Fault diagnosis in multi-machine power systems using the Derivative-free nonlinear Kalman Filter

Rigatos, Gerasimos and Siano, Pierluigi and Wira, Patrice and Ma, Xiandong (2016) Fault diagnosis in multi-machine power systems using the Derivative-free nonlinear Kalman Filter. In: Environmental, Energy, and Structural Monitoring Systems (EESMS), 2016 IEEE Workshop on :. IEEE, ITA. ISBN 9781509023714

[thumbnail of IEEE_conf_distributed_FDI]
Preview
PDF (IEEE_conf_distributed_FDI)
IEEE_conf_distributed_FDI.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (134kB)

Abstract

In this paper a new approach to parametric change detection and failure diagnosis for interconnected power units is proposed. The method is based on a new nonlinear filtering scheme under the name Derivative-free nonlinear Kalman Filter and on statistical processing of the obtained state estimates, according to the properties of the statistical distribution. To apply this fault diagnosis method, first it is shown that the dynamic model of the distributed interconnected power generators is a differentially flat one. Next, by exploiting differential flatness properties a change of variables (diffeomorphism) is applied to the power system, which enables also to solve the associated state estimation (filtering) problem. Additionally, statistical processing is performed for the obtained residuals, that is for the differences between the state vector of the monitored power system and the state vector provided by the aforementioned filter when the latter makes use of a fault-free model. It is shown, that the suitably weighted square of the residuals’ vector follows the statistical distribution. This property allows to use confidence intervals and to define thresholds that demonstrate whether the distributed power system functions as its fault-free model or whether parametric changes have taken place in it and thus a fault indication should be given. It is also shown that the proposed statistical criterion enables fault isolation to be performed, that is to find out the specific power generators within the distributed power system which have exhibited a failure. The efficiency of the proposed filtering method for condition monitoring in distributed power systems is confirmed through simulation experiments.

Item Type:
Contribution in Book/Report/Proceedings
Additional Information:
©2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Subjects:
?? distributed power systemsmulti-machine power systemscondition monitoringfault diagnosisderivative-free nonlinear kalman filterstatistical change detection test ??
ID Code:
80215
Deposited By:
Deposited On:
27 Jun 2016 12:20
Refereed?:
Yes
Published?:
Published
Last Modified:
21 Sep 2024 23:48