
Modelling heatwaves in central France: a case study in extremal

dependence

Hugo C. Winter and Jonathan A. Tawn
Email: h.winter@lancaster.ac.uk, j.tawn@lancaster.ac.uk

Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF,
U.K.

Abstract

Heatwaves are a phenomena that have large social and economic consequences. Understanding
and estimating the frequency of such events is of great importance to climate scientists and
decision makers. Heatwaves are a type of extreme event which are by definition rare and as
such there exists little data in the historical record to help planners. Extreme value theory is
a general framework from which inference can be drawn from extreme events. When modelling
heatwaves it is important to take into account the intensity and duration of events above a
critical level as well as the interaction between both factors. Most previous methods assume
that the duration distribution is independent of the critical level used to define a heatwave, a
shortcoming that can lead to incorrect inferences. This paper characterises a novel method for
analysing the temporal dependence of heatwaves with reference to observed temperatures from
Orleans in central France. This method enables estimation of the probabilities for heatwave
events irrespective of whether the duration distribution is independent of the critical level. The
methods are demonstrated by estimating the probability of an event more severe than the 2003
European heatwave or an event that causes a specified increase in mortality.

Keywords: conditional extremes, extremal dependence, heatwaves, Markov chain, time-

series extremes

1 Introduction

When modelling heatwaves decision makers are most interested in mitigating for disruption and

fatalities. The heatwave across Europe in 2003 that caused around 40,000 heat related deaths (Fis-

cher and Schär, 2010) and cost the farming industry around e 13.1 billion highlights the potential

large scale effects of such an event. High temperatures reduce the capacity of the human body for

heat loss and are likely to cause core body temperature to exceed healthy limits (37-39oC). Most

casualties in a heatwave are caused by heat exhaustion which leads to heat stroke. Heat exhaustion

increases the blood pressure and leads to cardiovascular stress, which if not relieved results in cel-

lular damage and an increased risk of mortality (Donaldson et al., 2003). Young and old people are

particularly vulnerable during heatwave events. A day of strong heat could disrupt certain services

for a couple of days but is unlikely to cause many fatalities. Conversely, a long sustained period of

moderate to high heat may not disrupt services but can lead to many fatalities.
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A heatwave is defined as a set of hot days and/or nights that are associated with a marked short-

term increase in mortality. To make this definition precise we need to clarify what is meant by a

hot day and a set of days. A hot day is when the temperature, or a related variable, exceeds a

critical threshold level for health. Koppe et al. (2004) proposed threshold definitions based upon

air temperature or indices based upon air temperature and relative humidity. Clearly health im-

pacts increase with both the extent of the temperature excess over the critical threshold and the

number of days that such an event lasts for. One way to measure the severity of the heatwave

is to count the total number of days that the temperature series exceeds the critical level dur-

ing a meteorological event, which we refer to as the duration of the heatwave event. During an

extreme event, a set of days with temperatures below the critical level could allow respite from

heat exhaustion and dramatically change the impact of the event so the duration of the heatwave

is an insufficient measure for assessing some health implications. In these cases metrics such as

the maximum consecutive sequence of exceedances or aggregated temperatures over the event are

more appropriate. Abaurrea et al. (2007), Stefanon et al. (2012) and Fischer and Schär (2010) all

define a heatwave using a critical temperature threshold corresponding a fixed percentile of daily

maximum summer temperatures (in the range 90%-95%) and a specified minimum duration (in

the range 1-6 days). Relative critical levels are typically preferred to absolute levels when defining

a heatwave since temperature can vary by geographical location and humans are able to adapt to

local climate (Nitschke et al., 2011). Although heatwave definitions vary, all correspond to different

but well-defined functionals of a meteorological event having temperatures which exceed a critical

level.

To estimate the probability of a heatwave we propose a framework based upon extreme value

theory. The framework relies on asymptotically justified models for describing the properties of the

time series during an extreme temperature event. A broader and more flexible model with stronger

asymptotic justification is proposed here than in previous studies. The model is used to simulate

replicate extreme events that exceed a critical level permitting the evaluation of the distribution of

any functional of the extreme event and hence the probability of a heatwave with specific charac-

teristics. This approach ensures that this methodology applies to any form of heatwave definition

of interest to experts from wide-ranging fields, such as heat-health researchers or those studying

economic damage linked to heatwaves. Critically it enables the estimation of the probability of

heatwaves occurring in a future period that are more extreme in any functional of interest than

any of the observed events.

We apply these generic methods to the modelling of observed daily maximum temperatures to

estimate the distribution of heatwaves at Orleans in central France, an area that was affected by

the 2003 heatwave event. The hottest observed daily maximum temperature in 2003 for Orleans

was 39.9oC. The summer daily maximum temperature one year return level, defined as the level

exceeded on average once every summer, for Orleans is estimated as 35oC using standard extreme

value methods (Coles, 2001). What made the 2003 event so severe for Orleans was that two heat-

waves with 2 and 11 consecutive exceedances of the one year level occurred within a four week

period. Pascal et al. (2013) quantified the relationship between temperatures and excess mortality

over France, finding that if the average of three consecutive daily maximum temperatures exceeds

34oC (34oC, 35oC) excess mortality is 47% (17%, 33%) in Paris (Limoges, Lyon) respectively. Or-

leans is situated between these three cities and we focus on 35oC as the critical level for defining

heatwaves. We note that the excess mortality from observing such a level is high but can vary
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between locations. Under the assumption that the summer daily maximum temperature at Or-

leans, denoted {Xt} on day t, is a stationary process we will estimate multiple quantities. These

quantities include the joint probability of having an event that lasts at least as long and has peak

value at least as severe as the 2003 event and that the average of three consecutive daily maximum

temperatures exceeds 35oC. Pascal et al. (2013) also assessed the impact of high daily minimum

temperatures coupled with high daily maximum temperatures on excess mortality. Under our

framework we are also able to model the joint characteristics of temperature maxima and minima,

over any time-scale, during the extreme event. We do not give specific estimates for that case,

but in Section 6 we outline the modifications to our approach for modelling daily maxima that are

required to address this broader concern.

Using empirical methods to estimate probabilities for the extreme heatwave events of interest to us

is not possible so models are required. Here we need models for both the intensity and extremal

dependence structure that determine properties of events. The intensity of heatwave events can

be modelled by fitting an extreme value model to exceedances of a high modelling threshold u.

The most common approach, which applies under weak conditions, is to fit a generalized Pareto

distribution (GPD) to threshold excesses, i.e.

P(Xt − u > x | Xt > u) =

(
1 +

ξx

σu

)−1/ξ
+

for x ≥ 0, (1)

where c+ = max(c, 0), σu > 0 and ξ are the scale and shape parameters of the GPD respectively

(Coles, 2001).

A time-series of temperature data can be split into independent clusters where within each cluster

groups of dependent exceedances occur. In the literature of extreme value theory these clusters are

defined using different methods; the most popular technique is the runs method (Smith and Weiss-

man, 1994). Under this method a cluster is ended by a sequence of m consecutive non-exceedances

of u and a new cluster is commenced with the next exceedance of u. The run length m can be

chosen subjectively; although Ferro and Segers (2003) outline an automated method. Therefore

from a time-series it is possible to obtain the number of independent clusters and the values in each

cluster. The number of clusters is Poisson distributed (Davison and Smith, 1990) so it remains to

model the values within a cluster.

Standard asymptotic measures of cluster features are independent of the critical level. Examples

include the distribution of the number of exceedances in a cluster, {π(i), i ≥ 1}, associated mean

cluster size θ−1, where θ ∈ [0, 1] is the extremal index (Leadbetter et al., 1983), and other cluster

functionals outlined in Smith et al. (1997) and Segers (2003). The focus on heatwaves highlights

the need to not only account for the number of exceedances in a cluster, but also the full profile

of the event to enable estimation of features such as the distribution of the number of consecutive

exceedances or the average of three consecutive values. The application motivates the study of a

new distribution πC(i) of the longest set of consecutive exceedances within a cluster along with the

associated consecutive extremal index θC .

Under a stationary Markov process assumption, the extremal behaviour of {Xt} can be mod-

elled by focusing on the joint distribution of (Xt, Xt+1). Multivariate extreme value theory leads

to models for the joint tail through using separate marginal and dependence structures and can
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be used to assess dependence between (Xt, Xt+1). Dependence structures can be broadly split

into those with asymptotic dependence and those with asymptotic independence (Sibuya (1960),

Ledford and Tawn (1996)) determined by the value of χ where

χ = lim
x→x∗

P(Xt+1 > x | Xt > x), (2)

with x∗ being the upper limit of the support of the common marginal distribution. In the case

when χ = 0 the variables (Xt, Xt+1) are said to be asymptotically independent and χ > 0 corre-

sponds to asymptotic dependence. The assumption of a dependence structure that is asymptoti-

cally dependent leads to the duration distribution being approximately independent of the critical

level. Smith (1992), Coles et al. (1994), Smith et al. (1997), Perfekt (1997) and Yun (1998) use

a parametric Markov model for estimating extremal quantities when χ > 0. In contrast if the

process is an asymptotically independent Markov chain then clusters in the limit reduce to single

exceedances and θ = 1 (Bortot and Tawn, 1998). However, if sub-asymptotic thresholds are consid-

ered P(Xt+1 > u | Xt > u) > 0, for u as in equation (1), even when χ = 0 and models are required

that can capture this dependence as well. In these cases the duration and level of events are not

independent.

The semi-parametric conditional extremes approach of Heffernan and Tawn (2004) offers a more

flexible way of estimating extremal quantities of Markov chains than existing methods. This is due

to a richer class of extremal dependence properties are permitted than those of Smith et al. (1997).

These properties also hold over a much broader tail region than the parametric approach of Bortot

and Tawn (1998). The approach of Bortot and Tawn (1998) provided models with asymptotic

justification for (Xt, . . . , Xt+m) only in the region with Xi > u for all i = t, . . . , t+m and u a high

threshold whereas we need models that hold for this vector subject only to Xt > u. The inclusion

of dependence structures that also exhibit asymptotic independence permits the distribution of

duration of events to change with critical level. Asymptotic dependence is a special case in the

conditional extremes approach that does not require the evaluation of a parametric model. This

non-parametric method of estimating extremal quantities of Markov chains can be compared to

previous studies that assume a parametric dependence structure with asymptotic dependence.

In Section 2 the definition of a cluster and distributions of exceedances are formalised. Different

approaches to model extremal dependence are outlined in Section 3. Section 4 discusses techniques

for summarising the behaviour of clusters and compares the values of θ and θC . Section 5 presents

the temperature data for Orleans, model fit diagnostics and results concerning the probability of

observing the events of interest identified above. We focus on applying the conditional extremes

approach and demonstrate how results differ from other approaches and show diagnostics that

support our approach. Discussion and conclusions are presented in Section 6.

2 Cluster features

To understand clustering of time-series extremes it is necessary to formalise the asymptotic defi-

nition of a cluster and to provide a range of summaries. For a series {Xt, t = 1, . . . , n} specify a

threshold level un and a block of length mn such that as n → ∞, un → x∗, with x∗ as defined

for equation (2), such that nP(Xt > un) → τ > 0 as n → ∞ and mn = o(n). Under suitable

4



long-range mixing conditions the normalised process of times of exceedances of un, i.e.{
t

n+ 1
; t = 1, . . . , n,Xt > un

}
,

converges to a compound Poisson process (Hsing, 1988). A cluster in block {1, . . . ,mn} of this

process is a set of exceedances of un by Xt for t = 1, . . . ,mn. The number of such exceedances is

N(un,mn) = #{Xi > un for i = 1, . . . ,mn},

and hence a cluster occurs when N(un,mn) ≥ 1. The cluster size distribution π(i, un) is defined as

π(i, un) = P(N(un,mn) = i | N(un,mn) ≥ 1) for i = 1, . . . ,mn.

Using this definition, it can be seen that π(i, un) is the probability of obtaining i exceedances of

threshold un in a block of mn values given that there is at least one exceedance (i.e. there is a

cluster). From this

π(i) = lim
n→∞

π(i, un) for i = 1, 2, . . . , (3)

is the limiting probability of a cluster of size i. A widely discussed dependence measure is the

extremal index. This measure is the reciprocal of the mean of the cluster size distribution of the

extremes in a time-series (Leadbetter, 1983). In terms of equation (3) the extremal index θ can be

written as

θ−1 =
∞∑
i=1

iπ(i).

An alternate form for the extremal index is characterised in O’Brien (1987) in the form of θ =

limn→∞ θ(un,mn) where

θ(un,mn) = P (X2 ≤ un, . . . , Xmn ≤ un | X1 > un) , (4)

which links to the runs estimator, discussed in Section 1, with run length mn. The distribution

π(i) can be defined (Rootzén, 1988) as

π(i) =
θ(i) − θ(i+1)

θ(1)
for i = 1, 2, . . . , (5)

where

θ(i)(un,mn) = P(N(un,mn) = i | X1 > un) for i = 1, . . . ,mn, (6)

defines the probability of viewing i exceedances of a threshold in a block of values given that the

first value (X1) exceeded the threshold and

θ(i) = lim
n→∞

θ(i)(un,mn) for i = 1, 2, . . . . (7)

This alternative approach to evaluating π(i) is beneficial as it requires the evaluation of the process

conditional on X1 > un, in contrast to the evaluation of N(un,mn) which starts from an arbitrary

X1, and hence it is more efficient for computational purposes.
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For heatwaves it is also important to model the number of consecutive exceedances. This can

be accomplished using the distribution πC(i) stated in Section 1. Specifically, let C(i)(un,mn) be

the event

C(i)(un,mn) = {X1 > un, . . . , Xi > un, Xi+1 < un ∩ @t = 2, . . . ,mn : Xt > un, . . . , Xt+i−1 > un},

i.e. that at time 1 there is a run of i consecutive exceedances but at no later time in the cluster

does a run of this length or more occur. This leads to a measure that is analogous to equations (6)

and (7), namely

θ
(i)
C (un,mn) = P(C(i)(un,mn) | X1 > un) for i = 1, . . . ,mn,

with

θ
(i)
C = lim

n→∞
θ
(i)
C (un,mn) for i = 1, 2, . . . .

Note that both θ
(1)
C and θ(1) are equal to θ by equation (4) since, in both situations, the event

of interest is {X2 < un, . . . , Xmn < un | X1 > un}. The distribution of the maximum number of

consecutive exceedances within a cluster πC(i) is defined as

πC(i) =
θ
(i)
C − θ

(i+1)
C

θ
(1)
C

for i = 1, 2, . . . .

The average length of the longest set of consecutive exceedances in a cluster is given by the reciprocal

of the consecutive extremal index θC , defined as

θ−1C =
∞∑
i=1

iπC(i).

An event that has one exceedance in a cluster directly implies a maximum of one consecutive ex-

ceedance whereas the counter implication is not true, and hence πC(1) ≥ π(1). As a consequence

πC(i) experiences a sharper decline than π(i) as i is increased.

Smith et al. (1997) investigate the behaviour of the extremal index θ against the parameters in

an underlying Markov chain model. Here interest is in θC and so using the methodology outlined

in Section 4 for evaluating cluster functions, Figure 1 compares the inverted extremal index θ−1

and the inverted consecutive extremal index θ−1C for a Markov chain with bivariate extreme value

distribution with logistic dependence (Tawn, 1988) between consecutive values. Here a range of

parameter values for the logistic dependence parameter are used, γ ∈ (0, 1]. A near perfect linear

relationship is observed which shows that θ−1C ≈ 0.7θ−1. This shows that groups of consecutive

exceedances are on average 30% shorter than the average cluster size for this dependence model.

3 Modelling temporal dependence

3.1 Markov modelling

To obtain estimates for π(i) and πC(i) and their sub-asymptotic equivalents it is necessary to

develop a model for the evolution of the temperature data through time. Many types of parametric
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Figure 1: Relationship between inverted extremal index θ−1 and inverted consecutive extremal index θ−1
C ; both are

functions of logistic dependence parameter γ, for a Markov chain with bivariate extreme value distribution with γ

from 0.05 to 1.

and non-parametric models could be constructed. Here, supported by exploratory data analysis,

an assumption that the time series follows a first order Markov process is made. By the Markov

property the distribution at each time step is only affected by the state of the system at the previous

time-step with the resulting joint density of (X1, . . . , Xn) given by

f(x1)
n−1∏
t=1

f(xt+1|xt).

The assumption greatly simplifies the modelling process since to model the extremes of a time

series X1, . . . , Xn it is only necessary to model the extremes of pairs (Xt, Xt+1) for t = 1, . . . , n−1,

which have joint distribution function F (xt, xt+1). The model for the marginal exceedances of the

threshold u is given in Section 3.2. Our main method for modelling dependence is presented in

Section 3.3 and connections with other models are discussed in Section 3.4. Our method is based

upon the conditional approach outlined in Heffernan and Tawn (2004). That model allows for

a rich class of dependence structures and most importantly allows for asymptotic independence

which models the interaction between the duration distribution of an event and a critical level.

Asymptotic dependence is a special case within the conditional approach, which motivates a new

non-parametric approach and enables comparisons with the methods of Smith et al. (1997).

3.2 Marginal modelling

Following the assumption of stationarity of {Xt} the marginal distributions of F are identically

distributed. The assumption (1) for a GPD for the marginal excesses of u leads to the model for

7



the common marginal distribution

F (x) =

1− λu
(

1 + ξ x−uσu

)−1/ξ
+

, x ≥ u

F̃ (x), x < u,
(8)

where λu = 1 − F (u) and F̃ (x) is the empirical cumulative distribution function of {Xt}nt=1.

Marginal parameters are estimated using a censored likelihood approach. For modelling extremal

dependence we need to select an appropriate margin to transform onto. In copula methods (Nelson,

2007) it is common to model dependence with uniform margins, but for extremes simplifications in

model form arise when focusing on a different marginal choice. Heffernan and Tawn (2004) model

dependence for Gumbel margins. Keef et al. (2013) showed that a more comprehensive approach

arises for Laplace margins. Following Keef et al. (2013) we transform Xt, t = 1, . . . , n onto Laplace

margins as follows

T (Xt) =

{
log {2F (Xt)} if Xt < F−1(0.5)

−log {2 [1− F (Xt)]} if Xt ≥ F−1(0.5).

3.3 Semi-parametric conditional extremes approach

The conditional extremes method of Heffernan and Tawn (2004) and Heffernan and Resnick (2007)

can be used to motivate a modelling framework for which χ, defined by equation (2), can be

either positive or zero. The desire is to model the joint distribution [T (Xt), T (Xt+1)] using the

distribution of T (Xt+1) given that T (Xt) is large (defined as exceeding a high threshold). A

requirement for modelling the conditional distribution P {T (Xt+1) ≤ T (xt+1) | T (Xt) = T (xt)} is

that this distribution should be non-degenerate as xt → x∗. As such the Heffernan and Tawn (2004)

approach aims to identify normalizing functions a : R+ → R and b : R+ → R+ that are defined

such that for x > 0

P

(
T (Xt+1)− a [T (Xt)]

b [T (Xt)]
≤ z, Xt − u

σu
> x | Xt > u

)
→ G(z) (1 + ξx)

−1/ξ
+ , (9)

as u → x∗, where G is a non-degenerate distribution function and σu is as in equation (1). The

specification of Laplace margins ensures that the upper and lower tails are symmetric and expo-

nential which permits the definition of a single parsimonious class of choices for the normalising

functions of

a(y) = αy and b(y) = yβ,

where α ∈ [−1, 1] and β ∈ (−∞, 1). This form of the normalising functions does not affect the

limiting dependence model in Heffernan and Tawn (2004) and simplifies the inference for variables

which are either negatively or weakly associated. If α = β = 0 and G(z) is the Laplace distribu-

tion function the variables are independent whereas α = 1 and β = 0 corresponds to the situation

of asymptotic dependence (given by χ > 0 in equation (2)) and −1 ≤ α ≤ 0 to negative dependence.

Modelling using the conditional extremes approach requires the assumption that the limiting form

of equation (9) holds exactly for all values of Xt > u given that u is a sufficiently high threshold,

i.e. λu is small. Given this assumption it is possible to write the form of Xt+1 given that Xt > u as

T (Xt+1) = αT (Xt) + T (Xt)
βZt+1, (10)
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where Zt+1 is a random variable with distribution function G. We also have that Zt+1 is inde-

pendent of Xt and, following the stationary Markov process assumption, the sequence of {Zt} are

independent and identically distributed. As G does not take any simple parametric form, to esti-

mate α and β a false working assumption is made, as in Keef et al. (2013), that Zt+1 ∼ N(µ, σ2)

and as such

T (Xt+1) | {T (Xt) = y} ∼ N
(
αy + µyβ, σ2y2β

)
for y > T (u).

The working assumption permits the estimation of the set of parameters (α, β, µ, σ) by standard

likelihood approaches. At this stage the estimates for (µ, σ) are discarded and a non-parametric

estimate of the distribution for Z is formed by inverting equation (10) to give estimated values of

Zt+1. Specifically, let t1, . . . , tnu be the indices of t = 1, . . . , n where xt > u and where nu is the

number of data points exceeding the threshold u. Then let

ẑj =
T (xtj+1)− α̂T (xtj )

T (xtj )
β̂

, (11)

for j = 1, . . . , nu. In this way a non-parametric estimate Ĝ to the distribution function G is formed

using ẑj , j = 1, . . . , nu.

Note that under asymptotic dependence, i.e. a(y) = y and b(y) = 1, the transition probability (9),

when expressed in terms of the original variable Xt, is given by

P
(
Xt+1 ≤ Xt + z [σu + ξ(Xt − u)]+ | Xt > u

)
→ G(z). (12)

Under an asymptotic dependence assumption in the semi-parametric conditional approach it is

known that α = 1 and β = 0. In this situation G is estimated by the empirical distribution of

the differences in the original data on the Laplace scale (later referred to as the non-parametric

approach), i.e. using the sample j = 1, . . . , nu of

ẑj = T (xtj+1)− T (xtj ), for xtj > u. (13)

3.4 Connections with alternative approaches

Smith et al. (1997) propose a parametric Markov model for the joint distribution of consecutive

values of the time series which limits the dependence structure to asymptotic dependence or exact

independence. Here we show the connections between that modelling approach and the conditional

approach outlined in Section 3.3. This enables us to show the benefits for modelling the data of

relaxing the strong assumptions of asymptotic dependence and a parametric model.

Based on an asymptotic approximation for a high threshold u, Smith et al. (1997) propose a bivari-

ate extreme value distribution copula with GPD marginal tails for the joint distribution function

F (x1, x2) of (Xt, Xt+1). This joint distribution is given as

F (x1, x2) = exp

{
−
∫ 1

0
max

(
w

z1
,
1− w
z2

)
2dH(w)

}
for x1 > u, x2 > u,

where

zj = −1/ log

[
1− λu

(
1 + ξ

x− u
σu

)−1/ξ
+

]
for j = 1, 2,
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and H is an arbitrary distribution function on [0, 1] satisfying the moment constraint∫ 1

0
wdH(w) = 1/2.

The corresponding transition probability for extreme Xt is given by

P
(
Xt+1 ≤ xt + z [σu + ξ(xt − u)]+ | Xt = xt

)
→ 2

∫ 1[
1+(1+ξz)

1/ξ
+

]−1
wdH(w), (14)

as xt → x∗. Following results in Heffernan and Resnick (2007) and Wadsworth et al. (2014), equa-

tions (12) and (14) are equivalent expressions despite having slightly different conditioning and

limit setups. This gives a formulation for G in this case but also shows that the semi-parametric

conditional approach directly extends the approach of Smith et al. (1997).

Smith et al. (1997) make the additional assumption of a parametric model for H, exploring a

range of models; see Kotz and Nadarajah (2000) for more models. We follow Smith (1992) and

assume the logistic dependence structure with parameter γ. This gives the joint distribution to be

F (x1, x2) = exp
{
−
(
z
−1/γ
1 + z

−1/γ
2

)γ}
,

where γ ∈ (0, 1]. Independent variables correspond to γ = 1 and perfectly dependent variables are

given as γ → 0. For intermediate values of γ there is asymptotic dependence with χ = 2 − 2γ .

Inference for this parametric family is through the censored likelihood approach of Smith et al.

(1997). For this parametric model it follows that G(z) = [1 + exp (−z/γ)]γ−1. In contrast to this

parametric form forG the empirical distribution of the sample given by expression (13) offers greater

flexibility for the semi-parametric conditional approach even under an assumption of asymptotic

dependence. For more information about non-parametric approaches for multivariate extremes

under asymptotic dependence see de Haan and Ferreira (2006).

4 Cluster behaviour estimation

When analysing the behaviour of heatwaves we can look at within cluster and over cluster results.

The work in the previous sections has concentrated on within-cluster behaviour since the definition

of the distributions in Section 2 are conditional upon a cluster occurring. It is more relevant for

applications to have the probability of observing a cluster with specific characteristics in a certain

time period. Here we first discuss within cluster behaviour and then discuss how this is extended

to over cluster results.

Our approach to deriving the properties of clusters of a Markov chain is the repeated simula-

tion of a segment of the chain in periods with exceedances of a critical level v, i.e. when the process

exceeds v, with v ≥ u, where u is our modelling threshold. There are two different strategies for

the generation of the chain in its tail state, known as the tail chain. Smith et al. (1997) suggest

simulating the cluster maximum M > v and then simulating forwards and backwards from this. A

different method (Rootzén, 1988) involves the simulation of an exceedance of v, i.e. X1 > v, and

only requires forward simulation. Cluster properties such as θ(v,m) and π(v,m) can be estimated

empirically from repeated simulations of clusters. For example, θ(v,m) is estimated as either the

reciprocal of the average cluster length using the Smith et al. (1997) approach or as the probability
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θ(1)(v,m) in equation (6) using the Rootzén (1988) approach. For general functionals the Smith

et al. (1997) approach can always be used. The Rootzén (1988) approach is easiest to implement

but in practice requires additional steps to ensure non-negativity of the distributions π and πC .

We use the pool adjacent violators (PAV) algorithm; for more information see Appendix B. For

notational simplicity we define N as the number of exceedances above the critical level v in a

cluster and NC as the maximum number of consecutive exceedances in a cluster. For the rest of

this section construction of one simulated chain will be discussed; π, πC and other useful cluster

features are evaluated using repeated simulation (2 million tail chains in Section 5). Importance

sampling of the initial simulated exceedance is useful to obtain accurate estimates of π(i, v) and

πC(i, v) for large i in practice but omitted from the discussion below.

The semi-parametric conditional extremes approach is used to generate realisations of a tail chain.

We require a starting exceedance of v ≥ u to be generated from a GPD(σv, ξ), where σv =

σu + ξ(v − u), and step forward until a chain of length k is simulated. For sufficiently high thresh-

olds the GPD is an appropriate distribution for simulating cluster maxima; at lower levels it may

be necessary to simulate cluster maxima using the distribution in Eastoe and Tawn (2012), which

for high thresholds converges to the GPD. This length k is chosen large enough to ensure a negli-

gible probability of simulating any more exceedances of v (k = 40 is found sufficient in Section 5).

Details of the algorithm are given in Appendix A. The asymptotic justification for the algorithm is

satisfied only when Xt > u. For Xt < u we continue to use the algorithm as it should still provide

a reasonable approximation unless Xt � u. In this case the probability of the chain coming above

u again is negligible.

It may be of interest to work out how long a heatwave event might last given that the peak

value of the cluster, M , is known to be greater than or equal to η with η ≥ v. Such a ques-

tion cannot be evaluated efficiently using the forward tail chain methods described above. We

use forward and backward tail chains starting from the peak value M . A simulation scheme for

the conditional extremes approach to evaluate P (N = i |M = η) is outlined in Appendix A. The

probability P (NC = i |M = η) for the number of consecutive exceedances NC above v given the

maximum is η can similarly be evaluated. The distribution of the number of exceedances given a

maximum greater than η, where η ≥ v, is given by the integral

P (N = i |M ≥ η) =

∫ ∞
η

P (N = i |M = s)
1

σv

[
1 + ξ

s− v
σv

]−1/ξ−1
+

ds,

which is evaluated in practice using a Monte Carlo approximation. Similar simulation schemes can

be produced for the parametric (Smith et al., 1997) and non-parametric approaches for asymptot-

ically dependent tail chains; more details are given in Appendix A.

Extending within cluster results to over cluster results requires the assumption that clusters of

the modelling threshold u occur as a Poisson process (Hsing, 1988). The mean number of clusters

in period T is given by

τu = θ(u,m)λunT ,

where θ(u,m) is the sub-asymptotic extremal index at u for run length m given by expression (4),

λu is the threshold exceedance probability from equation (8) and nT is the number of observations

within period T . For example, with daily data if the rate of clusters within a summer (92 day
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period from June to August) is desired then nT = 92. At a higher level v > u the mean number of

clusters in period T is

τv = θ(v,m)λunT

[
1 + ξ

(
v − u
σu

)]−1/ξ
+

= τu
θ(v,m)

θ(u,m)

[
1 + ξ

(
v − u
σu

)]−1/ξ
+

,

where the change from θ(u,m) to θ(v,m) takes the change in mean cluster size at each level into

account and the final term adjusts for the marginal rarity.

It is interesting to know the probability ψv(κ, η) of observing at least one cluster in a period

T with a desired extremal property. One example is an event that lasts at least κ days above level

v and attains a peak value of at least η. For this example

ψv(κ, η) =

∞∑
j=0

{
1−

[
1− Π̄v(κ, η)

]j} τ jv exp (−τv)
j!

= 1− exp
[
−τvΠ̄v(κ, η)

]
, (15)

where the summation is taken over the number of clusters of the level v and

Π̄v(κ, η) = P (N ≥ κ,M ≥ η |M > v) .

Similar results can be derived with the number of consecutive exceedances NC as the quantity of

interest. Such measures are required when evaluating the probability of observing events at least

as severe as the 2003 heatwave.

5 Heatwave application

5.1 Data

Daily temperature observations were taken at Orleans, in central France, for the period 1946-2012.

Four missing values exist in the time-series and are omitted; none occur during the 2003 event.

Heatwaves are most likely to occur in summer months, here defined as the 92 day period of June-

August, so summer season and yearly return levels are equivalent. These three month periods

are extracted from each year to form an approximately stationary time-series for the temperature.

Sample auto-correlation and partial auto-correlation functions support the assumption of a first-

order Markov chain; see Figure 2 for the latter. Since the partial auto-correlation function is affected

by heavy tails, we evaluated this function with the data transformed onto Gaussian margins but

found no significant change. As such a first-order Markov model is adopted within each summer

period and each summer period is treated as independent of others. Figure 2 shows consecutive

pairs of the temperature data illustrating strong inter-day dependence.

5.2 Problem and strategy

We want to estimate the probability of observing events such as a heatwave that is more extreme

than the 2003 event or that exceeded a specified level of increased mortality. We select a run length

12
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Figure 2: Diagnostic plots for June, July and August temperature data (oC) for Orleans: partial autocorrelation

(top left), scatter of consecutive pairs (top right), parameter stability plot for GPD shape parameter ξ (bottom left)

and QQ-plot of GPD fit with 95% tolerance bounds indicated by the dotted lines (bottom right).

of 3 days to correspond to the typical propagation of weather systems. A larger choice for the run

length in practice will make little difference. Using the runs method with a run length of 3 and a

critical level equal to the one year return level (denoted v1, taking the value 35oC), two independent

clusters with 2 and 11 consecutive exceedances respectively are identified within a four week period

in 2003. It is expected that the daily maximum temperature series exceeds the 1 year return level

on average once a summer. It is highly unlikely to observe 13 exceedances in a year, in particular in

Section 5.3 we show that on average we would expect to see only two exceedances for each cluster

that exceed such a level.
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Empirical estimates of cluster features based upon the runs method are affected by the choice

of run length and cannot be used to estimate the required probabilities since they are higher levels

than have been observed. Models from Section 3 are used to provide these estimates and do not

require a choice of run length due to the assumption of a Markov process. The methods outlined in

Section 3.3 are named the conditional and non-parametric approaches respectively and the method

outlined in Section 3.4 is named the parametric approach for this study. A comparison between the

three models and the empirical estimate obtained via the runs method is used for model diagnostic

purposes and is given in Section 5.3. Results regarding the probability of observing heatwaves with

the characteristics of interest are given in Section 5.4.

Confidence intervals for all four approaches are generated by bootstrap methods. Runs method

declustering defines nc clusters of varying length and by alternately sampling clusters of exceedances

and clusters of non-exceedances from this observed set we generate a bootstrapped sample. This

procedure is repeated to generate 1000 replicate data sets to which the models of Section 3 are

fitted. Repeated simulation is used to obtain estimates of cluster functionals such as π(i) and πC(i)

as discussed in Section 4. Bootstrapped 95% confidence intervals for π and πC are derived by taking

the 2.5 and 97.5 percentiles of the estimates obtained from the replicate data sets.

5.3 Diagnostics

First, a GPD is fitted to exceedances of the modelling threshold u, with u chosen using standard

diagnostics (Coles, 2001). In particular, we use a parameter stability plot for ξ (Figure 2) and check

that estimates of the shape parameter stay consistent above the chosen threshold. Each approach

is evaluated using the modelling threshold u, set at the 90th percentile such that 10% of days

fall above the threshold (taking the value 29.7oC). Higher levels v for which results are reported

will be defined for each different analysis. The rate parameter λu is estimated as 0.099 (0.007),

where the standard error is given in the parentheses. The GPD scale parameter is estimated as

σ̂u = 3.002 (0.225) and the shape parameter ξ̂ = −0.215 (0.033). A QQ-plot evaluated with the

modelling threshold at the 90th percentile is provided in Figure 2 and indicates that the GPD is

a reasonable fit at this threshold. Deviations from the diagonal are observed at higher thresholds

but are contained within 95% tolerance intervals. Parameter stability plots at higher thresholds

(not shown) do not indicate any statistically significant change in the parameter estimates.

Fitting the conditional extremes approach leads to an estimate for the dependence parameters

of α̂ = 0.713 (0.072) and β̂ = 0.524 (0.094). Parameter stability plots for the conditional extremes

dependence parameters are given in Figure 3 and support that the choice of u is valid. A likelihood

ratio test confirms that these parameter values are significantly different from α = 1 and β = 0

and that the data do not exhibit asymptotic dependence. Under the parametric model the logistic

dependence parameter is estimated as γ̂ = 0.578 (0.026) with χ̂ = 0.508 (0.027). As asymptotic

dependence is the only form of dependence allowed in this model, χ̂ > 0 despite the evidence from

the conditional approach that suggests χ = 0. When using peak value tail chain estimation the

dependence parameters for the backward chain are also required and here α̂b = 0.816 (0.061) and

β̂b = 0.512 (0.096).

Figure 4 shows estimates of θ(v,m) and θC(v,m) under all approaches for return periods between

0.1 and 1 years, with m set as 3 days. At these levels estimates given by the runs method are
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Figure 3: Parameter stability plots for conditional extremes dependence parameters α (left) and β (right). Vertical

bars show 95% confidence intervals.

reasonably accurate and are used to assess which approach provides the best fit. The empirical

estimate of θ(v,m) shows a broadly increasing pattern at lower return periods before levelling

out and tailing off at higher levels, where less data are available for estimates. The estimate of

θ(v,m) for the conditional extremes approach matches the behaviour of the empirical estimate the

best. It is contained within the 95% confidence intervals of the empirical estimate at all levels.

This result suggests a reduced sensitivity to the choice of modelling threshold u compared to the

asymptotically dependent parametric and non-parametric approaches. The parametric approach is

often contained within the confidence intervals, but at lower return periods it overestimates the size

of the extremal index. It also fails to pick up the increase of the empirical estimate of the extremal

index at lower return levels. The non-parametric approach cannot pick up this behaviour either

and usually underestimates the extremal index. Similar patterns are observed for the consecutive

extremal index θC(v,m) except that estimates are slightly higher. This pattern is similar for N

and NC and so whilst assessing fit we shall concentrate on estimating functions of N with passing

comments only made on NC .

Estimates of the probability mass function π(i, v) for all four approaches are given in Figure 5 (left)

for a range of i for which the estimated distributions differ non-negligibly from zero. The critical

level is set as v = v1. All distributions are decreasing with i; there are only slight increases due

to sampling noise for longer cluster lengths where results become sparse. The empirical estimate

based upon the runs method shows the greatest amount of variability and all other approaches have

narrower confidence intervals. The results obtained from the parametric and conditional extremes

approaches tend to coincide but show some varying behaviour. At most values of i the confidence

intervals for the parametric and conditional extremes approaches are contained within those of the

runs estimator. The result suggests that both methods are adequately modelling the data at this

critical level. The non-parametric approach gives estimates that seem to generally coincide with
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and non-parametric approach (light grey dots). Confidence intervals are at the 95% level and are obtained by

bootstrapping procedures for all approaches. The interval is given for runs method (light grey shading) at all return

periods; for other approaches at 0.1 and 1 year return period (staggered) for visual clarity, where the return level v

corresponds to the return period given on the horizontal axis and m is fixed at 3 days.

the empirical runs estimate and there is general agreement with the other approaches, though the

estimate of π(1, v1) is lower.

The effect of changing critical level v on π(1, v) is presented in Figure 5 (right). The runs estima-

tor has been omitted from the plot since at these high levels the estimates obtained in this way

become unreliable with wide confidence bands. Figure 5 (right) confirms that for the parametric

and non-parametric approaches the value of π(1, v) remains constant at all levels whereas for the

conditional extremes approach π(1, v) increases as the critical level is increased. The same pattern

can be observed for πC(1, v) (not shown). This occurs since the parametric and non-parametric

approaches are restricted to asymptotic dependence which does not allow for interaction between

duration distribution and critical level. The conditional extremes method can allow for the asymp-

totically independent behaviour of the series and therefore can have interaction between duration

distribution and critical level. The parametric and non-parametric approaches average the depen-

dence over observed levels which leads to the constant behaviour. The confidence intervals of these

solely asymptotically dependent methods tend to overlap.

It may also be of interest to know the duration distribution of a cluster given that the peak

value was recorded at a specific level. The conditional extremes approach has highlighted that the

behaviour of clusters changes with the critical level used to define them. Peak value chain simu-

lation for the conditional extremes approach can be used as outlined in Section 4. Setting v = v1
it is possible to analyse cluster characteristics of events that have a larger peak value. The plot of

P (N = i |M = η) for different peak values η is given in Figure 6. The shape of the distribution
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is positively skewed for lower peak values. This result is anticipated since a peak value nearer to

the critical level will typically yield a cluster with fewer exceedances of the critical level than for

clusters with a larger peak value.

5.4 Results

Empirical analysis in Section 5.2 identified events of length 2 and 11 above the critical level, cor-

responding to the one year return level. Tools from Section 4 allow us to estimate how likely each

event was. In what follows we present estimated probabilities and in parentheses the associated

bootstrapped 95% confidence intervals. The probability of observing at least one event in a year

that lasts at least 2 days is 0.208 (0.200, 0.216) for the conditional extremes approach, 0.193 (0.183,

0.199) for the parametric approach and 0.175 (0.172, 0.188) for the non-parametric approach. Sim-

ilarly, the probability of observing at least one event that lasts at least 11 days in a year is 0.001

(1 × 10−4, 0.004) for the conditional extremes approach, 0.005 (0.002, 0.009) for the parametric

approach and 0.012 (0.007, 0.013) for the non-parametric approach. The asymptotically depen-

dent parametric and non-parametric approaches give a much higher probability of observing a long

event than the asymptotically independent conditional extremes approach. The same analysis can

be completed for the probability of observing at least one event in a year that lasts longer than

11 consecutive days. For the conditional extremes approach the probability is 6× 10−4 (4× 10−5,

0.002), for the parametric approach 0.004 (0.002, 0.006) and for the non-parametric approach this

increases to 0.007 (0.004, 0.009).

In Section 1 we noted that periods of 3 days with an average daily maximum temperature above

35oC could lead to an excess mortality which varies over local cities between 17-47%. Using all

approaches we can estimate the probability of observing at least one such event in a year. For

the conditional extremes approach the probability is given as 0.199 (0.181, 0.226), equivalent to an

event that happens on average once every five years. The same probability is given as 0.174 (0.161,

0.180) for the parametric approach and 0.169 (0.157, 0.183) for the non-parametric approach. For

the remainder of the analysis we focus on the conditional extremes approach.

The maximum temperature in Orleans in 2003 was recorded at 39.9oC which corresponds to a

1 in 50 year event. The peak value chain estimation method in Section 4 is used to assess the joint

probability of an event with a hotter maximum temperature and longer duration than the 2003

heatwave event. The probability of observing a cluster with at least 11 exceedances conditional on

a peak value greater than the 2003 temperature is 0.06 (0.008, 0.23). The joint probability for the

cluster functionals can be obtained by multiplying the conditional probability by the probability

of observing a peak value greater than the 2003 temperature and is estimated as 0.001 (7× 10−5,

0.013). Application of equation (15) allows the derivation of over cluster results from the within

cluster results given above. As such the probability of observing at least one event in a year that

both lasts longer than 11 days and has a peak value greater than 39.9oC is 6 × 10−4 (4 × 10−5,

6× 10−3), approximately equivalent to the 1650 year return period. The equivalent probability for

11 consecutive exceedances is 4× 10−4 (3× 10−5, 5× 10−3) for the conditional extremes approach.
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6 Discussion and conclusion

The results given in Section 5 show that the interaction between the duration distribution of heat-

wave events and a critical level is only modelled realistically by methods that account for asymptotic

independence. At high critical levels this leads to a reduction in the probability of observing longer

events when using the conditional approach over other approaches that can account only for asymp-

totic dependence. Model selection diagnostics indicate that these lower estimates of the probability

of observing longer events at high critical levels reflect the characteristics of the data better. If a

user is especially averse to the risk of longer heatwave events then they could be willing to mitigate

for such an event using one of the asymptotically dependent approaches. However, our analysis

shows that this can considerably inflate the estimated risk. If such a conservative approach is to be

taken we have found that two different asymptotically dependent modelling approaches, parametric

and non-parametric, give very similar risk estimates.

The assumption that the temperature time-series follows a first order Markov process has been

made to permit the modelling process outlined in the paper. Such an assumption was supported

by an exploratory data analysis but might be an unrealistic assumption in other applications or for

such extreme events as in 2003. Specifically, our approach gives the return period of an event rarer

than in 2003 as 1650 years; either this really was an exceptional event or there are subtleties in

higher order dependence for the extreme temperature process that are not captured by our Markov

model. Making an assumption of higher order Markov processes has not been considered in this

paper, but the extension to d-dimensions could be modelled using theory from Heffernan and Tawn

(2004). Alternatively no Markov structure assumptions could be made, e.g. as in Eastoe and Tawn

(2012), but this comes at the cost of large numbers of parameters and a high dimensional non-

parametric distribution G to estimate which is likely to lead to very poor estimates of events more

extreme than the event observed in 2003.

Our approach has focused on daily maximum temperatures. As outlined in Section 1, Pascal et al.

(2013) point out that extremely hot night time temperatures during a heatwave can also be impor-

tant in raising mortality. Thus we may be interested in extremes of the series Xt, Yt, Xt+1, Yt+1, . . .

where Xt is the daily maximum temperature and Yt is the daily minimum temperature on day t.

A Markov model is likely to be appropriate for the series. Although the series is non-stationary its

components Xt and Yt may be individually stationary with marginal distributions FX and FY . Ap-

plying the marginal methods of Section 3 we can transform the Xt and Yt series to have an identical

marginal Laplace distributions. We can then model the dependence structure for the transitions

between the series using the conditional extremes approach. These transitions may have parameters

that vary between the pairs (Xt, Yt) and (Yt, Xt+1) but otherwise the methodology developed in

the paper can be extended easily to this more general situation. Our approach has also focused on

heatwaves at a single site whereas the spatial nature of an event is also critical for the economy and

health. Davison and Gholamrezaee (2012) look at the heatwave problem from a spatial perspective,

focusing on asymptotically dependent models only and ignoring temporal aspects. Therefore a fu-

ture open line of research is to draw together our approach with theirs, requiring a fully space-time

model for extremes. The first approaches to space-time extremes models are Huser and Davison

(2014) and Davis et al. (2013), but these are restricted to asymptotic dependence in both space

and time.
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The underlying effect of climate change has been ignored during this paper and is an important

future extension for each approach. Stott et al. (2004) have investigated the human contribution

to the European heatwave of 2003. They suggest that it is very likely that anthropogenic climate

change has at least doubled the risk of a heatwave as intense as the event in 2003 in comparison

to pre-industrial times. It would be interesting to apply the approaches in this paper to assess the

affect of human induced climate change which can affect both marginal and dependence character-

istics of the process.
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A Tail chain estimation algorithms

Algorithm 1 gives the tail chain generation method for asymptotically independent Markov chains.

An exceedance of v is generated from a GPD(σv, ξ) and the chain is stepped forward using equa-

tion (10) by sampling from the non-parametric estimate of Ĝ given in equation (11). Particular

care must be taken since negative values of the transformed tail chain, i.e. T (Xt) < 0, can lead

to problems (since β ∈ (−∞, 1)). Since the margins follow a Laplace distribution negative values

correspond to values below the median and hence outside the tail region, so following a negative

value all further chain values are set to zero and do not effect the cluster properties for the high

levels of interest.

Algorithm 1: Simulation scheme to generate tail chain using conditional extremes approach

Input: Dependence parameters (α, β) and non-parametric distribution Ĝ

1 Set threshold v and simulate exceedance using GPD(σv, ξ) distribution;

2 Set exceedance as X∗1 ;

3 for i in 1 : k − 1 do

4 Make draw Z∗i with replacement from Ĝ;

5 Set X∗i+1 = T−1
(
αT (X∗i ) + T (X∗i )β Z∗i

)
;

6 end

Output: Tail chain X∗1 , . . . , X
∗
k with dependence structure given by (α, β)

A non-parametric tail chain simulation scheme based upon the conditional extremes approach pro-

vides an alternate method to generate tail chains with asymptotic dependence. As outlined in

Section 3.3 this method is a special case of the conditional extremes method with α = 1 and β = 0.

It has been shown in equation (13) that the non-parametric estimate of the distribution G is given

as the empirical distribution function of the set of differences between the transformed chain at

times t and t+ 1 given Xt > u. The chain is stepped forward by sampling a value from the set of

differences with replacement and adding the value to the current value of the chain.

The parametric tail chain simulation scheme has a similar form to Algorithm 1. We start with
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dependence parameter γ instead of (α = 1, β = 0) and instead of simulating from Ĝ in step 4 we

simulate Ui from Uniform(0,1) distribution, set

Z∗i = − γ

σu
log
(
U

1/(γ−1)
i − 1

)
,

and replace step 5 with X∗i+1 = X∗i + Z∗i [σu + ξ (X∗i − u)]+.

For a forward and backward simulation strategy it is necessary to know the peak value of a cluster,

here denoted M = η where η > v. By setting X∗0 = η a tail chain of length k can be simulated

forwards using (α̂f , β̂f ), the estimates of the conditional extremes dependence parameters for the

forward chain, and the conditional extremes tail chain simulation scheme outlined above. One dif-

ference requires that a chain X∗0 , . . . , X
∗
k be discarded if X∗j > η for any j = 1, . . . , k. An additional

fit of the conditional extremes model must be made for Xt | Xt+1 > u before the backward sim-

ulation step to obtain (α̂b, β̂b), the estimates of the conditional extremes dependence parameters

for the backward chain. If the Markov chain is time-reversible αb = αf and βb = βf . For the

backward simulation a tail chain is constructed using (α̂b, β̂b) with the same rejection criteria if η is

exceeded. By combining the forward and backward simulated tail chains a cluster with peak value

η is generated; see Algorithm 2.

Algorithm 2: Simulation scheme to generate realisation of cluster with peak value η using

conditional extremes approach

Input: Dependence parameters (αf , βf , αb, βb) and non-parametric distributions Ĝf and Ĝb
1 Set the peak value η of a cluster as X∗0 ;

2 for i in 1 : k do

3 Make draw Z∗f with replacement from Ĝf ;

4 Set X∗i = T−1
(
αT
(
X∗i−1

)
+ T

(
X∗i−1

)β
Z∗f

)
;

5 if X∗i > X∗0 then

6 Discard current forward chain and return to step 2 ;

7 end

8 end

9 for i in 1 : k do

10 Make draw Z∗b with replacement from Ĝb;

11 Set X∗−i = T−1
(
αbT

(
X∗−(i−1)

)
+ T

(
X∗−(i−1)

)βb
Z∗b

)
;

12 if X∗−i > X∗0 then

13 Discard current backward chain and return to step 9;

14 end

15 end

16 Generate a cluster replicate X∗ = (X∗−k, . . . , X
∗
0 , . . . , X

∗
k);

Output: One realisation of a cluster X∗ with maximum η and dependence structure given

by (αf , βf , αb, βb)
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B Pool adjacent violators algorithm

Using differencing formulas, as in equation (5), with inputs evaluated by Monte Carlo methods from

tail chains can result in negative estimates of π(i) for certain values of i. Although θ(i) ≥ θ(i+1)

for all i, as only a finite number of chains can be simulated by Monte Carlo, Algorithms from

Appendix A provide estimates θ̃(i) and θ̃(i+1) which do not necessarily satisfy this constraint. Thus

π̃(i) < 0 if θ̃(i) < θ̃(i+1). The problem is more prevalent for large values of i since the tail chain

simulation scheme generates very few chains with such a large number of exceedances and hence

the Monte Carlo variation is large relative to the difference between θ(i) and θ(i+1). A solution

to this problem, to ensure that estimates π̃(i) of π(i) satisfy π̃(i) ≥ 0 is to use the pool adjacent

violators (PAV) algorithm (Robertson et al., 1988). The PAV algorithm generates a monotonically

decreasing estimate of θ(i) and in turn gives non-negative estimates for π and πC . This is achieved

by checking whether θ̃(i+1) ≤ θ̃(i) for all i = 1, . . . , n, if not these values are averaged, i.e.

θ
(i)
∗ = θ

(i+1)
∗ = (θ̃(i+1) + θ̃(i))/2,

and we check whether θ̃(i−1) ≥ θ
(i)
∗ . If not pooling is continued until decreasing monotonicity is

satisfied. The algorithm can lead to ties in consecutive estimated θ(i) values resulting in π̃(i) = 0

but avoids the situation where π̃(i) < 0.
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