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1. Introduction 

 

Efficiency measurement using stochastic frontier models is well established in applied 

econometrics and numerous applications have seen the light of day in agricultural 

economics, health, marketing etc. Stochastic frontiers have been introduced by 

Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977) and have 

found numerous applications. For a review of methods and problems see Bauer 

(1990) and the excellent reviews by Greene (1993, 2001). Extensions of stochastic 

frontier models have been considered by Greene (1990), Stevenson (1990) and 

Tsionas (2000, 2002). 

Although much work has been done in connection with stochastic frontier 

models using cross section or panel data, no published work seems to be available on 

efficiency analysis using spatial data. In fact, countless studieshave been conducted 

applying stochastic frontier models to regional data, but none – to the best of our 

knowledge – deals with possible spatial dependence between regions. Exactly this has 

been the point of departure of our investigation. 

Spatial data pose difficult problems because the possibility of spatial 

correlation must be taken into account (Anselin, 1988 and Anselin and Bera, 1998). 

This is even more so when one-sided error terms have to be accounted for in order to 

provide efficiency measures, and the purpose of the present paper is to explore these 

problems and provide practical methods for likelihood-based inference. 

Probably the most appropriate way of addressing spatial dependencein the 

context of regional inefficiency is through a spatially structured random effects (r.e.) 

specification. This is actually what the below referenced model is about. In fact, the 

proposed model sets forth a (latent) random effects vectorthat is specified to follow a 

spatial autoregressive process. 

More precisely, the proposed approach allows for traditional (log-) linear 

production function relationships between outputs and inputs, while allowing for 

spatial spillovers in the latent r.e. that measure regional inefficiency. There are a 

number of papers which adopt this type of spatial regression specification, including 

Smith &LeSage (2004) who use spatially (autoregressive) structured latent effects in a 

Probit model; Allenby & McCulloch  (2005), and Parent &LeSage (2012) who derive 

the log-marginal likelihood to be used in a Bayesian modeling averaging context. 

However, a serious complication that arises when estimating this spatially structured 
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r.e. model in the context of stochastic frontier analysis is the one-sided nature of the 

(latent) r.e. vector. 

There is a scarcity of works dealing with spatial correlation in the broader 

context of maximum likelihood estimation or panel data factor models. In this 

context, see Bai (2009) who considered large panel data models with unobservable 

multiple interactive effects correlated with the regressors, and Pesaran(2006) 

whodealt with inference in panel data models with a general multifactor error 

structure, where the unobserved factors and the individual-specific errors were 

allowed to follow arbitrary stationary processes. The basic idea there was to filter the 

individual-specific regressors by means of cross-section averages such that 

asymptotically as the cross-section dimension tends to infinity, the differential effects 

of unobserved common factors are eliminated. 

Probably, the main advantage of our approach compared to models such as the 

ones mentioned above is the possibility of mixing different pieces of information 

(sample information, prior information, etc), in order to construct a model that 

accounts for the stochastic character of the variables leading to a better approximation 

of reality. Analytically, the main reason for using a Bayesian approach is that it 

facilitates representing and taking fuller account of the uncertainties related to model 

and parameter values. In contrast, most decision analyses based on maximum 

likelihood or least squares estimation involve fixing the values of parameters that 

may, in actuality, have an important bearing on the final outcome of the analysis and 

for which there is considerable uncertainty. One of the major benefits of the Bayesian 

approach is the ability to incorporate prior information. 

Hence, some advantages to using Bayesian analysis include the following: (a) 

it provides a natural and principled way of combining prior information with data, 

within a solid decision theoretical framework. In this context, it is possible to 

incorporate past information about a parameter and form a prior distribution for future 

analysis. When new observations become available, the previous posterior 

distribution can be used as a prior; (b) It provides inferences that are conditional on 

the data, without reliance on asymptotic approximation. Small sample inference 

proceeds in the same manner as if one had a large sample. Bayesian analysis also can 

estimate any functions of parameters directly; (c) It obeys the likelihood principle. If 

two distinct sampling designs yield proportional likelihood functions, then all 

inferences should be identical from these two designs. Classical inference does not, in 
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general, obey the likelihood principle; (d) It provides interpretable answers; and (e) It 

provides a convenient setting for a wide range of models, including spatial 

econometrics problems. Finally, MCMC, along with other numerical methods, makes 

computations tractable for virtually all parametric models. See, inter alia, Carlin and 

Lewis (2000); and Robert (2001). 

Analytically, the paper develops a model that allows for spatial correlation and 

spillover effects in inefficiency. The starting point is the usual linear model with a 

one-sided error term allowing for panel data. The one-sided error term, however, 

consists of two components, namely an idiosyncratic component, and a spatial or 

spillover component that relates a region’s inefficiency to the inefficiency of 

neighboring regions. The likelihood function is derived, and Bayesian methods of 

inference and efficiency measurement are proposed and illustrated in the context of a 

production function for Italian regions over the period 1970-1993. The production 

function depends on labor, physical capital, and human capital. 

 

2. The model 

 

In this work, we consider a stochastic frontier model with a decomposition of 

inefficiency into a spillover component, and an idiosyncratic component. More 

specifically, consider the specification: 

T1uvXβy   

),0(~ 2
TnvN Iv   

εWuu   , 0u   

),(~ 2
nN I0ε  ,   0. 

 

Vector y  is 1Tn , and ],...,[ 1  nyyy  where iy  is the 1T  vector containing all 

observations of the dependent variable for the i th region, X  is the kTn  matrix of 

observations for the regressors, v  is 1Tn  noise, and u  is the 1n  vector of one-

sided error terms. Notice that each block iy  contains all observations for a given 

region. This model allows for technical inefficiency. More specifically, inefficiency is 

decomposed into two components: The first component is idiosyncratic and is given 

by the one-sided random variableε . The other component Wu is spatial and reflects 
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regional spillover effects for any given regional weighting matrix W . Overall 

inefficiency is the sum of the spatial and idiosyncratic component. The assumption 

that inefficiency is time invariant is not essential and can be removed. The 

formulation here is adopted mostly in order to deal in a reasonable and effective way 

with panel data. 

An alternative strategy here would be to follow Parent and LeSage  (2012) 

who simplify things  by  assuming that ε~N (0, ߪଶ),  where Λ  ≡ diag (λଵ, . . . , λ୬ ) is 

introduced to distinguish between the disturbances. Each variance scalar λ௜ i=1,…,n is 

assumed inversely proportional to the number of neighboringregions. This would 

allow to analytically integrate out the latent r.e. parameters and produce a log-

marginal likelihood expression that requires univariate numerical integration over 

only the spatial dependence parameter ρ. However, despite its eloquent simplicity, 

this approach seems to be too restrictive here.2 

Define WIΦ  n . Using standard notation and change of variables we 

have: 

 0,
2

exp|)det(|)()(
2

2/2
2

1 






 
  Φu0u

ΦuΦu
Φu Φ ICp n







  

where 










 


},:{
2

2/2
2 2

exp|)det(|)(
0u0Φuu

Φ u
ΦuΦu

Φ dC n







  is the normalizing 

constant of the distribution, ΦC  depends on Φ  and thus it cannot be ignored. This 

constant, however, cannot be computed analytically. Its computation is known as 

evaluation of multivariate normal probabilities. See Kotz, Balakrishnan, and Johnson 

(2000, chapter 45, section 5.1).  

It has to mentioned that this computation is fairly difficult, and it cannot be 

reduced to evaluation of multivariate orthant probabilities. For orthant probabilities 

the relatively simple approximation due to Solow (1990) could have been used but in 

the present case further simplification does not appear possible. The computation and 

role of ΦC  will be discussed later on. 

 

Adopting the same prior as before, the kernel posterior distribution is: 

 

                                                           
2We would like to thank an anonymous referee for pointing this out. 
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Therefore, the kernel posterior distribution is 
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Integrating with respect to β  using properties of the multivariate normal distribution, 

we obtain: 

 
2

1/ 2( 1) ( 1) 1 11 1
* *2 22 2
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This kernel posterior is three-dimensional, and could be maximized to obtain a quasi-

Bayes estimator. Integrating with respect to the variance parameters using numerical 

integration in two dimensions would produce the marginal posterior distribution of 

namely ),|( Xyp . The posterior is, however, highly nonlinear and conducting 

inferences using this posterior may involve awkward numerical problem. Hence, the 

three-dimensional conditional distribution could be simplified to only two dimensions, 

by fixing the variance ratio ߪఔ/ߪఌ as is often the case and robustness of the results 

with respect to various assumed ratios could be checked. However, in what follows 

we adopt a relevant approach which overcomes the need fοr fixing the 

aforementioned variance ratio. 

We consider the augmented posterior: 
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The following conditional distributions required for Gibbs sampling can be derived: 

 

 121 )(),()(~,,,,,|   XX1uyXXXXyuβ vTv N   , 

)(~,,,,,|
)()(

2
2 nTn

q

v

vTT 



  Xyuβ

Xβ1uyXβ1uy
, 

)(~,,,,,| 2
2

nn
q

v
u 






Xyuβ
ΦuΦu

. 

 

Drawing from these distributions involves standard operations. With respect to β  we 

impose the constraints that input elasticities are positive at the means of data and L>0 

other points symmetrically placed around the means, within the range of the data. 

  1)1()1( |)det(|),|,,,,( ΦΦXyuβ Cp nnnTn
vv  
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With L=10 all computed output elasticities turned out positive when evaluated at the 

observed data. 

 

The conditional posterior distribution of   is given by: 

)(
2

exp|)det(|),,,,,|(
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1 

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truncated to the interval given by the inverse of minimum and the maximum 

eigenvalues of the spatial matrix to ensure stability of the system. Since the 

conditional posterior is non-standard, we resort to griddy Gibbs sampling to generate 

random numbers from this distribution. The troublesome part in these operations is 

the evaluation of the multivariate normal probability involved in 1
ΦC . One alternative 

is to simply ignore this term, in which case, however, results will be approximate. The 

simplest alternative is to compute this term using Monte Carlo techniques.  

 

In other words, we generate a number of vectors u  from ),( ΦΦ0 nN  and count how 

many times the restrictions 0Φu0u  ,  are satisfied. One important property of this 

problem is that matrix Φ  depends only on   for any given regional weighting matrix 

W . Therefore, a simplification would be to compute 1
ΦC  over a range of   values in 

advance of any other computations, and then use interpolation to compute the value of 

1
ΦC  at the intermediate values that will be required during the course of 

computations. This is the strategy adopted in the present paper.  

 

The conditional posterior distribution of latent inefficiency variables is: 
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If we combine the terms in the two exponentials, and after some algebra, it can be 

shown that: 
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 9

This is a multivariate truncated normal distribution with the additional inequality 

constraints 0Φu  . Generating random draws from this distribution is accomplished 

by using the conditional distributions Xyβ ,,,,,,| , ijjvi uu   , for each ni ,...1 .  

Using standard results for the multivariate normal distribution, we have 

 

),(~,,,,,,| 1
,
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constraint of the form iii BuA   as follows: 
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

 . Therefore, 

the full conditional distribution is: 
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,


 iiiijjvi emNuu Xyβ   , subject to iii BuA  , for each ni ,..,1 . 

 

This involves drawing random numbers from a truncated normal distribution. For this 

task specialized algorithms are available.  

 

Results concerning the finite integrability of the posterior for this model, 

follow directly from Fernandez, Osiewalski and Steel (1997). In informal terms, a 

stochastic frontier model with panel data ( 1T ) for which the marginal prior 

distribution )(up  is proper, yields a proper posterior.  

Efficiency measurement in this model involves marginal posterior 

distributions of the idiosyncratic component,  , and the spatial component, u . Since 
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In terms of efficiency, let )exp( r . Then we have: 
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For the spatial or spillover component, u , we have: 

 

   






ddXypXyp
n

u ),|,(exp|)det(|
2

),|( 2

min

max

2
1

2/
2

/1

/1 0











  uuu , 

0u  . 

 

with the understanding that ),|,( Xyp  includes its integrating constant. 

Efficiency measurement using this distribution is not possible since the integral is not 

available analytically. However, the conditional distribution for region i  is given by  

),0(~,,,| iii VNu Xy , 0iu , where   12  ΦΦV  . Therefore, the distribution 





S

i

ii
iii upSddpupup

1

)()(1 ),,,|(),,(),,,|(),|( XyXy|XyXy   . 

This Monte Carlo approximation based on the available Gibbs draws may be 

used for posterior predictive efficiency measurement. A different concept of 

efficiency is based on posterior region-specific efficiency measurement. It utilizes the 

conditional distribution )(~,,,,,| * Ω,μXyβu nv N  , 0u  , 0Φu  . If we had 

the distribution   ddddp vv βXyβu ),,,,,|(  efficiency measurement would 

have been easy. However, we do not even have the normalizing constant of the 

distribution because the mean is not zero and the constraints present an impediment to 

the computation of the normalizing constant or moments of the distribution. For this 

reason, to compute moments of the form: 

uβXyβuu
0ΦuuuΘ

dddddp vv
q  
 },0:{

),,,,,|(  
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 (whereΘ  is the parameter space) we resort to a four step algorithm. See Appendix. 

 

3. Empirical Analysis 

 

In this section we consider an application to Italian regions (1970-1993). Efficiency 

measurement must necessarily deal with the fact that regions could be different in 

terms of structure, as well as in terms of temporal performance. In other words, it will 

be necessary to include regional effects and time effects in the model. Failing to 

account for these effects would lead to potentially misguided inferences regarding 

efficiency measurement. With this modification, the spatial lag model with both 

regional and time effects is: 

TnTnT 1uvXβθI1δ1Iy  )()(  

 

whereδ  are coefficients related to time effects, and θ  are coefficients related to 

regional effects. The basic model used in this application is a Translog production 

function (e.g. Koop et al. 2000) of the form: 

݈݊ ௜ܻ௧ ൌ ᇱ௜௧࣐ࢠ ൅ ௜௧ܭ఑݈݊ߚ ൅	ߚ௅݈݊ܮ௜௧ ൅ ௜௧߅݈݊௴ߚ ൅
1
2
௜௧ܭ݈݊௷௷ߚ

ଶ ൅
1
2
௜௧ܮ௅௅݈݊ߚ

ଶ

൅
1
2
௜௧ܪுு݈݊ߚ

ଶ ൅ ௜௧ܮ௜௧݈݊ܭ௄௅݈݊ߚ ൅ ௜௧ܪ௜௧݈݊ܭ௄ு݈݊ߚ
൅ ௜௧ܪ௜௧݈݊ܮ௅ு݈݊ߚ ൅ 	௜௧ݑ

 

where itz  represents the vector of regional and time dummy variables which are 

interacted with lnK, lnL and lnY, φ  represents the respective coefficients (effects), Y  

is output, K  is physical capital, L  is labor, and H  represents human capital.  

The data is obtained from the CRENoS database. See Marrocu, Paci, and Pala 

(2000), Paci and Saba (1997), and Paci and Pasceddu (2000). Output is measured 

using value added, labor is measured using units of labor at sub-sectoral level, human 

capital is measured using number of registrations in high school, and capital is 

measured using total gross capital stock in agriculture, industry, market services, and 

non-market services. The capital stock is available for the period 1970-1993, but 

output and labor are available over a longer period, namely 1960-1996 so the 

availability of capital stock data restricts the sample to 1970-93.  
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As discussed earlier, in the aforementioned Translog specification we impose the 

so-called regularity conditions, namely that elasticities have to be positive. 

Gibbs sampling has been implemented using 30,000 iterations, 10,000 of which 

have been discarded to mitigate the impact of start-up effects. We use a flat prior on 

 , 410


qq
v

, and 0n . 

The posterior results are reported in Table 1. Reported are posterior means of 

parameters and posterior standard deviations. The posterior mean of   is positive 

with a small posterior standard deviation indicating positive externalities in 

inefficiency implying that when a region improves in terms of efficiency, neighboring 

regions can benefit from this reduction and reduce their own inefficiency level. 

Marginal posterior distributions of all parameters are reported in Figure 3. The other 

important finding is that the marginal posterior of   is practically incompatible with 

values near zero so the extent of positive externalities in inefficiency is significant.  

Since the posterior for the spatial parameter ρ does not have a recognizable 

functional form we implemented a random walk Metropolis-Hasting procedure. 

Furthermore, we have imposed the spatial parameter ρ to be in the range of the 

inverse of minimum and the maximum eigenvalues of the spatial matrix to ensure 

stability of the system. The acceptance rate of the random walk Metropolis-Hastings 

algorithm was 26.1%. 

Finally, posterior predictive efficiency distributions are reported in Figure 4. 

The straight line corresponds to the posterior predictive efficiency distribution of the 

spillover component ( iu ): This is in fact the average of posterior predictive 

distributions across all nineteen iu  distributions ( 19,..,.1i ). The dashed line 

corresponds to the posterior predictive efficiency distribution of the idiosyncratic 

component. Region-specific means of posterior predictive efficiency computed using 

the procedure described previously are presented in Table 2. These measures range 

from 0.832 for Trantino and 0.832 Apulia to almost perfect efficiency for Umbria.  

The joint marginal posterior distribution of   and   (the two important 

parameters of the model) is reported3 in Figure 5. The conclusion that the marginal 

posterior of   is practically incompatible with values near zero is easily seen in the 

contours of the joint posterior, where it is also apparent that the two parameters are 

                                                           
3 The bivariate distribution is estimated using kernel techniques. The density was normalized to be equal to one at the mode. 
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not strongly correlated. The same holds true for every bivariate combination of j , 

v ,  , and  . Essentially this implies that the Gibbs sampler is a highly efficient 

computational scheme for Bayesian inference, at least for the particular data set. 

 

4. Concluding Remarks 

 

The purpose of the paper was to propose a stochastic frontier model that accounts for 

the spatial component of regional data. The proposed model allows for a spillover 

effect in inefficiency, as well as idiosyncratic efficiency components. The likelihood 

function is exceedingly complex but it was shown that Monte Carlo methods may be 

used to perform Bayesian inference and provide efficiency measures. The model is 

applicable to contexts different than the spatial context to which the present paper has 

been limited. Spillover effects are quite common in the empirical economics 

literature, for example there are R&D spillovers, contagion effects in financial 

economics etc. For particular specifications of the spatial weight matrix, the model 

considered in the present paper could be used in these contexts as well. Clearly, 

further theoretical and empirical research on the subject would be of great interest. 
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Table 1. Posterior results for Italian regions 
 
 Posterior 

mean 
Posterior s.d. 

Ke  0.301 0.044 

Le  0.598 0.041 

He  0.249 0.037 

v  0.1914 0.0163 

  0.2212 0.0172 

  0.3140 0.0443 
VI  0.5156 0.1316 

 
Notes: VI is the portion of variance of the frontier attributed to the idiosyncratic 
component. “ , ,K L He e e  ” denote capital elasticities of capital, labor and human capital 

evaluated at the means of data. Reported results are averaged out for parameter 
uncertainty. 
 
Table 2. Means of posterior predictive region-specific efficiency 

 
Region Efficiency Region Efficiency

Piedmont 0.981 Umbria 0.997
Val d’Aosta 0.983 Marches 0.902
Lombardy 0.933 Latium 0.904
Trantino 0.832 Abruzzo 0.973
Veneto 0.935 Molise 0.881
Friuti 0.931 Campania 0.901

Liguria 0.922 Apulia 0.833
Emilia Rom. 0.951 Basilicata 0.872

Tuscany 0.057 Calabria 0.894
  Sicily 0.888
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Figure 3. Marginal posterior distributions of parameters for spatial frontier: 
Italian regional data 
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Figure 4. Posterior predictive distributions for idiosyncratic and spillover 
efficiency: Italian regional data. 
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Figure 5. Joint posterior distribution of   and   
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APPENDIX 
 
Computational Algorithm 

 

Step 1: For each Gibbs draw )()()()( ,,, iii
v

i  β , Si ,..,1  

Step 2: Draw vectors )()2()1( ,...,, Nuuu  from the distribution ),( * ΩμnN  subject to 

0)( ju , 0)( jΦu . 

Step 3: Compute the moments in the usual way, i.e. 

  



N

j

jqiii
v

iq NE
1

)(,1)()()()( ,,,,,| uXyβu    

Step 4: Compute moments:    



S

i

iii
v

iqq ESE
1

)()()()(1 ,,,,,|,| XyβuXyu   . 

In this application we use 50N  simulations to compute moments. 

 


