a charity run, the interface used did not 

offer the viewers any options to donate. This was done intentionally so the study 

would focus on the biometric data visualizations.  Yet participants still donated to the 

charity for which the event was being organized. Two viewers reported they donated 

prior to the start of the event. They felt that they should donate irrespective of the 

performance of the participant.   

“I gave a donation on JustGiving before the race even started… I want to donate the 

money; I’m just going to do it… I donated what I can donate and I’m unlikely to 

donate more weather you [the participant] do it fast or slow… if you were walking I 

would have probably donated the same amount” [Viewer 11 – from interview]  

Two other viewers made their donations during the event. In the interviews, they 

stated that the comments of the community within the website was what reminded 

them to donate more then visualizing the biometric data. Although this indicates that 

the influence generated by the biometric data would not directly effect donations, in 

the study, there is not enough data with which one could determine whether 

visualizing the biometric data had any significant influence on the viewers donating 

money. The study was not designed to measure this however it would be interesting to 

have another study that is designed in this regard. 

2.9 Future Work 
Based on the insights gained, HeartLink will be improved as follows: 1) Ways in 

which the online crowd can motivate the runner in real-time with the least 
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interventions needed from the participant should be identified. We have used vibration 

modality but other methods like text to voice and augmented reality glasses are being 

considered. 2) HeartLink is able to automatically broadcast data on behalf of the user 

to keep the online community updated when the user is not in a position to manually 

input data. This automation will be increased as much as possible by for example 

automatically detecting the start or end of a race through real-time biometric data 

analysis 3) For research purposes the sample rate of the data logged on the server will 

be increased to 32Hz. This will allow detailed post-analysis of the relation between 

the cheers and the data changes. 4) Up until now HR was used as the only biometric 

parameter. Different types of biometric data will be used in future to see which type 

generates the most engagement between the viewers and the participants.  

2.9.1 Research on biodata with real-time feedback from crowds 

During this study, three promising research directions emerged. 1) We would first like 

to do the same study with more participants. This will let us analyse in detail the 

effects of sharing biometric data in real-time with different subgroups. For example 

we could differentiate between different social relations, participant-viewer age, 

gender, race and professional level of athletes. Existing studies show that these groups 

differ in the way they perceive different types of information and motivation 

[161,187]. 2) Determining that visualizing biometric data influences human behaviour 

opens up diverse possibilities for human-computer interaction. New business models 

may be designed around price variations that are determined by real-time biometric 

data. One example could be that where the donations made during charity runs are 

based on the heart rate of the runner. Our hypothesis, following the results from this 

study, is that since visualizing biometric data increases the connectedness between the 

donor and the runner, this will be reflected in an increase in donations when compared 
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to donating passively at a fixed amount. Conducting experiments during, say, charity 

runs and using control groups could test this hypothesis. Both qualitative and 

quantitative analysis could then be used to measure the influence, if any, that the 

biometric data has on participants in such an economic decision-making situation. 3) 

We are looking into further developing HeartLink as a tool for crowdsourcing real-

time motivation from a crowd. In particular this work will focus on situations where 

the user has a high cognitive and/or physical workload, as was the case in our user 

studies. In such situations it is not possible for users to share data on social networks 

through traditional methods like texting. Automatic sharing of bio and locative data 

can generate engagement with an online crowd in real-time. It will be interesting to 

look if the framework used in HeartLink could be generalized outside the sports 

activities that are here presented. Applications to research might involve situations 

were the users are conducting fell running competitions, team-based sports like 

football or competitive quizzes. 

2.10 Conclusion 
In this study we have presented our experience of designing and implementing 

HeartLink in a rapid prototyping approach to wirelessly share biometric data online 

and receive feedback from the online community in real-time. The key novelty of 

HeartLink was the analysis of changes in social connectedness through bio data 

sharing and the proposed two-way communication between the runner and the viewer. 

The design process went through a number of stages among which were the use of 

idea generation techniques, the use of strategic decision making tools, a pilot study 

and a user study. Through the data collected in the pilot study we have highlighted a 

number of issues that should be considered in the design of such systems. These 

include issues of system reliability, human interaction with the system and effect of 
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system latency on the viewers. Using HeartLink in a user study has shown that 

visualizing biometric data can influence the relationship between the participants and 

the viewers. The participants in the study reported feeling close to the viewers due to a 

sensation of being followed by a crowd and the viewers also felt being part of the 

same community during the live broadcast.  

Further work needs to be done to minimize manual human interaction within such 

systems by further developing algorithms that understand the environment through 

real-time analysis of the biometric data. This would minimize the interrupts that these 

systems give to each user, through tactile or visual feedback, by filtering the exact 

data that is needed, when needed. Having determined that visualizing biometric data 

does influence human relations, there is the need for further exploration in order to 

find out how this could be applied within different areas such as new types of business 

models or community building.  
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3.1 Abstract 
There is growing research interest in exploring how biometric data is and can be 

shared across online social networks. However, most existing tools for sharing 

biometric data lock researchers into vendor-specific solutions that cannot be easily 

adapted to the specific researchers’ requirements, users’ needs and ethical 

considerations.  

To mitigate this, we investigate the requirements for open source researcher-oriented 

biometric data sharing systems. Requirements were captured using: first-hand insights 

from two prototype deployments, a systematic review of the literature, and interviews 

with HCI researchers who have built such tools. The requirements thus captured were 

implemented in the BioShare system and insights from implementing these 

requirements are presented. BioShare allows users both to share data but also receive 

inputs from remote viewers of the data in real-time. Concurrently it provides logging 

capabilities for researchers to analyse system interactions.  

3.2 Introduction 
This paper focuses on the requirements for researcher-oriented tools for biometric data 

sharing across online social networks. In recent years, technology has made it easier to 

capture biometric data such as heart rate, body temperature and skin response 

unobtrusively in diverse day-to-day situations. This, in combination with the diffusion 

of social networks, encouraged many individuals to quantify [180] and share [21] such 

data with others. This effect is echoed in the implementation of biometric data sharing 

features on many commercial products such as RunKeeper, Endomondo and Azumio 

that allow users to share this type of personal data over social networks. On the 

research side, there is a steady increase in studies that investigate the effects of sharing 

biometric data on both the person sharing the data [176] and the data viewer [42]. In 
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practice, however, it can be very challenging to run such experiments because of the 

lack of systems that allow researchers to define their own configurations, data 

visualizations and data logging for hypotheses testing.  

Most applications that allow sharing of biometric data over social networks have not 

been designed for research and are not open source. This makes it difficult for 

researchers to adapt these applications outside the scope for which they were designed 

as shown in [42]. For example, changing the data visualizations or logging a specific 

class of user interactions may at best require programming workarounds or at worst 

may be impossible. On the other hand, the open-source applications that share 

biometric data tend to work only for specific sensor brands and therefore lock the 

researcher into a particular vendor.  

The study builds on prior critical design work by Curmi et al. [42]. This involved the 

development of two prototypes for this specific area of study with outcomes pointing 

out that in order to better support researchers working in this area, a robust open-

source, configurable tool is required. We note that the approach presented here is not 

the only design approach possible for this scope: the design of a meta-research 

prototype that specifically focuses on the social network component of sharing 

biometric data. Specific issues such as energy consumption of the device, data security 

and integrity are kept outside the scope of this paper as better settings exist for these 

themes. However, we do not filter insights from the data collection and all the key 

observations that were gained through the critical design methodology are presented.  

We also emphasize that this paper is not about evaluating one instance of the tool but 

that of showing the feasibility of the approach by instantiating it in multiple cases. As 

discussed in the paper, there are few academic papers discussing this rapidly evolving 
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area. These give little insight on the ‘design approach’ for developing the data-sharing 

tools used. Consequently we have undertaken quite an in-depth evaluation in this 

regard. 

The requirements were captured based on a multi-method approach. Firstly, we 

revisited two prior studies and made a systematic analysis of what is required for such 

experiments. Secondly, we carried out a systematic review of the literature, looking 

specifically at issues and challenges researchers had in building their own biometric 

data sharing tools. Finally, we carried out a series of semi-structured interviews with 

researchers in the area. The resulting set of requirements for researcher-oriented 

biometric data sharing tools is based on direct, first-hand experience in the field as 

well as secondary data from the wider research community.  

  
Figure 12: Core requirements: sharing biometric data, support for real-time feedback and logging of interactions. 

This paper thus describes both the requirements captured and the insights gained from 

implementing these requirements in a prototype: BioShare. BioShare was designed as 

an open source tool for research: 1) it allows participants to share biometric data 

online unobtrusively in real-time, 2) it allows remote data viewers to send feedback to 
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data-sharing participants in real-time and 3) it logs the interactions of participants and 

viewers for research purposes (Figure 12). The design looked into making the system 

as easy as possible for other researchers to use and adapt by using widely diffused 

coding languages such as HTML5. BioShare is also designed to be as configurable as 

possible: the researcher may define his/her own data visualizations, can define 

multiple feedback modalities to the participants, and can define his/her own data 

logging behaviour. Crucially, we identified divergent views from researchers about 

the ethical concerns of biometric data sharing. Thus, researchers can define different 

levels of control over the data ranging from sharing data openly with anyone online up 

to controlled sharing by registered participants only.  

BioShare users are researchers. The design focuses on researchers’ requirements but 

allows flexibility for the researcher to adapt the system to meet their users’ 

(participants’) needs on a case-by-case basis (e.g. open vs. controlled experiments). 

Adaptability was a key factor in the design process, as we cannot cater to all users in 

all possible experiments and contexts. For example researchers using BioShare should 

adapt the system to meet their national and organizational ethical requirements when 

sharing this data. 

In the literature, we observe that the term ‘biometric data’ is very loaded with 

different applications in different fields. In this paper, we use the term ‘biometric data’ 

to refer to measurable and dynamic physiological data such as heart rate, skin 

conductance or body temperature. Throughout the design and development of 

BioShare heart rate was used as a test parameter.  
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3.3 The Context 
In the last two decades, with the invention of social networks, communities started 

collecting and sharing very personal information at a scale that would have been 

difficult to predict. There are plenty of studies showing the positive [128,175] and 

negative [155,201] effects that sharing personal information can have. For example, 

Young et al. [201] shows the issues involved in sharing personal data on social 

networks due to risks when publicly sharing confidential information. On the other 

hand, when using Huston [37], social support through sharing has been a source of 

motivation for people trying to become more physically active. Similar positive 

outcomes are reported in sports [103] and in health [175]. Had someone 50 years ago 

mentioned that there will be a time where people will openly broadcast their personal 

data, such as when they have coffee, how they look and even express their emotions 

publicly, it would have been difficult to believe. Yet this has happened and in some 

communities it has become a daily norm.  

Existing freely available mobile applications such as Runkeeper, Azumio and Nike+ 

allow users to share data as personal as biometric data, such as heart rate, over social 

networks. As the technology behind capturing biometric data is becoming increasingly 

unobtrusive, this type of data sharing is likely to increase. Some athletes, aware of 

how fit they are, might be interested in sharing their biometric data with friends as part 

of their real-time ‘curated’ [60] Facebook profile and Goffman’s innate ‘management 

of impression’ [68]. Another example worth mentioning is that of insurance 

companies; these would be interested in having biometric data of customers as this 

influences their risk assessment. Innovation that drives early adopters in this regard 

may encourage customers to share their biometric data for a significant discount on 

their health insurance policy. In these scenarios we expect that research looking into 



 

 
 

68 

the effects of sharing biometric data with others is likely to increase. Ideally this 

increase happens before such implementations take place. This motivates the need of 

research tools to analyse the benefits and drawbacks of sharing such personal 

information.  

 
Figure 13: Methodology for requirements identification 

3.4 Methodology 
A multi-method approach was used to capture the researcher-requirements as shown 

in Figure 13 and discussed below.  

3.4.1 Phase 1 

The authors had first-hand experience of building and applying prototypes in two 

specific studies that involved the sharing of biometric data during sport events. This 

determined the design approach adopted. These prototypes and studies were originally 

intended for analysing the effects of sharing biometric data on the person viewing the 
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data. Consequently, the data that was collected in this work was reanalysed through a 

new lens; that of capturing insights for building research tools that share biometric 

data.  

Data was collected from: 1) an online survey that analysed the readiness of 

participants to share personal data, 2) the development of a first prototype, 3) a pilot 

study which tested this prototype during a triathlon, 4) this informed the development 

of a second prototype and, 5) a user study conducted during a charity run. Items 3 and 

5 above included 12 interviews, quantitative data from server logs and the researchers’ 

observations of the users’ interaction with the system.  (For details on items 1 to 4 see 

[42]). 

3.4.2 Phase 2 

To make the new tool as widely applicable as possible and to analyse if the insights 

gained from the authors’ experience match those of other researchers with different 

design approaches, we systematically reviewed literature in which biometric data 

sharing systems were referenced. We identified and grouped common requirements 

that researchers have when using such tools. These will be discussed in the 

requirements section.  

3.4.3 Phase 3  

A limitation in the data collected in phase 2 was the fact that most of the published 

studies (particularly in HCI) focus their published contribution on the insights gained 

from sharing biometric data. Typically, limited information is given about the 

approaches taken in designing the data sharing tools that are used. To better 

understand the approach that different researchers adopted, we additionally carried out 

six interviews with HCI researchers. The sample size was determined by the limited 
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number of HCI researchers active in this area. Although in the last decade there has 

been an increase in the number of publications involving biometric data sharing over 

social networks, the number of HCI researchers in this area is still small. We asked ten 

HCI researchers who have shared biometric data in their work for an interview and six 

accepted. Each interview session was video and audio recorded, and transcribed.  

The questions asked during the interviews were intended to 1) understand the 

researcher’s experience in sharing biometric data for research applications, 2) 

understand the tools that were used and how they were developed, 3) identify 

challenges encountered in the process, if any, and 4) collect the ethical issues faced 

before and during the sharing of biometric data.  

The design of the open-ended questions used in the semi-structured interviews 

ensured that the questions were not contaminated with the data that was collected 

from phase 1 and 2. However, the preparation of the questions did take into account 

the publications of the interviewee such that apparently relevant aspects in their 

publications could be expanded upon. Sample questions included: What do you 

remember from building the system? What technical and non-technical challenges 

were encountered, if any?  

3.5 Requirements 
The data from these phases were translated into requirements as shown in Table 3. 

The functions that were implemented in the default configuration to match these 

requirements are listed in the first row. The table differentiates between functions that 

meet the specified requirements and functions which partially support a requirement 

i.e. individually they do not satisfy the requirement. Insights from each phase are 

discussed below. 
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Table 3: Key requirements captured and features implemented to meet or support the requirement 
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3.5.1 Phase 1: Requirements from the development of prototypes and 
respective studies 

3.5.1.1 The context 

Prior to the work presented in this paper, we revisited the design and built of two 

biometric data-sharing prototypes from the HeartLink project. These were developed 

using a rapid prototyping approach by combining a number of existing systems such 

as RunKeeper, cloud computing services and Messaging APIs. A pilot study was 

conducted to test HeartLink during a triathlon and a user study was then conducted 

with a second version of HeartLink during a charity run. In these events, athletes were 

able to share data in real-time using mobile phones and existing mobile networks to 

anyone online. To minimize interrupting the user, all the data was automatically 

broadcast with no intervention needed from the user. The data broadcast in both cases 

included the heart rate, the average heart rate during the event, the percentage of the 

task completed, the total number of heart beats, distance covered, pace, speed and a 

line chart with the heart rate data. With this set of data and when knowing the context 

of what the event is about, the viewers could gain an understanding of what was 

happening during the event. In addition, remote viewers following the athletes online 

were able to click on a ‘Cheer’ button. Clicking this button sent a small vibration to 

the athlete as a way of crowdsourcing real-time social support. Viewers were also able 

to share comments on the interface thus forming a community around the athlete. The 

online comments and the cheering data were then used to analyse the viewers’ 

understanding and engagement with the presented visualizations. The viewers’ 

interactions with the system together with the system’s status, such as timestamps, 

were recorded for research purposes. 
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3.5.1.2 Informing design from issues identification 

Most of the challenges faced when sharing biometric data using HeartLink could be 

attributed to the fact that the tools used to share biometric data were not designed for 

HCI research purposes. While the plugging together of existing systems facilitated the 

rapid development of the solution (an approach commonly used in the literature 

[133]), it also raised a number of questions.  

We observe that using off-the-shelf mobile applications for capturing data limited the 

type of data that could be used for research. It also locked the researchers into using 

specific hardware devices for capturing the data based on what is offered by the 

system chosen. For example, the solution supported capturing of heart-rate data but it 

was not possible to embed respiration unless additional systems or major 

customizations were added. 

In addition, using commercial closed-source applications made it difficult to adapt 

the applications outside the scope for which they were designed. If the application 

does not allow the viewers to communicate with the athlete, it would be very unlikely 

that the company would adapt the proprietary mobile application that is used by 

thousands of users to suit a researcher’s needs. At the same time, the researcher cannot 

adapt the system because the code is locked. HeartLink studies required that the 

system would allow the viewers to motivate the athletes while they are conducting an 

activity by pressing a ‘Cheer’ button. In this case, additional commercial applications 

were added to the system at the expense of increased system complexity.  

The lengthy chain of modules that was needed to adapt the existing systems and meet 

the researchers’ needs, made the system highly prone to disruptions. In addition, 

depending on multiple large-scale infrastructures such as cloud computing 
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services, third party mobile apps and one’s own infrastructure increased the risk of 

failure. In HeartLink, the system was as strong as the weakest link and should one part 

fail, the entire system would fail. An example of this was the disruption to one of the 

closed 3rd party applications that used cloud services. Although the study was being 

carried out in the UK, the disruption occurred due to severe weather conditions in the 

United States.  

In addition, existing mobile applications that share biometric data such as RunKeeper 

and Endomondo do not allow customization of the visualizations that are presented 

to the users. Customization is imperative in a research setting to, for example, analyse 

the effect of how different presentations of biometric parameters influence the 

engagement of the viewers. When using existing mobile apps that are not designed for 

research it is difficult to log the interactions of remote participants. This is an 

essential feature in most HCI studies. 

3.5.1.3 Ethics-related issues 

The approach adopted in HeartLink raised a number of ethical issues. The fact that the 

system used multiple large-scale applications challenged the researchers’ ability to 

manage the data in terms of data integrity. For example, when using RunKeeper as a 

communication tool, we had no control over the data that was broadcast, where this 

data was going, and which cloud services were being used. While this may be true of 

any communication over the Internet, should the system have been open source, one 

could validate the way the system works and personalize any encryption mechanisms 

and communication channels. In this way, the researchers need not rely on the ‘Terms 

and Conditions’ of all the different closed systems used in the solution [39]. Such 

‘Terms and Conditions’ often offload any responsibility of the brand onto the user. In 

this case, the user is the researcher, who in turn, needs to embed (and cascade) 
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conditions in the participants’ ‘Consent Forms’ accordingly. This complexity could be 

highly simplified if the communication chain is simpler:  for example, if the data is 

sent directly from a mobile app to a centralized server. This would simplify participant 

‘Consent Forms’ and give the researcher more authority over the claims made within.  

3.5.2 Phase 2: Common core requirements from the literature review 

To make the design applicable beyond the HeartLink case, a review of the literature in 

this area was conducted. This identified common system requirements of tools that 

were used to share biometric data. In this work, we notice that academic studies that 

involve biometric data sharing with others were used for 1) health [181,182], 2) game 

control [118,132,183], 3) analysing social engagement [42,103,146,176] and 4) 

augmenting the viewers’ experience [76,183]. Studies that specifically focused on 

sharing biometric data as a form of social engagement include the work of Perttula et 

al. [146], Kurvinen et al. [103] and Slovák et al. [176], all of which showed that data 

sharing can be a relevant tool for increasing social engagement. The use of biometric 

data to augment the experience of remote viewers seems to be the most widespread 

motivation among HCI researchers for sharing biometric data. Hallberg et al. [76] 

successfully broadcast biometric and location data of contestants in a skiing event to 

remote viewers as a way of enriching their experience. Similar approaches are found 

in [168], where the biometric data of participants on an amusement ride is shared with 

spectators, while in [183], actors exploring a haunted basement shared their 

physiological data with spectators who watched the event unfold from a nearby 

cinema. All the above-mentioned research used systems that at a minimum allowed 

one or more users to share biometric data with remote viewers. In addition, other 

cases ([42] and [132]) required a two-way communication system that allowed 

viewers to also send feedback. In [132], pairs of joggers running at a distance listened 
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to each other’s ambient sound and the direction of the sound varied according to the 

biometric  data of the athletes. Similarly, in [45], social support from remote 

spectators was communicated through haptic feedback.  

A common requirement in all the above-mentioned research is the logging of user-

interaction related data. In some cases this was done manually through interviews 

and observations [118,167] while in others [42,168,184], the data sharing system itself 

logged part or all of the user-interaction data for analysis. 

We observed that the area of biometric data sharing is limited by the shortage of open 

systems that provide the researcher with the core biometric data sharing functions and 

allow for customization. One existing system is ECT1 (Equator Component Toolkit). 

This generic open-source data-sharing tool was designed for the rapid deployment of 

ubicomp environments [71]. Although it has been used for experiments that involve 

biometric data sharing [168], most of the core modules were designed and built for 

technology that is now a decade old. A more recent solution is the Vicarious 

architecture2. Its design, however, is focused on aggregating data from various 

biosensors rather than the real-time data sharing to social networks. We also note that 

commercial solutions such as Polar Team2 Pro or Zypher’s OmniSense technology are 

not designed to integrate the three main requirements in one system: i.e., the 

sharing of data openly over social networks, the provision of feedback to the user in 

real-time and the logging of participants’ interaction with the visualized data. In 

addition, commercial products, as earlier mentioned, lock the researcher into having 

to use specific sensor brands. 

                                                

1 http://equip.sourceforge.net 
2 https://github.com/horizon-institute/vicarious 
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3.5.3 Phase 3: Interviews with researchers on biometric data sharing 

The results of this phase confirmed those from phases 1 and 2, namely: 

• There is a lack of open source tools to research the sharing of biometric data. 

This forces the researcher to dedicate substantial resources (human and/or 

financial) for system development, 

• The HCI community has limited knowledge on the effects of sharing biometric 

data. This is driving a demand for more research in this field, 

• There are divergent views among researchers around ethical concerns that 

necessitate both controlled and open data broadcasts. 

One interviewee remarked that the key challenge that she faces in this area is the 

limited sensemaking that the researcher can create out of biometric data due to the 

newness of using biometric data for storytelling. For example, in a non-digital 

scenario, spectators at the sidelines of a running event would easily understand fatigue 

through facial expressions, sweat, body kinematics, if the track is uphill, and “they 

will say things like 'oh it is not that far', 'you look like you’re doing good'… and the 

challenge is to replicate this remotely through physiological sensors and 

visualizations”… “and [in terms of research] we don’t really have any sense into that 

yet” [P3]. Participant 3 requires the systems to be easily adaptable, as experiments 

need to look into multiple variations of data sharing and visualizations. This calls for a 

design that is simple to use to encourage more research in this area. 

All the researchers interviewed claimed that the financial or human resource costs 

were considered high in their first attempt to build biometric data sharing systems 

when compared to later attempts as the learning curve would initially be steep. 

Participants 1 and 5 remarked that usually they first buy the equipment that they need 

in their research and then build the systems around the software that is provided with 

the hardware. As expected, we noticed that while for computer-science oriented labs, 
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building the systems is not of great concern, for others, the resources needed to build 

the data sharing system are a major barrier.  

Surprisingly, the interviewees had diverse views regarding the ethical issues involved. 

This was true both as regards the sharing of biometric data per se and also as regards 

the influence this had on their system design. For participants 1 and 6, ethical issues 

were the cause of great ‘concern and debates’. Participant 1 mentioned a number of 

cases where his participants raised ethical concerns during the events. There was one 

particular case “which could have had serious consequences” due to a lack of 

provision in the system that allowed the participants to stop the biometric data 

broadcast. “I think we were a bit naive with realizing the concerns that might have 

come after, I think we learnt these through that work.” [P1]. Participant 4 points out 

that “there will always be ethical concerns, but putting the control of where the data 

goes, with the participants, is most important.” 

On the other hand, participants 3, 5 and 6 are not concerned about any particular 

ethical issues around sharing biometric data. For participant 3 it is because the 

biometric data is not being shared in a medical context. “I think that if you do sports, 

you are in the upper 10% so people imagine you're healthy and that is just [by] doing 

sport; its a plus right? But for the medical data, just being to the doctor is a minus.” 

[P3] 

“as far as we can tell no one really cared about … heart rate or what happens with 

their data” [P5] 

These differing opinions on ethics show both the naivety in the area and also that 

further debate is needed within the community. In terms of the requirements this 
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necessitates systems that allow configurable ethical protocols e.g. giving the 

researcher the possibility of sharing the data publicly or privately. 

All the interviewees believed that there is a need for an open source system. “I think 

it would be a great use …[particularly] if it is open source and others can plug in their 

own solutions....” [P3].  

Only one interviewee has built both hardware and software for sharing biometric data 

from scratch. However, he stated that if he had to rebuild the system today, he would 

use smartphones as a data transceiver. This would greatly simplify implementation. 

The other researchers interviewed bought the biometric sensors and created 

customized software.  

3.6 The BioShare System 
In this section, we describe how the BioShare system was designed and implemented 

based on the requirements captured. Table 3 lists the features that were implemented 

in BioShare and identifies which user requirements are satisfied by the implemented 

features in the default configuration. BioShare is configurable to include different 

(versions of) features. Table 3 therefore focuses on the features available in the default 

configuration. The complete BioShare system, its documentation and instructions for 

researchers can be downloaded from www.heartlink.co.uk/bioshare  

Simplicity as a design feature was given a significant amount of importance so that 

new variations to BioShare could be made for different experimental conditions. 

Moreover, HCI researchers who might not be expert computer programmers could 

also use and adapt the tool to their needs. Understanding that cost may be of an issue 

for other researchers BioShare was implemented using development tools that are 

available for free, such as generic text editors and integrated development 
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environments. The modular design approach adopted makes it possible to change 

different parts of the system while reusing others. For example, the mobile application 

for collecting biometric data and broadcasting it to the server can be used standalone 

when one-way data communication is needed.  

3.6.1 Infrastructure 

BioShare collects and shares data through smartphones and broadcasts this data over 

WIFI or mobile networks. The data is broadcast by using generic phones that run 

Android OS and a custom made mobile application: the BioShare Mobile App. 

Android was selected because it is widely used and open source. In addition, Android 

does not lock the researcher into a specific hardware brand. Tests used Polar HR 

sensors; however, since all the code is open source any Bluetooth sensors with an 

open protocol such as Zypher or Simmer sensors can be used. The application was 

developed in JAVA using Eclipse IDE and Android SDK.  

  

Figure 14: Architecture diagram of BioShare 

The values collected from the sensors are broadcast to an HTTP server in real-time as 

shown in Figure 14. The data-receiving server stores the data in a SQL database and 

returns any feedback-related data from the viewers back to the device (Figure 15).  
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Figure 15: The default configuration in the BioShare mobile research app presenting the raw values that are 

broadcast and those returned from the server. 

Separate code running on the same server is then used to share the received data with 

online viewers. The design handles different experimental conditions such as 

presenting different visualizations to control groups and experimental groups. For 

example, each alternate viewer logging on to the website can be presented with a 

different visualization. This allows for cross comparison of different data 

visualizations. The interaction data is then collected and stored in records that are 

tagged by the type of visualization that the user was presented with. This supports the 

researcher in understanding how different viewers interact with different type of 

visualizations. SQL was selected over noSQL primarily because BioShare is not 

intended for commercial / large-scale applications. We decided to keep the application 

as simple as possible understanding that small controlled experiments are most 

common in this area (see ref.  [1, 4, 8, 10, 12]). 
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3.6.2 Data 

The server-side code runs on an SSL secure server. However, since the interviewed 

researchers had conflicting views on the need to conduct experiments using open vs. 

closed data, BioShare handles both options. Researchers can give participants a 

hyperlink that gives open access to the real-time data broadcasts. In this case anyone 

online can view the live data. Alternatively, the researcher can control participants 

through an enforced login system. The instructions for these customizations can be 

found in the system documentation. In addition the server-side code is open source 

and can be installed on the researcher’s own server such that the researcher has full 

control over the data without the need to access the data from 3rd party APIs. This 

approach contrasts with the HeartLink prototypes where data broadcast by existing 

mobile applications were then accessed through proprietary APIs from unknown 

storage infrastructures. The use of APIs is commonly used in commercial 

applications; however, it creates ethical concerns when used for research. In our 

experience and that of two of the interviewed researchers, this approach severely 

limits the authority that the researchers have over such sensitive personal data and the 

related claims that could be made in the consent forms. With the realized solution, all 

the data from the participants’ app communicates directly with the researchers’ 

infrastructure thus giving the researcher more authority over what can be guaranteed 

in the consent forms.  

3.6.3 Visualizations 

The visualization presented to the remote viewers (Figure 16) runs in a web browser. 

This approach makes it possible to view the data on any Internet connected device 

irrespective of the device’s operating system.  
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Figure 16: Part of the default visualization in BioShare with both biometric and non-biometric data. The tool 

allows participants to comment during the live events and logs the interaction of athletes and spectators 

The visualizations are based on PHP, JavaScript and the Google Charts library. By 

using Google Charts, no participant data is shared with Google or any other 3rd party 

and all the data processing is done locally. Current default charts include numeric 

representation of the live data for biometric, temporal or locative data, line charts with 
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the live heart rate data, maps augmented with the paths covered by the participant and 

an orientation-corrected street view of the current participant location. By default the 

data is updated every five seconds, though this can be modified based on the 

researcher’s requirements and data sources.  

 
Figure 17: Sample questionnaire displayed as a lightbox on predefined events, for example, when a viewer selects a 

new participant to follow. 

3.6.4 Logging of interactions and broadcasted data 

BioShare logs all the data that is broadcast from the data-sharing participant. The 

system also logs remote data-viewers’ interactions including the visualizations being 

viewed, viewing duration, time stamped comments written by the viewer during the 

event, time stamped feedback submitted by the viewer, viewer location and scrollbar 

position. The researchers can also enable a form-containing lightbox that is activated 

on predefined events. The lightbox is a small window and when displayed, the 

background is darkened. For example, a researcher may display Figure 17 whenever 

the participant being followed is changed. This form collects data related to the social 

connectedness of the viewer with the participant being watched. The data collected is 

used for social network analysis.  
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Table 4: Sample configuration possibilities for the three research studies detailed in the ‘Configuration for 

Research’ 

3.7 Configuration for Research 
To highlight different uses of BioShare, we briefly present three different 

configurations that were produced by adapting the default BioShare configuration. 

The system features used in each configuration are shown in Table 4. 
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3.7.1 Configuration 1 

Case: Comparing biometric and non-biometric data type representations to identify 

which data type remote spectators of a running event would be most interested in 

watching.  

Approach: The default HTML5-based visualization is adapted such that each of the 

default data types presented (heart rate as a numeric representation, heart rate as a line 

chart representation, % distance covered, speed, map with current participant’s 

location and Google street view at the same location) are displayed vertically along 

the page within the web browser in such a way that the viewer needs to scroll the page 

to view the different data types. The system by default logs the scrollbar position of 

the viewers’ interface together with timestamps; thus the researcher learns which data 

representation was most watched during the live event. The collected data can then be 

analysed using offline statistical analysis tools.  

3.7.2 Configuration 2 

Case: The research question for the second case looks into whether presenting real-

time biometric and non-biometric data to remote viewers watching an event makes 

them more engaged than presenting non-biometric data only.  

Approach: The experiment involves sharing data from four athletes to two randomly 

assigned groups. One group visualizes all the data available in the default version of 

BioShare (both biometric and non-biometric data) and the other group is presented 

with all the data except the biometric data. The researchers would then analyse the 

cheering and social network posts to identify if the group visualizing the biometric 

data is more engaged in the event and how.  
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3.7.3 Configuration 3 

Case: What effect visualizing live biometric data has on different social ties during a 

specific event. For example how does viewing live biometric heart rate data in a 

specific activity influence the athlete’s mother compared to Amazon Mechanical Turk 

recruited participants?  

Approach: In this case, the researchers modified the default data visualization file 

such that it displays only the live biometric data representations. During the live 

broadcast, the data viewers are asked to state their social relationship with the data-

sharing participants by using the (default) lightbox. Researchers can then analyse the 

data collected for patterns between the viewer engagement and the social network tie-

strengths. 

3.8 Limitations and Future work 
We do not expect these requirements to be enough for every specific application by 

HCI researchers. These should be considered as a starting framework for an area 

where research needs to catch up with the rapidly moving industry as discussed 

earlier. HCI researchers using BioShare are expected to configure the tool to meet 

their users’ needs after that they conduct their own requirements analysis with their 

users. In this light further work needs to be done on issues such as ethical concerns, 

data security, energy management and data coverage. A known issue is the 

dependency on WIFI or mobile networks. This is of concern particularly if the system 

is used in the wild where mobile reception may be weak or non-existent. However, 

having an open source system makes it possible to modify the code and create backup 

solutions. BioShare may be adapted to make use of emerging satellite communication, 

such as ‘SPOT Connect’, as a backup service to the terrestrial mobile network service. 
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SPOT Connect is a small device that, via Bluetooth, connects a standard smartphone 

to satellite systems for global communication.  

In the near future the number of data visualization modules available by default in 

BioShare will increase together with the number of biosensors that can be connected 

to the mobile app and the type of data broadcasted. This includes live video broadcast 

from the app such that the storytelling ability of biometric data and live streaming 

video can be compared and contrasted. Moreover, the visualizations currently present 

the raw data received. Algorithms that generate inferences from the live biometric 

data and present the outcomes to the viewer could be implemented. For example, if 

the elevation is constant and the heart rate increases, we might infer that the 

participant is getting tired. This inference may be used for triggering events such as 

encouraging viewers to provide social support through the implemented feedback 

system.  

3.9 Conclusion 
This paper focuses on the requirements and design methodology adopted to develop a 

tool that shares biometric data for HCI research. To date, tools that have been used in 

HCI research where biometric data is shared, have raised a number of issues. Most of 

the existing tools are not designed for research and the few that are, tend to be difficult 

to adapt for research that falls outside the scope for which the tool was designed. A 

number of ethical issues such as the limited control the researcher has over the data 

were also been raised. These issues were identified following the building of two 

prototypes with which two studies were conducted. This data was then compared and 

contrasted with similar cases in the literature and with data that was collected from 

interviewing HCI researchers whose research involves the sharing of biometric data.  
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We hope that the requirements identified and the insights gained from implementing 

these requirements will alleviate the technical burden that researchers who need to 

share biometric data in this context face. This is expected to encourage more research 

that involves this data sharing thus contributing to the limited knowledge we currently 

have on the effects of interacting through biometric data.  
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4.1 Abstract 
Many studies have shown that crowd-support, such as cheering during sport events, 

can have a positive impact on athletes’ performance. However, up until recently this 

support was only possible if the supporters and the athletes were geographically co-

located. Can cheering be done remotely and would this be effective? In this paper we 

investigate the effect and possibilities of live remote cheering on co-located athletes 

and online supporting crowds that have a weak social tie and no social tie with the 

athlete. We recruit 140 online spectators and 5 athletes for an ad-hoc 5km road race. 

Results indicate that crowds socially closer to the athletes are significantly more 

engaged in the support. The athletes were excited by live remote cheering from 

friendsourced spectators and cheering from unknown crowdsourced participants 

indicating that remote friends and outsourced spectators could be an important source 

of support. 

4.2 Introduction 
The Facebook ‘Like’ button was a revolutionary tool in digitizing a tiny yet 

significant piece of human communication within social networks. Receiving ‘Likes’ 

can have a positive effect on the emotions of the social network user receiving them 

and in the context of behavior change, this is often used as a source of motivation for 

people trying to attain new goals [89]. However while this type of support is very 

applicable in scenarios of behavior change that have longitudinal measures [134,175], 

such as in motivating persons who are trying to become more physically fit [37] or 

cease smoking [148], it might not be as practical for situations where motivation is 

needed in real-time and in sync with the activity that is being conducted such as 

cheering athletes during a race. Current social networks were primarily designed for 

asynchronous communication. While this has many advantages, for instance, the 
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message receivers do not need to be online to receive the messages, it may be inapt for 

situations where support from one’s network needs to be in sync with its demand. 

Currently, athletes who share information about their events through online social 

networks, often receive encouraging ‘Likes’ and posts in support. However, athletes 

typically see these posts only when the activity is completed. Consequently, any 

motivation created through the perceived social value of accumulating ‘Likes’, does 

not translate into support during the activity and has no influence on the outcome.  

To start exploring synchronous social network support we use sports. Sports was 

chosen because many studies have already showed that cheering co-located spectators 

(e.g. on a race course) can have a direct impact on the performance of the athletes 

[28,59]; but can this be done remotely? This could have a huge impact yet there has 

been negligible HCI or CSCW work that explores ways of digitizing synchronous 

crowd support in this context. Possible benefits may include 1) allowing fans that 

don’t afford to be physically present at the event’s location to support the athlete, 2) 

allowing non-famous athletes to recruit support from their personal social networks or 

3) potentially harnessing the support from globally crowdsourced participants through 

platforms like Amazon Mechanical Turk. Is this support possible and does the nature 

of the online crowd matter? Put in another way, are athletes more motivated by friends 

or is the support of strangers just as effective, if any? 

We implement a system where long distance runners broadcast location and heart rate 

data to online spectators. The spectators can then cheer the athletes by pressing a 

‘Cheer’ button. This sends an immediate alert to the selected athletes thus making the 

athletes aware that a crowd is following their activity. In the study we use a crowd 

made up of two groups. 1) Friendsourced volunteers. Based on Bernstein et al.’s 

proposition, we express friendsourcing as “collecting resources from a socially-



 

 93 

connected group of individuals” [18]. 2) A paid crowd that was recruited through 

Crowdflower; a crowdsourcing platform. We then analysed the effects on both 

spectator groups and the athletes (being cheered on).  

The data showed that friendsourced participants were more engaged with the system 

than outsourced spectators. We found that the athletes showed mild excitement when 

receiving real-time haptic and audible cheers but were particularly excited by knowing 

the number of cheers submitted and the number of people following the activity 

(logged in and not necessarily cheering) during the event.  

4.3 Related Work 
Up until a few years ago an athlete’s performance was often broadcast only if the 

athlete was famous enough to merit television broadcast. In recent years as social 

networks became increasingly ubiquitous it became possible for almost any athlete 

with Internet access, to broadcast their participation in sport events. Freely available 

mobile applications like Runkeeper, Runtastic and Azumio allow users to share 

locative and physiological data, with selected friends or even publicly. These 

commercial implementations were preceded by a number of studies within academia 

that studied the effect on the athletes and spectators when sharing real-time data 

during sport events [76,103,131]. Sport applications such as Runtastic more recently 

implemented feedback features by which athletes can not only share live data but also 

receive live cheers from friends during the activity. After the event, the athletes can 

then look into who sent them cheers over a web interface. These commercial 

applications however do not provide much scientific insight on the social network 

effect of sharing live data and the impact that real-time spectator-support may have on 

athletes, if any.  
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Curmi et al. explored work in the area of real-time spectator support in 2012 through 

the HeartLink project [42]. In this work athletes shared heart rate data online and 

friends encouraged the athletes remotely. The HeartLink project consisted of two pilot 

studies and focused on the design and implementation of such systems. The study 

presented here follows the recommendations for future work that was suggested in this 

work namely: A) A need to validate results with a larger population. Thus spectator 

population was increased from 9 to 140. B) Test a new fully independent system 

(BioShare) and observe whether HeartLink’s outcomes were influenced by issues 

raised from relying on distributed 3rd party systems. C) More importantly, compare 

and contrast the engagement of friends vs. unknown crowds by having different 

groups under observation concurrently. Additionally, we observe whether spectators 

are influenced by the social connectedness between the person cheering and the 

participant receiving the cheers. We also explore the effect on the athletes from being 

remotely cheered and whether the nature of the online cheering crowd matters - are 

athletes more motivated when supported by known crowds in contrast to unknown 

crowds?  

Supporting crowds that are made up of unknown spectators are typical in sport events. 

On the other hand, the use of crowdsourced participants for user support is also not 

new and in recent years, through online crowdsourcing platforms, many innovative 

applications were developed such as summarizing academic papers [17] or 

deciphering blurred text [112]. But can crowd support and crowdsourcing be 

combined effectively in a real-time context? 

4.3.1 Real-Time Factor 

The real-time context is particularly challenging in crowdsourcing. Most 

crowdsourcing platforms are not designed for recruiting workers as a just-in-time 
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workforce. Typical crowdsourced jobs, such as online surveys, are posted on 

crowdsourcing platforms and workers would complete the tasks when they please. In 

the cheering case however, the support has to happen at a specific time and workers 

have to ‘sync’ with the event rather then vice versa. Related work is found in studies 

on crowd-powered interfaces with highly innovative techniques for crowdsourcing 

just-in-time work such as VizWiz - a system for crowdsourcing near real-time support 

for vision impaired [20], Lasecki et al.’s ingenious work for  captioning live speech 

[105] and Bernstein et al.’s work on queuing workers using multiple queuing models 

[16]. However, with the exception of Morris et al.’s work on ‘Crowdsourcing 

Collective Emotional Intelligence’ [128], there is very little knowledge on 

crowdsourcing spectator support.  

4.4 Study Design 
In the initial stages of the study that is presented in this paper, two design approaches 

for digitizing cheering during sport event were considered. The first was that of 

studying current cheering practices ethnographically and then finding ways to 

replicate as best as we can the cheering process digitally. The second was that of 

identifying radically new ways by focusing on the core objective (i.e. motivating the 

athletes) and designing new systems around this. While both approaches are pertinent, 

the second approach was adopted. In the first approach it is more likely to omit 

possible radical new ways of reaching equal or better outcomes for supporting the 

athletes. Through emerging digital tools, new approaches to cheering might now be 

possible but are not present in the ‘traditional’ co-located cheering processes. 

Consequently design started with a bottom up approach and a series of tests with 

different prototype configurations.  
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The preliminary tests were conducted during a range of events that included running, 

mountain running and cycling, and were intended to 1) test the data broadcasting 

system, 2) explore the study dynamics within simpler scenarios than those described 

in this paper and 3) gather insights on the user experience of both the athlete and the 

spectators. The insights gained from these pre-tests were then used to develop the 

research questions and the design of the exploratory deployment here described.  

For this study we organized an ad-hoc 5 km race with co-located athletes and an 

online crowd of spectators. The race selection was based such that there will be 

enough time for the spectators to log in and understand the interface while at the same 

time make sure the race was not too long, so as not to increase the complexity of 

managing the online crowd. Additionally, the selection of the racecourse ensured that 

the event would have mobile network coverage on a selected service provider for at 

least 70% of the course.  

4.4.1 Data sharing infrastructure 

The data broadcast system was implemented using BioShare [41]. BioShare is an open 

source application that was designed for broadcasting data during day-to-day activities 

through a smartphone app and a web portal for visualizing the broadcasted data in 

real-time. The mobile application runs on Android devices and allows users to collect 

data through Bluetooth-connected sensors. This data is then shared with an online 

crowd that can interact with the data-sharing users through multiple modalities.  

BioShare was specifically designed for researchers and as such, it also logs user 

interaction for post event analysis. The system was configured as illustrated in Figure 

18. We re-configured the default settings in BioShare such that data is broadcast to 

those who log through a login process that will be described in the next sections.  
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Figure 18: The system infrastructure. 

In the pre-event tests we found that during synchronous studies that involve online 

crowds, a communication channel between the researchers and the crowd is essential. 

The real-time factor makes this work challenging particularly because it is difficult to 

predict all possible failure modes in such live activities at design stage. Additionally, 

unlike an in-the-lab study, the researchers have very limited feedback on what is 

happening within the distributed crowd (and no feedback from facial expressions and 

body language that may help in adjusting the study accordingly). In this light, a 

feature that allowed the researchers to broadcast messages on the spectators’ interface 

was also implemented. This was used to inform the spectators of any technical issues 

that might occur during the live event.  
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4.4.2 Athlete participants 

We recruited 5 athletes form a university running club who 1) were happy to 

participate in the study, 2) train regularly for competitive running and 3) had a 

detailed log of performance records in 5k races. In return of participating, a donation 

was given to the running club. The researchers did not know the athletes prior to this 

work and met them for the first time just before the race. None of the participants had 

used smart phones or any other device to track their performance during previous 

races so the participants had little predefined expectations of the technology or the 

user experience of carrying extra devices during the event. 

Before starting the race the athletes were each given a Nexus 5 phone that was 

preconfigured with the customized BioShare application, an armband, a mobile data 

connection and a Polar WearLink heart rate chest strap that was connected to the 

phones via Bluetooth. The heart rate data type was used as it is a physiological 

parameter that is easy to measure in unobtrusive ways and because heart-rate 

measuring sensors are becoming very popular in emerging smartphones and wearable 

devices. Additionally the heart rate can indicate the fitness levels of individuals and 

the effort exerted during an activity. To ensure consistency, the phones were 

preconfigured and positioned by the researchers. The armbands were color-coded and 

this coding was used for identification of the participants on location.  

4.4.3 Crowd participants 

In parallel with recruiting the athletes, 140 online spectators were recruited for the live 

event. 76 of these participants were recruited from CrowdFlower - an online crowd-

sourcing platform with a global distribution of active workers. Unlike Amazon 

Mechanical Turk, CrowdFlower supports European requestors at the time of writing. 

Crowdsourcing through an independent platform minimized the probability of having 
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participants within this group that are socially connected with the athletes. These 

spectators were first introduced to the interface. They were then asked to follow the 

running athletes online for as long as they wish to and support them in the best way 

they could. At the end, they were presented with an 8-question survey.  

A second group of spectators (n=64) were recruited through social networks at the 

athletes’ university. Communication requesting participants to support the athletes 

was sent to the athlete’s running club Facebook group and their departments’ mailing 

lists. In this paper we refer to this group as ‘Friendsourced’.  

4.4.4 Procedure 

During the event each of the devices carried by the participants collected and 

broadcasted live data as shown in Figure 19. Online spectators could visualize the live 

data through any Internet connected web browser after logging in through a Facebook 

app. The participants were also given the option to log in anonymously.  

Following this, spectators were presented with live data visuals from each athlete 

consisting of heart rate, average heart rate during the event, a line chart with the heart 

rate, event duration in minutes, percentage of the task completed, meters covered, 

speed, pace and a chart with the running course overlaid on a map. All the data was 

dynamically updated every 2 seconds, on average, thus giving a “real-time” feel.  

Spectators in both groups could change the athlete that was being followed at any 

time. This was done to observe how the crowd reacts to different athletes’ 

performance. Just before the race the athletes were assigned as Participant 1 to 5 and 

this naming was used in the spectators’ interface. Thus during the live event, none of 

the spectators knew who is, say, ‘Participant 1’. However, the friendsourced crowd
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Figure 19: Sample spectator interface. 

knew that the athletes were from their same department or running club. This 

approach was adopted to limit the range of tie strength within the group and ethical 

data sharing issues. In this study we consider these actors as having weak ties [70] 

with the athletes. The participants who were outsourced through the global 

crowdsourcing platform were considered as having no ties.  
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4.4.4.1 Interaction modality 

Spectators could ‘Cheer’ the selected athlete by clicking a Cheer button. This button 

sent a small vibration to the device carried by the selected athlete. If the cheering 

spectator logged in through the Facebook application, then the athlete also heard the 

name of the person who cheered through the device’s speaker and a speech 

synthesizer; otherwise the athlete heard ‘Guest’. The interface presented also allowed 

all the spectators to post comments through a Facebook frame. By default the posts 

submitted by the spectators did not go on their personal Facebook profile but were 

only visible on the spectators’ interface. To ensure that the data is not contaminated 

with crosstalk between the groups, each spectator only saw comments that were 

posted by those in the same group and following the same athlete. 

The data broadcasting app (Figure 20) was designed in such a way that the users do 

not need to interact with it through touch during the activity. Before starting the event, 

the athletes were briefed on how the system works and what the haptic and audible 

feedback represents. The pre-event tests showed that the sound level is a key part of 

the user experience and a too low volume makes understanding difficult while a too 

high volume, particularly in public areas, makes the system awkward. For health and 

safety reasons the design intentionally avoided any use of headphones to hear the 

audible feedback so sound was generated through the device’s speaker. At an ambient 

noise of 70db, the loudness of the devices was set to produce 76db at 30cm for 6db 

above ambient. 30cm was calculated as the average distance between the sound output 

of the device inside the armband and the nearest participant’s ear. The ambient noise 

was calculated in pre-event trials using a Phonic audio analyser PAA3.  
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Figure 20: Customized BioShare research application running on athlete’s devices. 

4.4.5 Data collection 

During the race data was intermittent for 40% of the race due to lack of mobile 

reception coverage and interference on the Bluetooth communication channels. Any 

intermitted data was identical for all conditions. The broadcast was time stamped and 

logged together with the interaction that spectators had with their interface including 

the cheers submitted, the comments posted and the duration of each participant 

following the data.  

Additionally, when a spectator changed the athlete that was being followed, a modal 

form containing four questions was presented after 5 seconds. The 5 seconds delay 

was set to filter out any quick changes in athlete selection. This form collected 

information on the social network ties among participants, the spectator’s age and 

allowed the spectators to leave comments. Qualitative data was collected from the 

athletes immediately after the race through a focus group. We felt that a focus group 

!
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would generate more ideas through cross-pollination among the group in contrast to 

one-to-one interviews. This post-event focus group was made up of the 5 participating 

athletes, 3 co-located spectators (2 of these were also members of the running club but 

were injured on the day) and 1 interviewer. In the next section we present insights 

collected from the study, focusing particularly on the athletes’ reactions to the 

spectator support and the spectators’ interaction with the system in terms of the cheers 

submitted, posts submitted and spectator duration.  

 
Figure 21: Cumulative live cheers submitted to the athletes. 

4.5 Findings  

4.5.1 Cheers submitted and crowd duration 

The athletes (A) received a total of 727 cheers (A1: 118, A2: 150, A3: 155, A4: 85, 

A5: 219). Figure 21 represents the distribution of the cheers submitted for each 

participant. This data shows similar results to previous work [42] where spectators 

devised strategies to maximize the effectiveness of their cheers. This included holding 

back from submitting cheers at the beginning to then use the cheers when they feel the 

athletes need them most. Post event analysis showed that this repetitively resulted in 

an s-curve cumulative cheering distribution both for individual athletes as well as in 

aggregate. We note that the spectators had no limit on the number of cheers submitted. 
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Only cheers that were submitted from five minutes before the start of the activity and 

up to five minutes after the completion of the activity for individual participants are 

represented in Figure 21. The aggregate number of cheers represented is 645.  

Figure 22 shows the time spent online by distribution density for each spectator group. 

Participants who were friendsourced spent significantly more time on the site (mean 

14min. 24sec.; SD 21min. 45sec.) than paid outsourced spectators (mean 7min. 

26sec.; SD 8min 48sec). They were also more diverse in engagement then the 

outsourced spectators. 

 
Figure 22: Friendsourced and outsourced crowd duration. 

4.5.2 Post-event focus group with athletes 

The insights gained from the post-event focus group complemented this data and 

contributed to contrast 1) the type of support that was provided (e.g. cheering 

modalities and motivators wrapping the live cheers), 2) the source of support (e.g. the 

contrast between the support from friendsourced and outsourced crowds on the 

participants), and 3) directions for future work in system design. These will be 

discussed next.  
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4.5.2.1 Type of support provided 

We found that the participants were excited when they received live cheers during the 

race however other motivational factors that were not intentionally designed emerged 

during these interviews. Namely, the total number of cheers that each athlete receives 

and the number of spectators that are currently following their performance live on the 

portal (even though they might not necessarily cheer) could be a source of motivation. 

Whenever an athlete (A) arrived at the finish line, the interviewer (I) collected the 

devices and sensors. The interviewer then informed the arriving athlete the total 

number of cheers that the athlete received up until then and this resulted in high 

excitement from the athletes receiving the information. During the race, the athletes 

were only receiving aggregate cheers at a minimum of one vibration every 10 seconds 

(if cheers were sent within those 10 seconds) but they were not aware of the actual 

total number of cheers up until that point.   

I: yours is 137 cheers. 
A2: 137 cheers? all for one persons! 137? [excitement/laughing] quite a lot. 
[A2 some time later; asking A1] Is that the most cheers?  
A1 what’s the cheer count you’ve got?...  
[later] Co-located spectator 1: how much have you got? 
A2:  a 137 cheers apparently 
Non participating athlete: you’re a popular man. 
A2: 137? that can’t be right; a 137 in all? in total? 
I: no no, just for you 
A2: just for me? What!  
Race Organizer [teasingly]: oh we’re getting insane there. I don’t know who said I 
don’t want my arm to be cheered (before the race). 
 
Not only receiving the cheers during the race excited the athletes but even simply 

getting to know the total number of cheers that were submitted. This, become a matter 

of competitive comparison more than the race timings themselves. All the participants 

agreed that the 10 seconds interval was fine otherwise “it might become a bit 

annoying.” [A5] 
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Asked about the sound level of the devices, during the race the participants felt it was 

“all right actually, I could hear the names and that was an all right noise, you don’t 

want it really loud. If there were a lot of people on the way then you might need it a 

bit louder.” [A2] Three of the participants commented that they did not feel the 

vibrations. We found that the typical smartphone vibration is not a reliable 

communication modality when strapped on the arm in a running context. The strength 

of the haptic feedback was weak particularly since the armbands suppressed the 

vibrations. The audible feedback, calibrated as listed earlier, proofed to be more 

reliable in this context.  

4.5.2.2 Source of the provided support 

The athletes were asked a series of questions that were intended to identify whether 

the support from people they know was found more relevant then the support that was 

received from unknown crowds. Three of the athletes agree that both are relevant:  

A3: …it’s already nice to know people you know [are there]. A lot of numbers, is like 
when we go to big races and there are loads of crowds cheering you, and you don’t 
know anyone… we always find this better - that is - with the volume of people there, 
cheering you on.  
R5 partly agrees stating that sometimes it is “better to have people you don’t know 

cheering… you don’t want your mum dominating”. The athletes were not bothered 

when they heard other athletes being cheered claiming that “it is how it works in real-

life, you hear all cheers around you” A4. 

4.5.2.3 Considerations for future designs  

We observe that the athletes’ suggestions for future design were particularly focused 

around new cheering modalities and means of aggregating the collective support. A3 

suggests having features that allow the spectators to “record their name” as this is 

expected to communicate emotions better then a text to speech synthesizer. In this 
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case, the athletes are likely to recognize the voices even if names are not narrated. A2 

agrees: “I don’t think there is much more you could feel, because anything longer 

than that could be annoying. … we though of if people online could record something, 

say it would come up with their voice, say ‘go on go on, you’re the best’ [clapping - 

excited] and it is in their voice.” Similar remarks were made by A4 and A5. When we 

aggregate the suggestions that emerged from the athletes we observe that, 

unknowingly and indirectly, the athletes were encouraging more synchronous social 

interaction within the system and from the crowd. 

The modality of aggregating and communicating the support seems key for motivating 

the athletes. During the event the athletes received a haptic and audible cheer at most 

every 10 seconds if there were any cheers submitted in the previous 10 seconds – 

irrespective of the number of cheers submitted. The athletes, as quoted in previous 

sections, positively commented on this as a way of limiting the number of ‘alerts’. 

However, this approach tells the athletes nothing about the number of spectators that 

are actually cheering. Non-participating athlete A7 suggested varying the sound level 

of the cheers based on the size of the cheering crowd, “…say, every 10 seconds if 

there are more cheers than the previous [10 seconds] you get a louder noise.” This 

approach would be congruent to the s-curve cheering distribution presented earlier.  

A major issue for all the participants except for one was the device form factor, 

claiming that they would not carry the device during competitive races due to the size 

and weight that they would have to carry. A3 states “it has to be a less clunky device 

for me. I could never run with something as big as that on my arm. I know that you 

can’t at the moment but if you could put it into your Garmin [watch]…”. A4 suggest 

that a device on the waist would be less annoying than on the arm. Similarly A3 

comments: …people that are racing wouldn’t do it; they want as little weight as 
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possible… I really don’t like it [carrying that device]. The only athlete who did not 

mind carrying the device had significantly bigger arms then the other athletes. This 

suggests that if such technology is designed for mass diffusion, then the size and 

weight of the device are critical design factors and that the current smartphone form 

factor is still not small enough for using it during competitive races. 

From a spectator-support perspective, all the (competitive) athletes agreed that 

cheering would be more effective for non-competitive athletes such as the occasional 

amateur marathon runners “because they are struggling to finish the race unlike 

people who train regularly” and “knowing that people are supporting you at that 

moment in time could be a source of encouragement”. 

  

Figure 23: Distribution of social network posts submitted by the spectators. 

4.5.3 Facebook comments 

Figure 23 shows the distribution of posts send by the spectators during the event.  

Posts can be grouped into those that were directed to the athletes and those directed to 

the community on the site. The latter were instigated either because of intermittent 

data or because one or more spectators wanted clarifications on the system itself. The 
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spectators posted a total of 60 comments. 28 comments were posted in the landing 

page and 32 were posted in the athlete’s respective visualizations. 

The athletes’ demands for increase in social interaction that were exhibited during the 

focus group were also reflected in the comments posted by the crowd. For example, as 

athletes proposed that future implementations should allow spectators to send them 

live or recorded voice messages, many of the spectators were already posting text 

formatted as if the athlete would hear them, even though the spectators knew that the 

text messages will not be received by the athletes up until after the race. Posts like 

"Keep going (you aren't running as fast as you can)!" and  "ALMOST THERE!" were 

typical. We observe that these are quite distinctive from the classical social network 

posts where athlete’s friends often congratulate the athlete upon successfully 

completing an event - thus using the past tense rather then the present. 

4.6 Discussion and Lessons Learnt 
These results have both academic and commercial implications. The design of real-

time systems for supporting athletes from remote crowds received negligible attention 

up until now as little research was done around real-time interaction between co-

located and distributed crowds in sport events. We expect that similar studies that 

involve complex real-time structures will increase in the near future. With the rapidly 

advancing social networking and communication technologies, the implementation of 

such systems is becoming more feasible. These results also indicate that real-time 

spectator support could have high impact for many stakeholders that are directly and 

indirectly involved in the cheering process. Athletes feel more supported and the 

cheering process can increase spectator engagement. This process could be very 

attractive for indirect stakeholders such as marketing strategists who seek tools that 

facilitate social network diffusion through innovative sports-based communication 
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channels. Additionally, having spectator support that is received ‘just-in-time’ when it 

is needed, is expected to augment the social support models that are used on existing 

social networks. Next we summarize the key lessons learnt around the effect of 

synchronous spectator support on the athletes, the spectators, and the limitations in the 

tested design. 

4.6.1 Athletes’ motivation 

The motivation instilled in the athletes through live cheering could be explained 

through theories of expectations management [1] and self-determination theory (SDT) 

[49]. In the work presented in this paper, the participants had more online supporters 

then they expected. This difference between their ‘expectations’ and ‘actual’ support, 

created the excitement that was reported earlier. It will be interesting to analyse if the 

inverse effect would happen should the athletes not receive any cheering when they 

are expecting to be cheered. We believe that this would have a negative effect on the 

athletes that translates into a demotivating factor with similar effect to that of 

receiving jeers rather then cheers [59]. 

As regards motivation, sport athletes’ ‘intrinsic motivation’ arises from values within 

the activity itself - for example, they may enjoy running, or satisfy a need to seek 

attention, or simply feel physiologically better. The motivators that are not 

intrinsically part of the activity such as receiving medals or as in the case of this study, 

receiving ‘digital cheers’, are ‘extrinsic motivators’. Based on the motivational 

synergy model [3], these can fall in one of two states: ‘synergistic’ (in which case 

these support the intrinsic motivators thus augmenting the satisfaction and 

performance improvement from the intrinsic motivators) or ‘non-synergistic’ (in 

which case they undermine the intrinsic motivation). For example an athlete’s intrinsic 

motivation for participating in running events may be attention seeking. In this case, 
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the cheering process presented, is expected to increase the athlete’s motivation should 

this make the athlete aware that an even larger crowd is following the performance. 

Inversely, the cheering becomes non-synergistic should this distract the athlete from 

the core intrinsic motivators, say, when the cheering device makes a bothering loud 

noise in public.  

Deci and Ryan provide a more detailed approach to classifying extrinsic motivation 

over five classifications in the organismic integration theory as a subclass of SDT 

[160]. In this regard, our observations of the athletes’ reactions brings us to highlight 

the psychological need of ‘relatedness’ where through remote cheering the athletes 

feel connected to others and build a sense of belonging. Further research that looks 

into how the cheering process can be designed in ways that make this support 

synergistic to the athlete’s intrinsic motivators is needed. Such design must take into 

account individual personalities and traits as different athletes have different 

motivators individually, which are different across time.  

While paying crowds might not pertain to an applied research perspective, in 

hindsight, the predicted effectiveness went beyond our expectations. Both groups 

motivated the athletes (including paid participants) particularly because paid 

participants could freely cheer any athlete, so the athletes were motivated by the fact 

that the crowd was cheering ‘them’ vs. ‘others’ (rather than whether it was a friend or 

a paid supporter). It seems that in the proposed model, supporters’ pay did not distract 

the intrinsic motivation of the athletes [51]. 

4.6.2 Spectators’ engagement 

The results confirm that the spectators’ engagement is influenced by 1) the social tie 

strength between the supporter and the athlete. This is not all encompassing and other 
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unaccounted factors may be present. 2) The type of data visualized is also expected 

to influence engagement as shown in Figure 21. Additionally, when comparing the 

event discussed in this paper to the work done in the HeartLink pilot studies [42], 

through content analysis of the spectators’ posts in the two settings, we observe that 

the cheering crowd was much more enthusiastic in HeartLink. We believe that this 

effect was due to the ‘charity’ nature of the HeartLink event; the charity element 

seems to inject an obligation of making social good and encourage athlete-support. 

Thus another influencing factor is expected to be 3) the perceived athlete’s 

motivation to do the activity as in the theory of mind [10] – this perceived 

motivation ranges from self-centred (e.g. a competitive event) to altruistic (e.g. 

supporting the charity run’s cause through the perceived value of supporting the 

athlete). In this light, the fact that the race in this study was specifically organized for 

a research purpose (in contrast to a public event) may have also influenced the 

intrinsic motivation of both the participating athletes and the spectators. Finally, 4) the 

spectator’s incentive for recruitment (e.g. being paid vs. voluntary support) is 

another influencing factor of spectator engagement that is worth further exploring 

through crowding theory [64].  

In this work we did not account for the effect of paid vs. unpaid crowds. Future work 

is expected to single out these conditions across groups of equal social ties and pay. 

To decrease the workers’ time-to-recruitment, we paid twice the value that was 

suggested by the platform for each worker thus making the task more compelling for 

the job-seeking workers. The job was posted 15 minutes before starting the event and 

any data from workers who started the ‘task’ after race completion were removed 

from the dataset. 0.20$ were paid to each worker for taking part in the task that was 

estimated to be fun and lasting few minutes on average. Participants were not 
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instructed on how long they should watch the event for. They could spend just a 

minute but they were also free to stay online for longer if they wished to do so. Thus, 

a payment strategy was set such that pay was large enough to trigger an initial 

engagement from participants but low enough to allow us to observe if the initial paid 

engagement becomes intrinsic once spectators log in (i.e. would spectators freely stay 

online beyond what they are paid for by current crowdsourcing norms?). Based on the 

crowdsourcing platform’s independent post-activity survey, through this approach the 

assigned task scored high on “contributor satisfaction” (4.3/5 n=41) and “pay” (4.3/5; 

n=41).  

4.6.3 Issues, limitations and critical reflection 

In conducting this exploratory deployment the authors faced a number of challenges 

arising from the quite unusual combination of interaction contexts that were involved. 

Namely, 1) being in-the-wild, 2) having co-located participants in combination with 3) 

a geographically distributed crowd that was recruited through social networks, 4) an 

outsourced crowd and 5) all necessitating synchronous interaction. Each of these 

factors augmented the complexity of running the deployment. The intermittent data 

broadcast that was due to the lack of mobile reception in parts of the racecourse was 

equal to all conditions yet it may have impacted some of the results. When an athlete 

enters a temporary ‘blind spot’, spectators following that athlete seem prompted to 

switch and follow other athletes. In this light we refrained from reporting results that 

would have had direct influence from this. For example, it would have been 

interesting to link the cheering patterns of spectators to the athletes’ positions in the 

race but further tests are needed. Data indicated that athletes who ran slower received 

most cheers however this was not due to social network effects but was likely due to 

broadcasting for a longer timeframe thus giving the spectators more time to cheer. We 
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do encourage future research to look deeper into this interesting area of human 

behavior with questions such as: ‘During a challenging task, do crowds support the 

weakest or the strongest, and how is the distribution effected by the social tie strength 

between the supporter and the supported?’ Our generalized hypotheses, based on 

athlete’s feedback in this study, is that while the supported might appreciate support 

from both strong and no tie, the weak ties might be the most effective.  

4.6.4 Future work 

In addition to the future work suggested above, experimenting with different cheering 

modalities is an avenue worth pursuing. This should look at 1) ways to aggregate and 

communicate the support (e.g. using spacialised audio, modulating the audio 

amplitude based on crowd size or using different haptic feedback positioning). 

Another important factor is 2) the type of support that is communicated (e.g. 

communicating the number of persons following online, number of cheers, or using a 

recommender system to compute and present the most motivating comments to the 

athletes in near real-time). 

In hindsight, in future we would modify three key design decisions taken; 1) 

presenting the data of one participant at a time in the interface, 2) allowing users to 

switch athletes and 3) presenting anonymized participants: 

1) Presenting collective vs. individual athlete data: Our observations of the event 

dynamics indicated that if the spectators were presented with athletes’ aggregate data, 

like for example a map that represents the location of all the athletes, then the crowd 

might have taken different cheering strategies. Presenting the spectators with 

individual athlete’s data was a research driven design decision. From pilot studies we 

learned that presenting the data of all the athletes in one interface makes it difficult to 

link spectator comments with the data that prompted those comments. However, 



 

 115 

presenting multiple athletes in one interface would help spectators follow athletes’ 

relative performance. This would let us observe the distribution of spectator-support 

from human crowds across the weakest and the strongest athlete. 

2) Switching athletes: Additionally, if spectators were locked into selecting one athlete 

at the start of the event, rather than being allowed to change athletes throughout the 

event, we envisage that the spectators would have been more captivated in having 

‘their’ athlete do better thus increasing engagement through gamification dynamics.  

3) Anonymizing participants: We believe that there is significant room for 

improvement in terms of spectator engagement particularly by designing interaction 

around spectators’ intrinsic motivation to follow such events. The increase in 

engagement of the friendsourced and outsourced spectators shows that the bond 

between the spectators and the athlete is a key element of spectators’ engagement. The 

anonymization of athletes within the spectators’ interface was a design decision taken 

to minimize ethical concerns when sharing data, however, if the athletes were 

presented with their real names, we believe that the spectators would have 

experienced a more ‘personal’ connection. The decision to anonymise athletes was 

driven by the researchers not the athletes. Since this work was a first deployment of its 

kind in a research setting that includes very personal data sharing such as heart rate, 

we felt that it would be appropriate to use anonymity in this case. This decision was 

also supported by earlier interviews conducted with experts in this area [41]. Although 

future deployments of the system will not anonymise athletes for reasons specified 

earlier, the anonymisation of athletes in this context had research benefits, namely, 

that the cheering decisions (as perceived by the athletes) were based on athletic 

performance. 



 

 116 

As findings show, a few more years of technological advancements are needed until 

easier and less obtrusive solutions are widely available. The smartphones’ form factor 

and the unpredictability of mobile-data communication infrastructures are key issues. 

The availability and quality of mobile data connections are dependent on the number 

of users using the system at one time and the (typically) unknown operator’s data vs. 

voice bandwidth policies at the connected nodes. This nulls the relevance of testing 

the mobile data connection across the course before events since the actual scenario 

during the race, particularly if it involves more than a handful of participants, may 

change drastically during the event. Predictability is critical if such systems are scaled 

up for larger crowds during popular city marathons. Interestingly, technology has 

evolved in such a way that aggregating and broadcasting data from large crows that 

are distributed across the globe may be easier than aggregating data from co-located 

in-the-wild participants. 

In the longer term, further studies could precisely indicate how humans seek spectator 

support and socially support others. In specific contexts of human behavior, would we 

cheer the best or the weakest? Having enough data for a specific scenario, can we 

build a model that takes into consideration the data presented to spectators, the real-

time performance and the social connectedness, to predict cheering patterns? Having 

such a model, could we influence the cheering patterns and maximize the athletes’ 

performance - for example by encouraging cheering just when the athletes need them 

most?  

4.7 Conclusion 
The innovativeness of the work presented in this paper is the crowdsourcing of real-

time spectator support through friendsourced and outsourced crowds. In this paper we 

have presented the results and insights gained from the study with 5 co-located 
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athletes and an online crowd of 140 distributed spectators that were recruited from 

community networks and a crowdsourcing platform. The results showed that the 

social ties between the spectators and the athletes influence the engagement of 

spectators. More importantly, as in co-located cheering, the athletes were excited with 

both the support received from known crowds as well as support that was received 

from unknown crowds. This indicates that in spectator support, within the context that 

is presented in this paper, outsourced spectators could be a valuable source of support. 

We hope that this first step in crowdsourcing just-in-time support will help other 

researchers and more importantly stimulate new research in this very promising area. 
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SEEING THE HEART RATE OF REMOTE OTHERS: AN IN-THE-WILD 
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EVENT  
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5.1 Abstract 
The market has seen a surge in offer and demand of health and fitness applications 

and sport wearables that come equipped with highly sophisticated biometric data 

capture functionalities. In this context, biometric data capture and sharing has recently 

become increasingly common practice. However, while research on the effect that 

sharing such data has on the individuals using the devices exists, little research exists 

on the social effects that sharing such data has on groups of remote spectators. Is there 

any value in sharing heart rate data within social applications and does this sharing 

influence the behaviour of those seeing this data? This paper investigates this by 

conducting an in-the-wild study where the location and heart rate data of 5 athletes 

running a 5k-road race is shared with 140 online spectators in real-time.  Specifically 

we investigate the difference in behaviour between spectators who are presented with 

biometric and context data, and those who are only presented with context data (e.g. 

location). We also examine whether this difference is dependent on the social relation 

between the athletes and the spectators. 

We find that spectators presented with the heart rate data of remote athletes, support 

the athletes more and rate the presented system more positively. These effects are 

more significant across spectators who know the athletes than those who have no 

social connection with them. This not only confirms earlier literature, but also presents 

new insights and research directions. 

5.2 Introduction 
The use of biometric data such as heart rate data is becoming increasingly popular 

outside the medical practice. As the number of communication channels increased 

throughout the digital era, so did the diffusion of biometric data. A number of socio-

technical systems are embedding features that allow users to share their biometric 
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data. For example, freely available sports applications such as RunKeeper, allow users 

to share their heart rate data over social networks in real-time. Open broadcasts such 

as the RedBull Stratos event superimposed heart rate data over live video streams. 

This was followed live by over 8 million online viewers [29]. However, questions on 

the effect that this data has on its viewers are still largely unclear. In this study, we are 

interested in understanding whether presenting the heart rate data of athletes to remote 

spectators influences the spectators’ behaviour. The work of Janssen et al. [85] and 

Kurvinen et al. [103] suggested that the effect that heart rate data has on others might 

be depended on the social relationship between the data sharing athlete and the data 

viewers. Thus, in this work we also investigate whether the influence on behaviour 

from seeing others’ heart rate is subjective to this relationship. 

In the last four years, we explored how to design and develop systems that facilitate 

real-time remote crowd support during challenging sports events such as running 

marathons. To do this, we iteratively developed and tested HeartLink 

(heartlink.co.uk), a system that allows athletes to broadcast location and biometric 

data to online spectators as the event unfolds. With HeartLink, on-line spectators can 

support their favourite athletes by clicking a ‘Cheer’ button while following their 

performance live. This creates a small vibration and a sound on the athlete’s device 

(e.g. mobile phone) thus creating a physical connection between the athlete and the 

remote supporters. 

A key element that was identified in this process was the need of the supported person 

to convey the story as it happens. Results from an earlier pilot study and a user study 

[41,43] suggested that displaying the users’ heart rate to remote others influences 

spectators’ behaviour. In this light, we further investigate the effect that the sharing of 

heart rate data has on those seeing this data. 
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Through an in-the-wild study, we investigate the difference in behaviour between 

those seeing and not seeing the heart rate data. We recruit two groups of spectators. 

One group is made up of athletes’ friends and was recruited from their social 

networks. We call this group ‘Friendsourced’ [19]. The second group was recruited 

from a crowdsourcing platform so these participants had no social connection with the 

athletes. We refer to this group as ‘Outsourced’. We then compare and contrast 

behavioural difference between those presented with the heart rate and those who are 

not presented with the heart rate. Additionally, we investigate whether any difference 

is equally reflected among those who know the athletes and those who do not. 

In this light, this paper’s contributions are the following: 

1. It provides a historical overview of how biometric data sharing evolved 

through the advancement of technology.  

2. It reports on the on-line behavioural differences between spectators who are 

presented only with context data, and spectators who are presented with 

biometric and context data. We find that the presentation of biometric data is 

associated with increase in cheering. 

3. It reports on the on-line behavioural differences between friendsourced and 

outsourced spectators. We find that friendsourced spectators show more 

engagement in terms of the quantity of cheers they submit and the duration of 

their cheering efforts.  

4. We then compare disparities between the four groups in conditions 2 and 3 

above with results indicating that the most engaged spectators are 

friendsourced spectators who are presented with the additional heart rate data.  

5. Finally, through literature, we derive and propose justifications for these 

results. 

The next section provides a brief historical review of how technology-mediated heart 

rate data sharing evolved from the emergence in early 1900 up until the widespread 
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diffusion through digital communication channels. We then describe the procedure 

adopted in this study, the results and discuss the outcomes.  

5.3 The State of the Art in Heart Rate Sharing 

5.3.1 A brief history 

Traditionally, medicine was the driving force for advances in biometric data 

capturing, processing and communicating. The history of biometric data in health 

dates back to the early 1900. Figure 24 presents an indicative trend in the use of the 

term “heart rate” within textbooks for the period between 1800 and 2008. This shows 

an emergence of the term in early 1900 with a rapid diffusion starting in the 1960’s. 

This dataset3 consists of a randomly selected 6000 English texts for each year and the 

selection reflects the subject distribution. In this chart, the y-axes represent the 

occurrence of the term as a percentage of all the sample words in the dataset [124].  

 
Figure 24: Google Ngram search for the terms “heart rate” from 1800-2008 in the corpus English one million as at 

2015 

The communication of biometric data, biotelemetry, was also subject to rapid 

evolution through a series of disruptive technologies. Figure 25 highlights key 

punctuations in this regard. Again, these advances were initially driven by demands in 
                                                

3 By using the “English One Million” corpus as a dataset, the data on which this 
analysis is based takes into account the increase in published books in the later years. 
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health care [73]. However, more recently, the rise of ubiquitous computing, 

particularly smart phone technology, facilitated a rapid dissemination of biotelemetry-

based applications outside the medical domain.  

 
Figure 25: The evolution of biometric telemetry 

The first reference to “biotelemetry” dates back to 1903 when Nobel prize winner 

Willem Einthoven transmitted electrocardiogram signals from hospital to his 

laboratory over telephone lines [139]. The next punctuated change occurred 18 years 

later with the first transmission of heartbeats over radio. Subsequently semiconductors 

opened up multiple possibilities for biotelemetry as equipment became more stable, 

smaller and more accurate. Today, the availability of off the shelf biometric sensors 

and mobile devices lets individuals who are not necessarily medical savvy, to capture, 

log and share this data. Applications like RunKeeper, Runtastic and Azumio, among 

many others, are free smartphone applications that allow users to capture and share 

their heart rate data over social networks in real-time with great simplicity. For 

example Azumio, a smartphone application reads the user’s heart rate by placing the 

tip of a finger on the phone’s camera thus avoiding the need of additional sensors. 

More recently, Poh et al. [149] develop a non-contact heart rate measurement 

application. Through a webcam, they analyses minute changes in facial skin colours to 

determine the cardiac pulse. However, while applications that allow the sharing of 

heart rate data are on the increase, little is known on the effect this sharing has on the 

persons who remotely see this very personal data. The results of a study that we 

conducted prior to this work and which involved the broadcast of athlete’s heart rate 
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data to a social network [32] suggested that relatives can become anxious when they 

perceive the heart rate of the athletes as being high or when the heart rate is 

unavailable due to technical system failure. In this work we investigate this further by 

looking into whether the presentation of the heart rate data influences the behaviour of 

those seeing the data and if this change in behaviour, if any, is dependent on the social 

relation between the data sharing user and the data viewer. 

5.3.2 Biometric data sharing literature 

Cases that involve biometric data sharing are quite common in HCI literature 

[76,85,100,103,130,146,168,176,193]. These studies can be clustered into two groups. 

First are those that focus on system design, such as the work of Konberg et al. [100]. 

A second group clusters those that look into the effectiveness or social impact that 

sharing biometric data can have on participants. An example of this is the work of 

Schnadelbach and Kurvinen [103,168]. By following upon this work, we will next 

look at the results that contribute in understanding the effect of biometric data sharing 

1) as an information representation and 2) as a way to influence social connectedness 

between individuals. 

5.3.2.1 Augmenting the experience of data viewers 

Armstrong reports on a group of researchers at Lulea (Sweden) who presented two of 

the first attempts in which biometric data was used with the intention of augmenting 

the experience of spectators [7]. In their first project, the Arena project4, Konberg, 

Ohult and Delsing built a system that collects breathing, heart rate and location based 

data of players during and ice hockey match. This data was then shared with 

                                                

4 The arena project was run in collaboration between Ericsson, Luleå University of Technology and the 
Centre for Distance Spanning Technology (CDT) through the years 1999-2002  
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spectators via custom-made handheld devices [7]. In this study, “Measuring Breathing 

and Heart Rate Data with Distribution over Wireless IP Networks”, the work focuses 

primarily on the communication technology and less on the social impact that the 

system had. However, in a second project at the same centre, Hallberg and colleagues 

used similar custom-built technology to share data during the world’s largest skiing 

event, the Vasaloppet week. Three participating athletes equipped with sensors took 

part in a 90-kilometer open-track non-competitive skiing marathon. The data collected 

included altitude, position, heart rate and speed. This data was connected through 

Bluetooth and GPRS technology to the Alipes platform [140]. This context-aware 

platform then presented the data to spectators who logged into the project’s website 

through a Java applet [76]. By comparing both projects, we identify that Hallberg’s 

study faced more challenging situations primarily due to the participants being ‘in the 

wild’ [31]. For example issues such as data loss were significant and amounted to 

31% for the GPS data and 24% for the heart rate data across the ten-hour event. More 

importantly, the study reports that these interruptions in heart rate data seemed to 

influence the spectators’ behaviour during the event. This suggests a link between the 

presented data and the spectators’ behaviour. 

Although this project was not specifically investigating the effect that the deployed 

system had on the spectators, the authors do however report from survey data that the 

solution did enrich the viewers’ experience and that this approach could be valuable in 

augmenting television sports broadcast. Since then, the statistics presented through 

computer-generated graphics during television broadcasts, particularly in sports 

events, increased considerably. Additionally, capturing biometric data and presenting 

this to the television viewers is now technically possible. However, the use of 
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biometric data, such as heart rate, in public television and online broadcasts is still 

negligible. The reason for this remains largely unknown.  

However, a series of projects that explored this area were done in Nottingham. “The 

Experiment Live” was an artistic event in which Paul Tenant et al. looked at the 

possibility of using biometric data during television broadcasts [183]. They also look 

into whether television actors can fabricate biometric data during a live broadcast. 

Four participants were outfitted with sensors and were followed by cameras while 

they explored the basement of a presumed haunted house. The data was then broadcast 

live to a cinema where an audience followed the 40-minute event. The authors bring 

up the need to understand how to present visualizations that contain biometric data in 

ways that viewers can understand. 

Schnädelbach et al. conducted similar work at the same university. They captured 

participants’ data while riding amusement rides. Data visualizations that contained 

live video, audio, heart rate and acceleration data, were presented to spectators in a 

nearby location (n=90) [168,190]. The study reports that the data broadcast ‘extends 

the experience for riders while also enhances the entertainment value for spectators’. 

The results do not single out individual data types that were presented and the effect 

these types had. This is an aspect we are interested in investigating. 

5.3.2.2 Effect on social connectedness 

Some early research investigated the effect of biometric data sharing between a 

football team and their families and coaches [103,177]. In this study, football players 

wore heart rate sensors and the data of each player was transmitted in real-time. This 

data could then be openly seen from mobile devices that were located around the 

pitch. They found that sharing heart rate data added an element of competition 
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between the parents who expected their children to be the most fit in the group. They 

report that sharing the individual’s heart rate motivated the participants to attend 

sports practice more frequently and become fitter. These discussions also highlighted 

the general lack of understanding of the heart rate data in the study population. 

However, the data sharing became a tool for generating social interaction as parents 

discussed and joked about the presented data during the games. Such interaction 

would not have happened without the data sharing activity.  

A similar investigation but over a longer time period and with differing conclusions 

was conducted by Slovak et al. [176]. Slovak studied the effect of exchanging heart 

rate data in real-time between five couples over a two week period. In this case, the 

authors highlight the necessity of having contextual information. They report that 

viewing the heart rate data without any additional context was not very meaningful for 

the remote data viewers. For example, seeing remotely that your partner’s current 

heart rate is 100, leaves room for multiple assumptions including, the person is 

running or stressed or excited. This emphasized the importance of context awareness 

that gives meaning to heart rate values. On the other hand, the ‘mystery’ of not 

knowing the precise context seems to have helped create the reported increase in 

“feeling of connectedness” between the participants. This contrasts with earlier 

referenced studies that involved specific sports contexts with shorter timeframes. In 

this case, the participant-pairs who were intimate couples report feeling an increase in 

emotional connectedness with the remote other when knowing that the data visualized 

represents a physical part of the other person. This suggests that sharing heart rate data 

generates different feelings to different individuals. This difference seems related to 

the relation between the participants, prior to sharing the data. Participants remark that 

sharing the heart rate data represents great openness, as unlike facial expression, it is 
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something that you cannot intentionally control. This is particularly relevant when this 

data is shared in real-time.  

The increase in social connectedness is also supported in the work of Janssen et al. In 

a lab-based experiment, Janssen and colleagues presented participants with sounds of 

real heartbeats from a known person, heartbeats of an unknown person and computer 

generated heartbeat sounds. Participants associated an increase in heart rate with an 

increase in emotional intensity [85]. However, when listening to heartbeats of 

unknown persons, the participants did not feel any increase in connectedness. They 

did feel an increase in social connectedness when the heartbeat they listened to was of 

a known participant thus indicating that the degree of connectedness between the 

participants affected how much influence heart rate data sharing creates and the state 

of the social relation between the participants before the experiment. These results are 

also held by O’Brien and Muller in ‘Jogging over a distance’ [132,141]. They 

developed and tested a context-aware system that shares ambient sound and heart rate 

data between two remotely located joggers. Each jogger was equipped with a heart 

rate sensor, a pair of headphones and a telemetry device. The telemetry device 

transmitted ambient sound and heart rate to the remote device and vice versa. The 

jogger with the highest exertion effort heard the other jogger as if he or she was 

behind. Again, the results, in this case, indicated that sharing heart rate data in real-

time facilitated the social experience of the participants. The use of heart rate as an 

indication of effort provided a way in which athletes could interact and compare their 

performance in real-time.  

In summary, the work reviewed suggests two key influencing factors in heart rate 

sharing, namely 1) the context in which the data is shared, and 2) the social relation 

between the person sharing the data and the data viewer. 
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Figure 26: Event environment (left) and positioning devices on participants (right) 

5.4 Procedure 
The work presented here is part of a larger study that looks into facilitating social 

support in real-time contexts. This work is composed of a number of in-the-wild study 

iterations that include 1) a pilot study that was conducted during a triathlon with 3 

athletes and 9 online spectators. During this event, the athletes broadcast live data to 

the spectators. This data included locative and heart rate data. 2) A second study 

presented spectators with the live data of a single athlete. In this case, one athlete and 

8 spectators followed the event online. Details of these preliminary studies can be 

found in [43]. 3) The insights collected were then used to develop an open source 

research tool, BioShare, for sharing personal data such as location and heart rate over 

social networks. The design of this tool was supported by additional interviews with 

researchers who published studies that involve personal data sharing. For further 

details on this work see [41]. 4) Following this, a specially configured version of 

BioShare, named HeartLink, was deployed in a 5-kilometer running event with 5 

athletes and 140 online spectators (Figure 26). This deployment focuses on two 

aspects - the effect on the athletes from being supported by remote others and the 

effect on the spectators seeing live data. Details on the former can be found in [40]. 

This paper contributes to the latter, specifically, the effect on the spectators when 

seeing live heart rate of remote athletes. 

!
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5.4.1 System Design 

For this investigation, we sent a group of 5 athletes on a 5k-road race. We recruited 

athletes who were willing to participate in the event and were ready to share personal 

data using HeartLink. The athletes were each given a heart rate sensor and a 

smartphone device that was running the HeartLink mobile app (Figure 27). HeartLink 

[41] was configured as shown in Figure 28. The app connected to a Polar WearLink 

heart rate sensor via Bluetooth computed geographical location and broadcast this data 

to a remote server via mobile network. The data broadcast included heart rate, latitude, 

longitude, altitude, bearing, data accuracy and the time of the last reliable data update 

(GPS Fix).  

 
 
 
 

 

Figure 27: Customised HeartLink research application running on athlete’s devices 

!
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Figure 28: The system infrastructure 

The server that received the data then generated and presented visuals to the spectators 

via their web browsers. These visuals were based on HTML, PHP scripts and CSS 

style sheets. All the data was dynamically updated at 2-second intervals thus giving a 

“real-time” feel. The 140 online spectators were asked to log in the event’s web page 

through a custom-built Facebook app. They could select the athlete that they were 

interested in following and send live ‘cheers’ to the selected athlete by clicking a 

Cheer button. The Cheer button generates a small vibration on the device that is 

carried by the selected athlete and calls out the name of the person who sent the cheer. 

This makes the athlete aware that a crowd is following the performance. The 140 

spectators that were recruited for the event were composed of two groups. 64 

participants were recruited from the athletes’ social networks. We recruited on-line 

participants through athlete Facebook requests. Thus, these spectators knew the 
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participating athletes. 76 participants were recruited from CrowdFlower, a 

crowdsourcing platform that at the time of conducting the study accepted European 

requesters. These participants were socially distant from the athletes.  

 

 

Figure 29: Spectator login sequence 

At login, each spectator was randomly assigned to one of the two conditions (Figure 

29). Participants in the control condition were presented with live data consisting of 

the distance covered by the athlete, the percentage of the race that was completed, 

speed, pace and a map with an overlay of the athlete’s completed path. This was 

intended to make the spectators understand how the performance unfolded. The 

experimental group was presented with the same data plus the current heart rate of the 

selected athlete, the average heart rate and a chart with the heart rate. All spectators 

could also send posts through a Facebook frame within the interface as shown in 

Figure 30. To ensure that there was no cross contamination in the data between the 

control and experimental groups, each spectator only saw the posts sent by those 

following the same athlete and within the same experiment condition. By default, the 

posts sent were only visible on the HeartLink website and were not posted to the 

participants’ Facebook profile. The spectators were briefed on how the system works, 

the function of the cheer button and the effect of submitting posts. In the next sections, 

we specifically focus on behaviour differences between those presented with live heart 

rate and those who were not presented with this data. For further details on the 



 

 133 

system’s design and infrastructure, the readers are encouraged to see [41]. 

Additionally, results and detailed discussion on the cheering component of this work 

and its effect on the athletes may be found in [44]. 

 

 
Figure 30: Sample spectator interface 
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5.5 Results 
The findings reported in this section are derived by comparing and contrasting the 

number of cheers that different subgroup participants submitted, the time participants 

spent on the site and the cheering rate (cheers submitted per minute). Additionally, we 

substantiate these finding by reporting on behaviour differences in participant groups 

based on the messages posted during the event and the results of the post-event 

survey. In summary, we find that spectators presented with additional heart rate 

information show increased engagement in terms of the total number of cheers 

submitted and the self-reported ratings of the presented system. However, there was 

no significant difference between the spectator groups in the time spent supporting the 

athletes.  

5.5.1 Cheers, duration on site and cheer rate 

As common practice in experiments that involve unknown crowdsourced participants, 

we filtered out spammers from the outsourced spectator-crowd [127]. Additionally, 

during the event, data that was broadcast from the athletes’ devices was occasionally 

interrupted. This was primarily due to loss of mobile connectivity in parts of the race. 

Thus occasionally, different spectators did not see the data as expected (for example 

momentarily had no heart rate data). This depended on which athlete the spectator was 

following at any moment in time and whether the selected athlete presented broadcast 

‘blind spots’ while being followed. Thus, we analysed the athlete selection sequence 

of each spectator and filtered out spectators who during the event happened to switch 

to an athlete when the data was not displayed as expected. Based on this, from the 

total 140 spectators we select 41 participants who did not experience disruptions in the 

data (of these, 25 were presented with heart rate (HR) data, 16 were not presented 
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with HR data, 20 were in the Friendsourced condition and 21 were in the Outsourced 

condition (21)).  

We did not find any increase in the time spent on the site between those presented 

with the additional heart rate information and those who had no heart rate information. 

This, contrast with our expectations that heart rate viewers would spend extra time to 

familiarise with the additional biometric data. 

  
Figure 31: Left - Cheers submitted grouped by data presented, Right - Scatter plot for spectators’ duration on site 

by the number of cheers submitted for the friendsourced and outsourced condition 

Results show a significant difference in the total cheers submitted by the spectators 

that were presented with the heart rate data (M=15.83, SD=28.48) than those who 

where not presented with any heart rate data (M=3.93, SD=2.96); t(23.8)=2.029, 

p=0.05 (Figure 31: Left). On the other hand we encounter no significant difference in 

the time spent on the site by the spectators presented with the heart rate data 

(M=16.38, SD=20.73) and the spectators who were not presented with the heart rate 

data (M=21.44, SD= 25.91); t(27)= 6.58, p=0.52. The results also show that the cheer 

rate (cheers per minute) of the spectators who were presented with the heart rate data 

is more than three times that of the spectators who were not presented with this data. 

However, a t-test does not determine this as having any statistically significant value; 

t(38)=1.37, p=0.18. 
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Figure 32: Scatter matrix plot of spectators’ duration on site by cheers submitted for spectator recruitment source 

and data presented 

This lack of statistical significance seems conditioned by the added time that 

friendsourced spectators spent on the site before and after the event (Figure 31: Right). 

During this time, the cheering rate was low or inexistent since the event would not 

have started. Yet some friendsourced spectators logged in the site early to ensure that 

they did not miss any part of the event. The matrix scatter plot in Figure 32 takes a 

deeper look into this by presenting the Cheers and Duration across Source groups and 

Data conditions. We find a significant difference in the scores for Cheers submitted by 

the friendsourced participants (M=19.26, SD=31.2) than the outsourced participants 

(M=3.65, SD=3.1); t(37)=2.23, p=0.03. There is also a significant difference in the 

time friendsourced spectators (M=29.1, SD=28.1) and outsourced spectators (M=8.12, 

SD=7.49) spent on the site; t(39)=3.3, p=0.02. However, the rate of cheers 

(cheers/min) did not reach the conventional statistically significant difference between 
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these two groups; Friendsourced group (M=2.64, SD=5.07), Outsourced (M=0.65, 

SD=0.58); t(38)=1.74, p=0.09. 

5.5.2 Social network posts 

Table 5 shows the posts that the spectators posted on the interface. In total 60 posts 

were submitted by the 140 spectators. 28 were posted on the landing page while 32 

were submitted to individual athletes. Across all athletes, the spectators who were 

presented with additional heart rate data submitted more posts than those who were 

not seeing any heart rate information. The participants visualizing the heart rate data 

were more engaged with the athletes based on the number of comments posted. 

Table 5: Social network posts submitted by spectators 

 
 

5.5.3 Post event survey 

Immediately after the event was completed, the spectators were presented with a 

survey that was intended to collect feedback on the system. Questions asked in the 

survey were intended to understand the respondent’s readiness to use the presented 

system, the respondents’ understanding of the live data, gather insights for next 

system iterations and identify any possible spammers among the respondents (e.g. 

users filling compulsory questions with random text).  

Athlete no.
Posts from spectators 
seeing heart rate data

Posts of spectators not 
seeing heart rate data

1 5 0

2 7 2

3 2 0

4 3 1

5 11 1

Total 28 4

28

60

Comments not attached to a specific 
athlete
Total comments submitted
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Figure 33: Left - How informative was the live data  

(from ‘Not Informative - 1’ to ‘Very Informative - 5” on a 5 point scale)? Right - How would you rate the system 
(from ‘Bad - 1’ to ‘Good - 5’ on a 5 point scale)? 

The results from this survey support earlier findings. Figure 33 represents responses 

by the different groups for two key questions, namely, ‘How informative was the live 

data?’ and ‘How would you rate the system?’ on a five point scale. Comparing the 

responses of the two groups in the first question with an independent sample’s t-test 

indicates that spectators that were presented with heart rate data (M=4.03, SD=1.03), 

report finding the interface more informative (M=3.5, SD=1.11); t(66)=2.03, p=0.05. 

Those presented with the heart rate were also more positive when asked to rate the 

system (M=4.08, SD=1.05) in contrast with the control group (M=3.50, SD=1.11); 

t(66)=2.22, p=0.03.  

In summary, results indicate that the live heart rate of athletes, effects remote 

spectators in the conditions described above, differently. Specifically, the cheers 

submitted suggest that online spectators of sports events are more engaged when 

presented with live heart rate data of the athletes. However, we did not find any 

increase in the time spent on the site between the two groups. We have expected that 

spectators presented with the heart rate would spend significantly more time on the 

site at least because of the added learning curve that the additional heart rate data 

presents. 
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5.6 Discussion 
This study provides some interesting discoveries. Results indicate that the spectators 

who were presented with the heart rate data of the remote athletes were likely to be 

more positive about the system and cheered the athletes more. This suggests that by 

seeing heart rate visuals, supporters became more influenced by the effort exerted by 

the participants. Next we reflect on the results through existing theoretical 

perspectives and propose possible justifications for the spectator’s behaviour that is 

shown in these results.  

A: Biometric data visualisation improves understanding of athlete effort. 

The spectators’ mental interpretation of the heart rate is dependent on both their 

individual tacit knowledge and explicit knowledge [151]. To varying degree, 

spectators interpret the live heart rate visuals through their a priori knowledge of what, 

say, a value of 165 beats per minute represents. Should the spectator have the explicit 

knowledge from past experience, then this knowledge is likely to be applied in this 

context by relating the presented value to one’s historic situations. On the other hand, 

those lacking any experience of a heart rate representation may either be put off by its 

representation or build a mental representation of the situation based on the context 

rather than the data per se. For example, by presenting the heart rate data in a dial 

graph where 150 beats per minute is represented in a red segment, than the visual may 

convey high exertion, not necessarily because of the data per se but because of the 

context. That is, the needle at the end of the dial scale is associated with a high value 

and this is reinforced with the red legend where red is typically associated with ‘alerts’ 

[152]. This would then contribute to the spectators’ a priori experience for (future) 

post-priori cognition.  
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B: Spectators seeing the heart rate become more context-aware. 

Information can be subjective or objective. Subjective information can be perceived in 

an interpretive manner while objective information is not the subject of interpretative 

information [10]. For example data captured from sensors, such as the geographical 

positioning of the participant on the map, is considered as objective information and 

leaves little room for ambiguity or self-interpretation about the position. However, 

different readers can interpret subjective data, such as a post on Facebook that says 

‘I’m struggling’ differently and this can be very much influenced by the context. 

Knowing that the context of this post is that of a student studying at home, gives a 

completely different meaning than knowing that the person is a patient. The context 

influences how the participants interpret their environment [122]. The objective 

information, such as the data that is collected from mobile phone sensors, has a low 

level of expression of contextual information (in comparison to for example a 

descriptive narrative of the context). However, context contributes a significant impact 

to the cognitive understanding of a situation [10]. A change in context can retransform 

the interpretation that the user makes of the  “mental representation of reality, even 

when reality has not changed” [22] p. 136. 

Bae et al. [10] show that both subjective and objective context information can 

influence what other users understand of the context which in turn affects their social 

supportive behaviours. Different studies use different types of context information. 

Bae et al. use four context types [Activity, emotion, location and physical 

environment] [10]. Dey uses emotional, location, orientation, time and day 

information [43]. Our work uses activity, location, time, day and physiological state. 

We observe that although all the data is presented in an objective form using numbers 

that were generated through sensors, however, the heart rate still provides a strong 
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element of speculation and self-interpretation. In other words, although all the 

spectators are concurrently seeing the same data and know the same context, 

individually, their understanding of what a 160 beats per minute represent differs.  

Additionally, over time, this process helps spectators’ learn what heart rate values 

represent. First, seeing others’ heart rate helps in building a personal ‘historical 

average’ of what a typical heart rate in this context may be. This historic context, in 

combination with expectations management, may explain the spectators’ reaction. For 

example, should spectators repetitively see the heart rate of participants in close 

proximity to 120 within successive similar events, than their expectations of the data 

are adjusted accordingly. Should then the spectators be presented with a heart rate of 

175, than they are more likely to interpret this as the athlete is exerting extreme effort.  

C: Real-time automated biometric data broadcast may be perceived less biased 

than manually input data that can be curated. 

Heart rate data is widely considered as very personal data due to its ability to 

communicate feelings and emotions. This is particularly highlighted in Slovák’s work 

where participants who shared their heart rate while playing poker were concerned 

that this will tell their strategy off [176]. Worthy et al. show that humans appreciate 

those who share personal information and sharing of such information creates more 

intimacy among individuals [199]. Self-disclosure can vary in breadth (variety of 

shared information), length (longitudinal time) and depth of information [125]. In this 

study, the heart rate data sharing seems to contribute to an increase in the ‘depth’ 

dimension of self-disclosure. 

D: Those presented with additional heart rate information face a longer learning 

curve in data interpretation. 
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Our results did not show any significant indication in this regard yet it is still worth 

noting for future consideration. The participants in the heart rate condition were 

presented with data that may have necessitated a longer learning curve. This made us 

expect a longer duration spent by the participants on the site. On the other hand, 

participants who were not presented with the heart rate data may have found the 

interface less interesting, too simplistic and consequently less engaging. However, the 

increase in cheering and the more positive outlook on the system as reported by the 

spectators, suggests that this explanation alone is not sufficient. David Hoffman gives 

a detailed description of how visuals are interpreted by humans [77,78]. Visual stimuli 

are decoded by performing a probabilistic analysis of how the stimuli are related to 

previous experiences. Should we consider a random population of participants we may 

comfortably assume that few participants are likely to be familiar with the 

representation of a heart rate. However, in a study conducted by Slovak et al. 

participants who were unfamiliar with heart rate quickly got used to its representation 

when presented with heart rate feedback during day-to-day activities. Further studies 

are needed to explore this perspective further. 

5.7 Limitations and Future Work 
Results indicate that sharing heart rate data can have positive effects on spectators’ 

engagement. However, we are short of pinpointing one specific reason as to why this 

happens. The spectators’ behaviour seems dependent not only on the crowd itself but 

also on the individual personalities and experience, as discussed earlier.  

Our data does not take into account the fact that the visuals presented to the supporters 

who were not presented with heart rate data could have been simpler and thus less 

visually engaging for the spectators. Our analysis also does not take into account the 

values that were actually presented to the spectators (e.g. a heart rate of 170 vs. 120). 
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This could have influenced the spectators. For example, research in psychology and 

social media shows that individuals are more reactive to negative information than 

positive information [47] and this is rationalized through the negativity bias [12]. In 

this light we expect that if viewers are aware that a higher heart rate value represents 

greater exertion effort, spectators are more likely to engage with the interface and 

provide support in ways that the spectators believe is most supportive. Future work 

should look into this assumption along with other data-representation variations, such 

as the current athlete’s altitude, gradient, or the athlete’s position in the race. 

Additionally, social support is influenced by how much the supporter perceives that 

the supported needs support, even when the supporter does not know the supported 

[10]. Biometric parameters such as the heart rate can increase the supporter’s 

understanding of the effort exerted by the supported. 

These results are congruent with existing research on heart rate data sharing. Janssen 

et al. showed that heart beat communication can be considered by others as an 

intimate cue [85] while Slovák et al. indicated that heart rate communication can 

improve social connections [176]. The increase in spectator engagement that is 

reported in this work could be particularly relevant not only for online social networks 

but also for traditional one-to-many broadcasters.  

Presenting additional heart rate data during television broadcast promises an increase 

in viewer engagement. This is most relevant for sports broadcasts where athletes’ 

performance is based on exertion [76]. For example, presenting the average heart rate 

of two teams playing in a televised soccer match could enhance the story being 

conveyed by the broadcast, it gives commentators more opportunity for discussion and 

makes televised graphics more dynamic. In recent years, television broadcast has 

increased the quantity of graphical information and statistics presented to viewers 
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while studies showed that dynamic graphics have positive effects on viewer 

engagement [65]. On the other hand, heart rate data may enhance story telling because 

of the added detail that constructs the context. For example presenting the average 

heart rate of the two teams can help the spectators to better hypothesise which team is 

most tired and thus less likely to improve performance.  

While technically doable, these implementations pose social challenges particularly 

due to the sensitivity of biometric data, ethical issues and different legislations on the 

topic. While these are very important issues that need to be factored in, in this paper 

we focused our attention on the impact that sharing heart rate data can have on remote 

online spectators.  

5.8 Conclusion 
In this paper, we compare the effects of sharing heart rate data and user engagement in 

a real-time feedback context. A number of studies looked into the effect of sharing 

heart rate, however, these were primarily focused on sharing data between individuals 

and without real-time feedback from remote crowds [86,132]. We recruited online 

spectators who followed athletes during a 5k-road race. Each of the spectators were 

randomly assigned to one of two conditions; in the control condition the spectators 

were presented with live locative data and in an experimental condition the spectators 

were presented with both live locative data and heart rate data. Spectators who were 

presented with additional heart rate visuals showed more attempts to support the 

athletes and submitted more comments to the site. 

These results support existing literature, indicating that visualizing other’s heart rate 

can increase engagement and the connectedness between the data sharing user and 

data viewer. We provided possible justifications by drawing insights from existing 
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theoretical perspectives that support these results. In summary, we find that the heart 

rate representation may enhance the supporters’ perception of the effort that is exerted 

by the athletes. Secondly, supporters may feel an increase in self-disclosure on behalf 

of the athlete sharing heart rate data. Thirdly, real-time data from sensors may be 

perceived as trustworthier than other traditional self-curated content such as text 

messages.  
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EMBEDDING A DISTRIBUTED CROWD INSIDE A SMART DEVICE 
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6.1 Abstract 
This paper presents a digitally connected relay baton prototype that links long-

distance runners with distributed online crowds. This context-aware baton broadcasts 

live locative data to social network and communicates back remote crowd support to 

the athletes through haptic and audible cheers. The work takes an exploratory design 

approach by building on prior research into biometric data broadcast and brings new 

insights in the space of designing real-time techno-mediated social support. This 

prototype was tested during a 170-mile charity relay race across the UK with 13 

athletes and 261 on-line supporters. Based on the insights collected from the design 

process and the deployment, the study identifies user-motivation for implementing 

systems that facilitate real-time remote support in a sporting context. The work also 

identifies fundamental design considerations that designers should take into account in 

their decision-making process.  

6.2 Introduction 
Crowd support can contribute to the success of competing athletes during sporting 

events. However, up until recently this could only happen if the athletes and the 

spectators were in the same location, such as at the stadium or along the racecourse. 

There has been very little, if any, investment around interacting with remote spectators 

during sporting events even though they often consist of a much larger user population 

than co-located spectators. Most of the existing technology that allows remote 

spectators to show their support has been designed for post-race feedback with little or 

no effect during performance. 

More recently, through a copycat strategy, several commercial mobile sports 

applications have implemented simple cheering modalities whereby online friends can 

send digital ‘cheers’ to athletes during the sports activity itself. These cheers are 
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typically sent as sounds, vibrations or audible messages on the athlete’s device. 

However, although commercial implementations have rapidly progressed, remote 

crowd support still remains an under-explored area of research within the HCI 

community. The objective of this paper is therefore to investigate this research area 

and draw a design space that provides a guide to designers of future real-time crowd 

support systems. 

 
Figure 34: The long-distance relay baton type A during a test run 

Related work [42,44] suggests that real-time remote support might be most effective 

during challenging sporting events – such as long distance running – during which the 

athletes are most likely to feel lonely. To further investigate this we designed a baton 

prototype (Figure 34) that can be carried by the athletes engaged in long distance 

running relays. We deployed this device in a 170-mile relay race across the UK with 

13 athletes and 261 online spectators. The relay was a particularly challenging effort 

that involved running in remote parts of the country and at night. 

The baton broadcasts locative and performance-related data to online spectators 

through mobile networks. Spectators can follow the live data through their browsers 

and by pressing a ‘Cheer’ button, they send a small vibration to the baton. Thus, the 

athlete becomes aware that his/her performance is followed by spectators around the 
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globe. The baton also calls out the name of the ‘cheering’ spectator so that the athlete 

is informed where the support comes from. As we shall further elaborate upon later, in 

total, the work required 380 hours of product design and development in a co-design 

approach [163]. 

Through observations, a focus group and server-collected data, we identify key 

aspects that give bearing to technology-mediated crowd support systems. From these, 

we then isolate three fundamental design considerations for real-time crowd support: 

(1) the degree of spectator expressiveness, (2) the context applicability, and (3) the 

real-time data flow within the social network. Spectator expressiveness may range 

from a limited or ‘low effort’ Facebook-style ‘like’ to a more expressively-open 

fashion where spectators can cheer athletes live thorough microphones as an aggregate 

crowd. 

6.3 Existing Work 
The study of live distributed-crowd support is a relatively new area of research. There 

are however some applications whose function is based on ‘crowd processing’ which 

operates in real or near real-time. Most closely related is Bernstein et al. Soylent [17]. 

Soylent is a word processor that summarises documents on demand by harnessing the 

collective intelligence of Amazon Mechanical Turk workers. Similarly, TimeWarp 

[105] (an evolution of Legion:Scribe [106]) lets users transcribe live speech by 

efficiently segmenting the narration into manageable chunks and assigning different 

segments to online distributed operatives. A more empathic-based objective is 

presented by Morris et al. in their attempt to crowdsource collective emotional 

intelligence [128]. In this work, distributed online participants contribute emotional 

support through ‘cognitive reappraisal’ [72] of an individual’s emotional state. These 

cases show that remote crowds can have positive effect on an individual’s instant 
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necessities not only through harnessing mental calculations but also in the more 

challenging social and emotional support applications. We are interested in 

investigating real-time crowd support in a sporting context. 

A commonly cited work within a sporting context that is closely related is ‘Jogging 

Over a Distance’ [103]. Mueller et al. explored the effect of having two distant 

athletes communicate during jogs to support each other. Although this work did not 

involve crowds, the research outcomes indicated that providing the athlete with real-

time feedback from a remote athlete enhances the social experience of the 

participating athlete.  

On the other hand, research cases that involve multiple spectators within sport focus 

on either 1) augmenting the experience of remote spectators by for example 

broadcasting additional personal data (e.g. see [11,76,103]) or 2) on connecting 

spectators during events (e.g. [84,116]). For example, Hallberg’s study [76] presented 

the seminal work on sharing live telemetry data from athletes to remote online 

spectators through mobile networks. In this paper we augment the experience of 

spectators that are following the event remotely by allowing these spectators not just 

to follow but also to interact with the athletes by sending live cheers through the 

custom-designed digital relay baton.  

Recently, Curmi et al. conducted a series of studies in which remote spectators 

supported athletes participating in a triathlon, a charity run and a competitive road 

race [42,44]. They conclude that supporting athletes remotely can have a positive 

impact on athletes. Additionally, results in this work suggest that remote-support may 

be most relevant when the task is challenging and in situations where the athletes feel 

lonely. Similar indications can be drawn from the commendable work of Wozniak et 
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al. [200] where they deployed a similar crowd feedback system in a 10km externally 

organised event.  

Based on these indications and with the intention of maximising the effect that remote 

crowd support may have on the athletes, we deploy real-time crowd support in a long 

distance relay race and a custom designed digital baton. Long distance relay races are 

typically non-competitive sporting events and often present an environment that is 

challenging and where athletes may feel lonely particularly during nighttime. They 

range in duration from a few hours up to a number of days. Popular races are the 

annual Great Britain Relay Race, the Olympic Torch Relay or the Queen’s Baton 

Relay in the Commonwealth games.  

Similarly, digital batons are not new. At the University of Bath, a group of students 

developed a baton that periodically records its position internally5. A more complex 

model is the Queen’s Relay Baton6. In this case, the baton periodically logs its 

position and internally records a front facing and a rear facing video camera. 

Additionally, the baton broadcasts its position online such that spectators can follow 

its location.  

We build on existing work, and implement a synchronous two-way communication by 

which the baton does not only collect and broadcast data from the athletes to 

spectators but can also collect distributed-crowd support and communicate this 

support in real-time back to the athletes that are carrying the baton. 

                                                

5http://www.theiet.org/students/you-and-iet/on-campus/2012/gps-enabled-baton.cfm  
6 http://www.thecgf.com/qbr/  
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6.4 Design Process 
Figure 35 shows the key stages in the co-design process of the relay baton. This 

culminated in the 170-mile deployment. As mentioned earlier, the authors were 

interested in this event because of its challenging nature both in terms of mental effort 

(e.g. loneliness) and physical endurance. These factors were sought since earlier work 

suggests their relevance to the proposed system [35]. Moreover, conducting research 

‘in the wild’ in an extreme 170-mile event promised design issues hardly to emerge in 

conventional / lab context [174]. 

 
Figure 35: The design process 

6.4.1 The event 

The relay race was a charity event organised by a university running club. Before 

committing themselves to taking the event onto open public roads, the organisers 

considered conducting it as a 170-mile relay race around campus. However, this 

choice was discarded as deemed ‘far too boring’ even with the promise of a larger co-

located cheering crowd. “We wanted the real thing [outside university] but then we 
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realized that we would not have anyone able to support us in such long 

distance” [event organiser].  

In the end the event was oganised as a coast-to-coast race along an historic route 

known as ‘The Way of the Roses’. The route starts from Morecambe in Lancashire 

and ends in Bridlington in East Yorkshire. The course had varying altitude ranging 

from sea level to 400m. The race started at 0900hrs and was expected to last 

approximately 24 hours. The actual duration was particularly dependent on the 

athletes’ pace but also on the weather conditions and the athletes’ ability to follow the 

correct path. ‘The Way of the Roses’ is a cycle route that is part of the national cycle 

network and which most people cycle over two to three days. It goes along roads and 

cycle paths and is well marked along the route. However, the markings are not always 

easy to follow. For example, a marker may be hidden behind a parked car. This made 

the athletes’ task more challenging adding to their cognitive load during the event. 

Athletes passed the baton at predefined handover checkpoints of 5-mile intervals. To 

ensure that no athlete was alone at any point during the race, at least one cyclist 

accompanied the athletes throughout the course. Additionally, a support vehicle 

transported the runners from the previous and for the next relay leg so this vehicle was 

always waiting at the next handover checkpoint. Both athletes and organisers also felt 

that nighttime was going to be particularly challenging, as the countryside lanes would 

be dark and deserted.  

6.4.2 The design process as a research process 

The relay baton, the crowd-powered interface and the interaction design was co-

designed with the event organisers as the end-users. This process was primarily user 

driven. The time from the initial meeting to deployment was three months. This co-

design process was punctuated by five key stages as shown in Figure 35.  
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Figure 36: (a) early design sketches, (b) internal energy storage, (c-f) shell design and shaping tool, (g) the relay 

baton type B (with extended battery capacity) 

First (1), an initial preliminary meeting with the organisers defined the scope of the 

event and the preliminary system desires. Second (2), three relay baton prototypes 

were iteratively developed (Figure 36a-g) along with the real-time data handling 

server and the crowd’s online interface. The organisers were engaged throughout this 

process and provided a regular contribution to the design decisions through face-to-

face meetings and online correspondence.  This prototyping process lasted one month. 

This was followed by another month of ‘in-the-lab’ and ‘in-the-wild’ testing by the 

researchers/developers. The objectives included reliability testing, user interaction 

evaluations and energy consumption testing in both city and rural conditions. A key 

concern when designing telemetry for extreme conditions is the ability of the baton to 

reliably handle mobile disconnections and reconnections in the wild while seamlessly 
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transfer data to and from the crowd. Thus (3), the testing included transporting the 

baton in rural areas at the edge of mobile coverage and beyond. One month before the 

170-mile event, the baton was handed over to the running club and a training session 

was conducted (4). This session included guidelines on correct handling, how the 

system works, information on spectators’ recruitment process and presentation of the 

spectators’ interface. As part of the briefing, we also informed the athletes that they 

were free to adapt the prototype in whatever way they felt appropriate. For example, 

they might have wanted to attach straps that will make it easier to carry the device 

over long distances. Finally (5), the athletes further tested the prototype during eight 

training races. Any feedback that was collected by the organisers was then 

implemented in the prototype. This feedback involved minor software changes 

regarding simplification of the logging in process for the spectators and aesthetical 

enhancements. 

6.5 The Baton 
The baton’s outer shell (Figure 36) is made of Polyvinyl Chloride (PVC). A hollow 

cylindrical pipe was heated and reshaped into the required form factor with a custom-

made tool (Figure 36d). This tool facilitated consistent reproduction of the required 

form factor thus minimising variations between test-iterations. In total three iterations 

were created and each successive iteration primarily improved ergonomics and 

dimensions. For an aesthetic finish, the baton was spray-painted and the 24mm-radius 

handgrip was covered with tennis racket grip tape. This decreased the likeliness of the 

baton slipping during handovers. The soft grip tape also made the baton more 

comfortable to carry over long distances and provided perspiration to sweat. Other 

design considerations included design for both rainy and sunny conditions (i.e. the 

interface needed to be appropriately visibly during the day), night-time visibility, 
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energy autonomy, data updates (i.e. updates should be fast enough to give a real-time 

feel to the spectator) and aesthetic look and feel.  

In line with the rapid prototyping approach adopted, an Android device was used as 

the main processing and display unit. This approach shortened the design cycles in 

contrast with developing a custom interface and telemetry hardware. In a second 

design iteration, a modified off the shelve 5400mAh power-bank was embedded 

within the device to provide enough energy storage for an autonomy of 24 hours of 

broadcast. In the third iteration, this form factor was adapted such that 12000mAh 

battery capacity could be stored inside the baton thus giving a continuous broadcast 

capacity of 96 hours (Figure 36g). The extra contingency in broadcast hours was 

implemented for any variances in power consumption when broadcasting within rural 

areas and for the effect that the crowd cheering could have during the real-life 

deployment. 

Through a custom built native app, the baton collected and broadcast telemetry data 

every 10 seconds to a remote server using a RESTful API over HTTP protocol [14]. 

The process was managed as a background asynchronous thread in Android OS. 

When the mobile data network was available, this thread broadcast the data with a 4-

second timeout and buffered the transmission data whenever the mobile data network 

dropped. 

6.6 The Athlete’s and Crowd’s Interface 
The remote server collected the data and presented the data in a browser interface as 

shown in Figure 38. Figure 37 shows the complete infrastructure. This infrastructure 

was based on BioShare [41] but the default configuration of BioShare was adapted to 



 

 157 

meet the needs of this investigation. BioShare is an open source tool that allows 

researchers to collect and share data over social networks in real-time. 

 
Figure 37: System configuration 

It also allows data viewers to send instant feedback to the data sharing users. The 

baton’s interface displayed the time, the current speed, the altitude and the total cheers 

that were received. When started, the native application presented a ‘Start Broadcast’ 

button. This button was hidden once the broadcast started and all user interaction 

through the display was disabled. This minimised the possibility of accidently turning 

off the broadcast during such a long event. Stopping the broadcast necessitated 

triggering a hard-to-press button that was within the baton. 
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Figure 38: Distributed spectators' interface 

6.7 Spectators’ Interaction 
When loading their interface, spectators could either sign in with Facebook or 

manually type in their name (Figure 39). During the 170-mile relay race, spectators 
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could then follow the live data through any Internet-connected web browsers. The 

data presented by the server included the name of the spectator, the total cheers that 

the athletes received, the cheers sent in the last hour, the total number of spectators 

who have sent cheers, the total number of messages sent, the race duration, the 

distance covered, the average speed, an interactive chart that displays the covered  

altitude, the weather at the athlete’s location, and a map with the covered path and 

position of the baton at that moment in time.  

 
Figure 39: The login interface for spectators 

The crowd’s interface also displayed whether the baton was online or offline and the 

time the data was received from the baton. This was relevant particularly when the 

baton lost mobile data connection through remote rural areas. Additionally, a 

Facebook messaging frame was also embedded in the interface such that spectators 

could send and read messages. This was intended to build a community around the 

activity as the event was taking place. In this way, whenever the data broadcast from 

the baton was interrupted due to a loss of network coverage, the messaging interface 
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provided a secondary source of engagement for the spectators and potentially alleviate 

the disconnection problem [33]. 

A system control panel allowed the organisers to send messages to the crowd in a 

persistent-positioned space on their screen. This approach followed insights gained in 

pervious research [44]. This manual message broadcast was intended for crowd 

coordination in unexpected circumstances that a live event occasions. From past 

events we noticed that, for example, a technical fault in the telemetry system could 

lead the spectators to multiple conjunctures; such as the system is not working, or the 

event stopped, or that there was an accident. Thus, the “online/offline” indicator on 

the spectators’ interface could mitigate such potentially misleading situations. This 

information on mobile-awareness could also make the user value the effect of changes 

in connectivity on the system [32] and appreciate the athlete’s environment.  

Finally, the presented interface had an always-visible “Cheer” button and a “Cheer 

Intensity” slider. The Cheer Intensity slider had no effect on the cheering, and the 

spectators were not given any information about this element. On the other hand, 

pressing the Cheer button triggered a small vibration (400ms) on the baton that was 

carried by the athletes. Hence, the athlete carrying the baton builds awareness that a 

crowd is following the performance. The baton also calls out the name of the person 

who sent the last cheer so the athletes understand whether the live support is coming 

from known or unknown spectators. Both the athletes and the spectators were aware 

of these dynamics and the interaction effects. 

6.8 Findings 
13 athletes participated in the 170-mile relay race that lasted 23 hours 45 minutes. 261 

spectators submitted cheers that totalled 3153. Unexpectedly, the biggest challenge for 
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the athletes during the race was to stay on track in country roads. On multiple 

occasions, athletes followed a wrong direction and had to run back. On one occasion, 

an athlete had gone three miles in the wrong direction. For this reason, the actual total 

distance covered by the athletes was 185 miles. Since the course markers are designed 

for cyclists, sometimes these are positioned at a distance from their respective turn. 

This distance may provide the right timing for a cyclist but less so for a runner. As 

these occasions happened, remote spectators could follow a ‘top view’ of these wrong 

turns and closed alleys entered, through their live map.  

 
Figure 40: 2G and 3G-cell coverage based on OpenSignal coverage map as predicted on the day before the event. 

The blue path represents the actual data connections, and the red represents data disconnections 

Another point of consideration was the weight of the baton. Upon carrying the baton 

for a long distance, some athletes felt the baton heavy so in some passages the cyclists 

had to carry the baton instead. The athletes could then still hear the cheers but saved 

on carrying the weight.  

A major concern for such an extreme in-the-wild event was the mobile network 

coverage throughout the 170 miles, most of which, was in rural areas (Figure 40). The 

assigned server received data from the baton live during 74% of the race (17 hours 34 

minutes). In total, there were 12 live data drops. Of these 11 were due to blind spots in 

the mobile network across the course and one due to a software liability. In this count, 

a blind spot is true whenever the data connection interval between the server and the 
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baton is greater than 60 seconds. Although the total number of drops may seem high, 

during the event, small drops did not appear to distract the spectators. Post submitted 

during the event suggested that blind spots of short duration might increase the 

spectators’ curiosity and their interest in knowing what is happening. These positive 

effects from data disconnection could be attributed to the design decision of giving 

connectivity feedback to the users [34].  

6.9 System Relevance 
From the design and deployment process, we extrapolate motivations for real-time 

crowd-support systems. Next we list these motivations. This list is not necessarily 

exhaustive and future evolutions of this and similar systems are likely to provide 

additional applications and contexts. All quotes within these results are athletes’ 

statements unless stated otherwise. 

6.9.1 Receiving live support 

The most evident motivation for using the system is that of having a live supportive 

audience i.e. athletes become aware that others are sending their support:  

“… we got frantic text messages [SMS] from X, someone else in the running club, who 

said, oh you just disappeared on the map. We said, ‘it’s fine, still alive, it’s all good.’ 

You definitely got the sense that people were tracking it for long periods”.  

The athletes refer to two distinct ways in which real-time support is effective. The first 

is in mitigating loneliness. “In this sort of event, where it is a very lonely event 

because it is just you and the cyclist, it [remote support] is helpful. In a [competitive] 

race cheering does not massively help me.” Similar results were identified in earlier 

work [44]. The second way is in mitigating fatigue: “You’ve done so many miles and 

you may be really struggling and that [the cheering] is just what you need.”  
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6.9.2 Having followers  

Sharing data also provided a sense of prominence. In our investigation, we take into 

account the data sharing (i.e. knowing that others are following the event) and the 

crowds’ feedback (i.e. receiving support), separately. During the event, the athletes 

were mindful both of having their effort followed (telemetry) and of receiving support 

from remote spectators (cheering). Interviewed athletes commented positively on both 

the sharing of data through telemetry such that spectators can follow the event and 

also on receiving live support. 

“It is the mixture of the two… people had the data to know where we are, and they 

also followed it… I know that my mum followed it for a lot of the time because she had 

the cheering so it was like ‘oh I am cheering them on!’.” 

The broadcasting of live data from athletes to spectators did not only initiate 

engagement but also opened up communication over secondary channels like 

traditional SMS texting. 

“When this person from the running club was watching he would texts us [standby 

athletes] and we all cheer and we go ‘ye this is another cheer to us’. It may be 

midnight and he probably should be in bed, but no he sat up there following and 

cheering us.” 

6.9.3 Using live telemetry as a proof of accomplishment 

One of the most surprising findings is the use of live telemetry as a proof of 

accomplishment. The athletes report that the telemetry provides evidence of task 

completion. This supports existing literature [176] and earlier work [42,44] where the 

real-time sensor-captured data broadcast is reported to give the data viewer an 
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increased perception of truthfulness than what otherwise may be considered as curated 

content. In this light, the live telemetry provides curiosity, suspense and expectation. 

6.9.4 Democratisation of sport events 

The charity event upon which this research is based was driven by university students 

with limited funding and resources. The cost of material for developing the relay 

baton was £15 excluding the Android phone while the cost of telemetry data for the 

whole event was less then 10p. Over the 24-hour event, the baton used a total 

telemetry data cost of 4.2Mbs. This created a method of democratising the endeavour 

at a widely accessible cost. The organisers could broadcast the activity live in a way 

that remote spectators can follow and interact with the athletes with similarities to 

commercially driven broadcast events. In this way, non-famous athletes become less 

dependent on traditional broadcasters to broadcast themselves.  Non-famous athletes 

can self-harness the power of their social media for spectator support irrespective of 

how famous they are. 

6.9.5 Triggering support mindfulness  

The athletes report perceiving an association between the altitude and the support they 

were receiving. Figure 41 shows the cheers submitted by the remote crowd across 

time. This shows that spectators cheered at different intensities, thus suggesting that 

spectators are interested in externalizing varying degrees of excitement and support. It 

also indicates that spectators do not cheer randomly but are influenced by the data and 

external dynamics such as the current altitude or the perceived exertion effort as 

suggested in [99]. This relationship is also reflected in the athletes’ comments:  

“We started the hill and at the top of the hill we got so many more cheers. It was quite 

remarkable”.  
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“In the first hill they went up by about 500.  Joe had a very hilly section”. 

These results support earlier work that shows that remote spectators are keen in 

building clear images of the remote context through data [176,179]. In this work, both 

locative and physiological data was shown to make the actors feel closer. Designers 

should thus seek ways to augment spectators’ emotional experience of the remote 

environment and the effort exerted. 

 
Figure 41: Cheers submitted during the event by cheer intensity. Cheer intensity has a default value of two. 

6.9.6 Transposing social network edges 

After the event, the athletes positively commented that: ‘knowing who was supporting 

you [during the event] was really nice… ’. “I really like being able to hear who it is 

who is cheering, especially if they know it is your section, so they are cheering you.”  

In line with earlier work [44], we observe that the most effective live remote support 

seems to be that of acquaintances. “People I know best are effective, however, if you 

had someone who is around the other side of the world supporting you, [excited] they 

must have logged on especially to help, it is not something which I feel I was duty 

bound to do, so that could be quite nice.” 
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6.9.7 Satisfy a social need to connect, just-in-time 

Allowing spectators to login through either Facebook or by manually inputting their 

name opened up room for fake names. Some of the names used by friends were not 

particularly suitable, such as, ‘We hate Pete’, which, in general, is not a good thing. 

The fake names issue can be minimised by enforcing login through a social media app 

like Facebook. However, issues such as lack of anonymization and a need of having a 

social media account would then arise. Most of the cheers (69.8%) were sent by 

spectators who logged in as ‘Guests’ (i.e. remained anonymous). On the other hand, 

the fact that the baton synthesised the log in name, prompted some of the spectators to 

re-log into the system and insert complex messages in their name field. In this way, 

they could send customised messages, like “go Mike” (rephrased), to the athlete 

carrying the baton. This highlights the spectators’ interest in communicating with the 

athlete during the event with more expressive tools than binary cheers. 

6.9.8 Reaching a new audience 

For the event organisers, the proposed cheering system facilitated reaching a new 

audience that was otherwise not connected with the event during the event. This 

‘audience’ is likely to be different and in addition to the spectators who would be on 

the course cheering. After the event the organiser highlights, through reflection, key 

engagement values: 

‘We used it [the system] more to let people know how we were going because we knew 

that people would not be able to come and see it [the race] very easily as we went 

past. So we wanted people to still be involved.’  

This is likely to increase event awareness and web traffic to the charity event’s 

webpage both of which are important marketing affordances. Additionally, having an 
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innovative system where spectators could interact with the athletes live, facilitated 

event advertising through social networks before the event. 

The organiser believes that the cheering is most effective because it gives the audience 

a feeling of contribution, ‘they feel they are participating’. This, irrespective of 

whether the cheering has any effect on the athletes or otherwise.  

6.9.9 Tracking and event control for organisers 

An unintended consequence of carrying the baton was the ability of the organiser to 

track where the athletes are and immediately detect wrong turns. On two occasions, 

this helped in guiding athletes (remotely via the cyclist) back on the course. 

Additionally, through the live telemetry, the spectators present on the course could 

know when the athletes are coming up towards them and where and when they should 

be ready to cheer.  

 

 

Figure 42: Design considerations 
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6.10 Design Considerations for Remote Crowd Support 
These results encourage the design of smart devices that facilitate real-time remote 

crowd support. These social support systems bring in a unique combination of design 

decisions that designers need to take into consideration. Figure 42 lists the key design 

variables that designers may draw upon. We group these in three: spectator 

expressiveness, context applicability and network configuration.  

6.10.1 Spectator expressiveness 

“I loved the cheer intensity…! Aaaa ok I am not going to cheer them very much!” 

[Athlete - Laughing] 

A design consideration is the degree of expressiveness that spectators are allowed to 

show. This brings in play considerations such as the number of cheers that spectators 

are allowed to send, the cheering modality and whether spectators are allowed to 

generate customized cheering themselves (e.g. record their own messages) or use pre-

defined modalities (e.g. system sound effects).  

A common question in the design process was - should spectators be allowed to cheer 

unlimitedly? In hindsight, an unlimited option as deployed in the presented case may 

better express human emotions. When this feature was discussed during design 

meetings, some athletes showed surprise in having unlimited cheers. Existing social 

networks deeply nurtured an expectation of one ‘Like’ per actor. Originally, this 

approach may have been driven by a technical need of social network simplification. 

However, in a real-life situation, there are no such restrictions and emotions are 

expressed in varying degrees by different users with diverse social ties.  

This leads in a second design decision; deciding the explicitness of the cheers, ranging 

from very subtle feedback to explicit feedback. At the end of the scale, explicit 
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feedback may consist of audible cheers that are loud enough for nearby athletes to 

hear.  

A third design decision is the degree of openness in cheer expressiveness. In this case 

at the lower end of the scale is having predefined cheers such as haptic cheers. The 

other end of the scale one could allow spectators to send self-generated support. An 

example of this may be that of allowing spectators to stream live voice comments to 

the selected athlete while the spectator’s spacebar is pressed. More open approaches 

are likely to increase spectator expressiveness but are also expected to increase ethical 

and security concerns. 

 
Figure 43: Crowd cheering effectiveness in relation to task design 

6.10.2 Context applicability 

In which conditions are the cheers most effective? The results highlight two key 

factors that influence the effectiveness of remote support; 1) the challenge-intensity 

that is provided by the task and 2) the loneliness (or otherwise) of the event. This is 

depicted in a 2x2 matrix in Figure 43. Earlier work suggested that support is most 

effective during a ‘challenging’ task. However, upon comparing the loneliness arising 

from the long-distance relay event with earlier work, it seems that the awareness that a 

remote crowd is following the performance is more impactful when the athlete is 
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feeling lonely rather than otherwise (e.g. when there is already a crowd of cheering 

spectators along the course).  

6.10.3 Network configuration 

The above design considerations operate within a set network configuration that may 

connect some or all of the athletes, spectators and organisers; through unidirectional, 

bidirectional or omnidirectional communication. For example, designers may support 

communication in between spectators or limit communication to in between the 

individual spectators and single athletes. 

Designers should seek to integrate together the requirements of all the stakeholders 

with a single system. Unlike traditional broadcasting, online crowd-support during 

sports events creates an ecosystem with multiple stakeholders in which the action or 

lack of action of one actor influences the other actors. For example, athletes’ 

performance may influence the spectators’ engagement (e.g. send more cheers) and 

this may influence the athletes’ performance (e.g. motivate them to perform harder). 

As such, researchers should seek to analyse these systems both at a micro level (e.g. 

analyse spectators’ reaction to different visual) but also at a macro level (i.e. as 

complete ecosystems).  

Future work should continue to find ways of decreasing the obtrusiveness of the data 

capturing and broadcast devices by looking into infinitely small and lightweight 

devices. This is expected to shift attention away from the distractions that physical 

devices create and allow athletes to better focus on the performance and social 

interaction. We might never reach the point of infinity or technology invisibility, but 

technology is projected in this direction. More importantly, in future work, interaction 

design should seek to 1) increase the emotional engagement of the spectators by 
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sharing live data that best narrates the effort that is invested by the athlete. 2) Expand 

the cheering modalities to allow spectators to express their support with a variable 

degree of expressiveness. The hypothesis that if given the option to cheer with 

different ‘strength’ levels, spectators would always use the highest scale is wrong. 

Research shows that spectators plan their cheers in ways they believe would 

individually and collectively maximise the effect that the cheering may have on the 

athlete [45]. 

6.11 Conclusion  
In this paper, we presented a connected baton for long-distance relays. The baton 

keeps the social network informed on how the event unfolds by broadcasting sensor-

captured data through mobile network. Concurrently, remote spectators communicate 

their support through remote cheering.  

Systems that are designed to facilitate real-time feedback from remote crowds have 

not been widely developed. The reason may be due to the social barriers (e.g. the 

pressure that such systems place on the social network actors to support the event in 

sync) as well as technical challenges. A technical challenge, particularly in such a 

large-scale in-the-wild event, is the perceived unreliability of the mobile network 

connectivity. Upon deployment, however, short network disconnections seemed to 

minimally interfere with the spectators’ engagement. For example, cheers submitted 

by the spectators were relatively constant even when data coverage at the athletes’ 

position momentarily limited the data updates. 

In this regard, social capital seemed to compensate for the lack in precision. This 

reflection suggests that we may need to reframe our focus on ‘visual perfection’ when 

designing such socio-dependent support systems. In the last century, the broadcast 
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industry exposed viewers to a constant increase of ‘visual perfection’ and ‘systems 

perfection’. We expect that broadcasted content is perfect, stable, with exceptional 

lighting and excellent picture composition. Viral video sharing on social networks 

brought in an inverse perspective to this [54]. In our case, small dropouts in data 

updates had little influence on spectator engagement, particularly when spectators 

were in some way socially related to the athletes.  

In preliminary spectators-interface designs we considered live video broadcasts from 

forward-facing cameras that are strapped to the athletes’ chests. At the time, this 

design track was abolished as tests indicated that shots would be too shaky for 

spectators who are typically used to the centralized broadcasts from leading 

broadcasters. However, after having now deployed a number of trials, we observe that 

democratic broadcasts like the one deployed in this study, provide additional 

motivators that compensate for a loss in traditional ‘quality’. In a situation where 

athletes are running alone, spectators with a social connection are keen to see a live 

picture and get a glimpse on what the environment looks like. Is it raining? Is it dark? 

Is the terrain rough? How does the breathing sound? This, irrespective of whether the 

media is jittery or compressed. In this regard, designers may want to consider 

balancing resources not only in ‘designing for system perfection’ but also factor in the 

value of ‘designing for real-time social dynamics’. In this light, we hope that this work 

also contributes in brining to discussion the making of more humane social networks. 

In this case, the focus is not in making affective machines, but more importantly, in 

making machines that facilitate collective human support, just when this is needed.   
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In the previous sections, we presented the studies within individual chapters. In this 

chapter, we reflect on the themes that emerged through the entire design process. We 

bring forward key themes that have arisen in hindsight and future work that we 

believe promises thought-provoking investigations.  

7.1 Emerging Themes 
Three key themes that emerged from the chapters that were presented up until now are 

the following. 1) The value that real-time crowd support provides for the users.  2) 

The value that crowd-engagement features such as cheering bring to commercial 

organisations that adopt them. 3) The power dynamics that the system, that was 

investigated within different contexts, create. 

7.1.1 Value for users 

Each of the papers that are presented in this dissertation brought up the value of 

democratisation that remote-crowd support systems seem to enable. Traditionally, 

only famous athletes had the clout of attracting broadcasters to follow their 

performances. Being broadcasted, makes famous athletes even more famous and 

likely to become even more popular with broadcasters. The democratisation that 

technology creates (predominantly through the dissemination of social networking) 

attracted the attention of many researchers particularly in Science and Technology 

Studies (STS). Using the systems that were deployed in the study, athletes who might 

not be famous, do away without having broadcasters to disseminate their performance. 

They can broadcast themselves at a global reach with negligible costs. Athletes, who 

might not be famous, may have, say, 400 friends on Facebook, who might be 

interested in supporting them. In this case, engagement of supporters is more likely to 

occur because of the social affinity between the athlete and the spectator rather then 

because of how famous the athlete is. One may argue that being cheered on because of 
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a social affinity has a higher value than being cheered on by unknown spectators. 

Understandably some might disagree. Personal traits and ethical positioning are likely 

to bias different individuals to internalise sources of extrinsic motivation differently 

[49]. In parallel to this, the spectators’ motivations to support the athletes remotely 

vary. Spectators may find value in associating oneself with a good cause such as a 

charity run. As data in Chapter 2 showed, spectators may feel associated with the 

athlete, gain a sense of belonging, or both.  

On the other hand, the democratisation that open systems, such as HeartLink, provide 

could be challenged. Social networks brought about a face value that everyone is 

equal. Everyone has access to information and that, seemingly, the information 

belongs to everyone. This is partly true and is reflected in the deployed designs. As 

mentioned earlier, non-famous athletes who might not have anyone supporting them 

on the course can how harness the power of social media and recruit supporters with 

minimum costs. However, this seemingly level playing field is still spikey [62]. 

Should famous athletes adopt a remote support system such as HeartLink, they are 

expected to receive a larger number of followers then an armature non-famous athlete. 

This effect is seen across all social media ecosystems from simple twitter feeds to 

areas as far away as high frequency trading (HFT) [136,69]. While everyone can have 

a twitter account and can tweet, the diffusion and the impact of messaging is different 

for social actors with different power values. Similarly, computerization of investment 

instruments changed the playing field of trading stocks, bonds and investments. This 

highlighted the political effects that technology presents. “Despite the widespread 

rhetoric that computerization inherently democratizes, the consequences of the 

introduction of HFT are widely acknowledged to be new concentrations of wealth and 
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power, opacity rather than transparency of information flows, and structural resistance 

to democratic oversight and control.” [69] p.278.  

7.1.2 Value for Commercial Applications 

To the best of our knowledge, at the time of writing, cheering features are not the 

main objective of any of the existing commercial mobile apps. In most cases, the main 

objective of existing mobile applications that are designed for athletes, is the 

quantified-self, that is, the collection of athlete-centred performance data. Commercial 

mobile applications that embed cheering features, such as Runtastic or RunKeeper, 

provide a cheering facility as an additional feature that was embedded at a non-initial 

stage in the lifetime of the application. In hindsight we observe that the cheering 

features present three key values to the quantified-self application. First, when 

spectators use the cheering feature, the application profits from network effects and 

network externalities. The application is not any longer solely a data-logger that 

connects the athlete with his or her data. By allowing data sharing over social 

networks, the application creates a broadcast. By allowing cheers to be sent back, the 

application creates a network with unidirectional edges. Network effects, coined by 

Robert Metcalf, are nicely exemplified by Shapiro and Varian in “Information Rules” 

[171]. An example of network effects is commonly brought up using the telephone as 

a case. The telephone set has negligible purpose for the first and only person to buy a 

telephone set (A). The second person buying a telephone set (B) increases the value of 

telephone set A even though telephone set A did not physically change in any way. 

Telephone A can now call Telephone B. The value of the network increases the more 

phones connect to it and while the cost of each phone may be equal, the number of 

connections increase exponentially. By providing cheering features, the mobile 
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application further motivates its integration with existing social network thus 

becoming a network rather then an individual isolated application.  

Secondly, the cheering features motivate the users (athletes) to share data. In existing 

commercial mobile applications that are designed for athletes, the data is shared 

through Facebook posts that include the name of the app within the data visuals. This 

sharing of data diffuses information about the brand through the social network actors 

(athletes) who effectively advertise the application’s brand. The application users 

become the advertisers and themselves generate brand awareness, diffusion and 

propagation. In this way, the brand has as many information dissemination sources as 

its number of users.  

Thirdly, such user-driven information diffusion is likely to be more effective than 

information that is disseminated by the brand as explicit advertising. While the 

algorithm that social networks such as Facebook use to select which content should be 

disseminated is kept under wraps, it is widely acknowledged that information that is 

posted by commercial entities on Facebook are less likely to be diffused then posts 

from personal accounts, save for paid adverts. This diffusion of information through 

the users’ accounts such as the one described above, mitigates this within an ethical 

framework.  

7.1.3 Power Dynamics 

The work presented in this study brings to attention the interplay of power among the 

actors within the network and how each actor is susceptible to influence and 

influences others in the network.  In hindsight, the live cheering system here presented 

can be looked at as an ecosystem, in which athletes tell their story live by sharing data 

with an online community of spectators. The spectators may be influenced by the data 
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they are presented and may interact with the athlete by sending cheers. In turn, this 

support may influence the athlete’s performance and hence the data shared by the 

athlete may be affected. This complex ecosystem is not merely influenced by the main 

actors, that is, the athletes and the cheering spectators, but is also influenced by the 

environment in which these actors are performing, the co-located supporting 

spectators, the organisers and the system itself. For example, in Chapter 6, we have 

seen how the engagement of the spectators varies when presented with different 

interfaces and when the relationship between the spectators and the athletes varies. 

We have also seen, particularly in Chapters 4 and 5, that the cheering process could 

bring elements of gamification for both the athletes and the spectators.  

7.2 Reflection 

 

Figure 44: Key Themes	
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Figure 44 shows the themes around the key stakeholders that have emerged across the 

deployments. The primary stakeholders are the athletes and the spectators. However, 

the qualitative data that was collected in this work brought to light a third stakeholder, 

the event organisers. Through the presented papers, we started understanding 1) how 

to design the systems around the athlete, 2) the effect of the cheering modalities that 

were used and 3) the effect of the cheering on the athletes. Additionally, from the 

spectators’ perspective, we started understanding 4) how to design systems that 

facilitate support from remote crowds, 5) aggregate the support and 6) encourage 

engagement from the spectators. Finally, the event organisers stressed the value of the 

deployed systems 7) as a way of reaching new audiences, 8) as a data gathering tool 

and 9) for social media engagement. 

7.2.1 Spectator and user interfaces 

We found that the interfaces there were deployed are driven by two main sources: The 

athletes and the spectators. In their work, “Designing the Spectator Experience”, 

Reeves et al. classify these interfaces as public interfaces. These are public interfaces 

not because the interfaces are out in the wild but rather because of the “extent to 

which [the] performer’s manipulations of an interface and their resulting effects are 

hidden, partially revealed, fully revealed or even amplified for spectators.” p.741 

[153]. In recent years, there have been numerous discussions within related 

communities, such the SIGCHI, on interfaces that are moving away from providing an 

individual dialogue but rather are designed for a crowd [23,24,104] and driven by a 

crowd [16,19,20]. In most of these cases, as it is the case in this study, the crowd is 

distributed. In some cases the interaction happens in real-time [105] or near real-time 

[20].   
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In a real-life cheering context, within a open sporting event, the human interaction is 

intended to be public. Spectators cheer from the sides of a racecourse or from the 

stands at a stadium. On the other hand, in the digital world, there is by far more 

human-human communication that is designed for a private setting rather then a 

public one. Public telephones for example are enclosed in boxes or photo kiosks 

[153]. There are also multiple levels of engagement. There are spectators who follow 

the data through the crowd-powered interface, hence they can follow the data of the 

athletes and also the data that is driven by the crowd (i.e. the live cheering, the 

spectators live comments as the event unfolds and the number of spectators that join 

and leave the event, during the event). There are also the supporters, that is, those 

spectators who do not simply follow the data but also interact with the interface and 

the athletes by cheering and commenting, hence contributing to the live discussion. 

Finally there are the athletes whose interaction is highly automated, both the sharing 

of data, and in receiving feedback from the crowd. In a way, the interface of the 

athletes is hidden and inexistent. It is an extension of the crowd’s interface. For 

example, the relay baton that was presented in Chapter 6, opens up a channel to the 

crowd. The athletes do not interact with the baton but the baton automates the 

communication from the athlete to the crowd. The baton captures the data and sends it 

to the crowd without any interaction from the user (the athlete). There is also the co-

located spectators, who, although they might not interact with the cheering system or 

the online crowd, they may also influence the online environment through the 

athlete’s environment. In this regard, Reeves et al. add another dimension to public vs. 

private dichotomy; manipulations and effects, where manipulations are the actions of 

the ‘performer’ (in our case these are the actions of the athlete). On the other hand, 

effect is the impact of the manipulations; a click on a cheer button triggers a vibration 
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(direct effect) and may make the athlete aware of the support being sent. The athlete 

may perform better and his or her exertion may influence the gradient of the chart 

representing the live heart rate (indirect effect).  

 

Figure 45: Secretive, expressive, magical and suspenseful approaches to designing the spectator's view from [153] 

The work of Reeves et al. helps us position our interface within the spectrum of 

interfaces that is presented in Figure 45. Interface categories include 1) Magical, this 

refers to interfaces that hide the manipulations but the effects are revealed (e.g. wizard 

of oz interface [46]), 2) Secretive, where both the effects and the manipulations are 

hidden (e.g. within a competitive game), 3) Suspenseful, where manipulations are 

hidden but the effects are revealed and finally 4) Expressive, where both the 

manipulations and the effects are revealed or amplified (Figure 45). Within this 

taxonomy, the proposed cheering system positions itself in the expressive quadrant. 

Spectators’ actions are channelled to the athletes and amplified through haptic and 
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sound synthesisers. The athletes’ performance is sensed and amplified to all connected 

spectators within the spectators’ interfaces. 

The cheering system associates another dimension to this. The interface is not only 

generated and interacted with by the individual and displayed to the spectators as a 

crowd, but this crowd also drives the interface. In other words, the interface  

(including the cheers, the number of online spectators and the live comments that 

make up the interface) is generated from the crowd. These become, as Michael 

Bernstein coined, crowd-powered interfaces [19]. Crowd-powered interfaces are 

“interfaces that rely on human activity traces or human computation to provide 

benefits to the end user.” [19] p.347. Undoubtedly, the cheering process is explicitly 

conducted for the benefit of an end user, the athlete. We argue that this process relies 

on both ‘human activity traces’ and ‘human computation’. They rely on human 

activity traces as the distributed individuals trigger the cheers, and each has his or her 

intentions and motivations to cheer. The human computation component is 

highlighted in the interviews of the user study whose findings are presented in Chapter 

3. Upon interview, the spectators showed interest in maximising the positive impact 

that the cheers could have on the athlete. In this regard, spectators devised strategies 

such as leaving more cheers towards the end of the race, ‘such that the cheered 

athletes do not get used to the cheering’. These strategies are reflected in the 

cumulative cheering plots that are derived from logs.  

7.2.2 Communication Modalities  

Across the papers, we looked at primarily two communication flows. Informing the 

spectators and informing the athletes. The athletes’ awareness of spectators’ behaviour 

and their support, can contribute to build a sense of  ‘liveness’ [153]. However, it can 
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also generate pressure on the athlete. The sense of ‘being observed’ that real-time 

remote support systems create, may make the athlete feel obliged to perform or feel 

embarrassed for mistakes since spectators are following the performance. The 

modality that is adopted to communicate the crowd’s support to the athlete is an 

influential factor in the design of the athletes’ experience. The deployments explored 

tactile and sound alerts to communicate the cheering crowd. Results showed that the 

effect of the communication modality is dependent on different externalities over and 

above the modality itself. These include the context (e.g. the background noise within 

the environment), the trustworthiness of the cheering crowd (e.g. whether there are 

spammers among the cheering crowd who might misuse the modality, say, send 

inappropriate messages) and the individual personalities of the athletes that the set 

modality is communicating with. For example when the modalities where calibrated to 

generate the same intensity of tactile feedback, some athletes did not feel the set 

vibration. This seemed related to the athlete’s body mass and athletes with larger arms 

were more likely not to feel the vibrations that were triggered by the telemetry device. 

Similarly, the participants’ responses on the appropriateness of the connected-baton’s 

size also varied in relation to body mass and size. Bigger persons were predominantly 

happy with its ergonomics while smaller-sized athletes brought up the theme of 

improving the design by presenting smaller handgrips. These highlight the need of 

personalisation in both the devises and the communication modalities.   

7.2.3 Conducting RIW deployments with synchronous interaction 
between distributed participants 

In all the presented papers, all the deployments were conducted in the wild. Planning, 

organising and deploying this research proofed to be challenging. Moreover, each 

study involved multiple user groups that were not only in the wild but also distributed 

across different locations. Additionally, the interaction under investigation was a 
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synchronous one. Thus, the participants needed to synchronize themselves to the study 

rather than the study synchronises to the participants. The need for participants to 

synchronise with the study limits the number of participants that can take part in the 

study as their participation is not only conditioned by their willingness and 

appropriateness to the sample group but also by their personal schedule. This 

restriction is particularly visible when the user group is friendsourced, that is, the 

participants have a social tie with the athletes. On the other hand, this is less 

restricting for outsourced participants, that is, where participants have no social 

connection with the athletes as the sample frame may be larger. These issues are 

shown in Chapter 5 where participants were recruited from CrowdFlower, a 

crowdsourcing platform. Crowdsourcing platforms provide a large enough pool of 

participants (crowd workers) who are seeking work that matches their expected 

enjoyment and financial return. The enjoyment value is a major factor in the 

recruitment process. Many studies show that crowdsourced participants value the 

pleasantness of a given task [93,94,159]. This impacts both the engagement of 

participants in the task and also the reputation on the platform (through post-task-

completion feedback) of the researcher who issued the study.  

Each of the influencing factors depicted in Figure 46 augments the complexity that 

conducting such a study entails. Throughout this study, we gain insights into 

designing systems and deploying them in different contexts in the wild.  Other 

research methods have been considered in the early design stages of this study. A 

method that was considered but never adopted was an in the lab study in which 

researchers observe how different user groups react to different stimuli within the lab 

while they are presented with controlled data. For example, one study could have been 

that of showing interfaces that contain play-backed data as if an athlete was running at 
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that moment in time to then observe how spectators react to the presented data. We 

could have then repeated the experiment with variations in data and spectator groups. 

Concurrently, we also considered studying the athletes experience of being cheered on 

while using a treadmill within the lab and having different cheering models and 

patterns being played back at various phases of the study.  

  

Figure 46: Methodological influencing contexts	

Such a study would have been different. 1) The researchers would not have been 

bound with recruiting a large group of participants to perform at one specific global 

time. 2) The researchers would have had more control over the environment and 

confounding variables would have been limited. For example, weather conditions 

would have been minimally influential on the study, if any. Windows would have 

been closed and a treadmill could be kept at the same gradient for all participants such 

that all the participants would have been presented with an identical controlled 

experience. Similarly, cheers could have been computer generated from predefined 

patterns that would simulate remote cheering crowds. 3) Running such an experiment 
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would have been easier because the researcher would be in the comfort of the well-

known, tried and tested, “lab”.  The researcher could have wired, handled and 

observed one participant at a time.  

However, no matter how controlled this environment would have been, it would have 

never been anything close to the real thing; the in-the-wild environment with real 

crowds sending self-initiated cheers at that moment in time. Hence, an in-the-wild 

investigation was adopted [158]. 

In hindsight, an in the wild deployment that involves distributed crowds, like the four 

deployments in this study, are more unforgiving then an in the lab approach where 

single participants sequentially conduct offline sessions. For example, if there is an 

issue with the system, such as what happened in the pilot study due to downtime on 

Amazon Web Services, the researcher needs to coordinate a crowd that is distributed. 

This is challenging, not only because the investigation involves a crowd but also 

because the data is live and distributed. In this case, the research event is likely to fail 

or at a minimum, the research objectives would change. Moreover, a new event would 

require coordinating a new crowd. Should that have been in the lab, a participant 

would have been ranked as an outlier or replaced with an additional lab session. 

Finally, in a lab version, systems can be tested, and researchers can pose as dummies. 

In an in-the-wild version where crowds operate synchronously, the systems are 

difficult to test fully. For example, collecting enough participants to simulate a crowd 

to test a system in situ is often impractical. Furthermore, if the researcher does manage 

to do this, in most cases, the in-the-wild environment is likely to change over time. 

Hence, reliability cannot be guaranteed across all variables. For example, data 

telemetry that is dependent on mobile network coverage (reception) may be 
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influenced by the density of users that happen to be in that area and of which the 

researchers has little or no control.   

These challenges that RIW brings to the table further highlight the differences of RIW 

over an in lab study. These differences emphasise the distinct values that both 

approaches present the researcher with. Based on the above considerations, we 

recommend the following to researchers who intend conduct research on the lines of 

this work: 

1. The researcher should seek to control any variable that can be controlled but 

plan contingencies for unexpected events. 

2. Conduct meticulous planning can minimize unexpected outcomes. 

3. Observations during the event are very important and should be documented 

during or immediately after the event. 

4. The researcher should have a communication channel with the remote 

participants. This can be used for ad-hoc coordination should unplanned 

phenomena occur. 

5. Keeping documenting and coordinating roles separate. Due to the complexity 

that such tasks entail, we recommend that researchers build a research team 

where each member is assigned a pre-designed role. Different studies and 

conditions would necessitate different roles for supporting staff. In the case of 

the study that was presented in Chapter 4, the 5k-roadrace, the recommended 

roles for the event so that the researchers can focus on core areas are as 

follows: 1) A person may be assigned to coordinate the online crowd. This 

person would, for example, message the crowd should there be a need to do so 

during the live event and answer any queries that online participants may have. 

2) A person needs to coordinate the co-located athletes. 3) An experienced 

researcher journals the event. 4) A videographer and/or photographer may 

provide grounded content for post-event analysis or in support of post-event 

publications. 
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7.3 Future work and implications.   

7.3.1 Synchronous and Asynchronous Interaction 

In the course of the study, we have designed and implemented other prototypes that 

were not presented in this document. These prototypes were not included in this text 

because they were never evaluated within an event. This happened either because the 

exploration methodology that was elaborated upon earlier indicated that other tracks 

promised more interesting outcomes within the early phase of a possible innovation 

lifecycle. In other cases, we did not have the right participants, events or infrastructure 

to run the prototypes within the complexities that the methodology entailed. In some 

cases, these prototypes were tested in the lab but were not deployed in the wild. 

Among these, we prototyped multiple versions of the BioShare App using online app 

development tools such as AppInventor. We found these tools excellent for 

developing functional prototypes rapidly at early stages of the design process. 

However, their simplicity is balanced by a limitation in flexibility that the designer has 

when developing applications such as HeartLink and BioShare. This is most felt when 

interfacing with, for example, biometric sensing devices, customising graphics and 

embedding responsive design. In the end, the deployed version was developed as a 

native application in JAVA.  

An interesting design direction that is worth further exploring is that of asynchronous 

cheering. A design for asynchronous cheering was also implemented but never 

deployed. In this implementation, spectators log in a website anytime before the event 

and leave cheers by clicking on different visuals. These visuals include a map with the 

course and a chart with the altitude as shown in Figure 47. The cheers that are dropped 

on the map, are stored in a database and downloaded on the athletes’ device before the 

event. The cheers are then triggered when set conditions are met. For example, if a 
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cheer is ‘dropped’ on the digital course (map), then the athlete receives an alert when 

he or she physically passes in closest proximity to the location where the cheer was 

digitally dropped. Future work may consider other conditions. For example, a cheer 

can be triggered if the athlete reaches a certain altitude or when the athlete has been 

exerting a predefined level of effort for a set duration. In this case, the level of 

exertion may be calculated with the same methodology that was used in “Jogging over 

a distance”[131]. Such a system could be relevant for contexts in which an Internet 

connection is intermittent or inexistent. An example of an event where this could be 

applicable is the Ocean Floor race. The Ocean Floor race7 is an ultra marathon non-

stop footrace of 160 miles through the Egyptian western desert.  

     

Figure 47: Spectators can place cheers on the course of a selected athlete before the event by clicking on the map 
(left) or altitude chart (right). The athletes are alerted when they pass from the location in which a cheer was 

placed. 

Our primary objective when developing this system was not to study the design 

process, although that can be interesting. Rather, the research would have focused on 

comparing and contrasting how the impact of synchronous and asynchronous remote 

cheering differs on the athlete if any. Specifically, our interest is to find out whether 

receiving cheers in real-time presents added advantages than otherwise. This research, 

though interesting, would have taken us away from the research questions and hence 
                                                

7 http://www.oceanfloorrace.com/ 
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this is being suggested as future work. We are happy to share the prototypes with 

researchers who are interested in following up research in this direction.  

A methodology for comparing and contrasting synchronous and asynchronous 

cheering is challenging particularly if a large crowd is required for the study. An 

approach to conduct such a study is by randomly assigning participating athletes in 

two groups. One group will experience synchronous cheering, and the other group 

would experience asynchronous cheering within the same event.  

A synchronous interaction system allows for immediate feedback. This feedback, in 

the form of cheers, is received by the athletes as the event unfolds. Our hypothesis is 

that a synchronous approach could provide added value due to the immediateness of 

the feedback. Many studies looked into the effect of having immediate feedback, 

particularly on motivation and education. For example, Epstein et al. found that 

performance of students who were given immediate feedback upon completion of 

multiple choice tests did not differ in performance in the short-term from students who 

were not given immediate feedback. However, when tested after a day or a week, the 

participants who received immediate feedback during tests showed higher scores thus 

indicating that immediate feedback promotes retention from the cognitive processing 

[58]. Similar outcomes are supported by Dihoff et al. [53] and Scheeler et al. [165]. In 

the latter, immediate feedback to teachers during their deliveries, increased course 

completion rates in all trials within the study. We find similar outcomes in literature 

on ‘Motivation,’ [92].    

Hence, there are two beautiful research tracks that future work may look into. First, is 

to study whether athletes who are cheered on remotely perform differently from 

athletes who are not remotely cheered on. Secondly, is to study whether synchronous 
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cheers differ in impact over asynchronous cheers. Based on the above literature our 

hypothesis is that receiving synchronous cheering presents a more positive impact on 

the athlete, but this is yet to be tested. 

Another research direction that is worth further exploring is the effect that the remote 

cheering has on the athlete. More specifically, what is the social network effect on the 

athlete’s performance? Such a study would preferably be a longitudinal one and 

involve a large number of participants. This number should be large enough to 

conduct reliable multivariate analysis that looks into the different social tie strengths 

within the network, the athlete’s performance and the type of challenge that is 

presented (for example having different levels of loneliness, levels of exertion and 

athletes objectives for participating).  

7.3.2 Advancements in Interaction Automation 

One major challenge that was faced in the initial design stages, was the design of a 

system that allows the athletes to interact with the crowd without distracting the 

athlete from the challenging activity that he or she is conducting. This was partly 

solved by automating the data collection and sharing process through sensors. The 

sensors collect data and this data is communicated to the spectators in the hope that 

spectators construct a story. Although valid, the emotional value of the constructed 

story is not comparable with the story that a human narrator or professional television 

broadcast crew can enact. It primarily lacks the intelligence that builds context 

awareness within the story telling process. For example in Chapter 3, we have 

highlighted the difficulty for sensors to automatically distinguish between the start of 

the race and when the athlete started a warming up session. This created a context of 

ambiguity. Though one may argue that such ambiguity could be an interesting 

perspective for the researcher [67], this is not always the case. Another example could 
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be that of identifying when the athletes are tired and in need of social support. In other 

words, the state of the system lacks the ‘intelligence’ that a human narrator can 

provide. We expect that advancements in sensing, processing and interaction 

technology will facilitate and increasingly allow users to interact with others while 

doing challenging tasks. These will also enrich the story telling process through better 

context awareness. Moreover, technology is increasingly hidden, unobtrusive and 

necessitating progressively less attention on the communication modality thus leaving 

more space for the communication itself. This applies both to the athlete’s data 

sharing process (i.e. automated data sensing and broadcasting to inform the spectators 

on how the event is unfolding) and the athlete’s feedback process (i.e. making the 

athlete build an understanding of the live feedback from the crowd and the 

surroundings). As regards, the latter, we expect that augmented reality devices could 

present an opportunity in which athletes augment their view with feedback from 

spectators thus enriching the feedback modalities that have been tested across the 

presented papers. At the same time, these minimise attention-expensive distractions 

such as looking at a phone while running. Similarly, small devices such as smart 

watches with embedded mobile network connectivity are expected to remove issues 

related with form-factor of the devices that were used in the deployments. 

7.3.3 Social Marketing 

A promising area for further research is that of analysing the influence that different 

social ties have on others. In other words, would a random athlete be more motivated 

in the event if his or her mum was on the side of the pitch supporting or would 1000 

unknown spectators be more effective, if any? The understanding of social relations 

and the influence that the different relations have on each other, have received much 

attention in both academia and industry in recent years. Online social networks 
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facilitated our probing of social dynamics to a level of detail that would have been 

impossible doing before. Sinan Aral and Dylan Walker [5] developed a method to 

identify the ‘influence’ and ‘susceptibility to influence’ of social network members. 

Through a randomised controlled experiment, they measured the influence and 

susceptibility to influence across a representative sample of 1.3 million Facebook 

users who share messages and recommendations on movies, directors and actors 

within the film industry [5] p.337. To avoid bias, they randomly manipulate who 

receives influence posts. They then use hazard modelling [82] to measure who is more 

or less influenced and susceptible to influence. This approach takes into consideration 

not only the adoption rate among the social network members but also the variations 

in time between the influence and its effect. Understanding how social network 

members influence each other has become increasingly important in many areas 

including viral marketing, product adoption, social contagion, peer influence and 

behaviour change. For example, you are more likely to select a holiday destination if a 

person you know recommends that destination rather then if you see an advert from a 

brand that you do not associate yourself with [6]. Similarly, in our case, different 

social ties are likely to influence the support that the athlete may receive through the 

cheering process. In Chapter 6 we have discussed and suggested differences that 

spectators with different social ties seemed to have on the athletes. This was done 

through a qualitative approach. The dataset was not large enough to justify a 

quantitative analysis. Future work may seek to collect a quantitative data set and use 

Aral’s validated framework for measuring social influence [5]. Diffusing the 

HeartLink app or a similar app across a wider community could facilitate the 

collection of such a data set. With the users’ consent, the app could then collect 

insights related to the athlete’s performance, the cheers received and the relationship 
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between the network members. A longitudinal analysis of the data could further 

explain cheering patterns among different social ties, the influence that cheering from 

different social ties has on the athletes, behaviour change8 and contagion9 that might 

emerge due to the social support that is received or sent.  

7.4 Conclusion 
In conclusion, we believe that through further innovation, real-time support systems 

that involve crowds will increasingly provide added value to the users. Systems that 

allow for real-time support from remote crowds now exit in both commercial and 

academic applications. Examples of these are the popular quantified-self applications 

that are designed for athletes or Morris et al. solution for crowdsourcing emotional 

support from Amazon Mechanical Turk workers [128]. The technology is still 

relatively young and there are still hurdles that need to be surpassed until we see a 

wider diffusion of products that are designed around engaging crowds in real-time. 

First, technology is expected to become more embedded in human life, less obtrusive 

and ubiquitous. We expect that the trend in devices becoming smaller will continue 

such that any device ‘obtrusiveness-related’ barriers are smoothed out. Secondly, 

technology is expected to become more context aware on both the environment and 

the user. This would help in further enhancing the automated story telling process 

about how the event is unfolding through sensors. Thirdly, the development and 

innovation in human-computer interaction devices such as smart watches, e-textiles 

and head-mounted displays for augmented vision are expected to facilitate the 

                                                

8 Such a study may, for example, indicate that athletes who are most supported are 
likely to increase the intensity of their training and hence perform better. 
9 For example after following and supporting the athletes, some spectators may 
become interested in participating as athletes and become more active. 
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presentation of crowd feedback to the athlete while at the same time minimise 

technology-related distractions for the athlete.  

Through the work done, we started building a general understanding of the dynamics 

that are involved in systems that facilitate social support from remote crowds, in real-

time. We find that there is value for the three key stakeholders, namely the athletes, 

the spectators and the event organisers. While specific motivations for each vary due 

to individual personality traits, in general, athletes seem to be motivated by the sense 

of belonging that is enacted when the athlete/s become aware that one or more remote 

others are dedicating their time to follow and support them. The spectators bring in a 

sense of altruism from supporting others. For the event organisers, the presented 

system draws attention to the event by engaging with a crowd whose members, in 

most cases, would otherwise not be present at the event. 
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Chapter 8  
CONCLUSION 
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“...it feels like a crowd is following you... though you are on your own, 
there is an environment where there are people around” [Participant]  

 

This work investigates real-time support from distributed online crowds. To do this 

we developed a series of mobile applications for athletes and online interfaces that 

allow crowds to externalize their support. Through four in-the-wild deployments we 

then broadcast sensor-data to spectators in custom-designed data visualisations. These 

visuals helped supporters build an understanding of the remote performance and 

supporters were prompted to externalise their support in the form of remote cheering. 

We investigated four central questions to 1) understand the experience of the data-

sharing athletes while receiving remote support, 2) identify factors that influence 

remote spectators’ behaviour during live events, 3) identify motivations for using real-

time spectator support systems, and 4) provide guidelines for researchers and 

designers that seeks to facilitate support from remote spectators during sports events. 

8.1 Key Findings and Contributions 
1. The first area of contribution is the cheering effect on the athletes [RQ1]. 

Athletes were excited when they were cheered on remotely during events. 

Results show that this effect is depended on multiple factors. These include 1) 

the athletes expectations of the quantity of cheers they will receive, 2) the 

difficulty of the task at hand, 3) how lonely the athletes feel during the specific 

event and also 4) the social tie between the athletes and the cheering 

spectator/s. Our findings indicate that remote cheering sent by spectators with 

weak ties (such as acquaintances) could be more impactful that the support 

sent by spectators with strong ties (relatives) or no ties (unknown supporters) 

[Chapter 4].  

 

2. We provide insights on distributed crowd behaviour [RQ2]. We find that the 

behavior of the cheering crowd is dependent on both the social tie and the data 

that is presented. Spectators who are presented with additional athlete’s heart-
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rate data cheered the athletes significantly more than those who were not 

presented with this data. Findings also indicate that spectators with a closer 

social relation with the athletes were more engaged in the athletic performance 

[Chapter 5]. 

 

We also identify that given a range of supporting options, the spectators do not 

support at the most intense level constantly (as we might have expected), but 

plan cheer in ways that the spectators believe will maximise the affect on the 

athletes. These individual actions form the collective crowd behavior [Chapter 

4, 6].  

 

3. Empirically, we isolate and present nine key user motivations for using real-

time crowd support systems [RQ 3]. Remote support systems in the presented 

context may be motivated to 1) receive live support, 2) build a community of 

followers, 3) to proof accomplishment, 4) as a way of democratising support in 

sporting events, 5) to trigger support mindfulness, 6) to create new social 

connections, 7) to satisfy a social need to connect, 8) to gather insights on the 

event and 9) to reach a new audience that may be different from the audience 

that is present at the event’s location [Chapter 6].  

 

Through our experience of creating and deploying four iterations of HeartLink 

and after contrasting this experience with that of other HCI researchers, we 

provided insights on how to engineer real-time crowd support systems, [RQ 4]. 

In Chapter 6, we specifically classify three key areas that designers and 

researchers need to consider when looking into real-time crowd-support 

systems. Namely: 

1) ‘Spectator Expressiveness’: the design of how spectators express their 

emotions and the degree of expressiveness that the technology 

facilitates,  

2) ‘Context Applicability’: key contextual factors such as difficulty of the 

task in terms of terrain and remoteness of the location. These impact 

crowd-support appropriateness and relevance.  

3) ‘Network Configuration’: how the data flows within the social-support 

network.  
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Through these factors, this research has provided a robust proof of concept 

for the design of crowd support applications, its implications and theoretic 

framework. 

8.1.1 Research challenges 

In hindsight, system deployments were particularly challenging in contrast with other 

commonly used HCI research techniques, such as, an in the lab study. The research 

design had to face a number of unique challenges, each of which increased the 

complexity of the investigation. All the deployments took place in-the-wild. This 

brings in added challenges that are widely documented in literature [15,31]. In 

addition to this, the study involved coordinating co-located participants (athletes), 

coordinating an online distributed crowd (spectators) and all functioning through 

synchronous interaction i.e. all the actors need to be active at the same geographical 

time and operate collectively as one ecosystem. In future, a contribution on the design 

of such complex research deployments is worth considering. 

8.2 Limitations and Future Work 
These challenges together with the limited scope and resources of a PhD research 

study, capped the scale of deployments. For example, conducting in-the-wild 

longitudinal studies with the intention of observing long-term variations in athletes’ 

performance and behaviour change, are beyond the scope of the study - though 

relevant. 

Similarly, in future work, finer grade insights could be obtained by recruiting more 

participants to create additional subgroups. With a large enough dataset, a study could 

dissect the impact of cheer quantity, cheer intensity and cheers from different social 

ties, on the quantified performance of individual athletes. 
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We argue that our findings are just the beginning of this research area and we trust 

that other studies will follow. What is presented here may provide the preliminary 

groundwork for real-time remote crowd support. Our results indicate that this research 

domain promises high impact in many research fields, including social network 

theory, crowd psychology and commercial applications in sports.  

Another area that needs further investigation is that of the cheering modality. We have 

tested haptic and audible cheers. Other modalities such as live streaming of spectators’ 

microphone data is worth exploring. This is discussed in detail in Chapter 6.  

Finally, a more challenging but equally interesting area is that of studying how these 

systems could be personalized for individual needs and expectations. The results in 

Chapter 4 indicated that different athletes react differently to cheering. Through a 

psychological framework, further work could indicated which traits determine the 

relevance or otherwise of remote cheering for individual personalities.  

8.2.1 Ethical issues 

This work also brought to light a number of ethical issues that need further 

investigation in future work. Key to this is the ‘real-time factor’ in data sharing. In 

systems such as HeartLink, the user’s data is broadcast in real-time. Thus, the user has 

very limited control over the data that is shared. The user can stop the data sharing at 

any point but without any retroactive effect on the data already broadcast and viewed 

by the spectators. Another aspect that this research provoked is the sharing of 

biometric data across social networks. When the data shared is of biometric nature, 

such as the heart rate, the owner of the data cannot intentionally influence the data. 

For example, unlike curated content on Facebook, it is impossible for the user to 

intentionally change the heart-rate with the purpose of looking fitter [87,150,176]. 
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Thirdly, the crowdsourcing of social support also opens up new questions. For 

example, if participants in a specific context perform better when remotely supported, 

can we crowdsource ‘cheerers’ through platforms like Amazon Mechanical Turk 

during real-life competitive events? While this can be easily implemented with 

existing technology as we have shown in this work, questions emerge around social 

adequacy of such an approach outside a research scope.  

By using off-the-shelf technology and rapid-prototyping design, HeartLink allowed 

users to share biometric data openly, ubiquitously and in real-time. This was 

facilitated by a development that is relatively low-cost and open-source. The ethical 

issues and implications of this potentially disruptive innovation however are many and 

hence further research is needed.  

8.3 Impact and Implications 
From a social perspective, the presented work has the potential to further broaden 

spectator support that was traditionally limited to famous athletes. Using systems like 

HeartLink non-famous athletes can harness the power of their social media presence 

with relatively no added cost.  

On the other hand, from a marketing standpoint, systems that allow large-scale remote 

spectator support could have huge commercial value. Although globally sport 

spectators make up an enormous market sector, there have yet been little, if 

any, attempts to technologically facilitate remote spectator interaction during major 

sporting events. Television broadcasts are the leading source of information for 

remote spectators and up until now, these still provide one-way communication. 

Designing further evolutions of crowd-support systems as those presented in this work 
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could create disruptive innovation. These applications have the potential to diffuse in 

an enormous technologically untapped market. 

This research gave us valuable insights on how to design technology-based systems to 

crowd-support users when they are conducting challenging tasks. This is expected to 

lead us into applications that go beyond sports, such as health, where remote social 

support is most effective if delivered in sync with when it is needed. 

Ultimately, through this work, we proposed a new function for social networks - 

social networks as a tool for crowdsourcing motivation in real-time during physically 

or cognitively challenging tasks. Since our first publication on the topic, all the 

leading commercial jogging-related smartphone applications implemented real-time 

cheering facilities. We cannot claim that these implementations were inspired by our 

academic work [42]. However, seeing applied cases in line with our then foresight, 

fills us with satisfaction. We hope that this work will contribute in making social 

networks more humane, perhaps, not by making affective machines, but more 

importantly, by making machines that facilitate collective human support – in real-

time. Seeing how technology evolved over the last years, the future looks promising. 
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RunKeeper API, TextMessaging API and Facebook API 

• BioShare Web Crowdsourcing Interface 

• BioShare Android Data Broadcasting App 

• 30’’ Video for CHI’13 Paper Preview 

• 120’’ Video for CHI’13 Video Showcase 

• Relay Baton (version A): A Context-aware Relay Baton for Crowdsourcing 
Support in Real-time  

• Relay Baton (version B): A Context-aware Relay Baton with a 48-hour 
Broadcast Autonomy 

Knowledge Dissemination Through Dialogue 
Invited talks, presentations and conferences attended 

• Making Data: Lancaster University 2014, Eliciting Empathy through Biometric 
Data Sharing 

• Synergize, Making Collaborative Research Happen: Lancaster University 2014 
HeartLink Review 

• Designing Digital Tools for Crowdsourcing Social Support in Real-time, 
Mixed Reality Lab, Nottingham June 2013 

• Paper Presentation at CHI’13 Paris, France 2013 

• Workshop Presentation at CHI’13 Paris, France 2013 

• Interactive Demo at CHI’13 Paris, France 2013 

• Paper Presentation at DIS’14 Vancouver, Canada 2014 

• Interactive Demo at DIS’14 Vancouver, Canada 2014 

• Paper Presentation at CHI’15 Seoul, South Korea 2015 

• Workshop Presentation at CHI’15 Seoul, South Korea 2015 

• A Review of CI’12 at HighWire Breakfast Club 2012 

• HighWire Breakfast Club 2013: A sneak preview of HeartLink at CHI’13 

• Organising Workshop: Collective Intelligence in the Digital Economy, 
Nottingham DTC Doc Fest 2012 

• Networking Event at Collective Intelligence 2012, M.I.T. Boston, U.S. 


