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Abstract 

This thesis presents a series of studies into the electronic and thermoelectric properties of 

molecular junction single organic molecules: They include perylene Bisimide (PBIs), 

naphthalenediimide (NDI), metallo-porphryins and a large set of symmetric and asymmetric 

molecules.  

Two main techniques will be included in the theoretical approach, which are Density 

Functional Theory, which is implemented in the SIESTA code [1], and the Green’s function 

formalism of elctron transport (Chapter 2), which is implemented in the  GOLLUM code 

[2], it is a next-generation code, born out of the non-equilibrium transport code SMEAGOL 

code [3]. Both techniques are used to extensively to study a family of perylene bisimide 

molecules (PBIs) (Chapter 3) to understand the potential of these molecules for label-free 

sensing of organic molecules by investigating a change in the electronic properties of PBI 

derivatives. Also, these techniques are used to simulate electrochemical gating of a single 

molecule naphthalenediimide (NDI) junction (Chapter 4) using a strategy to control the 

number of electrons on the molecule by modelling different forms of charge double layers 

comprising positive and negative ions. 

Chapter 5 will deal with the thermoelectric properties of the single organic molecule. I will 

demonstrate that varying the transition metal-centre of a porphyrin molecule over the family 

of metallic atoms allows the molecular energy levels to be tuned relative to the Fermi energy 

of the electrodes and that leads to the ability to tune the thermoelectric properties of metallo-

porphryins.   

Chapter 6 will present our new approach to materials discovery for electronic and 

thermoelectric properties of single-molecule junctions. I will deal with a large set of 

symmetric and asymmetric molecules to demonstrate a general rule for molecular-scale 
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quantum transport, which provides a new route to materials design and discovery. The rule 

of this approach that “the conductance of an asymmetric molecule is the geometric mean of 

the conductance of the two symmetric molecules derived from it and the thermopower of the 

asymmetric molecule is the algebraic mean of their thermopowers”. 
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Chapter 1 

Introduction 

1.1 Molecular Electronics 

In recent decades technological advances have accelerated at a rapid pace, partially due to 

the ever increasing need for the miniaturization of electronic devices. Whether the progress 

of research and development will be able to help this need in the future depends on how 

much we can further extend our computational capabilities through nanotechnology. 

In the mid-1960s, Gardon Moor observed that the number of transistors per unit area on a 

chip was doubling approximately once every two years [1]. The size of the current silicon 

based transistors are now down to only tens of nanometers, where he expected that this trend 

could continue for only a 10-year long period, nearly half a century later, the exponential 

growth continues. However, if Moore's law is to continue, the transistors will have to shrink 

to the atomic scale within twenty years and enter the field of sub-10 nm nanoelectronics. 

One important branch of this field, that this thesis is focused on, is molecular electronics 

(ME), a bottom up approach where electronic circuits are constructed, with specifically 

designed molecules taking the roles of both the active components and connecting wires. 

Not only are these circuits attractive for their minute size, but also for their potential to be 
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fast and cheap, with lower power consumption. Therefore, single molecule devices are very 

appealing candidates for future applications. 

So far, theoretical and experimental studies have focused on electrode-molecule-electrode 

(EME) junctions, which will be discussed in this thesis. The main experiment techniques to 

study these systems are Scanning Tunnelling Microscopy Break Junctions (STM-BJ) [2, 3] 

and Mechanically Controllable Break Junctions MCBJ [4, 5]. Using such break junctions, a 

third electrode can be also introduced by chemical gating [6, 7]. 

A simplistic picture of the physics of such the molecules in EME contacts is that they are a 

kind of quantum dot, because they are small finite sized objects and have discrete electronic 

spectra and single-electron charging energies reaching the electron-volt range. However, 

molecules are more than “just” quantum dots. The word “dot” carries with it the impression 

of a relatively structureless, even quasi-zero-dimensional object. Yet, the long-term goal of 

molecular electronic (ME) is precisely to take the advantages of the endless variability of 

chemical compounds to design molecules having just the right properties for use as single-

molecule electronic components. Furthermore molecules can have multiple conformations 

and they could be used as rectifiers [8]. Indeed Aviram and Ratner proposed theoretically 

the first molecular rectifier and their suggestion was the starting point for the development 

of this field. Molecular electronics also could be used in a wide range of applications such as 

switches [9]  and sensors [10, 11]. 

As a part of the development of molecular electronic devices, the ability to control electron 

transport through a single molecule is considered to be a crucial task in this field [8, 12, 13]. 

Most studies in molecular electronics have focused on two-electrodes devices [14-17]. A 

molecular junction with a gate electrode in a transistor configuration gives the possibility to 

tune the transport characteristics [18], as will be discussed in this thesis. 
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The ability to manage waste heat is a major challenge, which currently limits the 

performance of information technologies. To meet this challenge, there is a need to develop 

novel materials and device concepts, innovative device architectures, and smart integration 

schemes, coupled with new strategies for managing and scavenging on-chip waste heat. The 

development of new high-efficiency and low-cost thermoelectric materials and devices is a 

major target of current research. Thermoelectric materials, which allow highly-efficient 

heat-to-electrical-energy conversion from otherwise wasted low-level heat sources, would 

have enormous impact on global energy consumption.  

Nanoscale systems and especially nanoscale structures are very promising in this respect, 

due to the fact that transport takes place through discrete energy levels. The ability to 

measure thermopower in nanoscale junctions opens the way to developing fundamentally-

new strategies for enhancing the conversion of heat into electric energy [19]. The 

thermoelectric properties of materials will be discussed in this thesis. 

Therefore one aim of this thesis is to provide rules for the discovery of new materials by 

predicting electronic [20] and thermoelectric properties of molecules.  This is particularly 

important, because theoretical methods such as density functional theory and GW many 

body theory do not usually provide quantitative predictions of such properties. 

1.1.1 Perylene bisimide (PBIs) 

Partly in response to predictions that silicon technology might soon reach the limits of its 

evolution [21, 22], there is increasing interest in controlling charge transport across 

nanometer-scale metal-molecule-metal junctions [8, 23-26]. In this thesis, I address the 

properties of functions formed from three classes of molecules. The first class involves the 

perylene bisimide (PBIs) (also called perylene diimides) [27-30], which have emerged as 

one of the most investigated families of organic molecules, both for their fundamental 
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electronic properties and their industrial applications as dyes and pigments [8, 23]. Their 

unique properties are primarily derived from their large extended π-systems, which in π-

stacked arrays lead to a variety of intermolecular π-orbital overlaps for the different 

derivatives [31]. Furthermore their high electron affinities, large electron mobilities, 

chemical and thermal stabilities, and variety of functional forms with different bay-area 

substituents has led to their widespread use in organic solar cells [32-35], organic field-

effect transistors (OFETs) [36, 37] particularly as n-type materials [38, 39], and organic 

sensors [40-47].  

 

Figure 1.1: shows the chemical structure of Perylene Bisimide (PBIs) molecule. 

 

The chemical structure of perylene bisimide (Figure 1.1) involves two glutarimide groups 

with two naphthalenes (which is called perylene). The core of perylene bisimide can be 

functionalized in different ways by varying both the bay and ortho positions [23]. 

1.1.2 Naphthalenediimide (NDI) 

The second class of molecular function are formed from naphthalene diimide (NDI), which 

has attracted much attention in organic electronics [48-50] and the supramolecular chemistry 

[51] community acting as an electron acceptor with n-type semiconductor characteristics. 

This molecule is studied in chapter 4 and comprises of a pyrene core with two alkyl chains 

 

 

 

Ortho 

Bay 
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in the bay-area position and benzothiophenes (DBT) as anchor groups as shown in Figure 

1.2. 

 

Figure 1.2: shows the chemical structure of naphthalenediimide (NDI) molecule. 

 

1.1.3 Porphyrin  

Finally I investigate functions formed from porphyrins, which are attractive as building 

blocks for molecular-scale devices, because they are conjugated, rigid, chemically stable and 

form metalloporphyrins by coordinating a variety of metallic ions [52-60]. The porphyrin 

molecule comprises of a four pyrrole cores (the inner ring π-system), whereas the metallo-

porphryin involves a four pyrrols cores with a metallic atom χ in the centre of the molecule 

as shown in Figure 1.3 (a and b). Typical example of χ are zinc, copper, nickel and various 

others.  

 

Figure 1.3: (a and b) illustrate the chemical structure of porphryin and metallo-porphryin molecules, 

respectively.   

χ

ba
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Chapter 2 

Theory of Quantum Transport 

One of the important challenges in molecular electronic how to connect the molecule to 

metallic or any other electrodes to probe its electronic properties. For the molecular system, 

the contacts between the molecule and the electrodes are usually a significant part which 

determines the electronic properties in addition to the molecular properties. This contact 

involves scattering processes from the electrode to the molecule and from the molecule to 

the electrode. A system like this is not periodic, so a band structure is no longer sufficient to 

describe its electronic properties. For this reason a general approach is required to 

understand and calculate the scattering processes between the electrodes that are 

interconnected with a molecule. 

Our aim in this section is to understand the Landauer formalism in a general form, and the 

discussion will start with a brief derivation of the Landauer formula. I will introduce an 

example of a one dimensional structure to present the general methodology used to describe 

transport in mesoscopic conductors of arbitrarily complex geometry. This method assumes 

that the interaction between carriers and inelastic processes are negligible, which is known 

to be a reasonable room-temperature assumption at least for molecule less than ~3 nm in 

length. 
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2.1 The Landauer formula 

The standard way to describe transport phenomena the phase-coherent mesoscopic systems 

is by evaluating the Landauer formula [61, 62].  The applicability of the method holds for 

phase coherent systems, in other words where a single wave function of fixed energy is 

sufficient to describe the electronic flow. For a mesoscopic sample the relation between the 

electrical conductance and the transmission properties of electrons passing through this 

sample can be described by the Landauer formula, which is the key formula that translates 

the theoretical electron transmission probability calculations obtained from the scattering 

formalism to the experimental quantities, such as the conductivity or the current.  

Our starting point begins by considering a mesoscopic scatterer connected to two electron 

reservoirs (or contacts) by means of two ideal ballistic leads as shown in Figure 2.1. All 

inelastic relaxation processes are limited to the reservoirs [63]. The reservoirs have slightly 

different chemical potentials 𝜇𝐿 − 𝜇𝑅 > 0, which will drive electrons from the left to the 

right reservoir. Initially, I will discuss the solution for one open channel (i.e. where only one 

electron is allowed to travel in a given direction). 

 

Figure 2.1: illustrates a mesoscopic scatterer connected to contacts by ballistic leads. The µL and µR 

represent the chemical potential in the contacts. When an incident wave packet hits the scatterer from 

the left then it will be transmitted with probability 𝑇 = 𝑡𝑡∗ and reflected with probability 𝑅 = 𝑟𝑟∗ 

where, 𝑡, 𝑡∗, 𝑟 and 𝑟∗ represent the transmission and the reflection amplitudes from the left to the 

right and vice versa. Charge conservation requires T + R = 1. 
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To calculate the current in such a system we start by analyzing the incident electric current, 

𝛿𝐼, generated by the chemical potential gradient: 

 RL
E

n
evI  



                                               (2.1.1) 

where e is the electronic charge, v in the group velocity and En  / is the density of states 

per unit length in the lead in the energy window defined by the chemical potentials of the 

contacts: 

vk

n

E

k

k

n

E

n 1


















                                               (2.1.2) 

In one dimension, after including a factor of 2 for spin dependency, /1/  kn . By 

substituting this into Eq. 2.1.2 we find that vEn /1/  . This simplifies Eq. 2.1.1 to: 

  V
h

e

h

e
I RL 

222
                                          (2.1.3) 

where V  is the voltage generated by the potential mismatch. From Eq. 2.1.3, it is clear that 

in the absence of a scattering region, the conductance of a quantum wire with one open 

channel is he /2 2
, which is approximately 77.5 S (or in other words, a resistance of 12.9 

K ). This is reasonable quantity; it typically appears on the circuit boards of everyday 

electrical appliances. 

Now if we consider a scattering region, the current collected in the right contacts will be: 







h

e
G

V

I
V

h

e
I

222
                                      (2.1.4) 
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This is widely-known Landauer formula, relating the conductance, G, of a mesoscopic 

scatterer to the transmission probability,  of the electrons traveling through it. It describes 

the linear response conductance, hence it only holds for small bias voltages, 0V . 

For the case of more than one open channel, the Landauer formula has been generalized by 

Büttiker [62], where the transmission coefficient is replaced by the sum of all the 

transmission amplitudes describing electrons incoming from the left contact and arriving to 

the right contact. The Landauer formula Eq. (2.1.3) for many open channels hence becomes: 

 †
2

2

,

,

2 22
ttTr

h

e
t

h

e
G

V

I

ji

ji  



                                  (2.1.5) 

Where jit ,  is the transmission amplitude describing scattering from jth channel of the left 

electrode to the ith channel of the right electrode. Similarly, the reflection amplitudes jir ,

which describe scattering processes where the particle is scattered from the jth channel of 

the left electrode to the ith channel of the same electrode. By combining the reflection and 

transmission amplitudes, one obtaining the matrix which connects states coming from the 

left lead and vice versa, this object is called the S matrix: 















rt

tr
S                                                            (2.1.6) 

where r and t describe electrons coming of the left and r and t  describe electrons coming 

from the right. Eq. 2.1.5 shows that r, t, r  and t  are matrices for more than one channel 

(Multichannel), and could be complex (in the presence of a magnetic field for example). On 

the other hand charge conservation demands the S matrix be unitary: SS
†
 = I. The S matrix is 

a central object of scattering theory. It is useful not only in describing transport in the linear 

response regime, but also in other problems, such as adiabatic pumping [64]. 
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2.2 Thermoelectric coefficients 

In the linear-response regime, the electric current I and heat current 𝑄̇ passing through a 

device is related to the voltage difference ∆𝑉 and temperature difference ∆𝑇 by Buttiker, 

Imry, Landauer, et al. [62, 65-67]. Therefore both currents are related to the temperature and 

potential differences through the thermoelectric coefficients G, L, M, and K [68, 69] 

(
𝐼
𝑄̇
) = (

𝐺 𝐿
𝑀 𝐾

) (
∆𝑉
∆𝑇
)                                                     (2.2.1)  

The thermoelectric coefficients L and M, in the absence of a magnetic field, are related by 

an Onsager relation  

𝑀 = −𝐿𝑇 . 

where T is temperature . By rearranging these equations, the current relations in terms of 

the measurable thermoelectric coefficients: electrical resistance R = 1/G, thermopower 

𝑆 = −∆𝑉/∆𝑇, Peltier coefficients Π and the thermal conductance 𝑘 can be expressed 

(
ΔV
𝑄̇
) = (

1

𝐺
−
𝐿

𝐺
𝑀

𝐺
𝐾 −

𝐿𝑀

𝐺

)(
𝐼
∆𝑇
) = (

𝑅 𝑆
Π −𝑘

) (
𝐼
∆𝑇
)                              (2.2.2) 

The thermopower S is defined as the potential drop due to a temperature difference in the 

absence of an electrical current 

𝑆 ≡ −(
∆𝑉

∆𝑇
)
𝐼=0

=
𝐿

𝐺
,                                                              (2.2.3) 

the Peltier coefficient Π is defined as the heat transferred purely due to the charge 

current in the absence of a temperature difference   

Π ≡ (
𝑄̇

𝐼
)
∆𝑇=0

=
𝑀

𝐺
= −𝑆𝑇,                                                   (2.2.4) 
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and the thermal conductance  𝑘 is defined as the heat current due to the temperature drop 

in the absence of an electric current 

𝑘 ≡ −(
𝑄̇

∆𝑇
)
𝐼=0

= −𝐾 (1 +
𝑆2𝐺𝑇

𝐾
),                                           (2.2.5) 

Therefore the evaluation of S or Π gives an idea of how well the device will act as a heat 

driven current generator or a current driven cooling device.   

An additional quantity, the thermoelectric figure of merit, ZT [70, 71] can also be defined 

in terms of these measurable thermoelectric coefficients 

𝑍𝑇 =
𝑆2𝐺𝑇

𝑘
.                                                                 (2.2.6) 

From classical electronics, ZT is derived by finding the maximum induced temperature 

difference produced by an applied electrical current in the presence of Joule heating. Let's 

consider a current carrying conductor placed between two heat baths with temperatures 

TL and TR, and electrical potentials VL and VR respectively. The thermoelectric figure of 

merit can be defined by finding the maximum induced temperature difference of the 

conductor due to an electrical current. Defining 𝑄̇ as the gain in heat from bath L to R, 

then from Eq. (2.2.2) that's 

𝑄̇ =Π𝐼 − 𝑘Δ𝑇.    

This heat transfer will cause the left bath to cool and the right bath to heat, with a result 

that Δ𝑇 increases. The amount of Joule heating can be expressed as 𝑄𝐽̇ = 𝑅𝐼2, which is 

proportional to the electrical resistance and the square of the current. This Joule heating 

will also affect the temperature difference induced by the heat transfer, and therefore in 

the steady state case  

Π𝐼 − 𝑘Δ𝑇 =
𝑅𝐼2

2
.                                                    (2.2.7)  
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where, 𝑅/2 is the sum of two parallel resistances (internal and external resistances). After 

rearranging this, the temperature difference is  

Δ𝑇 =
1

𝑘
(Π𝐼 −

𝑅𝐼2

2
)                                                       (2.2.8) 

This expression shows how the temperature difference depends on the current. To find 

the maximum temperature difference a differentiation Eq. (2.2.8) with respect to the 

electric current is made  

𝜕Δ𝑇

𝜕𝐼
=
Π − IR

𝑘
= 0. 

Finally by writing back  𝐼 =Π/R  and substituting Eq. (2.2.4) into Eq. (2.2.8), for the 

maximum of the temperature different we get 

(Δ𝑇)𝑚𝑎𝑥 =
Π2

2𝑘𝑅
=
𝑆2𝑇2𝐺

2𝑘
. 

(Δ𝑇)𝑚𝑎𝑥
𝑇

=
𝑆2𝑇2𝐺

2𝑘
=
1

2
𝑍𝑇, 

yielding a dimensionless number that can be used to characterize the 'efficiency' of a 

molecular device. 

2.2.1 Generalized formula for the thermoelectric coefficients 

To be able to calculate all thermoelectric coefficients we still need to know 𝑄̇. 

Following [69] one can write a formula for the total heat current on one of the leads as 

the difference of the left- and right-going heat currents on the same lead. The heat 

current on the left lead is, where the Fermi distribution function on the left is fL(E)  

and on the right is fR(E) and  fL(E) fR(E) cancelled out during the derivation, yielding 
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𝑄𝐿̇ = 𝑄̇𝐿
+ − 𝑄̇𝐿

− =
2

ℎ
∫ 𝑑𝐸 𝜏(𝐸) ((𝐸 − 𝜇𝐿)𝑓𝐿(𝐸) − (𝐸 − 𝜇𝑅)𝑓𝑅(𝐸)),
∞

−∞

            (2.2.9) 

where 𝑄̇𝐿
+ (𝑄̇𝐿

−) is the total heat current moving to the right (left) on the left lead. For 

simplicity I will define the general current  𝐼𝑝, which will represent the charge current 

if  𝑝 = 0  or the heat current if   𝑝 = 1 

𝐼𝑝 = {

𝐼

𝑒
𝑝 = 0

𝑄̇ 𝑝 = 1

. 

With this the general formula for the current is 

𝐼𝑝 =
2

ℎ
∫ 𝑑𝐸 𝜏(𝐸) ((𝐸 − 𝜇𝐿)

𝑝𝑓𝐿(𝐸) − (𝐸 − 𝜇𝑅)
𝑝𝑓𝑅(𝐸))

∞

−∞

=
2

ℎ
∫ 𝑑𝐸 𝜏(𝐸)𝐴(𝐸).
∞

−∞

                (2.2.10) 

We now define the following quantities 

𝜇 =
𝜇𝑅 + 𝜇𝐿
2

,       𝑇 =
𝑇𝑅 + 𝑇𝐿
2

, 

and rewrite the left and right reservoir's Fermi distributions in terms of these with  

∆𝜇 = 𝜇𝐿 − 𝜇𝑅  and ∆𝑇 = 𝑇𝐿 − 𝑇𝑅, yielding  

𝜇𝐿 = 𝜇 +
∆𝜇

2
,             𝑇𝐿 =  𝑇 +

∆𝑇

2
 ,   

𝜇𝑅 = 𝜇 −
∆𝜇

2
,             𝑇𝑅 =  𝑇 −

∆𝑇

2
 .   

Therefore, the left and right Fermi distributions become 

𝑓𝐿(𝐸) =

(

 1 + 𝑒

𝐸−𝜇−
∆𝜇
2

𝑘𝐵(𝑇+
∆𝑇
2
)

)

 

−1

, 
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𝑓𝑅(𝐸) =

(

 1 + 𝑒

𝐸−𝜇+
∆𝜇
2

𝑘𝐵(𝑇−
∆𝑇
2
)

)

 

−1

. 

Expanding Eq. (2.2.10) in a Taylor series to linear order in ∆𝑉 and ∆𝑇 yields 

𝐼𝑝 = 𝐼𝑝|∆𝑇=0
∆𝜇=0

 +
𝜕𝐼𝑝

𝜕∆𝜇
|
∆𝑇=0
∆𝜇=0

∆𝜇 +
𝜕𝐼𝑝

𝜕∆𝑇
|
∆𝑇=0
∆𝜇=0

 ∆𝑇  

=
2

ℎ
∫ 𝑑𝐸 𝜏(𝐸) [𝐴(𝐸)|∆𝑇=0

∆𝜇=0
+
𝜕𝐴(𝐸)

𝜕∆𝜇
|
∆𝑇=0
∆𝜇=0

 ∆𝜇 +
𝜕𝐴(𝐸)

𝜕∆𝑇
|
∆𝑇=0
∆𝜇=0

 ∆𝑇].     (2.2.11) 
∞

−∞

 

The first term in the Taylor expansion is zero, and the two remaining terms reduce down 

to the derivatives of the two Fermi distribution functions 

𝜕𝐴(𝐸)

𝜕∆𝜇
|
∆𝑇=0
∆𝜇=0

= −(𝐸 − 𝜇)𝑝
𝜕𝑓(𝐸)

𝜕(𝐸)
, 

𝜕𝐴(𝐸)

𝜕∆𝑇
|
∆𝑇=0
∆𝜇=0

=
(𝐸 − 𝜇)𝑝+1

𝑇

𝜕𝑓(𝐸)

𝜕(𝐸)
, 

where 𝑓(𝐸) = (1 + 𝑒
𝐸−𝜇

𝑘𝐵𝑇)
−1

is the Fermi distribution function. Substituting these terms 

into the Taylor expansion (2.2.11) and writing the chemical potential in terms of the 

applied electrical bias ∆𝜇 = 𝑒∆𝑉, the currents in the linear regime can be expressed as  

𝐼𝑝 =
2𝑒

ℎ
∫ 𝑑𝐸 𝜏(𝐸) (𝐸 − 𝜇𝐿)

𝑝(−1)
𝜕𝑓(𝐸)

𝜕(𝐸)
∆𝑉

∞

−∞

+
2

ℎ
  ∫ 𝑑𝐸 𝜏(𝐸)

(𝐸 − 𝜇)𝑝+1

𝑇
(−1)

𝜕𝑓(𝐸)

𝜕(𝐸)
  ∆𝑇                             (2.2.12)

∞

−∞

 

From Eq. (2.2.12) the thermoelectric coefficients G, L, M and K are  

𝐺  =  
2𝑒2

ℎ
∫   𝑑𝐸    𝜏(𝐸)   (−1)  

𝜕𝑓(𝐸)

𝜕(𝐸)

∞

−∞

 ,                                  (2.2.13) 
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𝐿 =
2𝑒

ℎ
∫ 𝑑𝐸 𝜏(𝐸)

(𝐸 − 𝜇)

𝑇
 (−1)

𝜕𝑓(𝐸)

𝜕(𝐸)

∞

−∞

,                                          (2.2.14) 

𝑀 =
2𝑒

ℎ
∫ 𝑑𝐸 𝜏(𝐸)(𝐸 − 𝜇) (−1)

𝜕𝑓(𝐸)

𝜕(𝐸)

∞

−∞

,                                          (2.2.15) 

𝐾 =
2

ℎ
∫ 𝑑𝐸 𝜏(𝐸)

(𝐸 − 𝜇)2

𝑇
 (−1)

𝜕𝑓(𝐸)

𝜕(𝐸)

∞

−∞

,                                          (2.2.16) 

An interesting point that the integrals in Eqs. (2.2.13)-(2.2.16) look like the 𝑛𝑡ℎ central 

moments Ln of a probability function P(E) defined by 

𝑃(𝐸) = −𝜏(𝐸)
𝜕𝑓(𝐸)

𝜕(𝐸)
,                                                         (2.2.17) 

but note that P(E) is not a real probability distribution function, since 

∫ 𝑑𝐸 𝑃(𝐸)
∞

−∞

≠ 1. 

Let's define the following quantity 

𝐿𝑛 = ∫ 𝑑𝐸 (𝐸 − 𝜇)𝑛𝑃(𝐸) =
∞

−∞

〈(𝐸 − 𝜇)𝑛〉.                                     (2.2.18) 

Substituting Eq. (2.2.18) into Eqs. (2.2.13)-(2.2.16), the measurable thermoelectric 

coefficients can be expressed as 

𝐺 =
2𝑒2

ℎ
𝐿0,                                                                               (2.2.19) 

𝑆 = −
1

𝑒𝑇

𝐿1
𝐿0
,                                                                             (2.2.20) 

Π = −
1

𝑒

𝐿1
𝐿0
,                                                                               (2.2.21) 

𝑘 = −
2

ℎ𝑇
(𝐿2 −

𝐿1
2

𝐿0
),                                                             (2.2.22) 
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and then Eq. (2.2.1) can be written as  

(
𝐼
𝑄̇
) =

1

ℎ
(
𝑒2𝐿0

𝑒

𝑇
𝐿1

𝑒𝐿1
1

𝑇
𝐿2

)(
∆𝑉
∆𝑇
)                                                       (2.2.23)  

where T is the reference temperature.  

For the spin-dependent thermoelectric coefficients, since transport through a system is 

assumed to be phase-coherent, even at room temperature, the coefficients 𝐿𝑛 are given by 

𝐿𝑛 = 𝐿𝑛
↑ + 𝐿𝑛

↓   (𝑛 = 0, 1, 2), where [72]  

𝐿𝑛
𝜎 = ∫ (𝐸 − 𝐸𝐹)

𝑛
∞

−∞

𝜏𝜎(𝐸) (−
𝜕𝑓(𝐸, 𝑇)

𝜕𝐸
)𝑑𝐸                   (2.2.24) 

In the expression in Eq. (2.2.24), 𝜏𝜎(𝐸) is the transmission coefficient for electrons of 

energy E, spin of 𝜎 = [↑, ↓]  passing through the molecule from one electrode to the other 

[68] and 𝑓(𝐸, 𝑇) is Fermi distribution function defined as 𝑓(𝐸, 𝑇) = [𝑒(𝐸−𝐸𝐹)/𝑘𝐵T + 1]−1 

where 𝑘𝐵 is Boltzmann’s constant. Eq. (2.2.23) can be rewritten in terms of the electrical 

conductance (G), thermopower (S), Peltier coefficient (∏), and the electronic contribution to 

the thermal conductance (κe): 

(
∆𝑉
𝑄̇
) = (

1/𝐺 𝑆
∏ 𝜅𝑒

) (
𝐼
∆𝑇
)                                                                         (2.2.25) 

where 𝜅𝑒 represents the electronic contribution to the thermal conductance which is given by 

𝜅𝑒 =
1

ℎ𝑇
(𝐿2 −

(𝐿1)
2

𝐿0
)                                                                              (2.2.26) 

From the above expressions, the electronic thermoelectric figure ZTe =S
2
GT/κe is given by 

𝑍𝑇𝑒 =
(𝐿1)

2

𝐿0𝐿2 − (𝐿1)2
                                                                                (2.2.27) 

For E close to EF, if 𝜏(𝐸) varies approximately linearly with E on the scale of kBT then these 

formulae take the form [73] 
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𝐺(𝑇) ≈ (
2𝑒2

ℎ
) 𝜏(𝐸𝐹),                                                                          (2.2.28) 

𝑆(𝑇) ≈ −𝛼𝑒𝑇 (
𝑑 𝑙𝑛𝜏(𝐸)

𝑑𝐸
)
𝐸=𝐸𝐹

,                                                      (2.2.29) 

𝜅𝑒 ≈ 𝐿0
𝜎𝑇𝐺,                                                                                            (2.2.30) 

where 𝛼 = (
𝑘𝐵

𝑒
)
2 𝜋2

3
  is the Lorentz number = 2.44×10

-8
  WΩK

-2
. Eq. (2.2.29) demonstrates 

that S is enhanced by increasing the slope of 𝑙𝑛𝜏(𝐸) near E=EF and hence it is of interest to 

explore systems on the nanoscale where the gradient of 𝜏(𝐸) changes close to Fermi energy 

EF which in the case of molecular transport involves moving resonances close to the Fermi 

energy.  

2.3 Scattering Theory  

2.3.1 One dimensional (1-D) linear crystalline lattice 

To give a clear outline of the methodology used to simulate a complicated scattering matrix; 

it is useful to analyze a simple one-dimension system. The following discussions in this 

section will be about the form of the Green’s function. I am going to consider a simple tight-

binding approach to get a qualitative understanding of electronic structure calculation in 

periodic systems, as shown in Figure (2.3.1). 

 

 

Figure 2.3.1: illustrates tight-binding model of a one-dimensional perfect lattice with on-site 𝜀𝑜 and 

hopping 𝛾 energies, respectively, where 𝑍 is the label of the orbital. 

 

The matrix form of the Hamiltonian is written simply: 
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







































o

o
H                                                          (2.3.1) 

where o is on-site energies and   is real hopping parameters. 

According to the time independent Schrödinger equation (Eq. 2.3.2) which can be expanded 

at a lattice site 𝑍 in terms of the energy and wavefunction 
Z (Eq. 2.3.3). 

  0 HEI                                                      (2.3.2) 

Taking a single row: 

ZZZZo E
 11

                                          (2.3.3) 

For this periodic lattice, the wave function takes the form of a propagating Bloch state Eq. 

(2.2.4) 

ikz

Z e
v

1
                                                            (2.3.4) 

kE o cos2                                                          (2.3.5) 

here we introduce the quantum number, k, which is commonly referred to as the 

wavenumber. Another useful quantity, group velocity, can be given by differentiating the 

dispersion relation E(k): 

.
1

k

E
v







                                                   (2.3.6) 

In the z direction the retarded Green’s function can be written as 𝑔(𝑧, 𝑧′) which is closely 

related to the wavefunction and is in the fact the solution to a second order differential 

equation, similar to that of the Schrödinger equation.  
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(𝐸 − 𝐻)𝑔(𝑧, 𝑧′) = 𝛿𝑧,𝑧′                                                    (2.3.7) 

From a physical view point, the retarded Green’s function 𝑔(𝑧, 𝑧′) describes the response   

of a system at a point 𝑧 due to an excitation (a source) at a point  𝑧′. Intuitively, we expect 

such a source to give rise to two waves, propagating outwards from the point of excitation, 

with the amplitudes 𝐴+ and 𝐴− as shown in Figure 2.3.2. 

 

 

Figure 2.3.2: shows the retarded Green’s function of an infinite one-dimensional lattice. The source 

(excitation point) at 𝑧 = 𝑧′ causes the wave to propagate left and right with amplitudes 𝐴− and 𝐴+ 

respectively. 

 

These propagating waves can be expressed simply as: 

𝑔(𝑧, 𝑧′) = 𝐴+𝑒𝑖𝑘𝑧             𝑧 ≥ 𝑧′

𝑔(𝑧, 𝑧′) = 𝐴−𝑒−𝑖𝑘𝑧            𝑧 ≤ 𝑧′
                                           (2.3.8) 

The solution satisfies Eq. 2.3.7 at every point but 𝑧 = 𝑧′. To overcome this, the Green’s 

function must be continuous, so we equate the two at  𝑧 = 𝑧′: 

|𝑔(𝑧, 𝑧′)|𝑧=𝑧′− = |𝑔(𝑧, 𝑧′)|𝑧=𝑧′+                                            (2.3.9) 

𝐴+𝑒𝑖𝑘𝑧
′
= 𝐴−𝑒−𝑖𝑘𝑧

′
                                                   (2.3.10) 

To find the solution, we gauss 

𝐴+ = 𝛽𝑒−𝑖𝑘𝑧
′
                                                              (2.3.11) 

𝐴− = 𝛽𝑒𝑖𝑘𝑧
′
                                                              (2.3.12) 
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From Eqs (2.3.8) and (2.3.10) we get 

𝑔(𝑧, 𝑧′) = 𝛽𝑒𝑖𝑘|𝑧−𝑧
′|                                             (2.3.13) 

To obtain the constant  𝛽, we use Eq. (2.3.7) which for 𝑧 = 𝑧′ gives 

(𝜀0 − 𝐸)𝛽 − 𝛾𝛽𝑒
𝑖𝑘 − 𝛾𝛽𝑒𝑖𝑘 = −1                                                    

𝛾𝛽(2 cos 𝑘 − 2𝑒𝑖𝑘) = −1                                                    

𝛽 =
1

2𝑖𝛾 sin 𝑘
=

1

𝑖ℏ v
 

where ℏ v =
𝜕𝐸

𝜕𝑘
= 2𝑖𝛾 sin 𝑘. 

𝐴+𝑒𝑖𝑘𝑧
′ ℏ v

2𝑘
2𝑖𝑘 = 1  → 𝐴+𝑒𝑖𝑘𝑧

′
=

1

𝑖ℏ𝑣
                            (2.3.14) 

And also, the retarded Green’s function can be written 

𝑔𝑅(𝑧, 𝑧′) =
1

𝑖ℏ v
𝑒𝑖𝑘|𝑧−𝑧

′|                                        (2.3.15) 

where the group velocity, found from the dispersion relation, is: 

ν =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
= 2𝛾𝑠𝑖𝑛𝑘                                              (2.3.16) 

A more thorough derivation can be found in the literature [63, 74, 75]. It is also worth noting 

that another solution can be found to this problem. Above, I have shown the retarded 

Green’s function, 𝑔𝑅(𝑧, 𝑧′). The advanced Green’s function, 𝑔𝐴(𝑧, 𝑧′), is an equally valid 

solution: 

𝑔𝐴(𝑧, 𝑧′) =
𝑖

ℏ v
𝑒−𝑖𝑘|𝑧−𝑧

′|                                             (2.3.17) 

Rather than describing outgoing waves from the source point, 𝑧 = 𝑧′, as the retarded Green's 

function does, the advanced Green's function describes two incoming waves that disappear 



24 
 

at sink, 𝑧 = 𝑧′. In this thesis, I will use the retarded Green’s function and for the sake of 

simplicity, drop the 
R 

from its representation. So 𝑔(𝑧, 𝑧′) = 𝑔𝑅(𝑧, 𝑧′). 

Since the probability of an electron to propagate between two points on this perfect lattice 

will be unity if its energy is within 𝜀0 − 2𝛾 and 𝜀0 + 2𝛾, this system is of little use to us. 

However, if some defect is created within the lattice, this will act as a scatterer and the 

transmission coefficient will be modified. 

 

2.3.2 One dimensional (1-D) scattering 

To understand the generalized methodology, it is useful to describe the scattering matrix of a 

simple system. In this section I will introduce two pieces of one dimensional tight binding 

semi-infinite leads connected by a coupling element  𝛽. Both leads are equal with 𝜀0 on-site 

potential and – 𝛾 hopping elements between the sites as shown below, in Figure 2.3.3. To 

make our solution in the simplest way, I will derive the transmission and reflection 

coefficients for a particle traveling from the left lead towards the scattering region, however, 

it turns out that all scattering processes can be reduced back to this topology of one-

dimensional setups. 

 

Figure 2.3.3: illustrates a simple tight-binding model of a one-dimensional scatterer attached to one 

dimensional leads, where 𝜀0 is on-site energy, – 𝛾 is hopping elements between the sites and 𝛽 

is a coupling element between two pieces of semi-infinite chains. 

 

The corresponding Hamiltonian is an infinite matrix of the form:  
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HV

VH
  

R

†

c

cL

0

0

0

0



































































H                        (2.3.18) 

Here, 𝐻𝐿 and 𝐻𝑅 denote Hamiltonians for the leads which are the semi-infinite equivalent of 

the Hamiltonians shown in Eq. (2.3.18). 𝑉𝑐 denotes the coupling parameter.  

For real 𝛾, the dispersion relation corresponding to the leads introduced above was given in 

Eq. (2.3.5) and group velocity was given in Eq. (2.3.16): 

kkE o cos2)(                                                           (2.3.19) 

ν =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
                                                                         (2.3.20) 

In order to obtain the scattering amplitudes we need to calculate the Green's function of the 

system. The Green’s function for a system obeying the Schrödinger's equation 

(𝐸 − 𝐻)𝜓 = 0,                                                                (2.3.21) 

is defined via Green’s function which is satisfied the following equation 

(𝐸𝐼 − 𝐻)𝐺 = 𝐼,                                                              (2.3.22) 

where G, H are matrices and I represents the unit matrix. The equation 2.3.22 produced two 

matrices which are [(𝐸𝐼 − 𝐻)𝐺] and [𝐼] and these end up with the formal solution can be 

written as  

𝐺 = (𝐸 − 𝐻)−1,                                                            (2.3.23) 

This formal solution Eq. (2.3.23) possesses the singularity behaviour (sometimes it is called 

a pole) as shown in figure (2.3.4) when the energy E is equal to an eigenvalue of the 

Hamiltonian H. To get rid of this singularity one considers in practice the limit 
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𝐺± = lim
𝜂→0

(𝐸 − 𝐻 ± 𝑖𝜂)−1 ,                                                     (2.3.24) 

 

Figure 2.3.4: shows the singularity behaviour of function (Eq 2.3.24). 

 

to make the solution of (Eq 2.3.22). Here  𝜂 is a positive number, and 𝐺+(𝐺−) is the retarded 

(advanced) Green’s function, respectively. In this thesis I will only use retarded Green's 

functions and hence choose the – sign.  

The retarded Green's function for an infinite, one dimensional chain with the same 

parameters is defined in Eq.(2.3.15): 

𝑔𝑗𝑙 =
1

𝑖ℏ v
𝑒𝑖𝑘|𝑗−𝑙|                                                     (2.3.25) 

where j, l are the label of the sites in the chain. In order to obtain the Green's function of a 

semi-infinite lead we need to introduce the appropriate boundary conditions. In this case, the 

lattice is semi-infinite, so the chain must terminate at a given point, 𝑖0, so that all points for 

which 𝑖 ≥ 𝑖0 are missing. This is achieved by adding a wave function to the Green’s 

function to mathematically represent this condition. The wavefunction in this case is: 

 𝜓𝑗𝑙
𝑖0 = −

𝑒𝑖𝑘(𝑗+𝑙−2𝑖0)

𝑖ℏ v
                                      (2.3.26) 
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The Green's function 𝑔𝑗𝑙 = 𝑔𝑗𝑙
∞ + 𝜓𝑗𝑙

𝑖0 will have the following simple form at the boundary 

𝑗 = 𝑙 = 𝑖0: 

𝑔𝑖0,𝑖0 = −
𝑒𝑖𝑘

𝛾
                                               (2.3.27) 

If we consider the case of decoupled leads, 𝛽 = 0, the total Green's function of the system 

will simply be given by the decoupled Green’s function: 

𝑔 =

(

 
 
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾 )

 
 
= (

𝑔𝐿 0
0 𝑔𝑅

)                       (2.3.28) 

If we now switch on the interaction, then in order to get the Green's function of the coupled 

system, 𝐺́, we need to use Dyson's equation: 

𝐺́−1 = (𝑔−1 − 𝑉)                                              (2.3.29) 

Here the operator V describing the interaction connecting the two leads will have the form: 

𝑉 = (
0 𝑉𝑐

𝑉𝑐
† 0

) = (
0 𝛽
𝛽∗ 0

)                                    (2.3.30) 

The solution to Dyson's equation, Eq.(3.3.29) reads: 

𝐺́ =
1

𝛽2 − 𝛾2𝑒−2𝑖𝑘
(
𝛾𝑒−𝑖𝑘 𝛽

𝛽∗ 𝛾𝑒−𝑖𝑘
)                             (2.3.31) 

The only remaining step is to calculate the transmission, t, and reflection, r, amplitudes from 

the Green's function Eq.(2.3.31). This is done by making use of the Fisher-Lee relation [62, 

76] which relates the scattering amplitudes of a scattering problem to the Green's function of 

the problem. The Fisher-Lee relations in this case read: 

𝑟 = 𝐺́1,1𝑖ℏ v − 1                                                            (2.3.32) 
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𝑡 = 𝐺́1,2𝑖ℏ v 𝑒𝑖𝑘                                                              (2.3.33) 

These amplitudes correspond to particles incident from the left. If one would consider 

particles coming from the right than similar expressions could be recovered for the 

transmission, 𝑡′, and reflection, 𝑟′, amplitudes.  

Since we are now in the possession of the full scattering matrix we can use the Landauer 

formula Eq.( 2.1.4) to calculate the zero bias conductance. The procedure by which this 

analytical solution for the conductance of a one-dimensional scatterer was found can be 

generalized for more complex geometries. So to briefly summarize the steps: 

1. The first step was to calculate the Green's function describing the surface sites of the 

leads. 

2. The total Green's function in the presence of a scatterer is obtained by Dyson's equation. 

3. The Fisher-Lee relation gives us the scattering matrix from the Green's function. 

4. Using the Landauer formula, we can then find the zero-bias conductance. 

Later on we will see that the setup considered in this section, despite the fact that it looks 

simple, is quite general. 

2.4 Generalization of the above scattering formalism 

A generalized approach to transport calculations will be shown in this section. This 

approach follows the derivation of Lambert, presented in [77-79]. This is similar to the 

previous approach. First the surface Green's function of crystalline leads is computed, then 

the technique of decimation is introduced to reduce the dimensionality of the scattering 

region and finally the scattering amplitudes are recovered by means of a generalization of 

the Fisher-Lee relation. 
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2.4.1 A doubly infinite Hamiltonian and Green’s function of the 

electrodes. 

To obtain a qualitative understanding of the electronic structure in periodic systems, we 

study a general doubly-infinite crystalline electrode; this system can be described within the 

tight-binding approximation in terms of two Hamiltonians. If we consider that the direction 

of electron transport is along the z axes, then the system could include a periodic sequence 

of slices, given by an intra-slice matrix 𝐻0 which represents the structure of each slice and 

the inter-slice nearest-neighbour matrix 𝐻1 which represents the hopping elements between 

all orbitals within the slices. The system described in this way could be a single atom in an 

atomic chain, an atomic plane or a more complex cell. 

In general, the spectrum of an infinite Hamiltonian is continuous because the electrodes are 

crystalline. We first introduce the structure of a doubly-infinite one-dimensional (1-D) lead 

in Figure 2.4.1 

 

Figure 2.4.1: Illustrates an example of doubly-infinite generalized electrodes with one dimensional 

(1-D) structure. It shows that H0 and H1 are the Hamiltonians and hopping energies respectively. The 

direction z is defined the periodicity along one direction.  

 

We start with a total Hamiltonian operator Ĥ  whose structure can be written as an infinite 

block tri- diagonal matrix of the form 
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𝐻 =

(

 
 

⋱ 𝐻1 0 0

𝐻1
† 𝐻0 𝐻1 0

0 𝐻1
† 𝐻0 𝐻1

0 0 𝐻1
† ⋱ )

 
 
,                                                      (2.4.1) 

where 𝐻0 and 𝐻1 are in general complex matrices and the only restriction is that the full 

Hamiltonian, H, should be Hermitian. Our first goal in this section is to calculate the Green's 

function of such a lead for general H1 and H0. In order to calculate the Green's function, one 

has to calculate the spectrum of the Hamiltonian by solving the Schrödinger equation of the 

lead. 

𝐻0𝜓𝑧 −𝐻1𝜓𝑧+1 −𝐻1
†𝜓𝑧−1 = 𝐸𝜓𝑧                                                               (2.4.2) 

where 𝜓𝑧 is a column vector whose elements specify the amplitude of the wave function on 

each degree of freedom within a slice located at point z along the z axis. That means 

equation (2.4.2) is satisfied for all z to  , and the on-site wave function can be represented 

in Bloch form consisting of a product of a propagating plane wave and a wavefunction, 

∅𝑘,which is perpendicular to the transport direction, z. If the intra-layer Hamiltonian, H0, has 

dimensions 𝑀 ×𝑀 (or in other words consists of 𝑀 site energies and their respective 

hopping elements), then the perpendicular wavefunction, ∅𝑘, will have M degrees of 

freedom and take the form of a 1 ×𝑀 dimensional vector. So the wave function, 𝜓𝑧, takes 

the form: 

𝜓𝑧 = √𝑛𝑘  𝑒
𝑖𝑘𝑧 ∅𝑘                                               (2.4.3) 

where, 𝑛𝑘 is an arbitrary normalization parameter. Substituting this into the Schrödinger 

equation Eq.(2.4.2) gives: 

(𝐻0 + 𝑒
𝑖𝑘𝑧𝐻1 + 𝑒

−𝑖𝑘𝑧𝐻1
† − 𝐸) ∅𝑘  = 0                                       (2.4.4) 

Typically, to find the band structure for such a problem, one would select values of k and 

calculate the eigenvalues at that point, 𝐸 = 𝐸𝑙(𝑘), where 𝑙 = 1,…𝑀. Here, 𝑙 denotes the 
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band index. For each value of k, there will be 𝑀 solutions to the eigenproblem, and so 𝑀 

energy values. In this way, by selecting multiple values for k, it is relatively simple to build 

up a band structure. In a scattering problem, the problem is approached from the opposite 

direction; instead of finding the values of E at a given k, we find the values of k at a given E. 

In order to accomplish this, a root-finding method might have been used, but this would 

have required an enormous numerical effort, since the wave numbers are in general 

complex. Instead, we can write down an alternative eigenvalue problem in which the energy 

is the input and the wave numbers are the result by introducing the function: 

𝜗𝑘 = 𝑒
𝑖𝑘𝑧 ∅𝑘                                                              (2.4.5) 

and combining it with 

(𝐻1
−1(𝐻0 − 𝐸) −𝐻1

−1𝐻1
†

𝐼 0
) (
∅𝑘
𝜗𝑘
) = 𝑒𝑖𝑘𝑧 (

∅𝑘
𝜗𝑘
)                           (2.4.6) 

For a layer Hamiltonian, H0, of size 𝑀 ×𝑀, Eq(2.4.6) will yield 2𝑀 eigenvalues, 𝑒𝑖𝑘𝑧 and 

eigenvectors, ∅𝑘, of size 𝑀. We can sort these states into four categories according to 

whether they are propagating or decaying and whether they are left going or right going. A 

state is propagating if it has a real wave number, kl, and is decaying if it has an imaginary 

part. If the imaginary part of the wave number is positive then we say it is a left decaying 

state, if it has a negative imaginary part it is a right decaying state. The propagating states 

are sorted according to the group velocity of the state defined by 

𝑣𝑘𝑙 =
1

ℏ

𝜕𝐸𝑘,𝑙
𝜕𝑘

                                                (2.4.7) 

If the group velocity, 𝑣𝑘𝑙  , of the state is positive than it is a right propagating state if it is 

negative than it is a left propagating state. To summarize 
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 Left Right 

Decaying 𝐼𝑚(𝑘𝑙) > 0 𝐼𝑚(𝑘𝑙) < 0 

Propagating 𝐼𝑚(𝑘𝑙) = 0, 𝑣𝑘𝑙 < 0 𝐼𝑚(𝑘𝑙) = 0, 𝑣𝑘𝑙 > 0 

 

Table 2.4.1: Sorting the eigenstates into left and right propagating or decaying states according to 

the wave number and group velocity. 

 

For convenience, from now on I will denote the 𝑘𝑙 wave numbers which belong to the left 

propagating/decaying set of wave numbers by 𝑘𝑙̅ and the right propagating/decaying wave 

numbers will remain plainly 𝑘𝑙 . Thus,  ∅𝑘 is a wave function associated to a "right" state and 

∅̅ 𝑘 is associated to a "left" state. If H1  is invertible, there must be exactly the same number, 

𝑀, of left and right going states. It is clear that if H1  is singular, the matrix in Eq.(2.4.6) 

cannot be constructed, since it relies of the inversion of H1. However, any one of several 

methods can be used to overcome this problem. The first [78] uses the decimation technique 

to create an effective, non-singular H1. Another solution might be to populate a singular H1 

with small random numbers, hence introducing an explicit numerical error. This method is 

reasonable as the introduced numerical error can be as small as the numerical error 

introduced by decimation. Another solution is to re-write Eq.(2.4.6) such that H1 need not be 

inverted: 

((𝐻0 − 𝐸) −𝐻1
†

𝐼 0
) (
∅𝑘
𝜗𝑘
) = 𝑒𝑖𝑘𝑧 (

𝐻1 0
0 𝐼

) (
∅𝑘
𝜗𝑘
)                           (2.4.8) 

However, solving this generalized eigenproblem is more computationally expensive. Any of 

the aforementioned methods work reasonably in tackling the problem of a singular 𝐻1 

matrix, and so can the condition that there must be exactly the same number, 𝑀, of left and 

right going states, whether 𝐻1 is singular or not.  

The solutions to the eigenproblem Eq.(2.4.4) at a given energy, E, will not generally form an 

orthogonal set of states. This is crucial, since we will have to deal with the nonorthogonality 
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when constructing the Green's function. It is, therefore, necessary to introduce the duals to 

 ∅𝑘𝑙 and  ∅𝑘̅𝑙 in such a way that they obey:  

∅̃𝑘𝑗  ∅𝑘𝑗 = ∅̃𝑘̅𝑙  ∅𝑘̅𝑙 = 𝛿𝑖𝑗                                    (2.4.9) 

This yields the generalized completeness relation:  

∑∅̃𝑘𝑙 ∅𝑘𝑙

𝑀

𝑙=1

=∑∅̃𝑘̅𝑙  ∅𝑘̅𝑙

𝑀

𝑙=1

= 𝐼                                            (2.4.10) 

Once we are in possession of the whole set of eigenstates at a given energy we can calculate 

the Green's function first for the infinite system and then, by satisfying the appropriate 

boundary conditions, for the semi-infinite leads at their surface. Since the Green's function 

satisfies the Schrödinger equation when 𝑧 ≠ 𝑧′ we can build up the Green's function from 

the mixture of the eigenstates  ∅𝑘𝑙 and  ∅𝑘̅𝑙 

𝑔(𝑧, 𝑧′) =

{
 
 

 
 ∑ ∅𝑘𝑙𝑒

𝑖𝑘𝑙(𝑧−𝑧
′)𝜔𝑘𝑙                  𝑧 ≥  𝑧

′

𝑀

𝑙=1

∑ ∅𝑘̅𝑙𝑒
𝑖𝑘̅𝑙(𝑧−𝑧

′)𝜔𝑘̅𝑙

𝑀

𝑙=1

                 𝑧 ≤  𝑧′

                              (2.4.11) 

where the M-component vectors 𝜔𝑘𝑙 and 𝜔𝑘̅𝑙 are to be determined, and the vectors  ∅𝑘 and 

 𝜔𝑘𝑙 contain the degrees of freedom in the transverse direction. 

The task now is to obtain the 𝜔 vectors. As in section (2.4.1), we know that Eq. (2.4.11) 

must be continuous at 𝑧 = 𝑧′ and should fulfil the Green’s Eq. (2.3.6). The first condition is 

expressed as: 

∑ ∅𝑘𝑙𝜔𝑘𝑙

𝑀

𝑙=1

=∑∅𝑘̅𝑙𝜔𝑘̅𝑙
𝑙

                                                  (2.4.12) 

and the second: 
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∑[(𝐸 − 𝐻0) ∅𝑘𝑙𝜔𝑘𝑙 + 𝐻1 ∅𝑘𝑙𝑒
𝑖𝑘𝑙𝜔𝑘𝑙 + 𝐻1

† ∅𝑘̅𝑙𝑒
𝑖𝑘̅𝑙𝜔𝑘̅𝑙]

𝑀

𝑙=1

= 𝐼  

These two condictions emply the following equation: 

∑[(𝐸 − 𝐻0) ∅𝑘𝑙𝜔𝑘𝑙 +𝐻1 ∅𝑘𝑙𝑒
𝑖𝑘𝑙𝜔𝑘𝑙 +𝐻1

† ∅𝑘̅𝑙𝑒
𝑖𝑘̅𝑙𝜔𝑘̅𝑙 +𝐻1

† ∅𝑘𝑙𝑒
𝑖𝑘𝑙𝜔𝑘𝑙 −𝐻1

† ∅𝑘𝑙𝑒
𝑖𝑘𝑙𝜔𝑘𝑙] = 𝐼

𝑀

𝑙=1

  

∑[𝐻1
† ∅𝑘̅𝑙𝑒

𝑖𝑘̅𝑙𝜔𝑘𝑙 −𝐻1
† ∅𝑘𝑙𝑒

𝑖𝑘𝑙𝜔𝑘𝑙] +∑[(𝐸 − 𝐻0) + 𝐻1𝑒
𝑖𝑘𝑙 +𝐻1

†𝑒𝑖𝑘𝑙]

𝑀

𝑙=1

 ∅𝑘𝑙𝜔𝑘𝑙 = 𝐼

𝑀

𝑙=1

 

and since, from the Schrödinger equation Eq.(2.4.4), we know that: 

∑[(𝐸 − 𝐻0) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒𝑖𝑘𝑙]

𝑀

𝑙=1

 ∅𝑘𝑙 = 0                                    (2.4.13) 

this yields:  

∑𝐻1
†( ∅𝑘̅𝑙𝑒

−𝑖𝑘̅𝑙𝜔𝑘̅𝑙 −  ∅𝑘𝑙𝑒
−𝑖𝑘𝑙𝜔𝑘𝑙) = 𝐼

𝑀

𝑙=1

                                    (2.4.14) 

Now let us make use of the dual vectors defined in Eq.(2.4.9). Multiplying Eq.(3.4.14) by 

 ∅̃𝑘𝑝 we get: 

∑∅̃𝑘𝑝  ∅𝑘̅𝑙𝜔𝑘̅𝑙 = 𝜔𝑘𝑝

𝑀

𝑙=1

                                                    (2.4.15) 

and similarly multiplying by  ∅̃𝑘̅𝑙 gives: 

∑∅̃𝑘̅𝑝  ∅𝑘𝑙𝜔𝑘𝑙 = 𝜔𝑘̅𝑝

𝑀

𝑙=1

                                                    (2.4.16) 

Using the continuity equation Eq.(2.4.12), Eq.(2.4.15), Eq.(2.4.16), then the Green's 

equation Eq.(2.4.13) becomes: 
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∑∑𝐻1
†(∅𝑘𝑙𝑒

−𝑖𝑘𝑙∅̃𝑘𝑙 − ∅𝑘̅𝑙𝑒
−𝑖𝑘̅𝑙∅̃𝑘̅𝑙)

𝑀

𝑝=1

𝑀

𝑙=1

∅𝑘̅𝑝𝜔𝑘̅𝑝 = 𝐼                                   (2.4.17) 

From which follows: 

∑[𝐻1
†(∅𝑘𝑙𝑒

−𝑖𝑘𝑙∅̃𝑘𝑙 − ∅𝑘̅𝑙𝑒
−𝑖𝑘̅𝑙∅̃𝑘̅𝑙)]

−1
=

𝑀

𝑙=1

∑ ∅𝑘̅𝑝𝜔𝑘̅𝑝 =∑  ∅𝑘𝑝𝜔𝑘𝑝

𝑀

𝑝=1

𝑀

𝑝=1

               (2.4.18) 

This immediately gives us an expression for  𝜔𝑘 : 

𝜔𝑘 = ∅̃𝑘𝑙  𝜈
−1                                                   (2.4.19) 

Where 𝜈 is defined as: 

𝜈 =∑𝐻1
† (∅𝑘𝑙𝑒

−𝑖𝑘𝑙∅̃𝑘𝑙 − ∅𝑘̅𝑙𝑒
−𝑖𝑘̅𝑙∅̃𝑘̅𝑙)

𝑀

𝑙=1

                                   (2.4.20) 

The wave vector, k, in Eq.(2.4.19) refers to both left and right type of states. Substituting 

Eq.(2.4.19) into Eq.(2.4.11) we get the Green’s function of an infinite system: 

𝑔(𝑧, 𝑧′) =

{
 
 

 
 ∑ ∅𝑘𝑙𝑒

𝑖𝑘𝑙(𝑧−𝑧
′) ∅̃𝑘𝑙  𝜈

−1          𝑧 ≥  𝑧′
𝑀

𝑙=1

∑ ∅𝑘̅𝑙𝑒
𝑖𝑘̅𝑙(𝑧−𝑧

′) ∅̃𝑘̅𝑙

𝑀

𝑙=1

 𝜈−1          𝑧 ≤  𝑧′

                             (2.4.21) 

In order to get the Green's function for a semi-infinite lead we have to add a wave function 

to the Green's function in order to satisfy the boundary conditions at the edge of the lead, as 

with the one dimensional case. The boundary condition here is that the Green's function 

must vanish at a given place, 𝑧 = 𝑧′. In order to achieve this we simply add: 

Δ = ∑  ∅𝑘̅𝑙𝑒
𝑖𝑘̅𝑙(𝑧−𝑧0) 

𝑀

𝑙,𝑝=1

∅̃𝑘̅𝑙  ∅𝑘𝑝𝑒
𝑖𝑘𝑝(𝑧−𝑧0)∅̃𝑘𝑝𝜈

−1                     (2.4.22) 
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to the Green's function, Eq.(2.4.21), 𝑔 = 𝑔∞ + ∆. This yields the surface Green’s function 

for a semi-infinite lead going left: 

𝑔𝐿 = (𝐼 −∑ ∅𝑘̅𝑙𝑒
−𝑖𝑘̅𝑙 ∅̃𝑘̅𝑙  ∅𝑘𝑝𝑒

𝑖𝑘𝑝∅̃𝑘𝑝
𝑙,𝑝

)𝜈−1                       (2.4.23) 

and going right; 

𝑔𝑅 = (𝐼 −∑ ∅𝑘̅𝑙𝑒
𝑖𝑘̅𝑙 ∅̃𝑘̅𝑙  ∅𝑘𝑝𝑒

−𝑖𝑘𝑝∅̃𝑘𝑝
𝑙,𝑝

)𝜈−1                       (2.4.24) 

So now we have a versatile method for calculating the surface Green's functions 

Eqs.(2.4.23) and (2.4.24)) for a semi-infinite crystalline electrode using the numerical 

approach in Eq (2.4.6). The next step is to apply this to a scattering problem. 

2.4.2 Effective Hamiltonian of the Scattering Region 

In section (2.3.2) I have discussed that, given a coupling matrix between the surfaces of the 

semi-infinite leads, the Dyson Equation (2.3.31) can be used to calculate the Green’s 

function of the scatterer. However, the scattering region is not generally described simply as 

a coupling matrix between the surfaces. Therefore, it is useful to use the decimation method 

to reduce the Hamiltonian down to such a structure. Other methods have been developed 

[80, 81], but in this thesis I will use the decimation method. 

Consider again the Schrödinger equation 

∑𝐻𝑖𝑗
𝑗

Ψ𝑗 = 𝐸Ψ𝑖                                             (2.4.25) 

If we separate the lth degree of freedom in the system: 

𝐻𝑖𝑙Ψ𝑙 +∑𝐻𝑖𝑗
𝑗≠𝑙

Ψ𝑗 = 𝐸Ψ𝑖            𝑖 ≠ 𝑙                                            (2.4.26) 
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𝐻𝑙𝑙Ψ𝑙 +∑𝐻𝑙𝑗
𝑗≠𝑙

Ψ𝑗 = 𝐸Ψ𝑙             𝑖 = 𝑙                                            (2.4.27) 

From Eq. (2.4.27) we can express Ψ𝑙 as: 

Ψ𝑙 =∑
𝐻𝑙𝑗Ψ𝑗

𝐸 − 𝐻𝑙𝑙
𝑗≠𝑙

                                                           (2.4.28) 

If we then substitute Eq. (2.4.28) into Eq. (3.4.26) we get:  

∑[𝐻𝑖𝑗Ψ𝑗 +
𝐻𝑖𝑙𝐻𝑙𝑗Ψ𝑗

𝐸 − 𝐻𝑙𝑙
]

𝑗≠𝑙

= 𝐸Ψ𝑖           𝑖 ≠ 𝑙                         (2.4.29) 

So we can think of Eq. (2.4.29) as an effective Schrödinger equation where the number of 

degrees of freedom is decreased by one compared to Eq. (2.4.25). Hence we can introduce a 

new effective Hamiltonian,  𝐻′, as: 

𝐻𝑖𝑗
′ = 𝐻𝑖𝑗 +

𝐻𝑖𝑙𝐻𝑙𝑗

𝐸 − 𝐻𝑙𝑙
                                                 (2.4.30) 

This Hamiltonian is the decimated Hamiltonian produced by simple Gaussian elimination. A 

notable feature of the decimated Hamiltonian is that it is energy dependent, which suits the 

method presented in the previous section very well. Without the decimation method, the 

hamiltonian describing the system in general would take the form: 

𝐻 = (

𝐻𝐿 𝑉𝐿 0

𝑉𝐿
† 𝐻𝑠𝑐𝑎𝑡𝑡 𝑉𝑅

0 𝑉𝑅
† 𝐻𝑅

)                                            (2.4.31) 

Here, HL and HR denote the semi-infinite leads, Hscatt denotes the Hamiltonian of the 

scatterer and VL and VR are the coupling Hamiltonians, which couple the original scattering 

region to the leads. After decimation, we produce an effectively equivalent Hamiltonian: 

𝐻 = (
𝐻𝐿 𝑉𝑐

𝑉𝑐
† 𝐻𝑅

)                                                      (2.4.32) 
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Here, Vc denotes an effective coupling Hamiltonian, which now describes the whole 

scattering process. 

Now we can apply the same steps as with the one-dimensional case; using the Dyson Eq. 

Eq. (2.3.31). Hence, the Green's function for the whole system is described by the surface 

Green's functions Eqs. (2.4.23) and (2.4.24) and the effective coupling Hamiltonian from 

Eq. (2.4.32). 

𝐺 = (
𝑔𝐿
−1 𝑉𝑐

𝑉𝑐
† 𝑔𝑅

−1
)

−1

= (
𝐺00 𝐺01
𝐺10 𝐺11

)                                         (2.4.33) 

2.4.3 Scattering Matrix 

Now, we can move on to the calculation of the scattering amplitudes. A generalization of the 

Fisher-Lee relation [76, 78, 82], assuming that states are normalized to carry unit flux, will 

give the transmission amplitude from the left lead to the right lead as:  

𝑡ℎ𝑙 = ∅̃𝑘ℎ𝐺01𝜈𝐿∅𝑘𝑙√|
𝜐ℎ
𝜐𝑙
|                                                   (2.4.34) 

where ∅𝑘ℎ is a right moving state vector in the right lead and ∅𝑘𝑙 is a right moving state 

vector in the left lead. The corresponding group velocities are denoted 𝜐ℎ and 𝜐𝑙 

respectively. 

The reflection amplitudes in the left lead similarly read: 

𝑟ℎ𝑙 = ∅̃𝑘̅ℎ(𝐺00𝜈𝐿 − 𝐼)∅𝑘𝑙√|
𝜐ℎ
𝜐𝑙
|                                   (2.4.35) 

Here ∅𝑘̅ℎ is a left moving state vector in the left lead and ∅𝑘𝑙 is a right moving state vector 

in the left lead. In both cases 𝜈𝐿  is the 𝜈 operator defined by Eq. (2.4.20) for the left lead. 

Similarly we can define the scattering amplitudes for particles coming from the right: 
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𝑡ℎ𝑙
′ = ∅̃𝑘̅ℎ𝐺10𝜈𝑅∅𝑘̅𝑙√|

𝜐ℎ
𝜐𝑙
|                                          (2.4.36) 

𝑟ℎ𝑙
′ = ∅̃𝑘ℎ(𝐺11𝜈𝑅 − 𝐼)∅𝑘̅𝑙√|

𝜐ℎ
𝜐𝑙
|                                   (2.4.37) 

Here the definitions are identical, but for the obvious note that what was left in the previous 

case is now right and vice versa. 

So now we can build a scattering matrix and, using the Landauer formula Eq. (2.1.5) 

presented in section 2.1, we can calculate the conductance. And since this method is valid 

for any choice of the Hamiltonians H0, H1 and Hscatt it is remarkably general. 

Below, in figure (2.4.2) I explain briefly the transport mechanism by physical and 

mathematical structures. 

 

 

Figure 2.4.2: shows the diagram of transport mechanism by physical and mathematical structures. 
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2.5   Calculation in Practice   

In recent years, the method presented has been used in many areas of mesoscopic transport. 

It has been successfully applied to molecular electronics [79, 83, 84], spintronics [78, 85] 

and mesoscopic superconductivity [86, 87]. The method has also been extended for finite 

bias employing the non-equilibrium Green's function technique [88]. 

A Hamiltonian, which describes our system, can be created manually or can be an output of 

a numerical calculation, such as HF, DFT code or density functional tight-binding method. 

The three following features will be studied below the Breit-Wigner resonances [89], Fano 

Resonances [90, 91] and more general antiresonances due to quantum interference [92, 93]. 

2.6 Features of the Transport Curve 

To have an idea for the most important features of the transport curves, it would be useful to 

briefly study, with the use a simple models, a few key features we might expect to see in the 

more complicated transport curves of real systems. I will use the decimation method Eq. 

(2.4.30) to reduce the discussed systems down to an effective Hamiltonian with the topology 

which is shown in Figure (2.3.2). From there, it is simply a matter of using the Green's 

function Eq. (2.3.31) to calculate the transmission amplitude using Eq. (2.3.33) and then the 

transmission probability. 

2.6.1 Breit-Wigner Resonance 

To study the behaviour of resonances for transmission function T(E) we should know about 

Breit-Wigner distribution [94]. The simplest feature to understand is the Breit-Wigner 

resonance. This is a Lorentzian peak in the transmission probability which occurs when the 

energy of the incident wave resonates with an energy level within the scatterer. Therefore, 

Figure (2.6.1) shows a one dimensional crystalline linear chain with a single impurity is 
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placed in the middle of the chain as a defect  𝜀1 which is coupled to the left and right of 

semi-infinite crystalline chains by hopping elements β. Using the formula in Eq. (2.6.1), I 

calculated the transmission probabilities.  

 

 

Figure 2.6.1. Simple model to study the behaviour of resonances. The dot 𝜀1 is coupled by –𝛽 to 

two one-dimensional semi-infinite crystalline chains. 

 

 

Figure 2.6.2 Transmission curves for tight-binding model in Figure 2.5.1 containing the scatterer 

N=1, where, 𝜀𝑜 =   𝜀1 = 0, 𝛾 = 1, coupled by 𝛽, 0.1 (black), 0.3 (red) and 0.6 (green).  

 

𝑇(𝐸) =
4β2

(𝐸 − 𝜀1)2 + 4β
2                                                  (2.6.1) 

For the model in Figure 2.6.1, Figure (2.6.2) shows the transmission coefficients T(E) as a 

function of energy E pass through the left semi-infinite chain to the right. The black, red, 

and green lines show the transmission probabilities for this system when  𝜀𝑜 =   𝜀1 = 0, 𝛾 =

1, coupled by 𝛽= 0.1 (black), 0.3 (red) and 0.6 (green). The calculations show that the width 
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of the resonance is defined by the coupling component 𝛽 and its location by the site 

energy  𝜀1. Typically, the scatterer has many energy levels, but in a sufficiently weakly 

coupled system, they are easy to identify. Resonances corresponding to the HOMO and 

LUMO levels of the system are most notable because the Fermi Energy, and therefore the 

conductance of the scatterer, is between these two peaks. In general, if the coupling element, 

𝛽, is large, the resonances are wider and the conductance is larger.  

2.6.2   Fano Resonances 

Fano resonances occur when two scattering amplitudes, one due to scattering within a 

continuum of states (the background process) and the second due to an excitation of a 

discrete state (the resonant process) interfere. For example, a molecule with a side group 

produces a Fano resonance when the energy, E, of the incident electron is close to an energy 

level in the side group. A Fano resonance is usually denoted by a resonance showing the 

typical Fano line shape, which is a resonance followed by an anti-resonance, example of 

which can be seen in Figure 2.6.3.  

 

Figure 2.6.3. Simple model to study Fano resonances. Two one-dimensional semi-infinite 

crystalline chains coupled to a scatting region of site energy   𝜀1 by hopping elements Γ1 and Γ2. 

An extra energy level, 𝜀2, is coupled to the scattering level by hopping element –𝛼. 

 

To illustrate the origin of Fano resonances, consider the model showing two one 

dimensional semi-infinite crystalline chains with site energies ε0 and hopping elements – 𝛾 

coupled to a scattering region with two site energies   𝜀1 (a backbone state) and  𝜀2 (a bound 

state). A bound state of energy 𝜀2, is coupled to an extended backbone state of energy ε1 by 
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a coupling matrix element  . The site energy  𝜀1 is coupled to the leads with hopping 

elements Γ1 and Γ2. 

Using the formula in Eq. (2.6.2), I calculated the transmission probabilities. Figure 2.6.4 

shows the transmission probabilities for this system when   𝜀1 = −1.5, 𝜀2 = 0.5,   𝜀0 = 0, 

𝛾 = 1,  and 𝛼 is varied to be 0.24 (blue line), 0.14 (red line) and 0.04 (green line). The 

width of Fano resonances become narrow by varying the 𝛼 coupling and the Fano 

resonances occur at 𝐸 = 𝜀2. 

𝑇(𝐸) =
4Γ1Γ2

(𝐸 − 𝜀1 −
𝛼𝛼∗

𝐸 − 𝜀2
)
2

+ (Γ1 +Γ2)2
                                                 (2.6.2) 

 

 

Figure 2.6.4  shows the transmission coefficients for the systems described in Figure 2.6.3 

 

Fano resonances have shown to be tuneable via the molecular side groups [91] or gate 

voltages [95] and have been shown to give the molecules interesting thermoelectric 

properties [96, 97]. 
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2.6.3 Anti-Resonances 

One important feature in the transmission probability curve is an anti-resonance which 

appears when the system is multi-branched and destructive interference occurs between 

propagating waves at the nodal point.  

 

Figure 2.6.5 illustrates a simple model to study anti-resonances. One atomic site with energy 𝜀1  is 

attached to the 1-D crystalline chain with a coupling 𝛽. 

 

We use the tight binding model to study the single electron transport properties of a one 

dimensional (1-D) chain with a dangling bond.  A numerical decimation (which is described 

in chapter 2) of the dangling bond is described in Figure 2.6.5, where  one atomic site with 

energy 𝜀1  is attached to the 1-D crystalline chain with a coupling 𝛽. 

For the model in Figure 2.6.5, the algorithm of numerical decimation method is given by  

𝜀1̃ = 𝜀𝑜 +
𝛽2

(𝐸 − 𝜀1)
                                                 (2.6.2) 

where 𝜀1̃ is the decimated on-site energy, 𝜀𝑜 is the on-site energy of the 1-D chain, 𝜀1 is the 

dangling site energy, 𝛽   the dangling bond energy and E the system energy. We calculated 

the transmission coefficient from the formula that described a single scattering level 

between two semi-infinite chains: 

𝑇(𝐸) =
1

1 + 𝛼2
                                              (2.6.3) 

where   𝛼 = 
𝜀̃1−𝜀𝑜

2𝛾𝑠𝑖𝑛𝑘
         and     𝑘 = 𝑐𝑜𝑠−1 (

𝜀𝑜−𝐸

2𝛾
) , and by substituting Eq. (2.6.2) into Eq. 

(2.6.3) we get:  
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𝛼 =
𝛽2

(𝐸 − 𝜀1)2𝛾𝑠𝑖𝑛𝑘
                                         (2.6.4)  

When we send an electron through the lattice shown in figure (2.6.5) with energy  𝐸 = 𝜀1  

or equal to diagonal energy, then 𝛼  will be infinite and then T(E) = 0. That means the 

transmission coefficient completely destroys when the energy level lies exactly in the site of 

chain. This is called destructive interference and results in anti-resonance in the 

transmission spectrum. 

 

Figure 2.6.6. shows the transmission coefficients for the systems described in Figure 2.6.5. This 

system is modelled using the following parameters: in the leads,  𝜀𝑜 = 0 and  𝛾 = 1 , for the contact 

with cases: (𝑎)  𝜀1̃ = 1,  𝜀1 = 1, 𝛽 = 0.2, (𝑏)  𝜀1̃ = 1,  𝜀1 = 1.5, 𝛽 = 0.3, (𝑐)  𝜀1̃ = 1,  𝜀1 = 0.5,

𝛽 = 0.7. 

 

Figures (2.6.5 and 2.6.6) demonstrate the impact of the 𝛽 value on the width of the peaks. 

when  𝛽 and is quite small, then we get a sharp anti-resonance and T(E) goes to zero, this is 

called an anti-resonance. The position of the anti-resonance is determined by the nature of 

the energy sites in the scattering region. 
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2.7 Hamiltonian used in the thesis 

Now, we want to describe the molecules and the question is where do we get the 

Hamiltonian of the molecules from? A Hamiltonian, which describes our system, can be 

created manually or can be an output of a numerical calculation, such as HF, DFT code 

SIESTA or density functional tight-binding method. To understand the behaviour of 

molecular electronics devices it is important to have a reliable source of the structural and 

electronic behaviour of the isolated molecule and that will lead to the starting point with 

theory of quantum transport. Density functional theory (DFT) and the numerical 

implementation, SIESTA (Spanish Initiative for Electronic Simulations with Thousands of 

Atoms) [98], which I have used during my PhD study as a theoretical tool. It can be 

considered as a “theoretical laboratory” to investigate the structures of the isolated 

molecules, and most electrical properties such as charge densities, band structures, binding 

energies (bond length) and potential surfaces. SIESTA is a set of methods and a complete 

software package that can be used to perform DFT calculations on a massive number of 

atoms (~1000) within a lifetime. 

The basic idea of DFT is that any physical properties of a complicated system, including of 

many interacting particles, can be expressed as a functional of the ground-state density of 

the system. The first proof of this functional was introduced by Hohenberg and Kohn in 

1964 [99]. The simplicity of this proof does not indicate the actual form of the functional. In 

spite of this, the assumption about the form of the functional (an ansatz) was suggested by 

Kohn and Sham [100] lighted up the way to applications for realistic physical systems. 

Density functional theory has since become a standard tool in theoretical physics and 

molecular chemistry. 
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There are many text books present of the foundations and numerical applications of DFT. 

Wide literatures with the subject with considerably more details have presented this subject 

[101-104]. After obtaining the main-field DFT Hamiltonian of system which involves a 

metallic- molecule-metallic, I use the theory of quantum transport which is shown in this 

chapter to probe its electronic properties. 
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Chapter 3 

 

Single-Molecule Sensing of Perylene Bisimide 

In this chapter I will present theoretical work motivated by experiments in the group of the 

late Prof. Thomas Wandlowski of the University of Bern [105]. This work focuses on the 

electronic properties of perylene bisimide molecules. Here we, theoretically, demonstrate 

the potential of perylene bisimide (PBI) for label-free sensing of organic molecules and the 

results presented here were published in the following paper [106]: 

“Exploiting the extended p-system of perylene bisimide for label-free single-molecule 

sensing” Journal of Materials Chemistry C, 3(9), 2101-2106, 2015 

 

3.1 Single-Molecule Conductance of Perylene Bisimide (PBIs). 

3.1.1 Motivation 

Based on the discussion in the introduction (chapter 1), it has been experimentally 

demonstrated that single PBI-based molecules can be attached to gold electrodes and their 

electrical conductance can be measured [105]. In the present chapter the aim is to 

demonstrate that the extended π systems of PBIs make them candidates for the single-
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molecule, label-free sensing of a variety of analytes. In this section, I will investigate the 

electronic properties at a single-molecule level by varying the bay-area substituents of the 

five PBI derivatives shown in Figure 3.1, which possess the same PBI core, but with the 

following bay-area substituents: pyrrolidinyl (aPy-PBI, Py-PBI), tert-butyl-phenoxy (P-PBI), 

thiobutyl (S-PBI), and chlorine (Cl-PBI). Four molecules (Py-PBI, P-PBI, Cl-PBI, S-PBI) 

possess pyridyl anchor groups at opposite ends and are therefore symmetric. The fifth 

molecule (aPy-PBI) has a pyridyl anchor group on the top and a cyclohexyl anchor group on 

the bottom[105] and is asymmetric.  

 

 

Figure 3.1.  PBI-based molecular structures: Py-PBI, (aPy-PBI), P-PBI, Cl-PBI and S-PBI.          

              

3.1.2 Computational Methods  

To calculate electrical properties of the molecules in Figure 3.1, the relaxed geometry of 

each molecule was found using the density functional (DFT) code SIESTA [107] which 
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employs Troullier-Martins pseudopotentials to represent the potentials of the atomic cores 

[108] and a local atomic-orbital basis set. We used a double-zeta polarized basis set for all 

atoms and the generalized gradient approximation (GGA-PBE) for the exchange and 

correlation functionals [109, 110]. The Hamiltonian and overlap matrices are calculated on a 

real-space grid defined by a plane-wave cutoff of 150 Ry. Each molecule was relaxed to the 

optimum geometry until the forces on the atoms are smaller than 0.02 eV/Å and in case of 

the isolated molecules, a sufficiently-large unit cell was used, for steric and electrostatic 

reasons. All PBI molecules with anchor groups and bay-area substituents were found to be 

twisted after relaxation. Figure 3.2 shows that the frontier molecular orbitals of all five PBI 

derivatives are delocalized across their central backbones, where the density of states for 

both the HOMO and the LUMO have large amplitudes around the central carbon backbone 

atoms of the molecule, with little density on the anchor groups. This means the contacting 

groups act as tunnelling barriers between the central region and the electrodes. 

        

Figure 3.2. Iso-surfaces of frontier molecular orbitals of the all perylene bisimide derivatives 

obtained using the DFT code SIESTA. Red corresponds to positive and blue to negative regions of 

the wave functions. 
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3.1.2.1 Molecular junction and the conductance 

 

 

Figure 3.4. An example of an optimized configuration of the system containing a single molecule 

(Cl-PBI) attached to two metallic leads. Further details for the rest optimized configurations of PBIs 

with the gold leads are in Figure (3.5). 

 

After obtaining the relaxed geometry of each isolated molecule, the molecules were then 

placed between gold electrodes, as shown in Figure 3.4. For structures such as that shown in 

Figure 3.4, the central region of the junction is composed of a single molecule attached to 

two gold (111) leads. The equilibrium distance between the N atom of each pyridyl anchor 

group and the centre of the apex atom of each gold pyramid was initially 1.9 Å. After 

geometry optimization the distance changed slightly from the initial value to a final value of 

2.05 Å. Similarly, the distance between the cyclohexyl group of asymmetric molecule (aPy-

PBI) and the centre of the apex atom of gold was found to be 2.89 Å. 

For each relaxed structure, such as Figure 3.4, we use the GOLLUM method [111] to 

compute the transmission coefficient T(E) for electrons of energy E passing from the left 

gold electrode to the right electrode. GOLLUM is a next-generation code, born out of the 

non-equilibrium transport code SMEAGOL code [112] and is optimised for computing 

scattering properties of a range of quantum systems such as molecular junctions. Once T(E) 

is computed, we calculate the zero-bias electrical conductance G using the Landauer 

formula:  
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𝐺 =
𝐼

𝑉
= 𝐺0 ∫ 𝑑𝐸

∞

−∞
𝑇(𝐸) (−

𝑑𝑓(𝐸)

𝑑𝐸
)                                             (3.1.2)   

where 𝐺0 = (
2𝑒2

ℎ
)  is the quantum of conductance, and 𝑓(𝐸) is Fermi distribution function 

defined as 𝑓(E) = [𝑒(𝐸−𝐸𝐹)/𝑘𝐵T + 1]−1 where kB is the Boltzmann constant 𝑘𝐵 = 8.62 ×

10−5𝑒𝑉/𝑘 and T is the temperature. Since  𝑓(E) is a function of the Fermi energy EF, the 

conductance G is a function of the energetic locations of the molecular orbitals of the PBI-

analyte complexes relative to EF. Since the quantity (−𝑑𝑓(𝐸)/𝑑𝐸)) is a normalised 

probability distribution of width approximately equal to kBT, the above integral represents a 

thermal average of the transmission function T(E) over an energy window of the width kBT 

(= 25meV at room temperature). In what follows, we shall demonstrate that either the zero-

bias conductances or the current-voltage (I-V) relations of each bare PBIs molecule to 

investigate the effect of bay-area substituents or each complex can be used to discriminate 

between the different analytes (it will be shown in section 3.2). To compute the electrical 

current I at finite voltage V we use the expression: 

𝐼 = (
2𝑒

ℎ
)∫ 𝑑𝐸

∞

−∞
𝑇(𝐸)[𝑓𝑙𝑒𝑓𝑡(E) − 𝑓𝑟𝑖𝑔ℎ𝑡(E)]                           (3.1.3)                                                                

where 𝑓𝑙𝑒𝑓𝑡(E) = [𝑒
(1/𝐾𝐵𝑇)(𝐸−𝐸𝐹

𝑙𝑒𝑓𝑡
) + 1]−1 and 𝑓𝑟𝑖𝑔ℎ𝑡(E) = [𝑒

(1/𝐾𝐵𝑇)(𝐸−𝐸𝐹
𝑟𝑖𝑔ℎ𝑡

) + 1]−1 ,  

with  𝐸𝐹
𝑙𝑒𝑓𝑡

= 𝐸𝐹 +
𝑒𝑉

2
 and 𝐸𝐹

𝑟𝑖𝑔ℎ𝑡
= 𝐸𝐹 −

𝑒𝑉

2
. 
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Figure 3.5. Optimized configurations of the single molecules (a) aPy-PBI, (b) Py-PBI, (c) P-PBI, (d) 

Cl-PBI, and (e) S-PBI attached to two metallic leads. 

 

3.1.3 Results and discussion 

We first compare our theoretical predictions with experimental measurements of ref. [29], 

where it was found that the electrical conductances of the bare PBIs are ordered as follows: 

Cl-PBI < PBI < S-PBI < aPy-PBI < Py-PBI. For each of these molecules, Figure 3.6a shows 

the transmission coefficients T(E) as a function of energy E, relative to the DFT-predicted 

Fermi energy EF
DFT

 (0 eV). Figure 3.6a shows that the effect of the bay substituent atoms is 

to shift the position of the HOMO resonances of the bare PBIs, while the LUMOs remain 

pinned close to the Fermi energy. The corresponding room-temperature conductances as a 

function of EF are shown in Figure 3.6b. Furthermore, the corresponding results for the 

room-temperature current as a function of the voltage for the five perylene bisimides in the 

bare case are shown in Figure 3.6c.  
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Figure 3.6. (a) Transmission coefficients as a function of energy for the five perylene bisimides.  (b) 

Room-temperature conductance as a function of the Fermi energy. (c) DFT calculations for the 

corresponding results for the room-temperature current as a function of the voltage for the five 

perylene bisimides in bare case.  

 

3.1.3.1 Locating the optimal value of EF 

It is well-known that DFT can give an incorrect value for the Fermi energy and therefore I 

use Eq. (3.1.2) to evaluate the room-temperature conductance for a range of values of EF
 
in 

the vicinity of EF
DFT

 and then choose the value of EF which yields the closest agreement 

with experiment. The optimal value of EF was chosen by minimising the quantity 

𝑌2(𝐸𝐹) =∑(𝐿𝑜𝑔(𝐺𝑖
𝑡ℎ𝑒𝑜) − 𝐿𝑜𝑔(𝐺𝑖

𝑒𝑥𝑝
))
2

5

𝑖=1

                             (3.1.4) 
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Where  𝐺𝑖
𝑡ℎ𝑒𝑜 is the theoretical conductance for a given EF and 𝐺𝑖

𝑒𝑥𝑝
 is the experimental 

conductance reported in ref [105], where i labels the PBIs. This mean-square deviation 

between theory and experiment is plotted in Figure 3.7 and shows a minimum at EF = 

0.08eV, which is the values chosen throughout this paper. 

               

Figure 3.7. The mean square deviation of theory from the experiment as a function of Fermi energy. 

 

 

Figure 3.8. Comparison between the experimental [105] and theoretical conductances of the bare 

PBIs, obtained with EF shifted by 0.08 eV relative to the bare DFT value. 
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For a given value of EF , the five theoretical conductances obtained from Figure 3.6b were 

compared with the experimentally-measured conductances [105] and a value of 𝐸𝐹 =

𝐸𝐹
𝐷𝐹𝑇 + 0.08 𝑒𝑉  was chosen to yield the closest fit to experiment, which is shown in Figure 

3.7. Figure 3.8 shows the resulting comparison between experiment and theory. 

In general, through the experiment measurements only change over a very small range. 

Therefore it is the pinning of the LUMO resonance close to the Fermi energy which 

accounts for the similar conductance values for all molecules.   

 

3.2 Exploiting the Extended π-System of Perylene Bisimide for 

Label-free Single-Molecule Sensing 

 

3.2.1 Motivation 

Molecular recognition is the basis of fundamental biological processes such as transcription 

and translation of genetic information. Considerable effort has been devoted to the design of 

receptors or sensors that recognise and sense target analytes. Typically this involves 

designing a receptor, which selectively binds most strongly to a particular analyte. PBI has 

been used as a reporter dye in a number of such studies, including fluoride fluorescent 

chemosensors based on perylene derivatives linked by urea [46] and spermine-alanine 

functionalized PBI [47], which binds to DNA/RNA via non-covalent interactions. In all such 

studies, the binding of an analyte is signalled by a change in the spectroscopic properties of 

the PBI. Furthermore, the ability of the PBI derivative to discriminate between analytes is 

limited, because the PBI derivative is tailored to the analyte of interest. 
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Label-free methods for detecting small molecules are a desirable target technology, because 

they avoid the need for chemical modification or separation of the analytes, potentially  

leading to lower costs. Examples of label-free detection include micelle-based bacterial 

quorum sensing [42] aptamer-based sensing platforms [40], label-free, sequence specific 

DNA sensing based on fluorescence resonant energy transfer (FRET) [41] and nuclear 

magnetic resonance [43], nanoplasmonics [44], and surface enhanced Raman spectroscopy 

(SERS) [45]. However all of these require expensive detectors and are not shrinkable to sub-

micron-scale devices and therefore the cost-lowering advantages of label-free sensing are 

not yet fully realised. 

In this section, we demonstrate a completely different strategy for molecular recognition 

based on single-molecule electrical junctions. Each junction contains a single PBI-derivative 

molecule attached to nanogap electrodes, whose electrical conductance changes when an 

analyte binds to the extended π system of the PBI. The crucial point is that the response of 

each derivative to analyte binding is different and the collection of responses from a 

collection of PBI-derivatives constitutes a unique fingerprint that discriminates between 

different analytes. 

The rewards for realising cheap and versatile discriminating sensors cannot be overstated. 

During the next three years, the size of the MEMS market in cell phones and tablets is 

predicted to grow to $500 per annum. The market for chemical sensing with applications to 

personal health, mood sensing, context‐aware computing and the deployment of sensory 

swarms is equally large, provided low-power, low-cost discriminating molecular sensors can 

be developed. 

This work will be of interest to the molecular electronics and nano electronics communities, 

as well as chemists and physicist working on the fundamental aspects of functionalised 
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surfaces, smart functional packaging, enhanced dyes, pigments and fluorophores for 

applications from display devices to solar cells. 

In the present section, my aim is to demonstrate the potential of perylene bisimide (PBI) for 

label-free sensing of organic molecules by investigating the change in electronic properties 

of five symmetric and asymmetric PBI derivatives shown in Figure 3.1, which share a 

common backbone, but are functionalised with various bay-area substituents. Density 

functional theory was combined with a Green’s function scattering approach to compute the 

electrical conductance of each molecule attached to two gold electrodes by pyridyl anchor 

groups. We studied the change in their conductance in response to the binding of three 

analytes , namely Trinitrotoluene (TNT) and Tetracyanoethylene (TCNE) which are well 

known electron acceptors [113, 114] and the donor Bis(ethylenedithia)tetrathiafulvalene 

(BEDT-TTF) [115-117] whose π-donor capability is weaker than that of TTF [118], and 

found that the five different responses provided a unique fingerprint for the discriminating 

sensing of each analyte.  

 

Figure 3.9.  The DFT calculated optimum geometries for molecular complexes of TCNE, BEDT-

TTF, and TNT with the PBI molecule. 

 

This ability to sense and discriminate was a direct consequence of the extended π system of 

the PBI backbone, which strongly binds the analytes, combined with the different charge 
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distribution of the five PBI derivatives, which leads to a unique electrical response to analyte 

binding. 

3.2.2 Molecular Complexes 

The sufficiently extended conjugation of perylene bisimide PBIs facilitate the charge 

transfer complex formation, and recently it is reported that the PBIs molecules exhibit 

interesting structural features, in particular a twisted π-system which results in a 

conformational chirality [119]. The twisting of π-system attributed to repulsive interactions 

between the sterically encumbered bay-substituents and this dependency can be varied on 

the size of the bay-substituents [24]. Therefore in this chapter, it is important to gain deeper 

understanding for the effect of substituents in the bay position of the backbone of PBIs, 

particularly when one says the PBIs based-the extended π-system can sense and discriminate 

between the organic analyte molecules. 

In what follow, for complexation of organic molecules, to calculate the charge-transfer ∆Q 

and binding energy ∆E between the backbone of each PBIs molecule and three analytes 

which are TCNE, TNT and BEDT-TTF, we used a double-zeta polarized basis set for all 

atoms and the generalized gradient approximation (GGA-PBE) for the exchange and 

correlation functionals [109] but we also made these calculations with the local density 

approximation (LDA-CA) [120] and van der Waals interactions [121]. The Hamiltonian and 

overlap matrices are calculated on a real-space grid defined by a plane-wave cutoff of 150 

Ry. Each PBI molecule with three analytes are relaxed into the optimum geometry until the 

forces on the atoms are smaller than 0.02 eV/Å. The tolerance of Density Matrix is 10
-4

, and 

in case of the isolated molecules a sufficiently-large unit cell was used, for steric and 

electrostatic reasons. 
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For binding energy calculations 𝐸𝐵, the basis set superposition errors were avoided by 

retaining ‘ghost states’ as prescribed in the counterpoise method [122, 123], using the 

formula 

𝐸𝐵 = 𝐸𝐴𝐵 − (𝐸𝑎𝐵 + 𝐸𝐴𝑏)                                                   (3.2.1)   

In this expression the total energy of entity 𝐴 bound to 𝐵 is 𝐸𝐴𝐵 , the total energy of 𝐵 in the 

presence of the ghost states  𝑎 is 𝐸𝑎𝐵 and the total energy of 𝐴 in the presence of the ghost 

states  𝑏 is 𝐸𝐴𝑏. For the five PBI molecules in Figure 3.1, the formation of molecular 

complexes with each of the three different analytes TCNE, BEDT-TTF and TNT was 

investigated using DFT.  

 

Table 3.1. shows DFT calculation of charge- transfer complex and binding energy  of TCNE which 

is analyzed around the backbone of five PBI molecules where all configurations were found in 

optimum position among 214 configurations for each PBI molecule. The two symbols ∆Q and ∆E 

denote the charge-transfer and binding energy between the backbone of each PBIs molecule and 

three analytes, respectively.  
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In each case, after geometry relaxation, the charge transferred between the two molecules 

and the binding energy was computed (This data is shown in tables 3.1- 3.3). The 

calculations show that TCNE and TNT gain electrons from the backbone of PBI, but the 

BEDT-TTF donates electrons to the backbone. These tables show also the binding energies 

for the three analytes, obtained using three different density functionals (GGA, LDA and van 

der Waals), all of which show that the analytes form stable complexes to the PBI. The most 

accurate of these includes van der Waals interactions and predicts binding energies which 

vary between 0.4 eV and 1.2 eV, depending on the combination of analyte and backbone. 

As an example, Figure 3.9 shows the optimised TCNE, TNT and BEDT-TTF-(Py-PBI) 

complex, in which each analyte pi-stacks a distance Y=0.37 nm above the perylene. The 

details of all optimised PBI-adsorbate complexes are shown in Tables 3.1, 3.2, and 3.3. 

 

Table 3.2. shows DFT calculation of charge- transfer complex and binding energy  of BEDT-TTF 

which is analyzed around the backbone of five PBI molecules where all configurations were found in 

optimum position among 214 configurations for each PBI molecule. The two symbols ∆Q and ∆E 



62 
 

denote the charge-transfer and binding energy between the backbone of each PBIs molecule and 

three analytes, respectively.  

 

Tables 3.1-3.3 demonstrate that the sufficiently extended conjugation of PBIs facilitate the 

charge transfer complex formation. Therefore, for five PBIs molecules in the presence of each 

of the three different analytes: TCNE and TNT gain electrons from the backbone as shown in 

Table 3.1 and 3.3, whereas the BEDT-TTF denotes electrons into the backbone which is 

shown in Table 3.2. However, the values of transferred electrons are different from backbone 

to other because each backbone possesses different bay- position substitutes. The inset 

optimal geometries in Table 3.1-3.3 show that it is difficult to obtain the stable position of 

each analyte complexed with the backbone of PBIs due to the bay-substitutes. 

 

Table 3.3. shows DFT calculation of charge- transfer complex and binding energy  of TNT which is 

analyzed around the backbone of five PBI molecules where all configurations were found in 

optimum position among 214 configurations for each PBI molecule. The two symbols ∆Q and ∆E 
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denote the charge-transfer and binding energy between the backbone of each PBIs molecule and 

three analytes, respectively. 

 

For all relaxed geometries, the substitutes in the bay-positions play an important rule to 

determine the charge transfer and binding energy values. These substitutes twist the two 

naphthalene units of the backbone of PBIs, which makes the interaction between the bound 

state of the analyte and the localized state of backbone, different from one backbone to 

another. Also the geometry of the bay-position leads to the analytes binding in different 

locations and that causes the magnitude of the binding energy to change. 

 

3.2.3 Molecular junction and the conductance 

 

Figure 3.9. Optimized configuration Py-PBI with (TCNE, TNT, and BEDT-TTF). 

 

Figure 3.9 shows the relaxed configurations contain of Py-PBI molecule bound to three 

analytes (TCNE, TNT, and BEDT-TTF) attached between two gold electrodes. Figures 

(3.10 – 3.12) show the configuration for all optimised PBI-adsorbate complexes attached to 

gold electrodes. 
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Figure 3.10. Optimized configurations of a single TCNE adsorbed on (a) Py-PBI, (b) aPy-PBI, 

(c) S-PBI, (d) P-PBI, and (e) Cl-PBI attached to two metallic leads. 

 

Figure 3.11. Optimized configurations of a single TNT adsorbed on (a) Py-PBI, (b) aPy-PBI, (c) 

S-PBI, (d) P-PBI, and (e) Cl-PBI attached to two metallic leads. 

 

 

   

   

 

(e) 

(d) 

(c) 

(b) 

(a) 

 

 

 

    

 

 
 

(a) 

(b) 

(c) 

(e) 

(d) 



65 
 

 

Figure 3.12. Optimized configurations of a single BEDT-TTF adsorbed on (a) Py-PBI, (b) aPy-

PBI, (c) S-PBI, (d) P-PBI, and (e) Cl-PBI attached to two metallic leads. 

 

Figure 3.13. DFT calculations of the transmission coefficients as a function of energy at T=0K for 

optimum configuration of Py-PBI with (a) TCNE, (b) TNT, and (c) BEDT-TTF. The fourth figure 

(d) shows the current as a function of voltage at T=300K for the bare Py-PBI and in the presence of 

the three analyte molecules (TCNE, TNT, and BEDT-TTF).  
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Figures 3.13a-c show the transmission coefficients T(E) due to the binding of  each of the 

three analyte molecules on Py-PBI. For the two acceptor molecules TCNE and TNT, there is 

a shifting of the HOMO resonance and extra resonances appear close to the LUMO. For the 

donor BEDT-TTF a resonance also appears in the HOMO-LUMO gap, accompanied by 

additional resonances below the HOMO. Figure 3.13d shows the corresponding I-V 

characteristics of each of the complexes, demonstrating that for optimally-bound complexes, 

the distinct I-V curves can be used to discriminate between BEDT-TTF and the other 

analytes, although the difference between TCNE and TNT is smaller. 

 

Figure 3.14. DFT calculations of the transmission coefficients as a function of energy at T=0K for 

optimum configuration of S-PBI with (a) TCNE, (b) TNT, and (c) BEDT-TTF. The fourth figure (d) 

shows the current as a function of voltage at T=300K for the bare S-PBI and in the presence of the 

three analyte molecules (TCNE, TNT, and BEDT-TTF).   
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For the S-PBI structures in Figures 3.10c, 3.11c and 3.12c, Figures 13.14a-c show the 

transmission coefficients T(E) versus E for each the optimally-bound TCNE, TNT and 

BEDT-TTF complex to the backbone of S-PBI molecule. In the presence of TCNE and 

TNT, the HOMO resonances shift on the opposite direction to those obtained with Py-PBI, 

the extra resonances also appear close to the LUMO. For BEDT-TTF, similarly with Py-PBI 

the resonance also appears in the HOMO-LUMO gap. The corresponding I-V characteristics 

of each of the complexes was computed in figure 13.14d, also showing the discrimination 

between BEDT-TTF and TNT but here the difference between TCNE and BEDT-TTF is 

smaller. The different responses of the backbone of S-PBI are probably associated with the 

substitute groups in the bay position which lead to a twist of the backbone and this causes 

the analytes to bind in different locations.   

 

Figure 3.15. DFT calculations of the transmission coefficients as a function of energy at T=0K for 

optimum configuration of P-PBI with (a) TCNE, (b) TNT, and (c) BEDT-TTF. The fourth figure (d) 

shows the current as a function of voltage at T=300K for the bare P-PBI and in the presence of the 

three analyte molecules (TCNE, TNT, and BEDT-TTF).  
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Figures 13.15a-c show the transmission coefficients T(E) as a function of energy E for the 

structures in Figures 3.10d, 3.11d and 3.12d, which show each of the three analyte 

molecules on P-PBI molecule. The calculation implies almost the same behaviour for 

transmission curves in the presence of three analytes which happened with S-PBI molecule. 

Figure 13.15d also shows the corresponding I-V characteristics which demonstrates well the 

discrimination between the three analytes. 

 

Figure 3.16. DFT calculations of the transmission coefficients as a function of energy at T=0K for 

optimum configuration of Cl-PBI with (a) TCNE, (b) TNT, and (c) BEDT-TTF. The fourth figure 

(d) shows the current as a function of voltage at T=300K for the bare Cl-PBI and in the presence of 

the three analyte molecules (TCNE, TNT, and BEDT-TTF).  

 

Similarly, for the structures in Figures 3.10e, 3.11e and 3.12e, Figures  13.16a-c for the case 

of three analytes bound to Cl-PBI backbone, the calculations show the same properties of 
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transmission curves except in the presence of TCNE, there is no extra resonance close to 

LUMO. Figure 13.16d shows the corresponding I-V characteristics which again 

demonstrates the discrimination between the three analytes. 

 

Figure 3.17. DFT calculations of the transmission coefficients as a function of energy at T=0K for 

optimum configuration of aPy-PBI with (a) TCNE, (b) TNT, and (c) BEDT-TTF. The fourth figure 

(d) shows the current as a function of voltage at T=300K for the bare aPy-PBI and in the presence of 

the three analyte molecules (TCNE, TNT, and BEDT-TTF).  

 

Finally, for the structures in Figures 3.10f, 3.11f and 3.12f, Figures 13.17a-c show the 

transmission coefficients T(E) versus E for each of three anayltes bound to the backbone of 

the asymmetric molecule aPy-PBI. Here, for all cases the transmission curves around EF 

decrease, in the presence of TCNE and TNT, there is also shifting of the HOMO resonance 

in the same direction that happened for Py-PBI and it is also accompanied by additional 
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resonances close to LUMO. For the donor BEDT-TTF a resonance also appears in the 

HOMO-LUMO gap.  

3.2.4 Evaluating of error in the currents for a distribution of geometries 

 

The error estimate associated with the statistical analysis of the 214 current curves is given 

by 

 

𝜎𝑚 = 𝜎/√214 − 1                                                          (3.2.2) 

 

𝜎 = √
1

214
 ∑(𝐼𝑖 − 〈𝐼〉)2
214

𝑖=1

                                               (3.2.3) 

where 𝜎𝑚 is standard deviation in the mean of current 〈𝐼〉. 

 

3.2.5 Fluctuation positions of the analytes above the PBIs backbone   

 

The results of Figure 3.13 correspond only to optimally-bound analytes. At room 

temperature, the adsorbates are subject to thermal fluctuations and will sample many 

positions across the PBI backbones. To investigate the role of fluctuations, for each PBI 

molecule we repeated the above calculations for 214 configurations of each adsorbate. The 

results for the Py-PBI molecule are shown in figures (4.18a-c). For illustrative purposes, we 

only show 35 configurations (the results for all 214 transmission curves are shown in 

Figures (3.19)-(3.23)). In each case we see that fluctuations in the position of the analyte 

cause the transmission resonances to shift over a range of energies. In many cases, these 

possess a characteristic Fano line shape, associated with the interaction between localized 

states on the analytes and extended states on the PBI backbones [91, 97]. After computing 

the ensemble average of these curves, the resulting ensemble-averaged, room-temperature 

current as a function of voltage is shown in figure (3.18d), along with the standard deviation 
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in their means. This demonstrates that even in the presence of fluctuations, BEDT-TTF 

produces a distinctly different I-V curve from the other two analytes. 

 

Figure 3.18. Illustrates the transmission curves of 35 fluctuation position  in case Py-PBI to explain 

the effect of adsorption of analytes molecules (a) TCNE, (b) TNT, (c) BEDT-TTF, and (d) shows the 

ensemble-averaged of current as a function of voltage at T=300K  for bare Py-PBI and in the 

presence of the three analyte molecules (TCNE, TNT, and BEDT-TTF), where the error bars in 

Figure 3.18d shows the standard deviation in the means of the currents.  
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Figure 3.19. DFT calculations of the transmission coefficients as a function of energy for  Py-

PBI with different configurations of the single-molecules absorbates (a) TCNE , (b) TNT, and (c) 

BEDT-TTF, and (the pink line) is bare case.. The fourth figure (d) shows the average of current 

as a function of voltage at T=300K which pass across Py-PBI with three analytes molecules 

(TCNE, TNT, and BEDT-TTF), where the error bars in Figure 3.19d shows the standard 

deviation in the means of the currents.  
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Figure 3.20. DFT calculations of the transmission coefficients as a function of energy for  P-PBI 

with different configurations of the single-molecules absorbates (a) TCNE , (b) TNT, and (c) 

BEDT-TTF, and (the pink line) is bare case.. The fourth figure (d) shows the average of current 

as a function of voltage at T=300K which pass across P-PBI with three analytes molecules 

(TCNE, TNT, and BEDT-TTF), where the error bars in figure 4.20d shows the standard deviation 

in the means of the currents.  
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Figure 3.21. DFT calculations of the transmission coefficients as a function of energy  for  aPy-

PBI with different configurations of the single-molecules absorbates (a) TCNE , (b) TNT, and (c) 

BEDT-TTF, and (the pink line) is bare case.. The fourth Figure (d) shows the average of current 

as a function of voltage at T=300K which pass across aPy-PBI with three analytes molecules 

(TCNE, TNT, and BEDT-TTF), where the error bars in Figure 3.21d shows the standard 

deviation in the means of the currents.  
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Figure 3.22. DFT calculations of the transmission coefficients as a function of energy for  Cl-PBI 

with different configurations of the single-molecules absorbates (a) TCNE , (b) TNT, and (c) 

BEDT-TTF, and (the pink line) is bare case.. The fourth figure (d) shows the average of current 

as a function of voltage at T=300K which pass across Cl-PBI with three analytes molecules 

(TCNE, TNT, and BEDT-TTF), where the error bars in figure 3.22d shows the standard deviation 

in the means of the currents.  

 



76 
 

 

Figure 3.23. DFT calculations of the transmission coefficients as a function of energy for  S-PBI 

with different configurations of the single-molecules absorbates (a) TCNE , (b) TNT, and (c) BEDT-

TTF, and (the pink line) is bare case. The fourth Figure (d) shows the average of current as a 

function of voltage at T=300K which pass across S-PBI with three analytes molecules (TCNE, TNT, 

and BEDT-TTF), where the error bars in Figure 3.23d shows the standard deviation in the means of 

the currents.  

 

The corresponding room-temperature, ensemble-averaged zero-bias conductances for all 

analytes and backbone molecules are shown in Figure (3.24). This demonstrates that not 

only I-V curves, but also the conductance of each PBI backbone changes due to the 

adsorption of a single analyte molecule. For any one PBI derivative (e.g. P-PBI TNT 

compared with BEDT-TTF), the change in conductance upon binding may not discriminate 

between all analytes.  However, the spectrum of five conductance changes forms a unique 

fingerprint, which can be used to discriminate between all three analytes. 

For the five molecules: Py-PBI, P-PBI, aPy-PBI, Cl-PBI and S-PBI in the absence and 

presence of the three analytes for 214 positions, the transmission coefficients T(E) versus 
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energy E were computed as shown in Figures 3.19-3.23 (a-c). The calculations show that 

with acceptors TCNE and TNT, there are shifting in the HOMO resonances and many extra 

resonances close to LUMO. Whereas in the presence of donor BEDT-TTF, there are also 

shifting in resonances HOMO below the HOMO of the bare case accompanied by additional 

resonances in the HOMO-LUMO gap. Figure 3.19d-3.23d shows the average of current as a 

function of voltage at T=300K which pass across the all PBIs with three analytes molecules 

(TCNE, TNT, and BEDT-TTF), where the error bars shows the standard deviation in the 

means of the currents.  

 

Figure 3.24. The room-temperature, ensemble-averaged conductance across the PBI family due to 

charge transfer complex formation (obtained from the average of the 214 configurations of the 

TCNE, BEDT-TTF and TNT) around the backbone of five PBIs. 

 

It is interesting to note that the behaviour of the ensemble average is qualitatively different 

from the optimal binding configuration. Figures (3.17) and (3.21) show the transmission 

coefficient for the molecule aPy-PBI, in the absence and presence of the analytes. It is clear 

that the conductance in the presence of the analytes in their optimal binding configurations 

is lower than in the case of bare molecule. In contrast, figure (3.25 b) shows that the 

ensemble-averaged conductance, is higher in the presence of the analytes. 
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Figure 3.25. The room-temperature, configurationally-averaged as a function of Fermi energy for 

three analyte molecules (TCNE, TNT, and BEDT-TTF) absorbed on five PBI molecules. 

 

3.2.6 Quantifying the sensitivity of the PBIs for discriminating sensing. 

To quantify the potential of the five PBI derivatives (labeled j=1, …, 5) for the 

discriminating sensing of the three analytes TCNE, TNT and BEDT-TTF, (labeled n=1,2,3 

and m=1,23) we calculated the ensemble-averaged, room-temperature currents Ijn as a 

function of voltage V and computed the following correlators of the currents  
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(c) (d) 

(e) 
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𝐴𝑗
𝑛𝑚 = ∫ 𝑑𝑉 (𝐼𝑗𝑛(𝑉) − 𝐼𝑗𝑚(𝑉))

2𝑉/2

−𝑉/2
                                 (3.2.4)                                                  

These were then normalized by the squared currents of the bare backbones to yield the 

quantities: 

𝑋𝑗
𝑛𝑚 =

𝐴𝑗
𝑛𝑚

∫ 𝑑𝑉(𝐼𝑗(𝑉𝑏𝑎𝑟𝑒))
2𝑉/2

−𝑉/2

                                                     (3.2.5)                                                            

For  𝑛 ≠ 𝑚, table 1 shows the values of 𝑋𝑗
𝑛𝑚 obtained for V=1volt. Clearly, as defined, 

𝑋𝑗
𝑛𝑚 = 0 when 𝑛 = 𝑚. In practice, a sensing event would involve measurement of a new set 

of curves (Ijm(V) in Eq. (3.1.2)) and combining these with a ‘calibration set of curves  (Ijn(V) 

in Eq. (3.1.2)), in which case 𝑋𝑗
𝑛𝑚 would be small but not zero when 𝑛 = 𝑚.  

Table 3.4. The values of 𝑋𝑗
𝑛𝑚 

 

 

 

 

 

 

 

Table (3.4) and Figure (3.26) shows the value of 𝑋𝑗
𝑛𝑚 when 𝑛 ≠ 𝑚. Ideally, to avoid false 

positives, these numbers should be as large as possible and since they are largest for Py-PBI, 

we conclude that Py-PBI is the best individual sensor. Nevertheless, for the most accurate 

discriminating sensing, the fingerprint of an analyte across all five backbones should be 

used. 

J PBIs 𝑋𝑗
12 𝑋𝑗

13 𝑋𝑗
23 

1 aPy-PBI 0.3043 0.2776 0.0044 

2 Cl-PBI 0.0031 0.2457 0.2508 

3 P-PBI 0.0021 0.4101 0.4011 

4 Py-PBI 0.3641 0.4365 0.9161 

5 S-PBI 0.0309 0.1344 0.1748 

SUM  0.7045 1.5043 1.7472 
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Figure 3.26. Comparison between the normalized correlators  𝑋𝑗
𝑛𝑚 where 𝑛 labels the three analytes 

(TNT, TCNE, and BEDT-TTF) and j labels the five PBIs. V=1.0 volts. 

 

3.3 Summary 

We demonstrated the potential of perylene bisimide (PBI) for label-free sensing of organic 

molecules by investigating the change in electronic properties of five symmetric and 

asymmetric PBI derivatives, which share a common backbone, but are functionalised with 

various bay-area substituents. Density functional theory was combined with a Greens 

function scattering approach to compute the electrical conductance of each molecule 

attached to two gold electrodes by pyridyl anchor groups. We studied the change in their 

conductance in response to the binding of three analytes, namely TNT, BEDT-TTF and 

TCNE, and found that the five different responses provided a unique fingerprint for the 

discriminating sensing of each analyte. This ability to sense and discriminate was a direct 

consequence of the extended π system of the PBI backbone, which strongly binds the 

analytes, combined with the different charge distribution of the five PBI derivatives, which 

leads to a unique electrical response to analyte binding. 

 

 

 

1 TNT 

2 TCNE 

3 BEDT-TTF 
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Chapter 4 

 

Three-State Single-Molecule Naphthalenediimide Switch:  

Integration of a Pendant Redox Unit for Conductance Tuning 

 

The following work was carried out in collaboration with the experimental group of Bern 

University. I will present my theoretical work on a single-molecule naphthalenediimide 

switch, alongside the Bern experimental results. The results presented here were published 

in the following paper [124]:  

“Three States Single-Molecule Naphthalenediimide Switch: Integration of Pendant Redox 

Unit for Conductance Tuning” 

Angewandte Chemie International Edition, 54.46 (2015): 13586-13589.  

4.1 Introduction  

Functional molecules with bi-/multi-stable states have been studied intensively [125-130] 

because they are potentially interesting building blocks for molecular-level electronics [131-

136] and ultra-high density storage devices [137, 138]. Various switchable molecules were 

fabricated by incorporating photochromic or redox-active moieties within the molecular 
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charge transport pathway, e.g., tetrathiafulvalene (TTF), [6, 139] benzodifuran (BDF),[140] 

anthraquinone (AQ),[7] and ferronce (Fc)[141].  In these studies, a functional unit was 

involved in the charge transport pathway, which is expected to provide more significant 

tuning of single-molecule conductance. On the other hand, single-molecule devices with a 

pendant functional unit (Figure 4.2a), which is not directly involved in the charge transport 

pathway, are also of great interest because it offers much more flexibility for molecular 

design and synthesis, and therefore, finer tuning of the charge transport through the single 

molecule device. 

Naphthalene diimide (NDI) molecules (Figure 4.1) have rapidly emerged as an interesting 

class of materials in organic electronics (See more details in chapter 1). Core substituted 

NDIs with electron-donor groups can be tuned to improve the optical/electrical properties 

[142]. More interestingly, substitution of the naphthalene core provides the opportunity to 

study charge transport through the naphthalene unit (marked as gray in Figure 4.2b) while 

diimide unit (marked as green in Figure 4.2b) served as a pendant functional unit with strong 

coupling to the naphthalene backbone in which improving the response to an external 

stimulus such as, an applied electrochemical gating. Varying the applied potential to the 

NDI molecules, a sequence of two sequential electron transfer reactions transforms the 

neutral species (NDI-N) into the corresponding radical-anion (NDI-R), and finally into the 

di-anion species (NDI-D). Therefore this core substituted NDI molecule can be considered 

as a prototypical molecular junction to evaluate the effect of pendent redox groups on the 

single-molecule conductance. 

In this Chapter, I report an electrochemically controlled STM-based break junction study [7] 

of a NDI-BT molecule (which is shown in Figure 4.1) with pendent diimide redox unit 

strongly coupled to the molecular backbone. We demonstrate that these reversible redox-

transitions in the pendant diimide unit indeed cause pronounced changes in the charge 
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transport through the single molecular NDI-BT junction. To get better understanding of the 

microscopic mechanism of the electrochemical gating, we employed density functional 

theory (DFT) to model the charge double layer in the molecular junction comprised of the 

ions in the supporting electrolyte and computed the electrical conductance with non-

equilibrium Green’s function (NEGF) method as a function of the NDI-BT redox-states. 

 

Figure 4.1. The chemical structure of NDI-BT and its synthetic approach. 

 

4.2 Experimental work:  

 

4.2.1 Single-molecule break junction experiments 

The Bern Scanning Tunnelling Microscopy Break Junction (STMBJ) experiments were 

performed with a Molecular Imaging PicoSPM in an environmental chamber and equipped 

with a dual preamplifier. The current-distance measurements were performed with a lab-

build analog ramp unit. The current was recorded at a fixed bias potential during repeated 

formation and breaking of the molecular junctions [2]. 

Au(111) was used as the substrate and the facet cleaned before the experiments using 

electrochemical polishing and butane flame annealing followed by cooling under Ar 

atmosphere. Then, the freshly prepared substrate was drop-casted with 30 µL of 0.5 mM 

NDI-BT in THF. For the electrochemically controlled STMBJ experiments, single Pt wires 
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were used as the counter and quasi-reference electrodes and the gold STM tips prepared 

with AC etching in a 1:1 (v/v) mixture of 30% HCl  and  ethanol solution, were coated with 

polyethylene to ensure that the  electrochemical current on the tip is below12 pA. Finally, 

the Kel-F cell was mounted on top of the substrate and the supporting electrolyte (ionic 

liquid HMlmPF6) was added into the cell. The STM images and cyclic voltammograms 

were recorded frequently during the measurements. The latter were used to check the redox 

peak position and to ensure that there is no oxygen in the system and no drift of the 

reference electrode potential. After assembling the experiment, the tip was approached 

toward the substrate to fulfill the preset tunnelling parameters (iT = 100 pA and a bias 

voltage Vbias = 0.10 V).  

After positioning the tip in the tunnelling regime, the STM feedback is switched off and 

current-distance measurements were carried out. For the stretching cycle measurements, the 

controlling software approaches the STM tip to the drop-casted gold surface. The approach 

was stopped until a predefined upper current limit was reached to a value which corresponds 

to the formation of several gold-gold contact. After a few ms delay ensuring the formation of 

stable contacts, the tip was withdrawn until a low current limit of ~10 pA was reached. The 

approaching and withdrawing rates were both 87 nm/s. The whole current-distance traces 

were recorded with a digital oscilloscope in blocks of 186 individual traces. Up to 2000 

traces were recorded for each set of experimental conditions to guarantee the statistical 

significance of the results.  

The design of NDI-BT is based on the following considerations: i) NDI can be reversibly 

transformed into the respective radical anion and dianion with distinguishable energy gaps, 

ii) the presence of a dihydrobenzo[b]thiophene anchor group enables NDI-BT to be 

contacted to source-drain electrodes (Figure 4.2b) [143]  and iii) the presence of triple 

carbon-carbon bonds introduces a certain rigidity into the NDI-BT. The NDI-BT assembly 
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was prepared on an Au(111) substrate by drop-casting 30 µL of a solution of 0.5 mM NDI-

BT in THF. As the reduction of the NDI-BT to the dianion requires rather negative 

potentials, cyclic voltammetry (CV) and STMBJ measurements were carried out in  

HMlmPF6 (1-hexyl-3-methylimidazolium hexafluorophosphate) in an oxygen-free 

environment. Compared to the electrochemical response of the bare Au(111)/HMlmPF6 

interface (grey curve in Figure 4.3a), two pairs of reversible redox-peaks appear in the 

voltammogram when the NDI-BT layer is present (black curve in Figure 4.3a).  

 

 

Figure 4.2. (a) Schematic illustration of single-molecule device with a central redox unit in the 

charge transport pathway and a pendant redox unit. (b) Schematic illustration of electrochemically 

gated break junction experiment and molecular structure of NDI-BT in neutral state (NDI-N), radical 

anion state (NDI-R) and dianion state (NDI-D). 

 

The first redox peak is located around -0.85V versus Fc/Fc
+
 and is attributed to the NDI-

N/NDI-R redox process. The second redox peak is observed around -1.15V versus Fc/Fc
+
 

corresponds to the redox process of NDI-R to the NDI-D states.   

The charge transport properties of the single NDI-BT molecule were studied by STM-BJ 

measurements at room temperature [2]. Figure 4.3b displays representative conductance (G) 

versus distance (Δz) traces measured at three different electrode potentials corresponding to 

neutral 

radical anion 

dianion 
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NDI-N (black), NDI-R(blue), and NDI-D(red). Most of the curves show an initial 

conductance feature at G0 with G0 = 2e
2
/h = 77.5 μS, which corresponds to the single gold-

gold atomic conductance [3]. Subsequently, the conductance decreases abruptly (“jump out 

of contact”)[144] by several orders of magnitude. The plateaus observed in the range from ~ 

10
-3 

G0 to 10
-4 

G0 are assigned to the conductance features of the single molecular NDI 

junctions, which strongly depend on the applied potential. 

 

 

Figure 4.3. Figure 4.3 (a) CVs of NDI-BT immobilized on the Au(111) electrode (black curve) and 

bare Au(111) (gray curve) in HMlmPF6. The scan rate was 50 mV s
-1

. (b) Typical conductance-

distance traces at different potential black: NDI-N at -0.2 V, blue: NDI-R at -1.05 V, red: NDI-D -1.5 

V versus Fc/Fc+ (c) conductance histogram constructed from 1000 individual traces sampled at 

different potential, # presents an artifact caused by the switching between different current measured 

range of the linear amplifier (d) 2D conductance-distance histogram of NDI-N, presents the current 

measurement noise level during the electrochemical-STM BJ measurement. The inset Figure d 

displays the characteristic displacement histograms of NDI-N. 

 

The two-dimensional (2D) conductance histogram [145, 146] shown in Figure 4.3d provides 

direct access to the evolution of molecular junctions during the formation, stretching and 
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break-down steps. The high-density data cloud around 10
-4.5 

G0 ≤ G ≤ 10
-3.5 

G0 represents the 

conductance range of the single NDI-N molecule bridging the gold electrodes. The inset 

Figure 4.3d displays the characteristic displacement histograms[147] of NDI-N and shows 

that two peaks corresponding to tunnelling and molecular junction in figure 4.3d led to a 

junction formation probability of about 80 %.  

The reversibility of the switching process was also evaluated by continuous conductance 

switching between different charge states. As shown in Figure 4.4a, each conductance 

histogram is constructed from 1000 individual traces, and the applied potential changed per 

1000 traces between -0.2 V (NDI-N), -1.05 V (NDI-R), and -1.5 V (NDI-D) versus Fc/Fc
+
, 

respectively. It was found that the NDI-BT can be switched forward and backward from 

NDI-N via NDI-R to the NDI-D state (1st-5000th traces), or switched between the NDI-N 

and NDI-R state (5000th to 7000th traces). These switching cycles suggest that the three 

charge states of the NDI molecule can be tuned reversibly by changing the applied potential 

even after more than 7000 stretching cycles (Figure 4.4b). The conductance peak became 

slightly broader during the switching as a result of desorption of NDI-BT from the 

electrodes at a negative potential [148]. 

 

Figure 4.4. (a) Conductance histogram constructed from 1000 individual traces for each 

applied potential (b) Most-probable conductance value determined from conductance 

histograms shown in (a).  
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4.2.2 Further analysis of NDI-D conductance measurement 

As shown in Figure 4.5a, it is found that many stretching curves show no molecular 

conductance plateau but only direct tunnelling, which is due to a desorption processes that 

happens close to the reduction potential of NDI-D. The desorption effect reduces the 

possibility for binding of the thiol anchor to gold electrodes. Thus the conductance peak in 

the conductance histogram of NDI-D is relatively small due to the low junction formation 

probability. For better statistics of the conductance peak of NDI-D, we also try to construct 

the conductance histogram excluding the traces that show no molecular plateau by fitting the 

conductance traces with stretching distance less than 1.0 nm (which is determined from the 

separation of stretching distance distribution shown in Figure 4.5b). As shown in Figure 

4.5c, we observed a clear conductance peak located at ~10-3 G0, which agrees well with the 

most probable conductance of NDI-D determined without data selection. 

 

Figure 4.5. (a) 2D conductance-distance histogram of NDI-D (b) Characteristic displacement 

histograms of NDI-D determined from conductance region between 10-6 G0 and 0.7 G0. (c) 

Conductance histogram of NDI-D excluding the traces show no molecular plateau. 

 

 

4.3 Theoretical Method 

To understand the observed switching mechanism between the three states of 

electrochemical gating we theoretically investigated the effect of the charge double layer on 

the conductance. The primary role of the charge double layer in our calculations is to control 
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the number of electrons on the NDI-molecule. To perform conductance calculations we used 

the Gollum [111] quantum transport code and the optimal gold-molecule-gold junction 

geometries and the Hamiltonian matrix elements were obtained using SIESTA [107]. To 

accurately describe single occupied levels of the NDI all calculations were spin-polarized 

and the electron transmission coefficient function T(E) calculated as the average of the spin 

up and spin down transmission coefficients.  

4.3.1 The junction and Charge double layer geometries 

To calculate electrical properties for NDI molecule which was shown in chapter 1, the 

following method was applied. To begin with, the relaxed geometry of each molecule was 

found using the density functional (DFT) code SIESTA [107] which employs Troullier-

Martins pseudopotentials to represent the potentials of the atomic cores [108] and a local 

atomic-orbital basis set. In particular, we used the customized basis set definitions to 

investigate the effects on the Mulliken population count in SIESTA while using the 

generalized gradient approximation (GGA-PBE) for the exchange and correlation (GGA) 

[109]. The Hamiltonian and overlap matrix elements are calculated on a real-space grid 

defined by a plane-wave cutoff of 150 Ry. NDI molecule is relaxed into the optimum 

geometry until the forces on the atoms are smaller than 0.02 eV/Å. Tolerance of Density 

Matrix is 10
-4

, and in case of the isolated molecules a sufficiently-large unit cell was used 

for steric and electrostatic reasons. 

For the relaxed geometry of isolated NDI molecule, we have constructed the junction 

geometries by placing the optimized NDI molecules between two nanogap gold electrodes. 

An example for the junction geometry is shown in Figure 4.6. After the NDI molecule is 

placed between the gold electrodes the geometry was again optimized. The optimization was 

performed with the SIESTA code using DZP basis sets for all elements except gold, for 



90 
 

which DZ basis set was used, GGA-PBE exchange-correlation parameterization, 0.0001 

density-matrix tolerance and 200Ry grid cutoff. The Mulliken charges are computed 

consistently with the same setup.The initial distance between S atom (DHBT anchor group) 

and the centre of the apex atom of each gold pyramid was initially 2.4 Å. After geometry 

optimization the distance changed to a final value of 2.63 Å. 

The charge double layers are added to both sides of the planar backbone of the molecule in 

the optimized junction geometry as shown in Figures 4.7 and 4.8. The charge double layer is 

built from sodium and chloride ions with fixed 2.23Å distance between the sodium and 

chloride ions. After the charge double layer was added to the optimized junction geometry 

we performed a self-consistent single energy calculation to obtain the optimal electronic 

structure and performed electron transport calculation with the obtained Hamiltonian and 

overlap matrices. The charge of the molecule is calculated from the Mulliken population 

computed by SIESTA. To modify the amount of charge on the molecule we varied the 

charge double layer-molecular plane distance, denoted y, while the distance between the 

ions within the double layer were kept fixed. The distance y is defined as distance between 

the plane of the molecule and the centre of the closest ion. Figure 4.10 shows the number of 

electrons (∆N) transferred from the NDI molecule to the gold electrodes as a function of 

distance y (Å). To account for the effect of varying environment this calculation was 

repeated with randomly constructed double layers. The charge double layer is initially 

constructed as an 2×8 array of sodium ion chloride ion pairs and then four pairs were 

randomly removed from this array to obtain the randomly constructed double layer.”.   

The electron and spin transport calculations were performed with the GOLLUM 

implementation of non-equilibrium Green’s function (NEGF) method [111] to compute the 

transmission coefficient T(E) for electrons of energy E passing from the left gold electrode 

to the right electrode. GOLLUM is a next-generation code, born out of the SMEAGOL code 
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[112]  and uses NEGF combined with density functional theory to compute transport 

properties of a wide variety of nanostructures. The precise methodology of computing a 

non-spin-polarized and spin-polarized electron transport over a junction geometry is 

described in ref [111]. The Hamiltonian and overlap matrices are calculated with SIESTA, 

with the same parameters that used in Figure 4.6. The Mulliken charges are computed 

consistently with the same setup. 

Once the transmission coefficient 𝑇𝜎(𝐸) for electrons of energy E, spin of 𝜎 = [↑, ↓] passing 

through the molecule from one electrode to the other is computed, we calculate the zero-bias 

electrical conductance G using the finite temperature Landauer formula [Eq. 4.1.2 in the 

Chapter 3].  

 

Figure 4.6. Optimized configuration of NDI molecule attached to gold electrodes. 

 

In case of spin-polarized calculation T(E) is the spin-averaged transmission coefficients. 

Figure 4.13 compares the zero and room temperature conductances calculated from the same 

transmission coefficients. Near the resonance peaks the conductance varies with temperature 

significantly. 
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Figure 4.7. NDI molecule attached to gold electrodes in the presence of charge double layer above 

and below the molecule.  The positive sodium ion is purple and the negative chloride ion is green.  

                

Figure 4.8. shows the geometries on Figure 4.7 from another orientation to illustrate the charge 

double layer around the backbone of the molecule.  

 

4.4 Results and discussion 

The three stages of gating are modelled with the three types of charge double layers (CDLs) 

shown in Figure 4.9. To model the effect of gating, the distance (y) between the double 

layers and the plane of the molecule was adjusted such that the number of extra electrons on 

the molecule was 0, 1 and 2 for the neutral, radical anion and dianion states, respectively. 

Figure 4.9a shows a negative charge double layer (the negative ions of the double layer lie 

closer to the plane of the NDI molecule) for which the NDI is neutral. Figures 4.9b, c show 
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positive charge double layers that attract electrons from the gold leads to the molecule, 

thereby creating the radical anion and dianion states.  

 

Figure 4.9. Junction geometries with charge double layers for the three states of electrochemical 

gating. (a) The neutral state with negative-positive CDL that adjusts the molecular charge to zero. (b) 

and (c) The radical anion and dianion states with positive-negative CDLs. 

 

 

Figure 4.10. The number of electrons (∆N) transferred from the NDI molecule to the gold electrodes 

as a function of distance Y (Å) between the molecule and the double layer.  (a) shows ∆N when the 

chloride points towards the NDI, and (b) shows -∆N when the sodium points towards the NDI (the 

online color) A, B, C, D, E and F are different randomly-chosen charge double layers. 

 

To account for fluctuations in the charge double layer, the transmission coefficient and 

conductance were computed for different charge double layer arrangements, in which the 

anions and cations were randomly arranged at a fixed distance y. These were then averaged 

to yield the theoretical conductance G and transmission coefficient T(E) as shown in Figure 

(4.14a-d).  

 

 

(a) 
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Figure 4.11. shows (the dotted lines) the  transmission coefficient curves for randomized 

configurations of double layers with non-spin polarization, where the thick lines are the averaged 

transmission coefficient as a function of energy for NDI-molecule attached to the electrodes in the 

three cases: neutral (black) , radical (blue), and dianion (red). 

 

The conductances, which were computed from the transmission coefficients at the Fermi 

energy using the room temperature Landauer formula, show an increasing trend upon 

moving from neutral state to the dianion state. In the radical anion state, the Fermi energy is 

trapped between two single electron resonances. This is apparent only in the spin-polarized 

calculation. In contrast, and as expected, the non-spin-polarized calculations give 

qualitatively different (and inaccurate) theoretical trends because single occupied orbitals 

are by definition located at the Fermi energy, and thereby result in an unphysical high 

conductance for the radical state (see Figure 4.11 and 4.12).  

Figure 4.14d illustrates that the electrochemical gating experiment consistently increases the 

conductance as the molecular charge goes from the neutral state to the dianion state. This 

trend of theoretical charge double layer model agrees well with the experiment as Figure 

4.14d illustrates. The theoretical conductance values are higher than the measured ones for 

all three states, which can be attributed to the neglect of environmental and thermal 
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effects.[20] DFT is also known to underestimate the HOMO-LUMO gap, which results in an 

overestimated conductance.[14, 16, 21]. 

 

 

Figure 4.12. DFT Non-spin-polarized calculations to explain the comparison between the 

experimental and theoretical results, where left shows the logarithm scale of electrical conductance 

of particular configuration, and right shows the logarithm scale of ensemble averaged of electrical 

conductance of randomized configurations. 

 

 

 

Figure 4.13. Shows the comparison between the room temperature and zero temperature 

conductances for a range of Fermi energies.     
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Figures 4.13a-c demonstrate the zero and room temperature conductance comparison in the 

three states, the calculation shows near the resonance peaks the conductances vary with 

temperature significantly.” 

 

Figure 4.14. (a), (b) and (c) show the transmission curves for junction geometries with double 

layers located at distances y=5Å, y=5.8Å and y=4.05Å, respectively. Example junction 

geometries are shown in Figure 4.9 (a), (b) and (c). The continuous curves are the averaged 

transmission coefficients and the dotted curves show the transmission coefficients for different 

charge double layer arrangements. The colour code refers to the three different states, NDI-N 

(black), NDI-R (blue) and NDI-D (red). (d) shows the measured and computed averaged 

conductance values for the three states of the electrochemical gating experiment. The 

computed conductance values are calculated from the averaged transmission coefficient using 

the finite temperature Landauer formula (Eq. 4.1.2 in the Chapter 3) with the temperature 

300K.  
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4.5 Summary  

We studied charge transport phenomena through a core substituted naphthalenediimide 

(NDI) single-molecule junctions using the electrochemical STM-based break junction 

technique in combination with DFT calculations. The conductance switch among three 

well-defined states is acquired by electrochemically controlling the redox state of the 

pendant diimide unit of the molecule in ionic liquid, and the conductance difference is 

more than one order of magnitude between di-anion states and neutral state. The potential 

dependent charge transport characteristics of the NDI molecules are confirmed by DFT 

calculations accounting for electrochemical double-layer effects on the conductance of 

the NDI junctions. This work suggested that the integration of redox unit in the pendant 

position with strong coupling to molecular backbone can significantly tune the charge 

transport of the single-molecule device by controlling different redox states. 
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Chapter 5 

Tuning the thermoelectric properties of metallo-porphyrins 

 

In this chapter I will present my work published recently in Nanoscale [72] on 

thermoelectric properties of metallo-porphyrins. I demonstrate that by varying the transition 

metal-centre of the porphyrin molecule over a range of metallic atoms the molecular energy 

levels relative to the Fermi energy of the electrodes can be varied leading tuning of the 

thermoelectric properties of metallo-porphryins. 

 

5.1 Motivation  

Porphyrin-based molecules are attractive as building blocks for molecular-scale devices, 

because they are conjugated, rigid, chemically stable and form metallo-porphyrins by 

coordinating with a variety of metallic ions. This combination of desirable properties has 

already been exploited in nature, where for example the metallo-porphyrin acts as a charge 

carriers in naturally occurring processes such as photosynthesis  and in the respiratory chain.  

Recently a number of groups have investigated the electrical conductance of porphyrin-

based molecules, [53, 57, 149]. Crucial to further development of such systems for future 

applications is an understanding of their thermoelectric properties at the nanoscale. 

Thermoelectric devices can be used to convert waste heat into electricity and therefore have 

the potential to reduce the global demand for energy, particularly from information 
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technologies. The thermopower S of a material or nanoscale junction is defined as 𝑆 =

 −𝛥𝑉/𝛥𝑇, where ΔV is the voltage difference generated between the two ends of the 

junction when a temperature difference ΔT is established between them. In this Chapter, I 

will explore the potential of porphyrin-based molecules for high-performance 

thermoelectricity. By varying the metal atom, I find that both the sign and the magnitude of 

the thermopower can be tuned. I identify Fe, Mn and Zn porphyrins as particularly attractive 

materials, due to their high thermopowers (-280, -260  and  +230 μV/K respectively), which 

as discussed in the conclusion, exceed the experimental values of all single-molecule 

thermopowers measured reported to date. Thermopower is an intrinsic property and 

therefore these values will be manifest in self-assembled monolayers of these molecules and 

therefore our results could lead to new families of thin-film thermoelectric devices. 

The rewards for such improvement in thermoelectric performance cannot be overstated. 

Mankind wastes at least 20% of the 15 terawatts required annually for global power 

consumption as low level heat (<200 
o
C). Widespread availability of new low-cost organic 

thermoelectric devices would allow direct heat-to-electrical energy from (at least some) of 

this vast, essentially untapped, resource generating a new industrial sector based on local 

power generation from otherwise wasted energy sources amounting up to 50 billion £ yr
-1

.  

The results in this work will be of fundamental interest to the molecular electronics and 

nanoelectronics communities, chemists and physicist working on the fundamental aspects of 

electron and thermal transport, as well as engineers seeking to improve the performance of 

their thermoelectric devices. 
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5.2 Introduction 

The ability to generate a voltage from a temperature gradient has been known since the early 

19th century [150]. This Seebeck effect is exploited to generate electricity from sources of 

waste heat such as automobile exhausts and industrial manufacturing processes and the 

inverse process (i.e. the Peltier effect) is used in cascade coolers for on-chip cooling of 

electronic devices [151-154]. Nowadays, a great deal of effort is aimed at increasing the 

efficiency of these effects and identifying the parameters that control the thermoelectric 

performance of materials and devices [155-161]. Although most common thermoelectric 

materials are inorganic, there is growing interest in the development of organic 

thermoelectric materials [52-54, 155-159, 162, 163], partly because many widely-deployed 

inorganic thermoelectric materials are toxic, expensive to process and have limited global 

supplies. Since the thermoelectric performance of inorganic materials can be enhanced by 

taking advantage of nanostructuring [162-167] there is particular interest in exploiting the 

room-temperature properties of single-molecules attached to nanogap electrodes, which can 

be regarded as the ultimate nanostructured devices. In what follows our aim is to explore the 

potential for thermoelectricity of single-molecule metallo-porphyrin junctions. Porphyrins 

are attractive as building blocks for molecular-scale devices, because they are conjugated, 

rigid, chemically stable and form metalloporphyrins by coordinating a variety of metallic 

ions [52-60]. 

From the point of view of optimising thermoelectric properties, junctions formed from these 

molecules are of interest, because by varying the metal atom residing in the core of the 

organic porphyrin framework, it should be possible to tune the molecular energy levels 

relative to the Fermi energy EF of the electrodes. If energy levels can be caused to sit close 

to EF, then this is expected to lead to transport resonances, which enhance the thermopower.  
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Eq. (2.29) in Chapter 2 demonstrates that S is enhanced by increasing the slope of ln T(E) 

near E=EF and hence it is of interest to explore whether or not the ability to vary the metal 

centre in metallo-porphyrins can be used to move resonances close to EF.  

In what follows, we shall demonstrate that this is indeed the case and that large positive and 

negative thermopowers are achievable. 

5.3 Methods 

As shown in Figure 5.1, the porphyrin monomer of interest consists of four pyrrole cores 

(the inner ring п-system) with side groups comprising a phenyl ring connected via two 

oxygen atoms to electrically-inert alkyl groups (-C8H17). The core of porphyrin is 

connected via thiol anchor groups to gold electrodes. Our aim in this paper is to investigate 

the effect on thermoelectric performance of varying the metal atom χ over the series of  χ = 

Co, Cu, Fe, Mn, Ni, and Zn.   

 

Figure 5.1. Porphyrin-based molecular structures (a) without metallic atom, (b) with different 

metallic atoms χ = Co, Cu, Fe, Mn, Ni, and Zn. 

 

To calculate the electrical properties of each metallo-porphyrin, we used the spin density 

functional theory (DFT) code SIESTA [107] which employs Troullier-Martins 
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pseudopotentials to represent the potentials of the atomic cores [108], and a local atomic-

orbital basis set. A double-zeta polarized basis set was used for all atoms and the generalized 

gradient approximation (GGA-PBE) for the exchange and correlation functionals [109, 110]. 

The Hamiltonian and overlap matrices are calculated on a real-space grid defined by a 

plane-wave cut-off of 150 Ry. Each molecule was relaxed to the optimum geometry until 

the forces on the atoms are smaller than 0.02 eV/Å and in case of the isolated molecules, a 

sufficiently-large unit cell was used to avoid inter-cell interactions. All porphyrin molecules  

with metallic atoms χ were found to be slightly twisted after relaxation.  

After obtaining the relaxed geometry of each isolated molecule, the molecules were placed 

between two gold electrodes, as shown in Figure 5.2. For structures such as those shown in 

Figure 5.2, the central region of the junction is composed of a single molecule attached to 

two gold (111) leads. The equilibrium distance between the sulfur atom of each anchor 

group and the centre of the apex atom of each gold pyramid was initially 2.5 Å. After 

geometry optimization the distance changed slightly from the initial value to a final value of 

2.63 Å. 

 

Figure 5.2. An example of an optimized junction configuration. To reduce the computational cost, 

we replace the electrically-inert alkyl group (-C8H17) with a methyl group (-CH3). 
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To reduce the computational cost, we replace the electrically-inert alkyl group (-C8H17) 

with a methyl group (-CH3). I used the Gollum method [111] to compute the spin-dependent 

transmission coefficients 𝑇𝜎(𝐸) for electrons of energy E passing from the left gold 

electrode to the right electrode. Gollum is a next-generation code, born out of the 

SMEAGOL code [112] and uses the mean-field Hamiltonian and overlap matrices obtained 

from density functional theory to compute transport properties of a wide variety of 

nanostructures. After computing 𝑇𝜎(𝐸), we evaluated the zero-bias thermoelectric 

coefficients over a wide range of Fermi energies and temperatures by using Eqs. (2.19) and 

(2.20) and also Eqs. (2.26)-(2.30)  in chapter 2. 

 

5.4 Results and Discussion 

For each metallo-porphyrin P-χ in Figure 5.1b, the charge transfer between the metal atom 

and the porphyrin framework was calculated (as shown in Table 5.1).  As expected, the 

calculations show that all metal atoms donate electrons to the porphyrin host. As examples, 

Figure 5.3 shows the frontier orbitals, spin-dependent and total transmission coefficients of 

the bare porphyrin (left) and Fe-porphyrin (right) relative to the DFT-predicted Fermi 

energy EF
DFT

. Results for other molecules are shown in Figures (5.8)-(5.14). 

 

Table 5.1. Spin-DFT-PBI calculation of the number of spin up and spin down electrons on each 

metal atom χ , along with the number ∆N of electrons lost by the metal atoms to the porphyrin host. 
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Figure 5.3(a) shows that for the bare porphyrin, the transmission T(E) at the DFT-given 

Fermi level (EF
DFT

, indicated by the vertical black line) is closest to the HOMO resonance 

and the slope of the curve is negative. On the other hand for the Fe porphyrin, figure 5.3b 

shows that the Fermi level is nearest to the LUMO resonance and the slope is positive in 

both Figures 5.3b. Hence from Eq. (2.29), one expects the thermopower of the former 

(latter) to be positive (negative). 

 

 

Figure 5.3. Top panels: Iso-surfaces of frontier molecular orbitals of the bare porphyrin (Porphyrin -

bare) and the iron-porphyrin (Porphyrin-Fe(II) obtained using spin- polarized DFT. Red corresponds 

to positive and blue to negative regions of the wave functions. Lower panels: The spin-dependent 

and total transmission coefficients as a function of energy for bare porphyrin (left) and porphyrin-Fe 

(right).  
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Figure 5.4. (colour online) DFT spin-dependent room-temperature electrical conductance (in units 

of G0 = 2e
2
/h = 77 µSiemens) over a range of Fermi energies for (a) the P-bare and P-Co, Cu, Ni 

and Zn and (b) the P-bare and P-Fe(II), P-Mn(II), PFe(III) and PMn(III). (c) Room-temperature 

values of G for P-bare, P-Co, P-Cu, P-Ni, P-Zn, P-Fe(II) and P-Mn(II) are 3.43 ×10
-3

, 1.05 ×10
-3

, 

3.48 ×10
-3

, 8.7 ×10
-4

, 1.7 ×10
-2

 and 2.1 ×10
-2

  respectively. (d) Room-temperature values of G for 

the porphyrins Mn(II), Mn(III), Fe(II) and Fe(III). The lines in (c) and (d) are guides to the eye. 

 

Figure 5.4 shows the total room temperature electrical conductance for each P-χ. Figure 

5.4(a) shows that the bare (dotted line) and Co, Cu, Zn and Ni porphyrins (solid lines), 

exhibit HOMO-dominated conductance at the DFT Fermi energy, 

(d)

EF = 0 eVEF = 0 eV

(c)

Metallic AtomsMetallic Atoms
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Figure 5.5. The room-temperature thermopower S and figure of merit ZTe. (a) and (c) show plots 

of S and ZTe over a range of Fermi energies EF relative to the DFT-predicted Fermi energy EF
DFT

. 

The right column shows room-temperature values obtained using EF = EF
DFT 

of S and ZTe for each 

metallo-porphyrin. 

 

whereas Figure 5.4b shows that for the Mn(II) and Fe(II) porphyrins, we obtain LUMO-

dominated conductance. Figure 5.4c shows the room-temperature conductance at the 

DFT Fermi energy and shows that the pattern of increasing conductance is Ni < Co < Cu 

< Bare < Mn(II) < Zn < Fe(II). The conductance of porphyrin-Cu (3.49 × 10−3 G0) is 

slightly higher than of porphyrin-bare, (3.43 × 10−3 G0). This order is in agreement with 

previous measurements on similar molecules [57]. We are not aware of conductance 

measurements of the Mn, Zn and Fe porphyrins.  

In the case of Mn and Fe, metalloporphyrins exist more commonly as P-M(III) in the 

presence of a counter anion. Since it is straightforward to oxidise/reduce between 

Fe(II)/(III) and Mn(II)/(III), we have also computed all thermoelectric properties for 
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Fe(III) and Mn(III) complexed with a Cl
- 

counter ion (See Figures (5.16)–(5.22). The 

resulting room-temperature conductances are shown in Figure 5.4b reveals that in the 

presence of the counter anion, transport becomes LUMO dominated. Figure 5.4d 

compares the room-temperature conductances of Fe(II)/(III) and Mn(II)/(III) and shows 

that the presence of a counter anion increases the electric conductance. 

Figures 5.5b and 5.5d show results for the Seebeck coefficient (thermopower) S and 

electronic contribution to the figure of merit ZTe at room temperature. It is well-known 

that DFT can give an inaccurate value for the Fermi energy and therefore Figures 5.5a 

and 5.5c show corresponding results for a range of Fermi energies EF relative to the DFT-

predicted Fermi energy EF
DFT

, whereas Figures 5.5b and 5.5d show room-temperature 

values of S and ZTe for each metallo-porphyrin, evaluated at the DFT Fermi energy. 

Figure 5.5b demonstrates that both the magnitude and sign of thermopower S are 

sensitive to the metal atoms at the centre of the porphyrin monomer, which determine the 

location of transport resonances relative to the Fermi energy. Furthermore, in the case of 

Fe and Mn, Figure 5.5b reveals that the sign of the thermopower can be switched from 

negative to positive upon complexation with Cl
-
, due to their switching from HOMO to 

LUMO dominated transport. 
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Figure 5.6. (a, b, c and d) represent the electrical conductance, Seebeck coefficients S 

(thermopower),  electronic contribution to the figure of merit ZTe and electronic contribution to 

the thermal conductance ke over a range of temperatures, evaluated at EF= EF
DFT

. 

 

At the DFT-predicted Fermi energy, the highest values of the thermopower are obtained 

in the presence of Mn, Fe and Zn, for which S takes values -280, -260 and +230 μV/K 

respectively, all of which have a greater magnitude than the thermopower of the bare 

porphyrin (165 μV/K). The lowest values of all are obtained for Co, closely followed by 

Cu. For Fe(III)-P we obtain S= +218 μV/K at room temperature and for Mn(III)-P we 

find S= +95 μV/K. Corresponding results for the electronic contribution to the figure of 

merit ZTe are shown in Figure 5.5d. The highest values of ZTe are obtained in the 

presence of Zn, Mn and Fe, reflecting the high values of their thermopowers and 

conductances. 
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Figure 5.6 shows the electrical conductance G, Seebeck coefficients S (thermopower),  

electronic contribution to the figure of merit ZTe and electronic contribution to the 

thermal conductance ke as a function of temperature, obtained using the DFT-predicted 

Fermi energy EF
DFT

. These results show that the magnitudes of all quantities increase 

with increasing temperature. 

 

Figure 5.7. The upper figure (a) shows room-temperature values of the product GS
2
, while figure (b) 

shows the power factor 𝑃 = 𝑆2𝐺𝐿/𝐴 evaluated at EF= EF
DFT

. The lower figure (c) shows room-

temperature values of power factor 𝑃 = 𝑆2𝐺𝐿/𝐴  for each metallo-porphyrin. 

 

A crucial quantity determining the efficiency of a thermoelectric material or device is 

the dimensionless figure of merit ZT =S
2
GT/κ, whose denominator κ is the total thermal 

conductance due to both phonons and electrons. This differs from the electronic figure of 

merit ZTe =S
2
GT/κe whose denominator contains only the thermal conductance due to 

electrons. For a bulk material, ZT is often written in the form = (𝑃/𝜅)𝑇 , where 𝜅 is the 
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total thermal conductivity and P is the power factor defined by as 𝑃 = 𝑆2𝜎, where σ is 

the electrical conductivity. In practice for a single molecule, ZT is difficult to measure 

experimentally, because the thermal conductance κ of a single molecule is not 

directly accessible. However the numerator of ZT (i.e. the power factor 𝑃) is 

accessible. The notion of conductivity is not applicable to transport through single 

molecules, but to compare with literature values for bulk materials, we define 𝜎 = 𝐺𝐿/𝐴, 

where 𝐿 and A are equal to the length and the cross-sectional area of the molecule 

respectively. In what follows, the values 𝐿 = 4.0 nm  and 𝐴 = 1.8 nm2 are used. From the 

results of Figures 5.4 and 5.5, the quantity GS
2
 and power factors 𝑃 = 𝑆2𝐺𝐿/𝐴 for 

each of the studied molecules are shown in Figure 5.7. 

These results show that Mn, Mn(III), Fe(III), Zn and Fe porphyrins have the highest power 

factors of 5.9×10
-5

 W/m.K
2
, 5.4×10

-4
 W/m.K

2
, 9.5×10

-4
 W/m.K

2
, 1.6×10

-4 
W/m.K

2
 and 

2.3×10
-4

 W/m.K
2
 respectively.  

 

5.4.1 Plots of frontier orbitals and spin-dependent transmission 

coefficients. 

The spin dependent transport calculations show similar behaviour for T(E) for both up spin 

and down spin close to the Fermi energy (0 eV) in all P- χ molecules. However, at higher 

energies, there can be large differences between the two. For example, in the case of P-Fe 

(Figure 5.9), at an energy value of E-EF ~2 eV the transmission resonances differ. The spin 

up transmission curve shows a clear antiresonance, and this resonance has the shape of a 

Fano resonance, while the down spin shows a normal Breit-Wigner resonance. This 

difference can be explained by the nature of the LUMO orbitals which for the spin down are 
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all delocalized along the molecular backbone but for the spin up, the LUMO+1 and 

LUMO+2 orbitals are clearly localized on the central unit of the molecule. 

 

              

Figure 5.8. Frontier molecular orbitals of the P-bare obtained using the spin- dependent 

DFT. Red corresponds to positive and blue to negative regions of the wave functions. Below 

each plot of molecular orbitals, we present the spin-dependent and total transmission 

coefficients as a function of energy. 
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Figure 5.9. Frontier molecular orbitals of the PFe obtained using the spin- dependent DFT. 

Red corresponds to positive and blue to negative regions of the wave functions. Below each 

plot of molecular orbitals, we present the spin-dependent and total transmission coefficients 

as a function of energy. 

 

Figure 5.8 shows that for bare-porphyrin, The spin dependent transport calculations 

show similar behaviour for both up spin and down spin for T(E) close to the Fermi 

energy (0 eV) and  a normal Breit-Wigner resonances appear at the HOMO and 

LUMO levels. That can be associated with the nature of the HOM and LUMO 

orbitals which for both up spin and down spin are all delocalized along the molecular 

backbone. 
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Figure 5.10. Frontier molecular orbitals of the PCo obtained using the spin- dependent DFT. 

Red corresponds to positive and blue to negative regions of the wave functions. Below each 

plot of molecular orbitals, we present the spin-dependent and total transmission coefficients 

as a function of energy. 

 

Figure 5.10 shows that for the Co-porphyrin, at an energy of  𝐸 − 𝐸𝐹~0.8 eV, the spin 

down transmission shows anti-resonance. This explain that LUMO spin down orbital 

localized only on the metallic atom Co. 
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Figure 5.11. Frontier molecular orbitals of the PCu obtained using the spin- dependent DFT. 

Red corresponds to positive and blue to negative regions of the wave functions. Below each 

plot of molecular orbitals, we present the spin-dependent and total transmission coefficients 

as a function of energy.  
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Figure 5.12. Frontier molecular orbitals of the PMn obtained using the spin- dependent 

DFT. Red corresponds to positive and blue to negative regions of the wave functions. Below 

each plot of molecular orbitals, we present the spin-dependent and total transmission 

coefficients as a function of energy. 

 

For the Mn-porphyrin, the spin dependent-transmission calculation shows Fano-

resonances around the DFT Fermi energy (EF=0eV). This explains the different 

distribution of orbitals localized along the backbone. 
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Figure 5.13. Frontier molecular orbitals of the PNi obtained using the spin- dependent DFT. 

Red corresponds to positive and blue to negative regions of the wave functions. Below each 

plot of molecular orbitals, we present the spin-dependent and total transmission coefficients 

as a function of energy. 
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Figure 5.14. Frontier molecular orbitals of the PZn obtained using the spin- dependent DFT. 

Red corresponds to positive and blue to negative regions of the wave functions. Below each 

plot of molecular orbitals, we present the spin-dependent and total transmission coefficients 

as a function of energy. 
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5.4.2 Thermoelectric properties of Fe(III)-porphyrin in presence of a Cl 

counter anion. 

 

 

Figure 5.15. Optimized geometry of porphyrin with central Fe(III)-Cl complex. 

      

 

Figure 5.16. The spin-dependent and total transmission coefficients as a function of energy for 

Fe(III)-porphyrin in presence of  a Cl counter anion, the structure of which is shown in figure 5.15. 

 

Figure (5.16) shows spin-dependent and total transmission coefficients relative to the DFT-

predicted Fermi energy EF
DFT

 of the Fe(III)-porphyrin in the presence of a Cl
-
 counter ion. 

The green line shows that total transport through the Fe-Cl-porphyrin is HOMO-dominated, 

 

 

 

PFe-Cl 
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whereas for the non-complexed Fe(II)-porphyrin (see Figure 5.3b) transport is LUMO 

dominated.  

  

  

Figure 5.17. For the structure in figure 5.15, figures (a, b, c and d) show the room-temperature 

electrical conductance G, thermopower S, power factor 𝑃 = 𝑆2𝜎 and electronic figure of merit ZTe 

over a range of Fermi energies EF relative to the  DFT-predicted Fermi energy EF
DFT

.  

 

Figure 5.17a shows the room-temperature electrical conductance for Fe-porphryin in presence 

of Cl
-
.shown in Figure (5.15). The HOMO-dominated conductance at the DFT Fermi energy 

leads to the positive Seebeck coefficient (thermopower) S shown in Figure 5.17b, the power 

factor 𝑆2𝜎 (Figure 5.17c) and electronic contribution to the figure of merit ZTe (Figure 5.17d), 

all at room temperature. These results are for a range of Fermi energies EF relative to the 

DFT-predicted Fermi energy EF
DFT

.  
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Figure 5.17b demonstrates that in presence of Fe(III)-Cl at the centre of the porphyrin 

monomer, the magnitude of thermopower S is changed to +218 𝜇𝑉/𝐾, compared with -260 

𝜇𝑉/𝐾 for Fe(II). 

 

     

Figure 5.18. For the structure in figure 5.15, figures (a, b, c and d) show the electrical conductance, 

Seebeck coefficients S (thermopower), power factor 𝑃 = 𝑆2𝜎 , electronic contribution to the figure of 

merit ZTe as a function of temperature, evaluated at EF= EF
DFT

. 

 

Figure 5.18 shows the electrical conductance G, Seebeck coefficients S (thermopower), power 

factor 𝑆2𝜎 and electronic figure of merit ZTe as a function of temperature for the structure in 

figure 5.15, obtained using the DFT-predicted Fermi energy EF
DFT

.  
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5.4.3 The calculation of Mn-porphyrin in presence of (Cl). 

 

 

Figure 5.19. Optimized geometry of porphyrin with central Mn(III)-Cl complex. 

 

For the structure in Figure 5.19, Figure 5.20 shows spin-dependent and total transmission 

coefficients relative to the DFT-predicted Fermi energy EF
DFT

. The green line shows that the 

total transmission through the Mn(III)-Cl porphyrin is HOMO-dominated, whereas Figure 

5.4b shows that for Mn(II) porphyrin transport is LUMO dominated. 

 

Figure 5.20. The spin-dependent and total transmission coefficients as a function of energy for Mn-

porphyrin in presence of (Cl), which is shown in Figure 5.19. 

 

 

 

PMn-Cl 
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Figure 5.21. for the structure in figure 5.19, figures (a, b, c and d) show the room-temperature 

electrical conductance G, thermopower S, power factor 𝑃 = 𝑆2𝜎 and electronic figure of merit ZTe 

over a range of Fermi energies EF relative to the  DFT-predicted Fermi energy EF
DFT

.  

 

For the structure in figure 5.19, Figure 5.21 shows that the room-temperature electrical 

conductance for Mn-porphryin in presence of (Cl
-
) is HOMO-dominated conductance at the 

DFT Fermi energy. Figure 5.21b, 5.21c and 5.21d show results for the Seebeck coefficient 

(thermopower) S, power factor 𝑆2𝜎, electronic contribution to the figure of merit ZTe at room 

temperature. These results are for a range of Fermi energies EF relative to the DFT-predicted 

Fermi energy EF
DFT

. Figure 5.21b demonstrates that in presence of Mn-Cl at the centre of the 

porphyrin monomer, the magnitude of thermopower S is changed to +95  𝜇𝑉/𝐾.  
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Figure 5.22: For the structure in figure 5.19, (a, b, c and d) represent the electrical conductance, 

Seebeck coefficients S (thermopower), power factor 𝑃 = 𝑆2𝜎 , electronic contribution to the figure 

of merit ZTe as a function of temperature, evaluated at EF= EF
DFT

. 

 

For the structure in figure 5.19, Figures 5.22(a, b, c and d) show the electrical conductance 

G, Seebeck coefficients S (thermopower), power factor 𝑆2𝜎 and electronic figure of merit 

ZTe as a function of temperature, obtained using the DFT-predicted Fermi energy EF
DFT

.  
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5.5 Summary  

In this work we investigated the thermoelectric properties of metalloporphyrins connected 

by thiol anchor groups to gold electrodes. By varying the transition metal-centre over the 

family Mn, Co, Ni, Cu, Fe, and Zn we are able to tune the molecular energy levels relative 

to the Fermi energy of the electrodes. The resulting single-molecule room-temperature 

thermopowers range from almost zero for Co and Cu centres, to +80 μV/K and +230 μV/K 

for Ni and Zn respectively. In contrast, the thermopowers with Mn(II) or Fe(II) metal 

centres are negative and lie in the range -280 to -260 μV/K. Complexing these with a 

counter anion to form Fe(III) and Mn(III) changes both the sign and magnitude of their 

thermopowers to +218 and +95 respectively. The  room-temperature power factors of 

Mn(II), Mn(III), Fe(III), Zn and Fe(II) porphyrins are predicted to be 5.9×10
-5

 W/m.K
2
, 

5.4×10
-4

 W/m.K
2
, 9.5×10

-4
 W/m.K

2
, 1.6×10

-4 
W/m.K

2
 and 2.3×10

-4
 W/m.K

2
 respectively, 

which makes these attractive materials for molecular-scale thermoelectric devices. 
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Chapter 6 

 

A New Approach to Materials Discovery for Electronic and 

Thermoelectric Properties of Single-Molecule Junctions 

 

In the this Chapter, I will present a new approach to materials discovery for electronic and 

thermoelectric properties of single-molecule junctions. In this work, I have investigated a 

large set of symmetric and asymmetric molecules to demonstrate a general rule for molecular-

scale quantum transport, which provides a new route to materials design and discovery. The 

rule states “the conductance of an asymmetric molecule is the geometric mean of the 

conductance of the two symmetric molecules derived from it and the thermopower of the 

asymmetric molecule is the algebraic mean of their thermopowers” This work has been in 

collaboration with University of Bern, Switzerland and Xiamen University, China. The results 

presented here were published in the ref [168]. 

 

6.1 Introduction 

Nowadays there exist a variety of techniques for measuring the electrical conductance G and 

thermopower S of single molecules, such as scanning tunneling microscopy (STM) [26, 169], 



126 
 

current probe atomic force microscopy [170, 171], STM-break junction (STM-BJ) [172-174], 

crossed-wire geomerty [175], nanoparticle junctions [176, 177], mechanically controlled 

break junctions (MCBJ) [178], electromigration setups [179, 180] and nanopores [14]. 

Schematically, the measured systems are of the form electrode-X-B-Y-electrode, where X and 

Y are anchor groups, which bind the molecule to the electrodes and B is the functional 

backbone of the molecule. A number of experimental and theoretical studies demonstrated 

that useful electronic and thermoelectric functionalities, such as switching, sensing, rectifying 

and heat-to-electricity converters can be optimised by modifying the backbone B of the 

molecules, as well as the anchors [8, 83, 181, 182]. For molecules of length less than 

approximately 3nm, charge transport has been shown to be dominated by phase coherent 

electron transport [183], and therefore the subparts X, B and Y cannot be assigned their own 

conductance or thermopower within the molecule. Nevertheless a recent experimental and 

theoretical study demonstrated that for molecules containing serially connected meta, para or 

ortho phenyl rings, their conductances obtained by changing the sequencing of the rings are 

related to each other [20], which implies that molecular subparts X, B and Y are individually 

characterizable by single numbers. These ‘circuit rules’ provide a theoretical basis for the 

systematic categorisation of trends in single-molecule measurement data. They provide 

guidance for the design and synthesis of molecular devices with optimal electronic and 

thermoelectric properties by treating molecular components as individual building blocks. In 

this chapter we show that this rule is much more widely applicable than initially suggested in 

ref. [20] and can be applied to a very wide range of symmetric and asymmetric molecules, 

with or without donor and/or acceptor groups. For the first time we also provide a circuit rule 

for the thermopower S (i.e. Seebeck coefficient) of single molecules. These circuit rules are of 

interest, because they provide rules for the discovery of new materials by predicting electronic 

and thermoelectric properties of molecules.  This is particularly important, because theoretical 



127 
 

methods such as density functional theory and GW many body theory are do not usually 

provide quantitative predictions of such properties [184]. 

It is well known that the transmission coefficient of two serially-connected phase-coherent 

scatterers with individual transmission coefficients T1 and T2, is of the form 𝑇 =

𝑇1𝑇2

1−2√𝑅1𝑅2 cos𝜑+𝑅1𝑅2
, where φ is a quantum phase arising from quantum interference (QI) 

between the scatterers [185]. Consequently the transmission coefficient T cannot normally be 

factorized to a product of terms associated with the individual scatterers alone. Nevertheless, 

the following argument leads us to a ‘circuit rule’ which describes how the transmission 

changes when the sequential order of the scatterers is changed. First we note that Dyson’s 

equation for the Green’s function of a structure comprising three serially-connected 

subsystems X, B, Y is of the form 

[

𝐸 − 𝐻𝑋 −𝑉𝑋 0

−𝑉𝑋
† 𝐸 − 𝐻𝐵 −𝑉𝑌

0 −𝑉𝑌
† 𝐸 − 𝐻𝑌

] [

𝐺𝑋𝑋 𝐺𝑋𝐵 𝐺𝑋𝑌
𝐺𝐵𝑋 𝐺𝐵𝐵 𝐺𝐵𝑌
𝐺𝑌𝑋 𝐺𝑌𝐵 𝐺𝑌𝑌

] = 𝐼,                                        (6.1) 

where 𝐻𝑋 (𝐻𝑌) is the Hamiltonian of the combined left electrode and anchor X (right 

electrode and anchor Y) and 𝑉𝑋 (𝑉𝑌) is the coupling between the backbone of the molecule 

and the anchor X (Y).  From this expression, the relevant sub-matrix of the Green’s function 

that describes electron propagation across the molecule from X to Y is 

𝐺𝑌𝑋 = 𝑔𝑌𝑉𝑌
†𝐺𝐵𝐵𝑉𝑋

†𝑔𝑋 ,                                                        (6.2) 

where 𝐺𝐵𝐵 = (𝐸 − 𝐻𝐵 −Σ)
−1 is the Green’s function of the coupled backbone and 𝑔𝑋  (𝑔𝑌) 

is the Green’s function of the combined left electrode and anchor X (right electrode and 

anchor Y) and Σ =  𝑉X𝑔X𝑉X
† + 𝑉Y

†𝑔Y𝑉Y. If the electrodes are coupled to the anchors through a 

single site at both ends, the transmission coefficient through the molecule from one electrode 

to the other is 𝑇𝑋𝐵𝑌 = (ℏ𝑣)2|[𝐺𝑌𝑋]𝑖𝑗|
2
, where 𝑣 is the group velocity of the electrodes, 𝑖 and 𝑗 
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denote the anchor sites connected to electrodes [184-186]. For molecules such as those shown 

in Figure 6.1, the anchors are linked to only single sites 𝑘, 𝑙 in the backbone, in which case the 

transmission coefficients takes the form   

𝑇𝑋𝐵𝑌 = ℏ𝑣 |[𝑔𝑌𝑉𝑌
†]
𝑖𝑘
|
2
|[𝐺𝐵𝐵]𝑘𝑙|

2ℏ𝑣 |[𝑉𝑋
†𝑔𝑋]𝑙𝑗|

2

= 𝐴𝑋 × 𝐵𝐵 × 𝐴𝑌,                        (6.3)        

where 𝐴𝑋 =  ℏ𝑣|[𝑉𝑋
†𝑔𝑋]𝑙𝑗|

2
, 𝐴𝑌 = ℏ𝑣|[𝑔𝑌𝑉𝑌

†]𝑖𝑘|
2
  and 𝐵𝐵 = |[𝐺𝐵𝐵]𝑘𝑙|

2 . The factor 𝐵𝐵 

depends on X and Y via the self-energies 𝑉𝑋𝑔𝑋𝑉𝑋
†
 and 𝑉𝑌

†𝑔𝑌𝑉𝑌.  However if the couplings are 

sufficiently weak and the Fermi energy does not coincide with the poles of 𝑔𝑋 and 𝑔𝑌, then  

Σ can be negligible and from Eq. (6.3) it follows that 

𝑇𝑋𝐵𝑌
2 = 𝑇𝑋𝐵𝑋𝑇𝑌𝐵𝑌                                                         (6.4) 

The dependency of BB of X and Y is the smallest when the Fermi energy is located far away 

from the poles of 𝑔𝑋 and 𝑔𝑌 , which is the case for off-resonant electron transport in the co-

tunneling regime. Based on the Landauer formula, and since Eq. (6.4) is valid for a range of 

energies larger than kT = 25 meV, the room temperature conductance also satisfies 

𝐺𝑋𝐵𝑌
2 = 𝐺𝑋𝐵𝑋𝐺𝑌𝐵𝑌.                                                        (6.5) 

Since this approximate relation is true for a range of energies within the HOMO-LUMO gap, 

the rules for the derivatives of the logarithm of the transmission coefficients are expected to 

satisfy 
𝑑

𝑑𝐸
log 𝑇𝑋𝐵𝑌

2 =
𝑑

𝑑𝐸
log 𝑇𝑋𝐵𝑋 +

𝑑

𝑑𝐸
log 𝑇𝑌𝐵𝑌, which leads the circuit rule for the low-

temperature thermopower [187]: 

 2𝑆𝑋𝐵𝑌 = 𝑆𝑋𝐵𝑋 + 𝑆𝑌𝐵𝑌                                             (6.6) 

Although density functional theory (DFT) is not a quantitative theory, it has been shown to 

correctly predict trends in transport properties. In order to demonstrate that the above rules are 

valid for a wide range of molecular junctions, we performed DFT-based electron transport 
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calculations for 193 molecules. The molecules are classified according to their backbone 

structures, and their attached anchors (as shown in Figure 6.1a-c). In Figure 6.1, X and Y 

indicate the location of the anchor groups. The anchor groups X and Y are chosen from the 

family CN, Py, BT, NH2, S, several of which have been studied extensively in the literature 

[188-195]. In Figure 6.1a, shows 180 molecules formed from 12 backbones and five anchor 

groups. In the case of  the 10 X-R-Y molecules shown Figure 6.1b, X and Y are chosen to be 

one of CN, PY, NH2, S and in the case of 3 X-But-Y, shown in Figure 6.1c, X and Y are 

chosen to be either S or NH2. Figures 6.1a,b illustrate the anchor as well as the aromatic rings, 

to which the anchor is attached.  

6.2 Methods 

In order to demonstrate computationally the circuit formulas, we performed DFT based 

electron transport calculations on systematically constructed gold-molecule-gold systems. All 

together 193 molecules were constructed with attached gold pyramids as electrodes, with 

anchors and backbones showed in Figures 6.1a-c.  

To consistently attach the pyramids to the molecules with many different backbones and 

anchors, we first prepared a relaxed molecular geometry with their planar and extended 

conformations. The relaxation was performed with MOPAC2012 RHF method and PM7 

parameter-set [196] with constraints that kept the molecular conformations planar. During the 

relaxation, the non-hydrogen atoms were allowed to move only in the molecular plane and 

only the hydrogen atoms were allowed to move away from the molecular plane. 

The initial conformation for the relaxation was linear extended where the anchors are at the 

two far ends of the molecule modelling a possible conformation within a break-junction 

experiment (shown Figure 6.2a) when a typical conductance plateau is recorded [190, 197]. 
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This is typically occurring when the gap between the electrodes is slightly less than the 

molecular length, illustrated in Figure 6.2a. 

 

Figure 6.1. The 193 combinations of backbones and anchors used to obtain figure 6.4.1(a) The left 

column shows 3alkanes, 3 alkenes and 3 alkynes (where n=1, 2, 3) and the second-from-left column 

shows 3 other backbones. (.i.e. a total of 12 backbones). The right panel shows 5 anchors cyano (CN), 

pyridil (Py), dihidrbenzothiol (BT), amine (NH2) and thiol(S). These combine to yield 12x5 symmetric 

molecules and 12x5x4/2 = 120 asymmetric molecules (b) Molecules with a single ring as the 

backbone and four kinds of anchors: in total there are 4 symmetric and 6 asymmetric variants of these. 

c) shows a single Butadiene chain with two kinds of anchors: in total there is one symmetric and two 

asymmetric versions of this. All of the molecular geometries are shown in Figures (6.6)-(6.19). 

 

In the case of thiol, the sulphur was capped with a hydrogen atom for the relaxation, then after 

the relaxation the hydrogen atom from the sulphur was removed. We performed relaxations 

with SIESTA [107] DFT code (force tolerance = 0.01, GGA, DZP) as well for a few 

molecules and found that planar conformations are usually stable, with significant exceptions 

of X-RR-Y type molecules, where the aromatic rings are twisted away from each other.   
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Figure 6.2 a) Molecule arrangement in break-junction experiment. b),c),d) Top, side and bottom 

views, respectively, of the model junction geometry of a particular case (BT-OPE-NH2) for systematic 

comparisons. 

Since our investigation focuses on the electronic structures, we consistently kept the all 

structures planar. For the planar molecular structures a 35-atom 111 directed gold pyramid 

was attached to the anchoring atoms (S and N ) perpendicularly to the molecular plane. The 

apex gold atom-anchor atom distance was set 2.1Å for the Py, CN anchors, 2.3Å for the NH2 

and BT and 2.35Å for the thiol anchor. This setup allowed consistent systematic comparisons 

between molecules with different backbones and anchors. The electronic transport 

calculations were performed by first obtaining the Hamiltonian of the isolated Au-molecule-

Au structure by SIESTA, DZP basis set and GGA-PBE exchange-correlation potential 

parameterization. Then the obtained Hamiltonian was used in GOLLUM [198], with wide-

band approximation to calculate the transmission coefficients, the room temperature 

conductance and the room temperature thermopower with the DFT computed Fermi energy. 

The wide-band lead was attached to the two outer layers of the gold pyramid with 𝛤 = 4.0𝑒𝑉 

coupling [199]. The anchor and backbone parameters were determined by minimizing 

numerically the function ∑ ∑ ∑ (𝑎𝑋 + 𝑏𝐵 + 𝑎𝑌 − log10
𝐺𝑋𝐵𝑌

𝐺0
)
2

𝑎𝑛𝑐ℎ𝑜𝑟𝑠
𝑌≥𝑋

𝑎𝑛𝑐ℎ𝑜𝑟𝑠
𝑋

𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒𝑠
𝐵  with 

respect to the various 𝑎𝑋 , 𝑏𝐵 parameters with the constraint 𝑏𝑅𝑅 = 0, using Broyden–
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Fletcher–Goldfarb–Shanno (BFGS) method, where “backbones” and “anchors” are in Figure 

6.1, 𝐺𝑋𝐵𝑌 is the DFT-computed conductance value, and 𝑌 ≥ 𝑋 denotes the exclusion of the 

double counting the same molecule. 

6.3 Results and discussion 

For transport calculations, the planar conformations of the molecules were considered, and the 

gold leads were attached perpendicularly to the plane of the molecules as shown in Figure 6.2. 

Examples of transmission curves for a selection of molecules are shown in Figure 6.3.  

 

Figure 6.3. Transmission coefficients for symmetric and asymmetric molecules X-D1-X, Y-D1-Y and 

X-D1-Y. The dashed pink curves show the circuit rule predictions for X-D1-Y. Additional transmission 

coefficient curves are shown in Figures (6.20)-(6.38). 
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The circuit formulae are first verified by calculating the room temperature conductance and 

thermopower, using the DFT predicted Fermi energies for all molecules. To demonstrate the 

circuit rule for conductance, we separately computed the electrical conductances (𝐺𝑋𝐵𝑌,

𝐺𝑋𝐵𝑋, 𝐺𝑌𝐵𝑌) and Seebeck coefficients (𝑆𝑋𝐵𝑌, 𝑆𝑋𝐵𝑋, 𝑆𝑌𝐵𝑌) of the individual molecules and 

then plotted the square root of the product  √𝐺𝑋𝐵𝑋𝐺𝑌𝐵𝑌 versus 𝐺𝑋𝐵𝑌. In Figure 6.4a, the small 

scatter about a straight line demonstrates that in the majority of the cases the circuit rule gives 

an accurate prediction for the conductance. To demonstrate the circuit rule for thermopower, 

we separately computed the Seebeck coefficients (𝑆𝑋𝐵𝑌, 𝑆𝑋𝐵𝑋 , 𝑆𝑌𝐵𝑌) and then plotted the 

average  (𝑆𝑋𝐵𝑋+ 𝑆𝑌𝐵𝑌)/2 versus  𝑆𝑋𝐵𝑌, as shown in Figure 6.4b. This remarkable result 

means that from measurements of the conductances 𝐺𝑋𝐵𝑋 , 𝐺𝑌𝐵𝑌 it is possible to predict the 

conductance 𝐺𝑋𝐵𝑌 and similarly for the Seebeck coefficients. 

 

 

Figure 6.4. a) Comparison between the conductances GXBY and the geometric means (GXBXGYBY)
1/2

. b) 

Comparison between the thermopowers SXBY and the arithmetic means (SXBX + SYBY)/2. The top and 

bottom ends of the vertical grey lines show the values for the symmetric molecules used in the circuit 

rules. The different colours and markers indicate the various molecular backbones. The notation in the 

legend is as follows the backbone labelling in Figure 6.1.  

 

We now discuss the sources of deviations from the circuit rule predictions. The inset of Figure 

6.4a, shows that in a number of cases a slight systematic deviation can be observed. The 

origin of these deviations is illustrated by Figure 6.3, which shows several different 
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transmission coefficient curves of the X-D1-Y type molecules. These show that if the 

resonances of the two symmetric molecules are close to each other, then the circuit rule is 

accurate over almost the whole of HOMO-LUMO gap; for example in Figures 6.3a,b, the 

dashed purple curves compare well with the black curves. In these cases 𝑉𝑋𝑔𝑋𝑉𝑋
† ≈ 𝑉𝑌

†𝑔𝑌𝑉𝑌 , 

therefore even if BB depends strongly on the self-energy terms, the dependence is similar in 

all of the symmetric and asymmetric cases and both side of the Eq. (6.4) follow the same 

energy dependence. On the other hand, if the location of the resonances of X-B-X and Y-B-Y 

differ significantly (from Figure 6.3c to 6.3h), the error in circuit rule for the transmission 

coefficient is large. In particular cases, when transport through one anchor (such as X=NH2) 

is HOMO dominated, whereas the other anchor (such as Y=Py) is LUMO dominated, but 

their HOMO-LUMO gaps are similar, then the two self energy terms 𝑉X𝑔X𝑉X
†
 and 𝑉Y

†𝑔Y𝑉Y are 

expected to be very different. Such examples can be seen in in Figures 6.3g,h.    

We also note that the errors in circuit rule predictions for the thermopower are not necessarily 

correlated with those of the conductance. While the magnitude of transmission coefficients is 

inaccurate, the slope of the transmission curve of the X-D1-Y in the log plot in Figure 6.3g,h 

(black curve) remains comparable with the slope of the ones obtained with the circuit rule 

(dashed purple).  In general, Σ is the smallest and the circuit rule most accurate when the 

Fermi energy is furthest from both the HOMO and LUMO resonances. We note that the DFT 

calculations typically significantly underestimate the HOMO-LUMO gap [200-202], therefore 

for realistic electronic structures the circuit rule may applicable even more accurately than 

shown in Figure 6.3 and Figure 6.4. Other possibilities, that may hinder the accuracy of the 

circuit rules for realistic conductance, are thermal fluctuation of the molecular conformation 

and the experimental distributions of junction geometries [203].  

To facilitate the utilisation of the above circuit rules for single-molecule-junction materials 

discovery, we note that they are a consequence of the fact that the transmission coefficients 
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𝑇𝑋𝐵𝑌 can be factorized into a product of the kind 𝐴𝑋𝐵𝐵𝐴𝑌 , where 𝐴𝑋 and 𝐴𝑌 do not depend 

on B, but 𝐵𝐵 may depend on X and Y.  Nevertheless when the Fermi energy is located in the 

valley of the HOMO-LUMO gap it is possible that Σ is negligible and therefore BB depends 

only on connectivity and is independent of the choice of the anchor groups. Typically if this is 

the case, the transmission coefficients can be factorized to independent factors of anchors and 

backbones, and these factors are transferable between different molecules. In other word, the 

logarithm of the conductance and the thermopower are sums of transferable factors. To verify 

this factorizability, we now assume that computed logarithmic conductance values and 

thermopower values can be written   

 log10
𝐺𝑋𝐵𝑌

𝐺0
= 𝑎𝑋 + 𝑏𝐵 + 𝑎𝑌                                                         (6.7)  

 
SXBY

𝑘𝐵/𝑒
= 𝑎′𝑋 + 𝑏

′
𝐵 + 𝑎

′
𝑌                                                                (6.8)  

where the factors 𝑎𝑋 , 𝑏𝐵, 𝑎𝑌, 𝑎
′
𝑋 , 𝑏

′
𝐵, 𝑎

′
𝑌 are independent and transferable. To obtain these 

parameters, we minimize numerically the function  

𝐹 = ∑ ∑ ∑ (𝑎X + 𝑏B + 𝑎Y − log10
𝐺XBY

𝐺0
)
2

Anchors
Y≥X

Anchors
X

Backbones
B ,                    (6.9) 

 where the 𝐺XBY values are the DFT-computed conductance values (see Methods section). We 

note that the separation between the anchor and backbone terms is arbitrary, therefore we set 

the backbone term of X-RR-Y type molecules to zero, i.e. we choose 𝑏𝑅𝑅 = 0, and in this 

calculation we choose the molecules in Figure 6.1a only. With this choice the 𝑎𝑋 terms 

parametrize the anchoring structures shown in Figure 6.1a and Table 6.1, that is the anchor 

plus the aromatic ring. Consequently the 𝑏B terms parametrize the backbone, that is the inner 

part of the molecules between the aromatic rings in Figure 1a. From nA=5 different anchors 

and nB=12 different backbones, this procedure yields 5 𝑎𝑋 parameters and 12 𝑏𝐵 parameters, 

from which we can reproduce the logarithmic conductance of nA(nA+1)nB/2=180 molecules. 
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Similarly, the same minimizing procedure is used to obtain the thermopower parameters 

𝑎′𝑋 and 𝑏′𝐵. Table 6.1 shows the anchor and backbone parameters obtained using the above 

minimizing procedure. To demonstrate that they can be used to predict coductances and 

thermopowers, Figure 6.5a shows a comparison between the sum 𝑎𝑋 + 𝑏𝐵 + 𝑎𝑌, and the 

conductance GXBY while Figure 6.5b compares 𝑎′𝑋 + 𝑏
′
𝐵 + 𝑎

′
𝑌 with SXBY.   

Table 6.1. Anchor and backbone parameters obtained by fitting Eqs. (6.7) and (6.8) to the DFT-

computed room temperature conductances (log10(G/G0)) and thermopowers (Se/kB) respectively 

Anchor X with 

rings 
 

   
  

𝑎𝑋  -1.12 -0.89 -1.20 -0.87 -0.68 

𝑎′𝑋  -0.02 -0.24 0.06 -0.17 0.19 

Backbones B RR T1 T2 T3 OPE H 

𝑏𝐵 0.00 -0.12 -0.25 -0.38 -0.73 -0.46 

𝑏′𝐵 0.00 -0.01 -0.05 -0.09 -0.02 -0.01 

Backbones B D1 D2 D3 S1 S2 S3 

𝑏𝐵 -0.09 -0.22 -0.35 -2.04 -4.57 -5.19 

𝑏′𝐵 -0.01 -0.01 -0.01 0.03 0.06 0.10 

 

In Figure 6.5a, for each molecule, for the DFT computed conductance value GXBY on the 

horizontal axis, we plotted the corresponding 10𝑎X+𝑏B+𝑎Y𝐺0 value marked by a red cross. The 

fact that the majority of the red crosses are close to the diagonal black line shows that the 5 

𝑎X parameters and 12 𝑏B parameters in Table 6.1 can reproduce the logarithmic conductance 

of the 180 molecules in Figure 6.1a accurately. In essence, by minimizing the function F with 

respect to the 5 𝑎X parameters and 12 𝑏B parameters, we obtain their optimal value which 

holds the information of the conductance values of the 180 molecules. This is possible only 
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because the conductance can be factorized with good accuracy according to eq. (6.4) and 

therefore the 180 molecular conductances are not independent.  Similarly, in Figure 6.5b, for 

each molecule, for the DFT computed thermopower value SXBY on the horizontal axis, we 

plotted the corresponding (𝑎′X + 𝑏
′
B + 𝑎

′
Y)𝑆0 value marked by a red x. It is interesting to 

note that for the conductance, the values of anchor parameter 𝑎𝑋 in Table 6.1 vary less than 

the values of the backbone parameters 𝑏B. This is in contrast with the thermopower, for which 

the magnitudes of the anchor parameters 𝑎′X vary more than the magnitudes of the backbone 

parameters 𝑏′B, which suggests that the anchor may play a more dominant role in controlling 

the thermopower than  the conductance.  

Having demonstrated the validity of the circuit rules, within a consistent set of DFT-based 

calculation, we now discuss how they can be used experimentally for real-world discovery of 

single-molecule junction properties. Although DFT is widely used for analysing electron 

transport in single molecule junctions, it is at best a qualitative theory and therefore for 

accurate utilisation of the rules, the parameters 𝑎𝑋 , 𝑏𝐵, 𝑎𝑌 and 𝑎′𝑋 , 𝑏
′
𝐵, 𝑎

′
𝑌 should be 

determined experimentally. In a typical break junction experiment, the measured value of 

𝐺XBY varies markedly from measurement to measurement, because of variability in the atomic 

arrangement of the electrodes and in the electrode-anchor group binding geometry. 

Consequently many (often thousands) of conductance measurements are made and 

histograms of the logarithmic conductance  𝑔XBY = log10 𝐺XBY/𝐺0 are constructed. If 𝑔̅XBY is 

the most probable value of such a histogram, then the experimentally-quoted value is 

𝐺̅XBY/𝐺0 = 10
𝑔̅XBY. This variability is reflected in the anchor parameters 𝑎X, 𝑎Y. Therefore 

when applying the circuit rule to such experiments, it should be applied in a statistical sense. 

If the most probable values of  𝑎X, 𝑎Y are 𝑎̅X, 𝑎̅Y, then the most probable value of log10
𝐺XBY

𝐺0
 is 

𝑔̅XBY = 𝑎̅X + 𝑏B + 𝑎̅Y. Conversely, when the fitting procedure of equation (6.9) in ‘Methods’ 

is carried out using experimentally-quoted values, the resulting parameters are 𝑎̅X, 𝑏B, 𝑎̅Y, 
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rather than 𝑎X, 𝑏B, 𝑎Y. This is another reason why it is unsafe to use DFT values to make 

quantitative predictions, because it is usually much too expensive to simulate conductance 

histograms and therefore typically conductances of only a few anchoring configurations are 

reported.  

At present we are aware of only one set of measurements on both asymmetric (X-B-Y) and 

symmetric (X-B-X and Y-B-Y) molecules with the same backbone. In ref [204] the measured 

conductance values of molecules S-R-S, NH2-R-NH2 are found to be 0.012G0, 0.005G0 

respectively and for the asymmetric NH2-R-S molecule two conductance values 0.006G0 and 

0.009G0 were reported. The circuit rule gives G/G0 = 0.008, which compares well with both 

of the measured values, thereby providing a direct experimental verification of the circuit 

rule. To illustrate how the circuit rules can be used to predict experimental conductances for 

future molecules from measured values of molecules available in the literature, we make use 

of the above factorisation procedure. To perform the fitting, we collected measured 

conductances for 19 different molecules from the literature [20, 194, 205-207] and used these 

to characterize 5 anchors and 6 backbones.  

Table 6.2. Anchor and backbone parameters obtained by fitting Eq. (6.7) to the experimental room 

temperature conductance (log10(G/G0)). For the nA=5 anchor and nB=6 backbone, the parameters give 

the conductance of nA(nA+1)nB/2=90 molecules in the form of 𝐺𝑋𝐵𝑌 = 10
𝑎𝑋+𝑏𝐵+𝑎𝑌𝐺0. 

 

Anchor X with rings  

   
  

𝑎𝑋 (from experiments) - -1.12 -2.15 -1.44 -1.58 -1.22 

Backbones B RR T1 T2 T4 OPE OPE(meta) 

𝑏𝐵 (from experiments) 0.00 -0.31 -0.63 -1.20  -1.37  -2.75 
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In Table 6.2 the anchor and backbone parameters are listed characterized with the 

experimental conductances. The parameters obtained from the experimental values are 

smaller than the theoretical values, as expected, due to the DFT’s systematic errors with 

underestimating the HOMO-LUMO gap [202, 208], and the neglect of environmental and 

thermal effects in the calculations [203] Figure 6.5a and Table 6.3 show that the 

characterisation can reproduce the conductance of the 19 different molecules with good 

accuracy (marked with green triangles). The selection covers the typical experimental range 

of conductances from 10
-2

G0 to 10
-6

G0. Usually the short molecules with higher conductance, 

due to the snap back effect in the break-junction methods, are difficult to measure reliably. 

The long molecules with lower conductances (below 10
-6

 G0), due to the instrumental 

sensitivity, are also difficult to measure. The X-Tn-X type molecules are from ref [207], 

where X = Py, NH2, S, BT and CN, and n=1,2 and 4, but varies for different X because not all 

molecules could been synthetized. The conductances for the Py-OPE-Py and Py-OPE(Meta)-

Py type molecules are from ref [20] (Py-OPE(Meta)-Py denotes pmp), for the molecule NH2-

OPE-NH2 is from ref [206] and S-OPE-S molecule is from ref[189]. From ref [192] we 

obtained the conductance of NH2-RR-NH2 and from ref [194] Py-RR-Py. The precise 

conductance values used in the calculations are quoted in Table 6.3. 
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Figure 6.5. Facrorized conductance and thermopower approximation are plotted against the DFT 

computed values (red markers) and experimental values (green triangle). In panel a), for each DFT-

computed conductance 𝐺𝑋𝐵𝑌, a red cross marks the corresponding 10𝑎𝑋+𝑏𝐵+𝑎𝑌𝐺0 values. In panel b), 

for each DFT-computed thermopower 𝑆𝑋𝐵𝑌, a red cross marks the corresponding (𝑎𝑋́ + 𝑏𝐵́ + 𝑎𝑌́)𝑆0 

values. In both cases the 𝑎𝑋 and 𝑎𝑋́ parameters and 𝑏𝐵 and 𝑏𝐵́ parameters are taken from Table 6.1. 

The green triangles in panel a) show the factorization of a selection of experimental conductance form 

the literature, quoted in Table 6.3. For each experimental conductance 𝐺𝑋𝐵𝑌 the green triangle marks 

the corresponding 10𝑎𝑋+𝑏𝐵+𝑎𝑌𝐺0 value, where the 𝑎𝑋 parameters and 𝑏𝐵 parameters are taken from 

Table 6.2. G0 = 2e
2
/h, S0 = kB/e. 

 

 

Finally we note that in Figure 6.5a, the green triangles, and Table 6.2, 6.3 and 6.4 are based 

on experimental conductance values, which naturally includes the effect of fluctuations. The 

fact that the green triangles are close to the diagonal demonstrates that the circuit rule indeed 

applies to 19 different experimentally-quoted most-probable conductances.  
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Table 6.3. Comparison between experimental conductances and the computed conductances from Eq. 

(6.7), using the fitted anchor and backbone parameters shown in Table 6.2. 
(a) 

Experimental values are 

taken  from ref [143] by averaging STM-BJ and MCBJ values, 
(b)

 from ref [144], 
(c)

 from ref [20], 
(d)

 

from ref [189],  
(e)

 from ref [206] and 
(f)

 from ref [139]. 

 

Molecule X B Y 

Experimental 

log10
𝐺

𝐺0
 

𝑎𝑋 + 𝑏𝐵 + 𝑎𝑌 Molecule X B Y 

Experimental 

log10
𝐺

𝐺0
 

𝑎𝑋 + 𝑏𝐵 + 𝑎𝑌 

Py T1 Py -3.35
(a)

 -3.47 CN T1 CN -4.75
(a)

 -4.61 

Py T2 Py -3.78
(a)

 -3.79 CN T2 CN -4.9
(a)

 -4.93 

Py T4 Py -4.4
(a)

 -4.36 CN T4 CN -5.4
(a)

 -5.5 

NH2 T1 NH2 -3.205
(a)

 -3.19 S T1 S -2.75
(a)

 -2.75 

NH2 T2 NH2 -3.5
(a)

 -3.51 S T2 S -3.12
(a)

 -3.07 

BT T1 BT -2.5
(a)

 -2.55 Py OPE Py  -4.5
(c)

 -4.53 

BT T2 BT -2.845
(a)

 -2.87 S OPE S -3.74
(d)

 -3.81 

BT T4 BT -3.5
(a)

 -3.44 NH2 OPE NH2 -4.35
(e)

 -4.25 

Py RR Py -3.23
(b)

 -3.15 Py Meta Py (pmp
(c)

) -5.9
(c)

 -5.91 

NH2 RR NH2 -2.81
(f)

 -2.89    
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Table 6.4. Conductance predictions for a few new molecules based on Table 6.2
(a)

. Predictions 

from Table 6.2
(a)

 for all combinations of backbones and anchors are presented in Table 6.5. 

 

Molecule X B Y 
𝑎𝑋 + 𝑏𝐵 + 𝑎𝑌 

(log10(G/G0)) 
Molecule X B Y 

𝑎𝑋 + 𝑏𝐵 + 𝑎𝑌 

(log10(G/G0)) 

Py-T1-CN  -4.04 Py-OPE-NH2  -4.39 

Py-T1-NH2  -3.33 Py-OPE-BT  -4.07 

Py-T1-BT  -3.01 Py-OPE-S  -4.17 

Py-T1-S  -3.11 CN-OPE-CN  -5.67 

CN-T1-NH2  -3.9 CN-OPE-NH2 -4.96 

CN-T1-BT  -3.58 CN-OPE-BT  -4.64 

CN-T1-S  -3.68 CN-OPE-S  -4.74 

NH2-T1-BT  -2.87 NH2-OPE-BT  -3.9 

NH2-T1-S  -2.97 NH2-OPE-S  -4.03 

BT-T1-S  -2.65 BT-OPE-BT  -3.61 

Py-OPE-CN  -5.1 BT-OPE-S  -3.71 
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6.4 Associated Content 

These Figures contain all of the molecular geometries and all computed transmission 

coefficient functions. Theoretical predictions for the conducance of all anchor 

group/backbone combinations are included in Table 6.5. 

 

Figure 6.6. Molecules with T1 backbone. 
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Figure 6.7. Molecules with T2 backbone. 

 

Figure 6.8. Molecules with T3 backbone. 



145 
 

 

Figure 6.9.  Molecules with D1 backbone. 

 

Figure 6.10. Molecules with D2 backbone. 
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Figure 6.11. Molecules with D3 backbone. 

 

Figure 6.12. Molecules with S1 backbone. 
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Figure 6.13. Molecules with S2 backbone. 

 

Figure 6.14. Molecules with S3 backbone. 
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Figure 6.15. Molecules with RR backbone. 

 

Figure 6.16. Molecules with H backbone. 
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Figure 6.17. Molecules with OPE backbone. 

 

Figure 6.18. Molecules with R backbone. 

 

Figure 6.19. Molecules with But backbone. 
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Figure 6.20. Transmission coefficient function for molecules with backbone T1 and 

the circuit rule check (dotted curves). 
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Figure 6.21. Transmission coefficient function for molecules with backbone T2 and 

the circuit rule check (dotted curves). 
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Figure 6.22. Transmission coefficient function for molecules with backbone T3 and 

the circuit rule check (dotted curves). 
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Figure 6.23. Transmission coefficient function for molecules with backbone D1 and 

the circuit rule check (dotted curves). 
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Figure 6.24. Transmission coefficient function for molecules with backbone D2 and 

the circuit rule check (dotted curves). 
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Figure 6.30. Transmission coefficient function for molecules with backbone D3 and 

the circuit rule check (dotted curves). 
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Figure 6.31. Transmission coefficient function for molecules with backbone S1 and 

the circuit rule check (dotted curves). 
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Figure 6.32. Transmission coefficient function for molecules with backbone S2 and 

the circuit rule check (dotted curves). 
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Figure 6.33. Transmission coefficient function for molecules with backbone S3 and 

the circuit rule check (dotted curves). 
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Figure 6.34. Transmission coefficient function for molecules with backbone RR and 

the circuit rule check (dotted curves). 
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Figure 6.35. Transmission coefficient function for molecules with backbone H and 

the circuit rule check (dotted curves). 
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Figure 6.36. Transmission coefficient function for molecules with backbone OPE and 

the circuit rule check (dotted curves). 
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Figure 6.37. Transmission coefficient function for molecules with backbone R and 

the circuit rule check (dotted curves). 

 

Figure 6.38. Transmission coefficient function for molecules with backbone But and 

the circuit rule check (dotted curves). 
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Table 6.5 Conductance predictions based on experimental values which are in 

parenthesis if it has been used for the predictions. 

 

Molecule 
Conductance 
Prediction 
(log10 G/G0) 

Molecule 
Conductance 
Prediction 
(log10 G/G0) 

Molecule 
Conductance 
Prediction 
(log10 G/G0) 

Py-T1-Py  -3.47 (-3.35) Py-T4-Py -4.36 (-4.4) Py-Meta-Py  -5.91(-5.9) 

Py-T1-CN -4.04 Py-T4-CN  -4.93 Py-Meta-CN -6.48 

Py-T1-NH2 -3.33 Py-T4-NH2 -4.22 Py-Meta-NH2  -5.77 

Py-T1-BT -3.01 Py-T4-BT -3.9 Py-Meta-BT  -5.45 

Py-T1-S  -3.11 Py-T4-S  -4.0 Py-Meta-S  -5.55 

CN-T1-CN -4.61 (-4.75) CN-T4-CN -5.5  (-5.4) CN-Meta-CN -7.05 

CN-T1-NH2  -3.9 CN-T4-NH2  -4.79 CN-Meta-NH2  -6.34 

CN-T1-BT  -3.58 CN-T4-BT -4.47 CN-Meta-BT  -6.02 

CN-T1-S  -3.68 CN-T4-S  -4.57 CN-Meta-S  -6.12 

NH2-T1-NH2  -3.19 (3.205) NH2-T4-NH2 -4.08 NH2-Meta-NH2  -5.63 

NH2-T1-BT  -2.87 NH2-T4-BT  -3.76 NH2-Meta-BT  -5.31 

NH2-T1-S  -2.97 NH2-T4-S  -3.86 NH2-Meta-S -5.41 

BT-T1-BT -2.55 (-2.5) BT-T4-BT -3.44(-3.5) BT-Meta-BT  -4.99 

BT-T1-S -2.65 BT-T4-S -3.54 BT-Meta-S  -5.09 

S-T1-S  -2.75 (-2.75) S-T4-S -3.64 S-Meta-S  -5.19 

Py-T2-Py -3.79 (-3.78) Py-OPE-Py  -4.53(-4.5) Py-RR-Py  -3.16(-3.23) 

Py-T2-CN -4.36 Py-OPE-CN  -5.1 Py-RR-CN  -3.73 

Py-T2-NH2 -3.65 Py-OPE-NH2  -4.39 Py-RR-NH2  -3.02 

Py-T2-BT -3.33 Py-OPE-BT -4.07 Py-RR-BT -2.7 

Py-T2-S -3.43 Py-OPE-S -4.17 Py-RR-S -2.8 

CN-T2-CN -4.93 (-4.9) CN-OPE-CN -5.67 CN-RR-CN  -4.3 

CN-T2-NH2 -4.22 CN-OPE-NH2 -4.96 CN-RR-NH2 -3.59 

CN-T2-BT  -3.9 CN-OPE-BT -4.64 CN-RR-BT -3.27 

CN-T2-S -4.0 CN-OPE-S -4.74 CN-RR-S  -3.37 

NH2-T2-NH2 -3.51 (-3.5) NH2-OPE-NH2 -4.25(-4.35) NH2-RR-NH2 -2.88(-2.81) 

NH2-T2-BT  -3.19 NH2-OPE-BT -3.93 NH2-RR-BT  -2.56 

NH2-T2-S -3.29 NH2-OPE-S -4.03 NH2-RR-S -2.66 

BT-T2-BT  -2.87(-2.845) BT-OPE-BT  -3.61 BT-RR-BT  -2.24 

BT-T2-S -2.97 BT-OPE-S -3.71 BT-RR-S  -2.34 

S-T2-S  -3.07(-3.12) S-OPE-S -3.81(-3.74) S-RR-S  -2.44 
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6.5 Summary  

We have investigated a large set of symmetric and asymmetric molecules to demonstrate a 

general rule for molecular-scale quantum transport, which provides a new route to materials 

design and discovery. The rule states “the conductance GXBY of an asymmetric molecule is 

the geometric mean of the conductance of the two symmetric molecules derived from it and 

the thermopower SXBY of the asymmetric molecule is the algebraic mean of their 

thermopowers”. The studied molecules have a structure X-B-Y, where B is the backbone of 

the molecule, while  X and Y are anchor groups, which bind the molecule to metallic 

electrodes. When applied to experimentally-measured histograms of conductance and 

thermopower, the rules apply to the statistically most probable values. We investigated 

molecules with anchors chosen from the following family: cyano, pyridl, dihydrobenzothiol, 

amine and thiol. For the backbones B, we tested 14 different structures. We found that the 

formulae (GXBY)
2
 = GXBX*GYBY and SXBY=(SXBX+SYBY)/2 were satisfied in the large 

majority of the cases, provided the Fermi energy is located within the HOMO-LUMO gap of 

the molecules. The circuit rules imply that if measurements are performed on molecules 

with nA different anchors and nB different backbones, then properties of  nA(nA+1)nB/2 

molecules can be predicted. So for example, in the case of 20 backbones and 10 anchors, 30 

measurements (or reliable calculations) can provide a near quantitative estimate for 1070 

measurements of other molecules, no extra cost.  
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Chapter 7 

 

Conclusion  

 

In conclusion, this thesis has presented a series of studies into electronic and thermoelectric 

properties of single organic molecules: perylene Bisimide (PBIs), naphthalenediimide 

(NDI), metallo-porphryins and large set of symmetric and asymmetric molecules. In chapter 

3, I presented a study of the electron transport properties of five PBI derivatives with various 

bay-area substituents: pyrrolidinyl (aPy-PBI, Py-PBI), tert-butyl-phenoxy ( P-PBI), 

thiobutyl (S-PBI), and chlorine (Cl-PBI). Recent experimental papers measuring the 

electrical conductance of backbone molecules in different solvents have shown that the 

conductance can be changed by the solvent, even when the solvent does not form a complex 

with the backbone [209]. In our case, the analytes bind to the backbones with up to 1 eV of 

binding energy and the conductance changes are much larger. Our results compare well with 

recent experimental values for the electrical conductance of these molecules in the absence 

of adsorbates. I analyzed the change in conductance of these molecules when single 

molecules of three analytes (TCNE, TNT, and BEDT-TTF) were adsorbed onto the PBI 

backbones and found that the resulting changes in the ensemble-averaged room-temperature 

conductances produced a unique fingerprint for each analyte, which allows their 

discriminating sensing at the single molecule level. These conductance changes arose from a 

combination of charge redistribution associated with charge-transfer-complex formation, 
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and the formation of a Fano resonance associated with the interaction of a bound state on the 

adsorbate and extended orbitals of the PBI backbones. 

Chapter 4 presented our collaboration with the group of Bern University. We studied charge 

transport through an NDI single-molecule junction using an electrochemical STM-BJ 

technique and through ab initio simulations based on DFT. Benefiting from the wide 

potential window of the ionic liquid, we are able to access the three charge states of the NDI 

molecule, which showed well-separated conductance features with an on/off ratio of around 

one order of magnitude between the most conductive NDI-R and the least conductive NDI-

N state. The switching can be manipulated reversibly through the applied potential. 

Agreement between theory and experiment has been demonstrated by introducing a newly 

developed charge double layer model. The tristable charge states of the NDI molecule 

provide a unique opportunity beyond bistable on/off molecular switches, and lead to 

interesting logic gate and memory devices. More importantly, the comparable conductance 

changes between NDI molecules with pendent diimide units and with redox units integrated 

in molecular backbones suggests that the pendent redox unit can provide significant fine-

tuning of single molecule conductance triggered by external stimuli, in this case, an 

electrochemical gate. This offers great flexibility for the molecular design and synthesis of 

future molecular devices. 

In chapter 5, I have used spin-dependent density functional theory to study the 

thermoelectric properties of metallo-porphyrin monomers with central metal atoms chosen 

from the series Co, Cu, Fe, Mn, Ni, and Zn. We found that the energies of transport 

resonances can be tuned through the choice of central metal atom, leading to large negative 

thermopowers in the range -280 to -260 μV/K for Mn(II)- and Fe(II)-porphyrins and a large 

positive thermopower of +230 μV/K in the case of Zn-porphyrin. These Seebeck 

coefficients are almost independent of temperature at room temperature and are significantly 
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larger than recently-measured values of S at room temperature. For example, measured 

values include 8.7, 12.9 and 14.2 µV/K for 1,4-benzenedithiol (BDT), 4,4′-

dibenzenedithiol, and 4,4′′-tribenzenedithiol respectively [210], -1.3 to 8.3 µV/K for the 

benzene-based series of benzene-dithiol (BDT), 2,5-dimethyl-1,4-benzenedithiol 

(BDT2Me), 2,3,5,6-tetrachloro-1,4-benzenedithiol (BDT4Cl), 2,3,5,6-tetraflouro-1,4-

benzenedithiol (BDT4F) and BDCN [211, 212], 7.7 to 15.9 µV/K  for the series BDT, 

DBDT, TBDT and DMTBDT [213], -12.3 to 13.0 µV/K  for a series of  amine-Au and 

pyridine-Au linked molecules [172] and  -8.9 to -33.1 µV/K  for fullerene-based single-

molecule junctions [158, 211, 214]. Furthermore Zn-porphyrins have a large electronic 

figure of merit. At room temperature, we obtain power factors of 5.9×10
-5

 W/m.K
2
 for Mn-

porphyrin, 5.4×10
-4

 W/m.K
2
 For Mn(III)-porphyrin, 9.5×10

-4
 W/m.K

2
 for Fe(III)-porphyrin, 

1.6×10
-4 

W/m.K
2
 for Zn-porphyrin and 2.3×10

-4
 W/m.K

2
 for Fe(II)-porphyrin. These 

compare favourably with power factors of other organic materials, whose reported values 

range from 0.016 µW/m.K
2
 and 0.045 µW/m.K

2
 for  Polyaniline and Polypyrole 

respectively [215], to 12 µW/m.K
2
 for PEDOT:PSS [216] and 12 µW/m.K

2
 for C60/Cs2Co3 

Dph-BDT [217]. This ability to tune the thermoelectric properties of single molecules, 

combined with the fact that the Seebeck coefficient is an intrinsic property, which does not 

scale with the number of molecules conducting in parallel, suggests that self-assembled 

monolayers or few-layers of metallo-porphyrins have potential for high-performance 

conversion of heat into electricity and efficient Peltier cooling. The technical step of 

translating single-molecule properties into thin films is a significant challenge and a major 

programme of fundamental research will be needed to fully address this issue. Nevertheless, 

the recent theoretical study of the thermal conductance of single alkane and alkyne 

molecules compares favourably with experiments on thin films of such molecules [218] and 

gives us confidence single-molecule thermal properties do survive in molecular films. 
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Furthermore many of the barriers to be overcome are already clear. For example, to take 

advantage of the quantum effects described in this chapter, the film thickness should be less 

than the electronic phase-breaking length, which at room temperature is of order 3nm [53, 

219, 220]. If molecules are first deposited onto a bottom electrode, then the top electrode 

should be added without destroying the integrity of the molecular film. One solution to the 

“top-contact problem” would be to use a two-dimensional electrode material such as 

graphene as the top electrode. Success would depend on alignment or misalignment of the 

two contacts and the presence of step edges and other defects in the transferred two-

dimensional material. In the case of hexagonal materials such as graphene, such defects 

would include non-hexagonal rings [221], which would alter the binding energy and 

electronic coupling to molecular anchor groups.  It is well established that both molecules 

and electrodes should be treated in an holistic manner when designing single-molecule 

junctions [222] and the same will be true of thin films. For the purpose of increasing ZT and 

reducing the thermal conductance, one strategy will involve choosing electrode materials 

which maximise phonon scattering at the molecule-electrode interface and taking advantage 

of phonon filtering by the electrodes, as a described in [218]. In addition, intermolecular 

interactions may utilised to optimise thin-film properties beyond those accessible to single 

molecules. 

Chapter 6 in this thesis documented our study of a large set of symmetric and asymmetric 

molecules to demonstrate a general rule for molecular-scale quantum transport. We have 

demonstrated that for a large variety of molecules of the type X-B-Y with different 

backbones B and anchors X,Y, the molecular conductance and thermopower of asymmetric 

molecules can be obtained as geometric and algebraic averages of the zero-bias 

conductances and thermopowers of their symmetric counterparts respectively. At a 

fundamental level, a requirement for the validity of this ‘circuit rule’ is that the parts X, B 
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and Y should be weakly coupled, so that multiple scattering effects contained in the self-

energy Σ in Eq.(6.2) can be neglected. This also requires that the Fermi energy should be 

located within the HOMO-LUMO gap of the molecules and therefore transport should be 

‘off-resonance’ and take place via coherent tunnelling. The validity of this circuit rule is 

demonstrated through DFT calculations on 193 molecules, which confirms that the rule 

applies to molecules exhibiting off-resonance transport. In our experience of comparing 

theory with measurements of single-molecule electron transport, we have found that in 

almost all cases, unless an electrostatic or electrochemical gate is applied, transport does not 

take place near resonances and therefore the rule can be expected to have wide applicability. 

The derivation of the rule assumes that transport takes place via coherent tunnelling and that 

inelastic effects are negligible. Experiment demonstrates that the length scale for the onset 

of significant inelastic scattering at room temperature can be of order 3 nm [183, 223]. All 

the molecules in our study were shorter than this length. Furthermore comparison with 19 

experimental molecular conductance values from the literature, originating from different 

laboratories shows that the circuit rules can be applied successfully at room temperature. 

Finally we note that as demonstrated in refs [224, 225] the backbone contribution BB (see eq. 

(6.3)) depends on the points of contact k,l of the anchors to the backbone and therefore the 

circuit rule should be applied only to families of molecules containing backbones with the 

same connectivity to the anchors or equivalently, backbones with different connectivities 

should be treated as distinct entities, which means for example that a meta-connected 

backbone is distinct from a para-connected backbone as values of bB of OPE and OPE(meta) 

show in Table 6.2.   

For a workable thermoelectric device one needs to increase both the Seebeck coefficient S 

and the electrical conductance G and simultaneously minimise the thermal conductance. The 

proposed circuit rule addresses the first two challenges by predicting S and G of hitherto 
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unsynthesized molecules, thereby avoiding unnecessary synthetic effort. The rule also 

provides new insight and chemical intuition by organising a large body of information. The 

utility of the rule for ‘materials discovery’ derives from the potential translation of single-

molecule functionality into thin molecular films, formed from a monolayer of molecules is 

sandwiched between a planar bottom electrode and a planar top electrode, in which the 

current/heat flows through the molecules from the bottom to the top electrode. The question 

of how single-molecule properties translate into thin films is non-trivial and beyond the 

scope of this work. However knowledge of transport properties at the single molecule level 

will surely inform our understanding of such thin-film materials.  

For other properties, the rules can be used to obtain inequalities. For example, they imply 

that if 𝑆XX and 𝑆YY have the same sign then the power factor 𝑃XY = 𝐺XY𝑆XY
2  is bounded by 

the power factors of the symmetric molecules, that is 𝑃YY ≤ 𝑃XY ≤ 𝑃XX and if 𝑆XX and 𝑆YY 

have opposite sign, the powerfactor will be diminished significantly. To aid utilisation of the 

rules for the discovery of new junction properties, we also demonstrated that conductances 

and thermopowers can be characterized by transferable anchor and backbone parameters. 

Such characterization can be used to identify optimally functioning molecular devices for 

future synthesis. The accuracy of this characterization was demonstrated using experimental 

conductances of 19 different molecules from the literature.  
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