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Abstract

This paper investigates the group structure in a terrorist network

through the latent class model and a Bayesian model comparison method

for the number of latent classes. The analysis of the terrorist network is

sensitive to the model specification. Under one model it clearly identifies

a group containing the leaders and organisers, and the group structure

suggests a hierarchy of leaders, trainers and “footsoldiers” who carry out

the attacks.

Keywords: terrorist groups, latent classes, Bayesian model comparison, No-
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1 Introduction

This paper applies a statistical model for groups in a network, previously used for
a small social network (Aitkin, Vu and Francis 2014) to the investigation of the
group structure of the Noordin Top terrorist network. The approach addresses
the identification of actor groups within the framework of a two-mode or bipartite
network of actors attending events, through the latent class (stochastic block)
model in which the groups of actors are represented by classes, which are not
directly observable, but which can be probabilistically reconstructed from the
event attendance patterns of the actors.

Our analysis is distinctly different from most applications of the stochastic
block model, which have been to one-mode or unipartite networks. In the mod-
elling process several questions are of critical importance: how many classes can
be identified; the nature of the membership of the classes, for example whether
individuals belong to one or to many classes; whether the leadership of the net-
work can be identified, and if so the roles of those below the leaders; whether
other models might give a better representation of the data.
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We address these questions in a Bayesian framework, and use recent devel-
opments in Bayesian model comparisons (Aitkin 2010, Aitkin, Vu and Francis
2015) to illuminate the choice among possible models. Aitkin, Vu and Francis
(2014) showed the application of the approach to a famous sociological data set
from Davis, Gardner and Gardner (1941): the Bayesian analysis, unlike most
other analyses in the literature, reproduced the conclusions of the original soci-
ologists based on detailed interviews. In this paper we show its application to a
recent data set (Everton 2012) on connections among members of the Noordin
Top terrorist network.

2 The terrorist network

Information about Noordin Mohammad Top and his network was published
regularly by the International Crisis Group (2009 for example). Details of his
death can be found at

http://www.nytimes.com/2009/09/18/world/asia/18indo.html

We give a Wikipedia summary from 2014.

Noordin Mohammad Top, a Malaysian citizen, was a Muslim ex-
tremist, also referred to as (Noordin) Din Moch Top, Muh Top, or
Mat Top, and was Indonesia’s most wanted Islamist militant. He is
thought to have been a key bomb maker and/or financier for Jemaah
Islamiyah (JI) and to have left JI and set up a more violent splinter
group Tanzim Qaedat al-Jihad.

Top and Azahari Husin were thought to have masterminded the
2003 Marriott hotel bombing in Jakarta, the 2004 Australian em-
bassy bombing in Jakarta, the 2005 Bali bombings and the 2009 JW
Marriott-Ritz-Carlton bombings, and Top may have assisted in the
2002 Bali bombings.

Top, nicknamed “Moneyman”, was an indoctrinator who specialized
in recruiting militants into becoming suicide bombers and collecting
funds for militant activities. Husin was killed in a police raid on his
hideout in Batu, near Malang in East Java on 9 November 2005.
Top was killed during a police raid in Solo, Central Java, on 17
September 2009 conducted by an Indonesian anti-terrorist team.

The data set in this paper is the terrorist network surrounding Noordin Top
and Azahari Husin, documented in Everton (2012); the following quote is from
Everton’s Appendix 1:

This subset of the Noordin Top terrorist network [was] drawn pri-
marily from “Terrorism in Indonesia: Noordin’s Networks,” a 2006
publication of the International Crisis Group. It includes relational
data on the 79 individuals listed in Appendix C of that publica-
tion. The data were initially coded by Naval Postgraduate School
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students as part of the course “Tracking and Disrupting Dark Net-
works” under the direction of Professor Sean Everton, Co-Director
of the CORE Lab, and Professor Nancy Roberts. CORE Lab Re-
search Associate Dan Cunningham also reviewed and helped clean
the data.

The network described in Everton (2012) and analysed there covers the pe-
riod 2001-2010. The 79 individuals in this study – the actors – entered the
network during this period, and either remained in it, or left through arrest
and imprisonment or death. The presence of actors at events – meetings or
joint actions – during this period is recorded, though the dates of the events are
generally not given. Our analysis is restricted to 74 of these actors: five were
eliminated as they were not present at any of the 45 events recorded. (These
actors appear as “isolates” in several of Everton’s analyses.) The presence of
links – connections – between the actors and the events was inferred from their
mention together in public reports in newspapers and elsewhere.

The presence of actor i at event j is denoted by an indicator variable Yij = 1;
if actor i was not present at event j then Yij = 0. The complete set of indicator
values forms a matrix, called the adjacency matrix, of general dimension n× r,
where n is the number of actors and r the number of events. In smaller networks
this matrix can be printed and read. For large arrays like the terrorist network it
is too large to be readable, and a “map” format is used instead for visualisation.
Here the presence of a link (1) in cell (i, j) is shown by a black square, and the
absence of a tie (0) by a white square. The map for the terrorist network is
shown in Figure 1. The full adjacency matrix is given in the supplementary
materials.

The reported connections are classified by Everton into six categories of
events, which we will call scales. These are the Organisations (8 events), Oper-
ations (5), Training (11), Finance (2), Logistics (7) and Meetings (12) scales.
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Figure 1: Noordin Top network matrix

The matrix is very sparse. There is no clear division into groups, though
two actors (Top and Husin) are heavily involved in events (attending 23 and
17 events respectively). A conventional two-dimensional representation of the
matrix is given in Figure 2, with actors shown as circles and events as squares
(the online version is in colour). The two leaders are shown as large circles. It
is difficult to identify group structure from this graph.
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Figure 2: Noordin Top network map

3 Data strucures for network analysis

The standard methods for social network analysis have been developed for a
type of network different from that given here. These methods assume that the
data consist of binary “tie” variables, from direct connections between actors

– not from the indirect connections between actors attending the same events.
Networks of this type (for example friendship networks) – one-mode or unipar-
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tite networks, have well-developed methods which however cannot be used for
bipartite networks.

A common approach to the analysis of bipartite networks is to convert them
to unipartite networks, by projection of the adjacency matrix Y into its outer
product Y Y ′. For the terrorist network this involves summing over the events
attended, to give a unipartite valued network whose (i, j) entry is the number of
events jointly attended by actors i and j. The “value” would be a count, and not
in general a 0 or 1 value. A common further approach is to convert the count
to a binary, by dichotomizing the value using some horizon. We discuss in §10
the dangers of this approach, recently pointed out strongly by Neal (2014) and
Gerdes (2014).

4 Analyses by Everton

The Noordin Top network is analysed extensively in the chapters of Everton’s
book, which is in addition a very detailed manual for network analysis using
the major packages (UCINET, Pajek and ORA) developed for this purpose.
The bipartite networks considered there are converted to unipartite networks in
these analyses. The analyses provide a very detailed examination of the network
properties of the standard kinds in social network analysis, and we do not detail
them here. (Graphical representations of networks vary among packages.)

We follow a different form of analysis, based on explicit probability models
for the bipartite network and its group structure, described in §6. We discuss the
conclusions from our analysis, and relate them to those from Everton’s analyses,
in §10.

5 The meaning of a group or class

A fundamental question which has to be addressed first is what we mean by
a group, in this social context. We should first note than even the word for
this subset of actors is not consistent across research fields: it is also called
community, clique and class.

We adopt, as in Aitkin, Vu and Francis (2014), the definition of a group or
class as an identifiable subset of actors who tend to attend the same events. This
definition will be made specific after we consider possible models for the event
attendance variables.

6 Statistical models

6.1 Models for a random process

We consider the presence or absence of an actor at an event as a random process

– attendance was determined by a possibly large number of factors unknown to
us, so we represent the process outcome as a Bernoulli random variable, taking
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the value Yij = 1 with probability pij , and Yij = 0 with probability 1 − pij .
The probability of the pattern of “responses” {yij} given the set of probabilities
{pij} over all actors and all events is

Pr[{yij} | {pij}] =
∏

i

∏

j

p
yij
ij (1− pij)

1−yij ,

assuming (a strong assumption!) the independence of event attendance both
within and among actors. We can bring the actor and event structures into the
model in several ways. Aitkin, Vu and Francis (2104) gave an extensive list.
Here we report on a subset of models used for the terrorist network.

6.2 The Rasch model

The Rasch model is widely used in item response theory (IRT) in psychology.
Applied to a network, it is expressed through row and column parameters. Each
actor i = 1, ..., n has a propensity θi to attend any event. Each event j = 1, ..., r
has an attractiveness φj to any actor. Actors attend events independently, and
independently of each other. The Rasch model is a main effect or additive

model, in actors and events, on the logit scale:

logit pij = log

(
pij

1− pij

)
= θi + φj .

1

For the Noordin Top network, the “events” attended by network members
include meetings of various kinds (detailed above), and participation in attacks.
The actor’s “propensity” to attend events reflects his special or general abilities
and level of responsibility.

The Rasch model has no group structure for actors, and so plays the role
of a baseline model for comparison with models with group structure. Other
“link” functions could be used instead of the logistic. Caron (2012) considered
the complementary log-log link.

6.3 The latent class model

We now switch nomenclature and refer to groups as classes, as this is the tra-
dition in latent class modelling. The use of this model in social networks dates
from Holland, Laskey and Leinhardt (1983), though it has been used then and
since only for one-mode networks, apart from Aitkin, Vu and Francis (2014).
However it is very well-established in sociology for contingency table analysis,
from Lazarsfeld and Henry (1968) and Goodman (1974) onwards, and more re-
cently for binary incidence matrices at the individual level. The model specifies
a K-class latent structure for actors; the classes are distinguished by different
sets of event attractiveness parameters among classes but identical attractive-
ness parameters within classes.

1One of the parameters is unidentifiable in this parametrization: it is usually assumed that

one of the θi, or one of the φj , is equal to zero.
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Within each class k the model fitted is a variation of the Rasch model with
class-specific event attractiveness parameters φjk, and class instead of actor
“intercepts” ψk. The model assumes independence between the event attended
within classes; this weakens the assumption of full independence. Marginally
(summing over the unobserved classes), the events attended by actors are cor-
related, due to the omitted class variable. This unconditional dependence but
conditional independence is characteristic of latent variable models, including
the classical factor model. Assessing the validity of the conditional indepen-
dence assumption is difficult, as for the factor model, since there is in general
no exact partition of the actors into the latent classes which would allow this
assessment. For sparse data, as in the Noordin Top network, the assessment of
conditional independence would have further (lack of data) difficulties.

Replacing pij by qijk to incorporate the latent structure, the formal model
is:

Pr[{Yij} | k, i, {qijk}] =

r∏

j=1

q
yij
ijk(1− qijk)

1−yij

Pr[{Yij} | i, {qijk}] =

K∑

k=1


πk

r∏

j=1

q
yij
ijk(1− qijk)

1−yij




Pr[{Yij} | {qijk}] =

n∏

1=1





K∑

k=1


πk

r∏

j=1

q
yij
ijk(1 − qijk)

1−yij







logit qijk = ψk + φjk.

The class intercepts ψk in this model are not identifiable separately from
the event attractiveness parameters φjk without some form of constraints. The
logit model can be represented alternatively as λjk , absorbing the ψk into the
φjk. We make use also of the extended latent class model, retaining individual
actor propensities: logit qijk = θi + φjk.

The probability that actor i is in class k may depend on actor covariates
xi but is independent of the tie variables yij . The model parameters πk, θi or
ψk and φjk do not have to be known or specified; they can be estimated by
now-standard methods, discussed in §§7,8.

An important question is how to determine the number of classes K; this is
discussed at length in §8.5.

7 The model likelihood

Statistical models are estimated, assessed and compared through the model

likelihood. We have a model f({yij} | λλλ) for data {yij}, depending on model
parameters λλλ. The likelihood is

L(λλλ) = L(λλλ | {yij}) = f({yij} | λλλ).
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For the extended latent group model with K groups, the likelihood follows
immediately from the mixture model specification above:

L(λλλ) =
n∏

1=1





K∑

k=1


πk

r∏

j=1

q
yij
ijk(1− qijk)

1−yij





 ,

logit qijk = θi + φjk,

with λλλ = ({πk}, {θi}, {φjk},K).
We present in the remainder of the paper the Bayesian analyis of the model,

following Aitkin, Vu and Francis (2014). For reasons discussed in detail there
(the greater precision achievable with the Bayesian analysis), we do not present
the maximum likelihood analysis.

We examine the following sequence of latent class models of decreasing com-
plexity for the logit of the probability qijk that actor i attends event j (itself a
part of scale s) in class k.

A: θi + φkj – an extension of the latent class model, with individual actor
propensities and class-specific event attendance parameters;

B: ψk+φkj ≡ λkj – the “standard” or “classic” latent class model: the class
intercepts are not separately identifiable from the class-specific event parame-
ters;

BS: ψk + φks ≡ λks – the “scale” version of B;
C: ψk+φj – constrained model B with common event attendance parameters

across classes;
CS: ψk + φs – constrained model BS with common scale parameters across

classes.

8 Bayesian analysis of two-mode networks

8.1 Priors and posteriors

We augment the model likelihood L(λ) by a prior distribution π(λ | γ) for the
model parameters λ depending in general on prior parameters γ, and use Bayes’s
theorem to update the prior distribution to the posterior distribution π(λ | y, γ):

π(λ | y, γ) =
L(λ) · π(λ | γ)∫
L(λ) · π(λ | γ) dλ

.

The denominator is a scaling term, depending on the data y and γ but not λ.
If the prior is flat – constant – then the posterior distribution is a simple

scaled version of the likelihood. Throughout this paper, following Aitkin (2010)
we use flat, reference or non-informative priors, to allow as far as possible the
data to determine the posterior distribution through the likelihood.

Inference about these parameters is through their posterior distributions,
commonly through the posterior mean, posterior median and other percentiles.
Credible intervals for the parameters follow from the posterior percentiles, in a
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way familiar from frequentist inference but without any assumption of normality.
The posterior standard deviation is often quoted, though this is useful only for
normal posterior distributions.

8.2 Priors for the latent class models

We implemented the Markov chain Monte Carlo (MCMC) procedure in Open-
Bugs. We followed the model structures A–CS set out in §7, with minimally
informative priors: a Dirichlet (1,1,...,1) prior for the class proportions πk; in-
dependent normal priors with mean zero and variance 10 for the propensity
parameters θi, class intercepts ψk and event attendance parameters φj or scale
parameters φs.

After convergence we drew 10,000 random values from their joint posteriors
and used every 10th value to reduce serial dependence.

8.3 Posteriors of functions of data and parameters

One of the powerful features of Bayesian analysis is its ability to provide pos-
terior inference about complicated functions of the data and parameters. In
frequentist theory we have to rely on the delta method – Taylor series expan-
sions – to obtain the asymptotic sampling distributions of non-linear functions
of the model parameters, especially ratios of parameters.

In Bayesian theory this is unnecessary; for posterior sampling inference about
a non-linear function g(λ) of the model parameters, we simply makeM random
draws λ[m] of λ from π(λ | y), and substitute them into the function g, to give
M random draws g[m] = g(λ[m]) from the full posterior distribution of g(λ).

8.4 Posterior distribution of class membership probabili-

ties

A general problem with the use of posterior class membership probabilities from
Bayes’s theorem following the EM algorithm is familiar from the frequentist
analysis of other complex models. This is the problem of overstated precision

resulting from the substitution of ML estimates for true parameter values, with-
out any allowance for the imprecision of the ML estimates. In frequentist anal-
ysis this is forced on us by the complexity of the exact sampling distributions,
especially for non-linear functions of the parameters.

As described above, the posterior distributions of these quantities can be ob-
tained in theory from the random draws of the parameters. Recall that the pos-
terior probability of membership of case i in class k, in the generalK-component
mixture with component k density fk(y | λk) with component-specfic parameter
λk, is

πki =
πkfk(yi | λk)∑K

ℓ=1 πℓfℓ(yi | λℓ)
.
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From the posterior distributions of λk and πk, we make M independent draws

λ
[m]
k and π

[m]
k and substitute them into πki to give M draws

π
[m]
ki =

π
[m]
k fk(yi | λ

[m]
k )

∑K

ℓ=1 π
[m]
ℓ fℓ(yi | λ

[m]
ℓ )

.

However, a major issue in computing posterior distributions for any class-
specific parameter is label-switching. In the ML estimation of the model pa-
rameters, the class labelling of the K class parameter estimates is arbitrary,
and causes no confusion. However in the MCMC iterations, the class labelling
can vary during iterations and switch the class labels around, leading to class-
specific posteriors that are mixtures of the posteriors from each true class. This
can lead in the worst case to identical class-specific distributions for all the class
parameters, despite convergence.

We follow the approach of Sperrin et al (2010), in which the labels to be
attached to the M sets of posterior parameter draws are treated as missing

data and analysed with an EM algorithm. For the two-class model, there is
almost no uncertainty about the draw labels, but there is considerably more
uncertainty with the three- or more class models. We discuss this below.

8.5 Posterior distribution of the model deviance

8.5.1 General models

A particularly useful application of the posterior sampling approach is to the
deviance. In Bayesian terms the deviance is D(λ) = −2 logL(λ). Since this is a
function of both λ and the data y, it also has a posterior distribution obtainable
in this way: given M random draws λ[m], we substitute them into the deviance
to give M random draws D[m] = D(λ[m]).

A full discussion of this approach, and many applications of it, are given in
Aitkin (2010). Aitkin, Vu and Francis (2015) carried out a simulation study
to evaluate this approach, for both normal mixtures and Bernoulli latent class
models. For latent class models, correct identification of many classes required
substantial sample sizes of actors, in the simulations based on binary symptoms
in psychiatric patients. Our application here is to Bayesian model comparisons
of the number of latent classes. A normal mixture example can be found in
Chapter 9 of Aitkin (2010).

Within a model type (A, B, BS, C, CS) we have K possible models, consist-
ing of latent class models with k = 1, ...,K classes, specified by K sets of model
parameters λk containing the class proportion parameters πk, the class propen-
sity parameters θk and the class-conditional event attendance parameters φkj ,
or scale parameters φks. For each k we obtain the posterior distribution of λk,
and the consequent posterior distribution of the deviance Dk. The deviance is
unaffected by label-switching, since it is a symmetric function of the class labels,
and invariant under their permutation.

The comparison of the class models is equivalent to the comparison of the
distributions of the class deviances. In large samples from regular models with
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MLEs internal to the parameter space, the second-order Taylor expansion of
the deviance D(λ) about the MLE λ̂ gives the posterior distribution of the
model deviance, by a Bayesian version of the derivation of the asymptotic χ2

distribution for the likelihood ratio test statistic:

Dk(λk) ∼ Dk(λ̂k) + χ2
pk
,

where pk is the dimension of λk (Aitkin 2010 p. 53). It is notable that the
posterior distribution starts from the frequentist deviance, since this is minimised
over all possible parameter values.

The asymptotic result, if it applies at all, is restricted to the simplest mod-
els: null and scale, for which the parameter dimension is small compared to
the number of ties. For the mixture models, the actual posterior distributions
depart from their asymptotic forms in two respects, as described in Aitkin (2010
pp. 216-220): the distributions start from larger values than the frequentist de-

viances, because with increasing parameter dimension it is increasingly difficult
to sample by chance the MLE; and the distributions aremore diffuse than the χ2

distributions because the parameter posteriors are skewed and/or heavy-tailed.
With increasing K the frequentist deviances for the models (not shown) are

increasingly far below the smallest values in the 1,000 draws from the posterior
distributions of the model deviances. This phenomenon is discussed in Aitkin,
Vu and Francis (2014) – it is the increasing difficulty of randomly sampling
parameter values near the MLE as K increases. It shows that the maximized
likelihood is not a satisfactory summary of the likelihood evidence for the model,
and explains why model comparison procedures based on the maximized log-
likelihood – the likelihood ratio test, AIC and BIC – are not reliable indicators
of model support for heavily parametrized models, especially with sparse data.

However, the deviance distributions can in many cases be stochastically or-

dered. There are several possibilities, which are illustrated in the next section
with the Noordin Top network.

1. Complete stochastic ordering: the deviance cdfs are ordered and do

not cross (except merge at 0 and 1); then the leftmost distribution gives
the best-preferred model.

2. Partial stochastic ordering: the leftmost distribution does not cross
the others, which may cross each other; then the leftmost distribution
gives the best-preferred model.

3. No stochastic order: some or all of the distributions cross.

We discuss these further, and give a procedure for discriminating the models,
with the analysis of the Noordin Top data.

9 Bayesian analysis of the Noordin Top network

We fitted one-, two-, three-, four- and five-class models A, B, BS, C and CS in a
Bayesian analysis. For each model and set of classes we computed the posterior
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distribution of the class deviances. These are shown for each model in Figures
3–7.

1200 1300 1400 1500 1600 1700 1800 1900

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Noordin

Deviance

C
D

F

K=1
K = 2
K = 3
K = 4
K = 5

Figure 3: Noordin Top model A deviance distributions
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Figure 4: Noordin Top model B deviance distributions
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Figure 5: Noordin Top model BS deviance distributions
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Figure 6: Noordin Top model C deviance distributions
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Figure 7: Noordin Top model CS deviance distributions
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Apart from Figure 3, the deviance graphs show a consistent pattern: the
deviance distributions decrease stochastically from K = 1 to K = 3, and then
increase very slowly. These graphs suggest that three classes are established,
but not more. Figure 3 shows a different pattern: the deviance distributions
decrease stochastically from 1 all the way to 5 classes.

A careful comparison of the deviance scales in the five figures shows that
the deviance distributions for 3, 4 and 5 classes with model A are stochastically
smaller than the three-class distributions for models B, BS, C and CS (and for
any other number of classes).

To understand the 3-class and 5-class A models, we compute the membership
probabilities for each actor in each class, from the means of the membership
indicator variables across the 1,000 random draws. Table 2 in the supplementary
materials gives these probabilities for the 3-class model. We give in Figure 8 a
ternary plot of these probabilities. The centrepoint of the triangle corresponds to
probability 1/3 of membership in each class. Actors at a vertex have probability
1 of belonging to the vertex class. Actors spread along a side of the triangle
have non-zero probabilities of belonging to both the vertex classes. Actors in
the interior have non-zero probabilities of belonging to all three classes.

The labels (for the number of events attended) are jittered perpendicular
to the axes. Labels are placed only for actors for whom the number of events
attended is five or more. The membership pattern is unclear. Husin (attending
17 events) defines Class 1, but Top (attending 23 events) is some distance to-
wards Class 2. Most of the members attending five or more events are spread
out along the Class 1 - Class 2 axis. Class 2 has 22 members attending less
than five events, and Class 3 a small group of seven actors clearly identified,
with a small number spread along the Class 2 - Class 3 axis, and two members
on the Class 3 - Class 1 axis. Several actors are in the interior of the triangle,
with very diffuse membership probabilities. So the nature of the three classes
(in terms of membership) is unclear.

The five-class model is even more unclear. Table 3 in the supplementary
materials shows that the small Class 5 has only four clearly identified (proba-
bility 1.00) members (i = 7, 9, 63 and 73), all with degree (number of events
attended) 5 or 6. Class 1 is also sparse, with nine clearly identified members (i
= 3, 18, 19, 25, 32, 45, 51, 55, 60) with degrees 2, 3 or 5. Class 3 which contains
the leaders (i = 21 and 54) also has eight other clearly defined members (i =
12, 16, 44, 48, 54, 56, 59 and 64) with degrees 2, 3, 4, 5 and 9. Class 4 has
only eight clearly identified members (i = 11, 17, 27, 33, 35, 41, 43, 61) with
degrees 3, 4 or 5, and one with degree 9. So only 31 of the 74 actors are clearly
identified with a class: the other 43 have appreciable probabilities of belonging
to more than one class.
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Figure 8: Three-class membership probabilities, Model A

9.1 Modelling the prior

Most of the latent class models considered here are heavily parametrised, and
the flat priors on the parameters do not change this. The sparse data from the
adjacency matrix provide little information about these unrelated parameters.
A general Bayesian approach to heavily parametrised models is to use priors
which replace the unrelated parameters by a distributional model with a small
number of parameters. This approach is widely used in all fields of random
effect modelling, including Rasch modelling (de Boeck 2008), though it is not so
widely used in latent class analysis.

We evaluate this approach, and its effect on the interpretation of the latent
classes, by modelling the class and event parameters. We write s as before for
scale, and change slightly the model notation from §7 to: yijsk = 1 if actor i in
class k attended event j in scale s, with probability qijsk. We now write ψk for
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classes and φsj for events within scales, and use the model

logit qijsk = ψk + φsj

ψk ∼ N(µψ, σ
2
ψ)

φsj ∼ N(µφ, σ
2
φ)

and priors

µψ ∼ N(0, 4)

σ2
ψ ∼ U(0, 2)

µφ ∼ N(0, 100)

σ2
φ ∼ U(0, 10).

For the membership indicator variables we use the same diffuse multinomial/Dirichlet
model and prior as in the previous analysis:

Zik ∼M(1, π)

π ∼ D(1, 1, ..., 1).

We call this model the random Rasch latent class model.
The likelihood now contains the additional unobserved “random effect” terms

ψk and φsj , which have to be integrated out of the likelihood with respect to
their model distributions, leaving the likelihood as a function of the prior param-
eters µψ, σ

2
ψ, µφ, σ

2
φ. As with the frequentist “fixed effect” and “random effect”

models, this likelihood is not comparable with the “fixed effect” likelihood with
flat priors on all the parameters, so the deviance scales for these two different
models will not be comparable.

The random latent class model is related to all the previous models A – CS,
but is more general in allowing for wide variations in the importance of the item
and class parameters. The deviance distributions based on 10,000 draws of the
model parameters and 10% thinning are shown for the Rasch model and the
random Rasch latent class model with 2–5 classes in Figure 9.
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Figure 9: Noordin Top network deviance distributions, random Rasch latent
class model

The deviance distributions improve (move left) substantially from the Rasch
through the 2-class to the 3-class model. The distributions for 3, 4 and 5 classes
overlap almost completely. Three classes are clearly established, while the fourth
and fifth give unnecessary complexity.

Figure 10 shows a ternary plot of membership probabilities in the 3-class
model, with labels (for the number of events attended) jittered perpendicular
to the axes. Labels are placed only for actors for whom the number of events
attended is five or more.

This plot is quite different from the corresponding plot in the “fixed effect”
analysis with model A. Class 1 now contains only the two leaders and planners:
almost no other actor has non-zero probability of belonging to Class 1. Class 2
contains most of the actors participating in 5 or more events, and class 3 contains
mostly actors participating in 4 or fewer events. There is some uncertainty for
some actors who have appreciable probabilities of being in both Classes 2 and
3.
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Figure 10: Three-class membership probabilities, random Rasch model

A natural question, given the infrequency of appearance of most actors at
any event, is whether there is a real difference between classes 2 and 3 in the
frequency profiles of their event participation. To address this this we give in
the supplementary materials graphs of the posterior distributions of the event
attendance probabilities for all three classes, broken down by the event scales.

It is immediately clear that the Class 1 leaders are heavily involved in Fi-
nance (one of them is present in every Finance meeting), Logistics, Operations
and Meetings, while Class 2 are involvedmore frequently than Class 3 in Finance
and Logistics, but less frequently than Class 3 in Operations. It is notable that
both Class 2 (particularly) and Class 3 are involved rarely in more than one
operation: this may be due to the high chance of death or capture in such op-
erations, which were apparently planned, but rarely carried out, by the leaders.

We can compare the roles of the actors as given by Everton with their latent
class memberships. Table 1 gives the actor roles defined by Everton. Role 9
(propagandist) is omitted: none of the 74 actors was so identified by Everton.
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Code Role
0 No information/unclear
1 Strategist: high-level planner of a terrorist/insurgent network
2 Bomb maker: individual who constructs bombs
3 Bomber/fighter: individual who participates in bombing attacks

or who is described as a fighter
4 Trainer/instructor: individual who trains or instructs new members

of a terror network
5 Suicide bomber: individual who plans to perform, or already has

performed a suicide attack
6 Recon and surveillance: individual who engages in the surveillance

and recon of targets
7 Recruiter: individual who engages in identifying and recruiting new

members (to include bombers)
8 Courier/go-between: individual used in communications between

members
10 Facilitator: individual who assists in the operation of the network

(especially with material and finance)
11 Religious leader: individual who provides religious training and

support
12 Commander/tactical leader: individual in charge of operations at

the local/tactical level

Table 1: Actor roles from Everton

Figure 11 shows the 74 actors identified by the 13 role labels given by Everton
(2012 p. 396) in Table 1. The labels are jittered away from the axes.

Notable differences between the 21 members of Class 2 and the 51 members
of Class 3 (as assessed by the largest posterior probability) are that all seven
suicide bombers, and 11 of the 14 bomber/fighters, are in Class 3, while 5 of
the 7 couriers are in Class 2. The other role categories do not differ substan-
tially between classes. Our interpretation of this analysis is that, allowing for
possible progression in actor roles following actions, Class 2 are the “Trainers”,
intermediaries between the planners and operations directors in Class 1, and
the “footsoldiers” in Class 3 carrying out the operations.

10 Comparisons with Everton’s analyses

Everton’s analyses are much more extensive than ours, as they are used to
illustrate some of the features of the packages used for social network analysis.
The philosophy of the packages is also different: descriptive statistics of the
network are computed, and assessed for importance by comparison with the
distributions of the same statistics from randomly generated networks. Explicit
probability models for the ties are mentioned only once, in Chapter 11 (p. 360)
giving the exponential random graph model (ERGM), as the analysis of these
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Figure 11: Three-class membership probabilities by roles, random Rasch model

models is not implemented in the packages used for his analyses.
The closest comparison is in Chapter 6 “Cohesion and Clustering” which

considers the identification of cohesive subgroups. Everton evaluates four sets of
algorithms for detecting subgroups: components, cores, factions, and Newman
groups. An immediate difficulty with these comparisons is that some of the
analyses are applied to different sub-networks of actors: the “alive” network
has 69 actors, but the “alive and free” network has only 24: 45 actors are
imprisoned.

A further difficulty is that the ties themselves are of several kinds, and all the
analyses are of one-mode networks, by collapsing the adjacency matrix across
events (formally, by transforming the n × p adjacency matrix Y to the n × n

symmetric matrix Y Y ′). The resulting counts of the numbers of events attended
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in common by pairs of actors were further dichotomized for procedures which
required binary data. This differs fundamentally from the latent class analysis,
which requires the full information in the adjacency matrix.

The difficulty with this approach is clear. Summing over the event classi-
fication gives an entry ni,i′ in cell (i, i′) of the resulting projected table, given
by ni,i′ =

∑r

j=1 yijyi′j , a sum of products of Bernoulli variables which has no
simple form. Dichotomising this sum will make the distribution even more com-
plex. Gerdes (2014) and Neal (2014) discuss this problem at length and suggest
some alternatives, though the direct modelling of the bipartite table is not one
of them.

A summary of the results reported by Everton follows; we do not give details
of the algorithms used.

The components analysis of the “aggregated trust network” in Pajek placed
all actors in the one component.

The “alive” network gave the same single component.
The k-core analysis of the “alive trust” network in UCINET showed a well-

connected central subgroup surrounded by four slightly less connected sub-
groups.

The k-core analysis of the “alive operational” network found a set of clusters
centering on Noordin Top.

The faction analysis in UCINET of the “alive and free” combined network
gave 8, 9 or 3 factions depending on the “measure-of-fit” option chosen; other
considerations suggested 3 or 4 factions.

The Newman group analysis gave similar results to the faction analysis for
the “alive and free” combined network.

This does not exhaust the list of possible algorithms for subgroup structure;
as Everton wrote (p. 204),

There are several more we have not considered. What should be
clear by now is that we may have to use multiple algorithms before
we succeed in detecting cohesive subgroups. ..

11 Conclusions

It may be frustrating to readers that there is little connection between our
analyses and those of Everton. This lack of connection follows from the different
latent-class model-based approach we are following. The multiple algorithms
for subgroup structure examined by Everton do not lead to any clear subgroup
structure. In our view this is a consequence of analysing the one-mode data
structure, with its loss of information.

The approach to sub-grouping of actors in the full two-mode network through
latent class modelling and analysis of the adjacency matrix is successful in iden-
tifying the leadership structure of the Noordin Top network. The identification
of the number of classes through the posterior distributions of the competing
model deviances also appears to be successful. While the sparsity of this net-
work, and (in our interpretation) the short operational life of many of the actors,
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obscure the connections among them, the identification of the leaders is clear,
and we can give a plausible interpretation of the “command structure” of the
network from the three-class model.

A possibility not considered in our paper is the modelling of change over time
in the terrorist network structure. This comes about through the time-stamping
of membership of the actors: over the period 2000-2010 we know the first time
at which an actor is mentioned, and so is known to have entered the network.
We know also when actors die or are arrested and therefore are withdrawn
from the network. However the events at which attendance is recorded are not
time-stamped, so we cannot model the successive structures of the network, and
changes to it, as each new event occurs. If the events were also time-stamped,
much richer modelling would be possible.

An extension not considered in this paper is biclustering, or double latent-
class modelling of both actors and events. In the Noordin Top network, the
reason is clear: we have Everton’s manifest categorization of events by scales.
In other bipartite networks, biclustering may be of interest. The observed data
likelihood in this model is particularly complex, though MCMC analysis is fairly
straightforward. Large networks will require very long computation times for
large models with many latent classes; variational methods are increasingly used
for such networks. Most variational methods are developed for the symmetric
unipartite network model (for example Bickel et al 2013). Vu, Hunter and
Schweinberger (2013) and Vu and Aitkin (2015) give examples for bipartite
networks.
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1 Adjacency matrix 74 rows, 45 columns
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1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0

1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,1,0,1,1,1,0

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0,1
0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
0,0,0,0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0

0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0
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2 3-class posterior membership probabilities

i\C 3 2 1 d i\C 3 2 1 d

1 0.05 0.95 0.00 1 41 0 1 0 5

2 0.63 0.37 0 3 42 0.04 0 0.96 5

3 0 1 0 7 43 0 1 0 9

4 0.19 0.80 0.01 2 44 0 0.05 0.95 4

5 0.30 0.67 0.03 3 45 0 0.99 0.01 3

6 0.02 0.16 0.82 3 46 0.02 0.23 0.75 1

7 0 0.38 0.62 6 47 0.66 0.32 0.02 2

8 0.01 0.32 0.67 1 48 0 0.15 0.85 2

9 0 0.38 0.62 5 49 1.00 0 0.00 4

10 0.17 0.32 0.51 3 50 0.04 0 0.96 3

11 0.00 1.00 0 3 51 0 1 0 5

12 0 0.20 0.80 9 52 0.02 0.97 0.01 2

13 0.04 0.96 0.00 1 53 0.01 0.41 0.58 1

14 0.04 0.96 0.00 1 54 0 0.15 0.85 23

15 0.98 0.01 0.01 2 55 0 0.99 0.01 6

16 0 0.15 0.85 2 56 0 0.15 0.85 3

17 0 1 0 4 57 0.02 0.98 0 2

18 0 1 0 3 58 0.01 0.43 0.56 1

19 0 1 0 5 59 0 0.15 0.85 2

20 0.60 0 0.40 2 60 0 1 0 3

21 0 0 1 17 61 0 1 0 4

22 0 0.70 0.30 3 62 0.61 0.00 0.39 2

23 0.01 0.99 0 3 63 0 0.38 0.62 6

24 0 0.04 0.96 5 64 0 0.04 0.96 3

25 0 1 0 2 65 0 0.94 0.06 5

26 0.98 0.02 0.00 3 66 0.59 0.00 0.41 2

27 0 1 0 3 67 0.99 0 0.01 4

28 0.05 0.95 0.00 1 68 0 0.98 0.02 5

29 0.37 0.26 0.37 1 69 0 0.99 0.01 4

30 0.15 0.85 0.00 1 70 0.99 0.01 0.00 3

31 1 0 0 4 71 0.00 1.00 0 2

32 0 1 0 5 72 0 0.98 0.02 4

33 0 1 0 3 73 0 0.38 0.62 6

34 0.00 0.99 0.01 1 74 0.04 0.94 0.02 2

35 0 1 0 5

36 0 0.26 0.74 4

37 0 0.27 0.73 2

38 0.99 0.01 0 4

39 0.86 0.14 0.00 2

40 0 1 0 2

T 12.84 38.90 22.26

Table 1: Posterior class probabilities for actors, 3-class model A
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3 5-class posterior membership probabilities

i\C 1 2 3 4 5 d i\C 1 2 3 4 5 d

1 0.00 0.32 0.00 0.68 0.00 1 41 0.00 0.00 0.00 1.00 0.00 5

2 0.00 0.93 0.00 0.07 0.00 3 42 0.00 0.04 0.96 0.00 0.00 5

3 1.00 0.00 0.00 0.00 0.00 7 43 0.00 0.00 0.00 1.00 0.00 9

4 0.00 0.69 0.00 0.31 0.00 2 44 0.00 0.00 1.00 0.00 0.00 4

5 0.00 0.98 0.00 0.02 0.00 3 45 1.00 0.00 0.00 0.00 0.00 3

6 0.00 0.10 0.90 0.00 0.00 3 46 0.00 0.04 0.92 0.03 0.01 1

7 0.00 0.00 0.00 0.00 1.00 6 47 0.00 1.00 0.00 0.00 0.00 2

8 0.00 0.04 0.74 0.03 0.19 1 48 0.00 0.00 1.00 0.00 0.00 2

9 0.00 0.00 0.00 0.00 1.00 5 49 0.00 1.00 0.00 0.00 0.00 4

10 0.00 0.98 0.01 0.00 0.00 3 50 0.00 0.04 0.96 0.00 0.00 3

11 0.00 0.00 0.00 1.00 0.00 3 51 1.00 0.00 0.00 0.00 0.00 5

12 0.00 0.00 1.00 0.00 0.00 9 52 0.06 0.90 0.01 0.03 0.00 2

13 0.00 0.32 0.00 0.68 0.00 1 53 0.00 0.02 0.73 0.20 0.05 1

14 0.00 0.33 0.00 0.67 0.00 1 54 0.00 0.00 1.00 0.00 0.00 23

15 0.00 1.00 0.00 0.00 0.00 2 55 1.00 0.00 0.00 0.00 0.00 6

16 0.00 0.00 1.00 0.00 0.00 2 56 0.00 0.00 1.00 0.00 0.00 3

17 0.00 0.00 0.00 1.00 0.00 4 57 0.00 0.01 0.00 0.99 0.00 2

18 1.00 0.00 0.00 0.00 0.00 3 58 0.00 0.02 0.75 0.18 0.05 1

19 1.00 0.00 0.00 0.00 0.00 5 59 0.00 0.00 1.00 0.00 0.00 2

20 0.00 0.70 0.30 0.00 0.00 2 60 1.00 0.00 0.00 0.00 0.00 3

21 0.00 0.00 1.00 0.00 0.00 17 61 0.00 0.00 0.00 1.00 0.00 4

22 0.00 0.00 0.12 0.88 0.00 3 62 0.00 0.67 0.33 0.00 0.00 2

23 0.00 0.02 0.00 0.98 0.00 3 63 0.00 0.00 0.00 0.00 1.00 6

24 0.00 0.00 1.00 0.00 0.00 5 64 0.00 0.00 1.00 0.00 0.00 3

25 1.00 0.00 0.00 0.00 0.00 2 65 0.00 0.00 0.00 0.01 0.99 5

26 0.00 1.00 0.00 0.00 0.00 3 66 0.00 0.68 0.32 0.00 0.00 2

27 0.00 0.00 0.00 1.00 0.00 3 67 0.00 1.00 0.00 0.00 0.00 4

28 0.00 0.33 0.00 0.67 0.00 1 68 0.00 0.00 0.04 0.91 0.05 5

29 0.00 0.56 0.35 0.09 0.00 1 69 0.00 0.00 0.01 0.99 0.00 4

30 0.00 0.34 0.00 0.66 0.00 1 70 0.00 1.00 0.00 0.00 0.00 3

31 0.00 1.00 0.00 0.00 0.00 4 71 0.02 0.85 0.00 0.13 0.00 2

32 1.00 0.00 0.00 0.00 0.00 5 72 0.00 0.00 0.00 0.98 0.02 4

33 0.00 0.00 0.00 1.00 0.00 3 73 0.00 0.00 0.00 0.00 1.00 6

34 0.20 0.04 0.02 0.73 0.00 1 74 0.06 0.92 0.00 0.02 0.00 2

35 0.00 0.00 0.00 1.00 0.00 5

36 0.00 0.00 0.77 0.01 0.22 4

37 0.00 0.00 0.93 0.07 0.00 2

38 0.00 1.00 0.00 0.00 0.00 4

39 0.00 0.97 0.00 0.03 0.00 2

40 0.44 0.00 0.02 0.49 0.05 2

T 9.78 19.84 19.19 19.54 5.63 73.98

Table 2: Posterior class probabilities for actors, 5-class model A
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4 Event-and class-specific posterior distributions

of probabilities of event attendance
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Figure 1: Finance, three classes
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Figure 4: Logistics, three classes
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Figure 5: Logistics, three classes
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Figure 6: Organization, three classes
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Figure 7: Organization, three classes
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Figure 9: Training, three classes
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Figure 10: Training, three classes
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Figure 11: Meetings, three classes
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Figure 12: Meetings, three classes
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Figure 13: Meetings, three classes
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