
2

Towards Policy Refinement for Resilience
Management in Cloud

Syed Noorulhassan Shirazi1, Steven Simpson1, Kanza Noor Syeda2, Andreas Mauthe1 and David Hutchison1
1InfoLab21, School of Computing and Communications, Lancaster University, LA1 4WA UK

Email: {n.shirazi, s.simpson, a.mauthe, d.hutchison}@lancaster.ac.uk
2Department of Entrepreneurship, Strategy & Innovation, Lancaster University Management School, LA1 4YX,

UK
Email:k.syeda@lancaster.ac.uk

Abstract—Cloud computing is becoming increasingly impor-
tant for provision of critical services because of potential cost
saving, scalability and elasticity. Therefore, it is particularly
important for clouds and cloud-based services to be resilient,
i.e., they are able to operate correctly and continuously even in
the presence of challenges. To do this, a number of resilience-
supporting mechanisms are needed at various levels in cloud
infrastructure. It is non-trivial to manage these mechanisms
and there is a need for flexible instruments which assist
cloud providers in this complex task. Policy based management
is an established instrument to manage resilience supporting
mechanisms and they are useful if it allows not only high
level description of abstract policy (e.g high level security and
resilience requirements), but also enables such policy to be refined
and eventually mapped into an appropriate low levels in cloud
settings. This paper sheds light on basic concepts behind policy
based management in cloud, more specifically it emphasizes the
use of policy refinement which is the process of translating higher
level requirements (such as security and resilience requirements)
into the sequence of actions at lower levels that can implement
them, in order to generate more refined policies that govern the
behaviour of an overall cloud system when under challenge. We
finally present two example scenarios on how policy refinement
can work for the cloud to establish its relevance for the overall
resilience management.

Index Terms—Resilience, policy refinement, cloud computing.

I. INTRODUCTION

The Cloud Computing is a major trend, which will likely
reach the IT services that support critical infrastructures ,
because of the potential cost savings, scalability and elastic-
ity [1], [2]. As many critical services are moving to cloud, it is
of paramount importance that cloud administrators are able to
effectively manage the underlying technologies which enable
configurations, elasticity, dynamic invocation of services, and
monitoring activities such that security and resilience require-
ments of the critical service users and providers are met.
Moreover, making sure that the management activities do not
disturb critical service delivery, the providers must be able to
easily change the behaviour of the system they are managing.

This work is sponsored by UK-EPSRC funded TI3 project, grant agreement
no. EP/L026015/1: A Situation-aware Information Infrastructure; and the
European Union FP7 Project SECCRIT (Secure Cloud Computing for Critical
Infrastructure IT), grant agreement no. 312758.

Management and resilience of the cloud environments are
closely linked. The extra layer of resource virtualization makes
it difficult to plan effective management due to varying user
demands, co-hosted VMs and the arbitrary deployment of
multiple applications. Generally, management policies are used
to govern the behaviour of a system. These management
policies can be mostly looked upon as: ”the constraints and
preferences on the state or the state transition, of a system and
is a guide on the way to achieving the overall objective which
itself is also represented by a desire system state” [3]. When
using policy based management it is critical that rules being
specified actually stem out of the higher level requirements and
they are implementable. This process of going from high level
requirements to low level policy implementation is hereafter
refer as ”policy refinement” and main subject of this paper.

The refinement process involves stages of decomposition,
operationalization, deployment and re-refinement, and operates
on policies expressed in a logical language flexible enough to
be translated into many different enforceable configurations [4]
as depicted in Fig.1 below.

Configurable

No

YesD
e

c
o

m
p

o
s
it
io

n

Im
p

le
m

e
n

ta
ti
o

n

O
p

e
ra

ti
o

n
a

liz
a

ti
o
n

Policy refinement

Fig. 1: Policy refinement stages

Decomposition is process of obtaining rules which provide
information about how an actions is to be implemented. After
decomposition stage, reference to new policies are introduced
which need to be operationalized in specific environment.
Thus, after an initial operationalization, refinement is carried
out, till policies are expressed in terms which policy enforce-
ment point understands and can be implemented. It is desirable
to maintain the properties of consistency and completeness,

3

when refining an abstract high level requirements into a set of
more concrete policies. The former means that there should not
be any conflict and later means fully implementable policies.
In order to maintain these properties, the policies must be
fine-tuned, and they should respond to changes in the system.

In context of the Cloud computing, policy based manage-
ment are becoming effective because they allow the separation
of the rules that govern the behavioural choices of a system
from the functionality provided by that system. As shown in
previous work [5], [6], [7] it is possible to adopt the behaviour
of a system without the need to re-design and develop any of
the functionality, and changes can be applied without the need
to bring system to halt which is crucial for critical service
point of view. However, there is still need to apply basic
of policy refinement principals for autonomic management in
cloud computing. The motivation for the work presented here
comes from the previous work [8], [9] and objectives of the
project SECCRIT1 which state:

• to develop a suitable policy vocabulary, policy mech-
anisms, and a policy editor that supports the user in
specifying his security requirements and in deriving the
resulting, machine enforceable security policy.

• to develop concepts for policy deployment and re-
deployment to the cloud in a secure manner.

A. Basics of policy management

Policies are rules which govern the choices in behaviour
of the system. In IETF2, there is an active policy working
group which show recognition of this approach for system
management. Mainly policies are categorised as obligation
and authorisation polices which are also supported by
Ponder23 which is policy environment used by many in both
industry and academia.

Obligation policies specify management operation that
must be performed when a particular event occurs given some
supplementary conditions being true. These policies follow the
Event-Condition-Action (ECA) paradigm and are of the form:
on <event>

if <conditions>
do <target> <action>;

Therefore, the occurrence of the specific event is a necessary
condition for the mandated operation to be performed. The
event is a term of the form e(a1, . . . an), where e is the name
of the event and a1, . . . , an are the names of its attributes.
The condition is a boolean expression that may check local
properties of the nodes and the attributes of the event. The
target is the name of a role (i.e., a placeholder) where the
action will be executed and so the service or resource assigned
to the target role must support an implementation of the
action. The action is a term of the form a(a1, . . . , am), where
a is the name of the action and a1, . . . , am are the names of
its attributes. To simplify notation an obligation policy can
have a list of target-action pairs, all evaluated when the event

1www.seccrit.eu
2http://datatracker.ietf.org/wg/policy/charter/
3http://ponder2.net/cgi-bin/moin.cgi/Ponder2Overview

is true and the condition holds. The attributes of an event may
be used for evaluating the condition (to decide whether to
invoke the action or not), or they may be passed as arguments
to the action itself. Implicitly the role to which the obligation
policy belongs is the subject of the obligation i.e. the entity
enforcing the policy, and the action is invoked on a target
role. Note the target may be the same as the subject i.e. a
role may perform actions on itself. Obligations can also be
used to load other policies (obligations or authorisations) into
the system or existing policies may be enabled/disabled to
change the management strategy at run-time.

Authorisation policies specify what actions a subject is
allowed (positive authorisation) or forbidden (negative autho-
risation) to invoke on a target. The subject and the target
are role names. The action and the condition are defined
like in obligations. Authorisation decisions could be made
by one or more specific roles in the network, but commonly
implementations are based on the target making decisions and
enforcing the policy as it is assumed that target roles wish to
protect the resources they provide to the network.
auth[+/-] <subject>

if <condition>
then <target><action>;

The paper is organised as follows. Section II describes
related work. The policy based resilience management is
discussed in Section III, and policy refinement process is
explained in Section IV. Section V presents example scenarios
and Section VI finally concludes the chapter.

II. RELATED WORK

Policies specifies management operations that must be
performed when a particular event occurs given that some
conditions being true. The policy based management has
proven to be very effective for complex system management as
evident in previous literature. In [10], authors briefly mention
that due to the opacity of cloud service provisioning, cloud
based services could benefit from context-awareness policies
in general, but they do not explicitly mention the issue of
policy refinement and enforcement.

Goyal et al. [11] propose a policy-based event-driven
services-oriented architecture (PESA). In PESA, policies are a
set of rules that control behaviour and usage of services. The
services are managed by hierarchically distributed controllers
named mediators. Their architecture focuses on the service
layer, more specifically, on the enterprise service bus (ESB)4.
A relation to the cloud is indicated, as such services may
run within the cloud, but their framework is not truly cloud-
specific.

In [12], Hamlen et al. propose a policy-compliant data
processing framework that contains different modules for
policy decision and enforcement, such as a policy reasoning
module. They propose to have control over data by replac-
ing specific instructions (e.g., read method invocations) by
surrounding the code with their own check (i.e., intercepting

4http://www.oracle.com/technetwork/articles/soa/ind-soa-esb-1967705.
html

4

the method invocation and asking the reasoning module for
a decision) before further processing. The policy-based ap-
proach to network and system management proposed in [13],
[14] defines a framework for management of polices, policy
hierarchies and policy transformation. Ross et al. [15] propose
to enrich managed objects with policy goals as required by the
management policy. They describe policies in two parts, an
active part, containing application specific functionality, and a
passive part which can be re-used without any change. Kaikini
et al. [16] use an approach to enforce policies by means of
rules, but the understanding of a rule is more restrictive.

The above mentioned works describe solutions for the spec-
ification and implementation of policies and recently SLAs,
but little focus has been given to the refinement of high-
level requirements into low-level polices. Verma [17] presented
an approach to policy translation that is based on a set of
tables. The tables identify the relationships between users,
applications, servers, routers and classes of service supported
by network. Whilst this technique offers the advantage of being
fully automated, it is a inflexible approach, only supporting
a very specific type of high-level SLA policy and low-level
device configuration policy.

The work in [18] outlines a policy authoring environment
that provides a policy tool, called POWER, for refining poli-
cies. A domain expert first develops a set of policy templates,
expressed as Prolog programs, then the policy authoring tool
uses an integrated inference engine that interprets these pro-
grams to guide the user in selecting the appropriated elements
from the management information model to be included in
the final policy. The main limitation of this approach is the
absence of any analysis capabilities to evaluate the consistency
of the refined policies. Similarly, work presented in [19] allows
the translation of service-level objectives into configuration
parameters of a managed system. The transformation engine
takes the service requirements of the user as input, and
searches the database to determine the optimal parameter
values that provide a required level of service. A limitation
of this technique is its dependence on a sufficiently rich
database which is only possible by observing the system for
some period of time. It is also unable to deal with situations
where a given requirement specification results in different
configurations.

The goal elaboration approach for policy refinement has
recently received more interest. The approach is based on the
work of Darimont et al. [20]. KAOS5 is a formal approach
to goal refinement operationalisation aimed at providing con-
structive formal support while hiding underlying complexities.
The idea behind this approach is to reuse generic refinement
patterns from a library structured according to strengthen-
ing/weakening relationships among patterns. However, it has
limitations in the assignment decision step, and provides very
little support for formal reasoning about alternative assign-
ments. Bandara et al. [21] presented an approach to policy
refinement by which formal representation of a system based
on the Event Calculus is used in conjunction with abducting-

5http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.
pdf

reasoning techniques to derive the sequence of operations
that will allow a given system achieve a desired goal. The
authors in [22] investigated the use of model checking in
order to derive operational policies from low-level goals. The
refinement framework relies also on the KAOS method, the
use of temporal logic, and modelling of system behaviour
in terms of event-based labelled transitions. However, the
approach does not consider feedback mechanisms to analyse
the impact of high-level goals with respect to managing system
performance and behaviour.

III. POLICY BASED RESILIENCE MANAGEMENT

As discussed earlier, resilience becomes of paramount im-
portance to the cloud users and providers as well as critical
service providers to ensure correct and continuous system
operation even in the presence of challenges [23]. We then re-
interpret and define cloud resilience as, ”the ability to maintain
an acceptable level of system operation and service even in
the presence of challenges.” To provide resilience in cloud
environments, a number of mechanisms are needed at various
layers (tenant & infrastructure) and locations, such as traffic
capturing, anomaly detection and classification. However, it
is difficult how these mechanisms should be co-ordinated
to mitigate challenges. It is also difficult to define how the
configuration of such mechanisms should change over time,
in response to new types of challenges or new set of high
level requirements. This makes role of problem refinement
more evident so that resilience strategy can be modified
without interrupting critical service operation. Reconfiguration
strategies are represented as policies, which define how the
operation of the several components in the cloud should be
modified in response to pre-specified events. Such decisions
may concern the tuning of parameters of the mechanisms,
the re-wiring of their interconnections, and also the dynamic
enabling or disabling of the mechanisms currently deployed
in a particular strategy.

At any time, the current set of mechanisms may generate
new events which in turn may trigger a different set of poli-
cies. This continuous process will constitute a policy-driven
feedback control-loop, in which events trigger policies for the
reconfiguration of resilience mechanisms, which may in turn
generate other events that will trigger different policies and so
on. The set of policies defining the possible reconfiguration
actions is not fixed, and different policies may be loaded or
unloaded over time to reflect better resilience practices or a
better understanding of the challenges. The framework built
in previous work and evaluated in ResumeNet6 based on work
by [24], whereby a number of resilience principles are defined,
including the resilience strategy D2R2+DR: Defend, Detect,
Remediate, Recover, Diagnose and Refine is outlined in Fig. 2
below. At its core is a control loop comprising a number
of conceptual completions that realise the real time aspect
of the D2R2 + DR strategy and consequently implements
cloud resilience. Based on the resilience control loop, other
necessary elements of our framework are derived, namely a
resilience metrics framework, an approach to understanding

6http://www.comp.lancs.ac.uk/resilience/

5

Di
ag

no
se

Refine

De
fen

d Detect
Rem

ediateRec

ov
er

Fig. 2: The resilience strategy[24]

high-impact challenges that cloud may face, a policy driven
resilience management, an incremental approach to challenge
analysis that aim to build situational awareness, and mul-
tilevel information sharing and control mechanisms. Under
the D2R2 + DR framework, there must exist components
capable of reconfiguring devices in response to challenges
using policies. Reconfiguration need not apply to the same
components on which the detection was based. A resilience
engine is responsible for mapping detection events to reconfig-
urations, and may be (for example) a policy engine, accepting
a resilience strategy as a collection of policies.

Fig. 3: A Resilience-oriented view

The SECCRIT consortium have developed an architectural
model for deploying critical infrastructure services in the
cloud which provide basis for the development of technical
solutions such as policy based resilience management. We
would refer reader to work [8], [25] for further details. We
can apply D2R2 to the SECCRIT architectural framework
to provide a resilience view of it (Fig. 3). At the physical
layer, the cloud-infrastructure operator has access to physical
nodes and network, which can be monitored to inform the
detection process. The operator can also reconfigure these
devices, in response to detected challenges using policies.
Cloud-infrastructure D2R2 may exist as monitoring and re-
configuration points on physical hosts and networks, and on
some virtual components. Resilience engines and detectors

need not exist on any physical equipment used directly to
provide virtual resources to the above layer. At the tenant-
infrastructure layer, the tenant has access to VMs, and possibly
virtual taps on VNs, which can inform detection. In response
to challenges, the tenant may reconfigure the hosted machines,
and some functionality of the virtual networks might also be
exposed. Thus, tenant-infrastructure D2R2 is spread across
components visible this layer. Within the inner D2R2 loop,
some interaction between these layers may exist in the form
of events and reconfigurability exposed by the lower layer. For
details on policy and resilience view points we refer reader to
SECCRIT architecture white paper [26].

IV. POLICY REFINEMENT PROCESS

Policy refinement is the process of transforming a high-
level, abstract policy specification into a low-level, concrete
one in terms of operations of the system [27]. More formally
policy refinement could be defined as follows:

Definition If there exists a set of policies Pref :p1, p2, ...pn,
such that the enforcement of a combination of these policies
results in a system behaving in an identical manner to a system
that is enforcing some base policy Pb, it can be said that Pref

is a refinement of Pb. (see Fig. 4 below).
In [28] authors identify the main objectives of a policy

refinement process as:
1) Determine the resources that are needed to satisfy the

requirements of the policy.
2) Translate high-level policies into operational policies

that the system can enforce.
3) Verify that the lower level policies actually meet the

requirements specified by the high-level policy.
The first of these objectives involves mapping abstract

entities defined as part of a high-level policy to concrete
objects/devices that make up the underlying system. The
second specifies the need to ensure that any policies derived
by the refinement process be in terms of operations that
are supported by the underlying system. The final objective
requires that there be a process for incrementally decomposing
abstract requirements into successively more concrete ones,
ensuring that at each stage the decomposition is correct and
consistent.

Table. I below summarizes simple refinement example as
presented in [29], and slightly re-interpreted, more detailed
examples will follow later in the Section V. In light of above
example we need formal technique for refining high-level
goals into more concrete ones; and finally a means of inferring
the combination of operations that will achieve these concrete
goals such of the work done in the [20] for refining goals
into implementation specifications for policy refinement. They
have proposed following properties of the goals for refinement
process:

• Correctness: a refinement is said to be correct if the con-
junction of all the members of that subset is a refinement
of the base policy.

• Consistency: a refinement is said to be consistent if there
are no conflicts between any of the policies in the refined
policy set.

6

TABLE I: Policy refinement example

1. High level requirement
• only provide service X to a user if he logs in from location L
2. More refined requirements looks like
• provide service to user on event where condition
where (service = X) ^ (event = user logs in) ^ (condition = from IP range = x.x.x.x && CN==L)
3. Concrete implementation
• further steps will be required to provide concrete implementation for policy enforcement point (PEP)

High-level
requirements
Pb : Base policy

Policy actions

Policy Engine

Refined Policies
Pref : {p1, p2,. .. pn}

Policy refinement

System state

Cloud infrastructure

Fig. 4: A policy refinement process

• Minimality: a refinement is said to be minimal if it is
correct and if removing any policy from the refined policy
set causes the refinement to be incorrect.

So, an essential requirement when refining a policy is to
ensure that the goal achieved by that policy would still be
achieved by the set of sub-policies that it is refined into. In
addition, a policy refinement can be said to be complete if
all the properties defined above hold. However, in the policy
refinement domain it may be acceptable to have a single
policy that is a refinement of some base policy, provided that
the refinement uses subjects, targets and actions that map to
different physical entities.

Policy refinement techniques have received great research
attention and few good techniques have been proposed which
we briefly discuss in related work Section. II. When devel-
oping a policy refinement technique the main compromise is
between the generality of the technique and the amount of
automation. As show in in figure 5 below, the trade-offs means
that techniques that are highly automated tend to have a very
narrow domain of applications in which they work. On the
other hand, techniques that have general applicability are not
particularly automated.

V. EXAMPLE SCENARIOS

A. Availability of critical service

As discussed above the policy refinement is a process
which convert the information from a policy description in

Policy refinement techniques

Domain specific Domain independent

Less autonomicMore autonomic

Goal
elaboration

Case based
reasoning

Templates
Table
lookup

Fig. 5: Policy refinement techniques

the the form of a policy statement and context containing
parameters/variables into a series of rules which govern the
behaviour of the system. This process makes it dependent
onto the underlying system because certain function calls
required are technology dependent to configure actions such
as migrating VM from one location to another need to invoke
a call by interacting with specific API of a vendor such as
management stack of OpenStack7 or VMware8. Below we
present an example for policy refinement where we consider
cloud environment which consists of various servers hosting
critical services for a tenant. The tenant in this case specifies
requirements which says:
High level policy P1:
The cloud provider must ensure that the
infrastructure in which critical service is
hosted is available under high load and service
should not be co-located.

Before this policy can be applied, it require further decom-
position and analysis, for example how availability is defined
and what is acceptable rate of load and how it can be achieved.
Also, which tenant to whom the service should not be co-
located. In [30] describes the approach to that integrates the
definition of a policy hierarchy to allow refining executable
policies from high-level requirements systematically. A policy
hierarchy is formed by a high-level policy which is then refined
in several steps into lower-level policies. On lower level the
resulting policies are called actions which can be carrier out
without further analysis. The policy P1 can then be refined as
follows:
Middle level policy P2:
The mean time between failure MTBF must be
minimised and load utilization need to be
reported and if affinity with tenant ’X’ is
detected that need to be reported.

This policy is clearly more refined compared to Policy P1 and
further refinement would lead to policy P3:
Refined policy P3:
If MTBF is greater than 0.3% or service request

7www.openstack.org
8www.vmware.com

7

queue length is greater than 0.8% than
instantiate another <VM> and if tenant X is to
be placed at same physical location as VM of
critical service then notification is sent.
The report is required daily at 1700HRS.

Policy P3 is on a level which allows the satisfaction of policy
goals without further refinement and the policy is compiled
into the following collection of rules:
E: Queue-->NewServicerequest(ServiceID, VMaddress)
C: Queue<--Get(ServiceRequestInQueue) = 0.8 || Get(

VMaddress!=CIServer)
A: Queue<--Instantiate(newVMaddress,ServiceID)

Queue<--TransferRequest(ServiceID, newVMaddress
)

Tenant<--sendNotification(LoadReport())

E: Server--> avgMTBF(CurrentMTBF)
C: Server<--getMTBF(CurrentMTBF >0.3)

A: Server<--Set(newServer,sendNotification(
LoadReport())

E: Timer-->Alarm(time==1700)
C: true

A: Server<--Get(LoadReport)
Tenant<--LoadReport(LoadReport)

B. Resilience against DoS

This example highlight the use of refined policies to re-
sponse to challenge such as Denial of service (DoS) attack
targeted at cloud infrastructure layer. In order to confront these
challenges, a resilience mechanisms can be used that must
co-ordinate and co-operate to ensure resilience. Clearly, it is
important that an attack be mitigated rapidly to reduce the
impact to the other tenants and protect the infrastructure. Such
mechanism include but not limited to anomaly detector, flow
classifier, resilience metrics reporter, malware differentiators
etc.

Policies have been proven quite effective to configure and
coordinate the interactions between these mechanisms. For
example, specific root causes will require distinct remediation
strategies, and, when a victim VM is identified as a possible
DDoS attack, a preventive action may be applied. By having
a resilience strategy implemented with the aid of policies, as
opposite to having it hard coded, one can easily change it by
adding or removing policies, thereby permitting the modifi-
cation of the strategy during run-time. This is of particular
importance to us, as strategies for resilience are subject to fre-
quent refinements, due to changes in high level requirements.
Following, we list a few obligation policies that can be used to
reconfigure resilience services in response to events generated
by monitoring mechanisms, anomaly detection systems and
root cause analysis.

Listing 1: Example policies to remediate DoS attack
on highUtilisation(link, VM_ID)

do FlowExporter enable(link, VM_ID) &&
sandBox (VM_ID, newLocation);

//Flow exporter is disabled when link utilisation
decreases nd VM will not be sandboxed for
further analysis (P1).

on lowUtilisation(link, VM_ID)

if (LocalManager.anomalyList isEmpty(link, VM_ID
))
do FlowExporter disable(link, VM_ID);

//Policy for handling high risk alert (P2)
on highRisk (link, src, dst, VM_ID)

do

{
FlowExporter notify(highRisk(link, VM_ID));
LocalManager.anomalyList add(link, src, dst);
}

//Policy for handling high risk alert (P3)
on highRisk (link, src, dst, VM_ID)

if (LinkMonitor getUtilisation() >= 75%)
do RateLimiter limit(link, 60%);

//Configure fine grained policy (P4: classification)
on classification(flow, value, confidence, VM_ID)

if ((value == DDoS) && (confidence < 0.4))
do

{
Visualisation notify(alert(high));
RateLimiter limit(flow.src, flow.dest, x%);

}
if ((value == DDoS) && (confidence >= 0.4) && (

confidence <= 0.8))
do

{
Visualisation notify(alert(high));
RateLimiter limit(flow.src, flow.dest, y%);

}
if ((value == DDoS) && (confidence > 0.8))
do

{
Visualisation notify(alert(high));
Firewall block(flow.src, flow.dest);

}

//Configure local manager for handling low risk
alert (P5:recovery)

on lowRisk (link, src, dst)
if ((LocalManager.anomalyList remove(link, src,

dst, VM_ID)) isEmpty(link))
do

{
FlowExporter notify(lowRisk(link, VM_ID));
RateLimiter limit(link, 100%);

}

VI. CONCLUSIONS

Management and resilience of the cloud environments are
closely linked. Resilience in cloud environments need to be
managed to disseminate relevant policies to the cloud provider
that will implement them. Policies specifies actions which are
needed to deal with challenges and due to varying nature
of challenges these policies need to be further refined to be
adaptive in response to challenges. We have presented the
recent work on refinement process for policies that has iterated
phases of decompositions at its core. There are many avenues
for future work in this discipline but we are particularly
interested in policy based resilience management in the cloud.
We want to explore how example polices e.g described in
templates can be optimized with refinement process. We aim
to merge our refinement procedures develop in course of this
work with the policy analysis framework to see whether this
can be used to guide the resilience against challenges such as
DDoS attack.

8

There are a number of different conflicts that can arise
from policies. For example, some policies will trigger com-
plex management procedures which require the execution of
actions that may be specified as part of different policies.
Determining the existence of conflicting configurations for
cloud environments is of critical importance. We assume that
the system may be loaded with a number of policies to address
many different challenges simultaneously. Multiple policies
that need to coexist may specify conflicting actions on the
same virtual resources, or may trigger the activation of incom-
patible mechanisms, thereby rendering a particular resilience
strategy ineffective. We intend to investigate approaches for the
automatic identification and resolution of policy conflicts. One
possible approach around solution of this problem is the use
of meta-policies which resolve conflicting situations during
run-time.

REFERENCES

[1] S. Berman, L. Kesterson-Townes, A. Marshall, and R. Srivathsa, “The
power of cloud. driving business model innovation,” IBM Institute for
Business Value, 2012.

[2] M. Dekker, “Critical cloud computing-a ciip perspective on cloud
computing services,” white paper, December, 2012.

[3] C. Goh, A Generic Approach to Policy Description in System Manage-
ment. Hewlett Packard Laboratories, 1997.

[4] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Policy re-
finement: Decomposition and operationalization for dynamic domains,”
in Network and Service Management (CNSM), 2011 7th International
Conference on. IEEE, 2011, pp. 1–9.

[5] P. Smith, A. Schaeffer-Filho, A. Ali, M. Schöller, N. Kheir, A. Mauthe,
and D. Hutchison, “Strategies for network resilience: capitalising on
policies,” in Mechanisms for Autonomous Management of Networks and
Services. Springer, 2010, pp. 118–122.

[6] A. Schaeffer-Filho, P. Smith, and A. Mauthe, “Policy-driven network
simulation: a resilience case study,” in Proceedings of the 2011 ACM
Symposium on Applied Computing. ACM, 2011, pp. 492–497.

[7] Y. Yu, M. Fry, A. Schaeffer-Filho, P. Smith, and D. Hutchison, “An adap-
tive approach to network resilience: Evolving challenge detection and
mitigation,” in Design of Reliable Communication Networks (DRCN),
2011 8th International Workshop on the. IEEE, 2011, pp. 172–179.

[8] S. N. Shirazi, S. Simpson, S. Oechsner, A. Mauthe, and D. Hutchison, “A
framework for resilience management in the cloud,” e & i Elektrotechnik
und Informationstechnik, vol. 132, no. 2, pp. 122–132, 2015.

[9] S. N. Shirazi, S. Simpson, A. K. Marnerides, M. Watson, A. Mauthe,
and D. Hutchison, “Assessing the impact of intra-cloud live migration
on anomaly detection,” in Cloud Networking (CloudNet), 2014 IEEE
3rd International Conference on. IEEE, 2014, pp. 52–57.

[10] L. Mei, W. Chan, and T. H. Tse, “A tale of clouds: Paradigm compar-
isons and some thoughts on research issues,” in Asia-Pacific Services
Computing Conference, 2008. APSCC ’08. IEEE, Dec 2008, pp. 464–
469.

[11] P. Goyal and R. Mikkilineni, “Policy-based event-driven services-
oriented architecture for cloud services operation management,” in Cloud
Computing, 2009. CLOUD ’09. IEEE International Conference on, Sept
2009, pp. 135–138.

[12] K. W. Hamlen, L. Kagal, and M. Kantarcioglu, “Policy enforcement
framework for cloud data management.” IEEE Data Eng. Bull., vol. 35,
no. 4, pp. 39–45, 2012.

[13] B. Meyer, F. Anstötz, and C. Popien, “Towards implementing policy-
based systems management,” Distributed Systems Engineering, vol. 3,
no. 2, p. 78, 1996.

[14] H.-G. Hegering, S. Abeck, and R. Wies, “A corporate operation frame-
work for network service management,” Communications Magazine,
IEEE, vol. 34, no. 1, pp. 62–68, 1996.

[15] J. Roos, P. Putter, and C. Bekker, “Modelling management policy using
enriched managed objects,” in Proceedings of the IFIP TC6/WG6. 6
Third International Symposium on Integrated Network Management with
participation of the IEEE Communications Society CNOM and with
support from the Institute for Educational Services. North-Holland
Publishing Co., 1993, pp. 207–215.

[16] P. Kaikini, L. Lewis, R. Malik, E. Rustici, W. Scott, S. Sycamore, and
S. Thebaut, “Method and apparatus for defining and enforcing policies
for configuration management in communications networks,” Feb. 16
1999, uS Patent 5,872,928.

[17] D. C. Verma, Policy-based networking: architecture and algorithms.
New Riders Publishing, 2000.

[18] M. Casassa Mont, A. Baldwin, and C. Goh, “Power prototype: Towards
integrated policy-based management,” in Network Operations and Man-
agement Symposium, 2000. NOMS 2000. 2000 IEEE/IFIP. IEEE, 2000,
pp. 789–802.

[19] M. S. Beigi, S. Calo, and D. Verma, “Policy transformation techniques in
policy-based systems management,” in Policies for Distributed Systems
and Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE Interna-
tional Workshop on. IEEE, 2004, pp. 13–22.

[20] R. Darimont and A. Van Lamsweerde, “Formal refinement patterns
for goal-driven requirements elaboration,” in ACM SIGSOFT Software
Engineering Notes, vol. 21, no. 6. ACM, 1996, pp. 179–190.

[21] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo, “A goal-based
approach to policy refinement,” in Policies for Distributed Systems and
Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE International
Workshop on. IEEE, 2004, pp. 229–239.

[22] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou, and
A. L. Lafuente, “Using linear temporal model checking for goal-oriented
policy refinement frameworks,” in Policies for Distributed Systems and
Networks, 2005. Sixth IEEE International Workshop on. IEEE, 2005,
pp. 181–190.

[23] P. Smith, D. Hutchison, J. Sterbenz, M. Schöller, A. Fessi, M. Kar-
aliopoulos, C. Lac, and B. Plattner, “Network resilience: a systematic
approach,” Communications Magazine, IEEE, vol. 49, no. 7, pp. 88–97,
July 2011.

[24] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in commu-
nication networks: Strategies, principles, and survey of disciplines,”
Computer Networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[25] M. Scholler, R. Bless, F. Pallas, J. Horneber, and P. Smith, “An
architectural model for deploying critical infrastructure services in the
cloud,” in Cloud Computing Technology and Science (CloudCom), 2013
IEEE 5th International Conference on, vol. 1, Dec 2013, pp. 458–466.

[26] R. Bless, M. Flittner, J. Horneber, D. Hutchison, C. Jung, F. Pallas,
M. Schöller, S. N. ul Hassan Shirazi, S. Simpson, and P. Smith,
“Whitepaper ”af 1.0” seccrit architectural framework,” 2014.

[27] A. K. Bandara, E. C. Lupu, and A. Russo, “Using event calculus to
formalise policy specification and analysis,” in Policies for Distributed
Systems and Networks, 2003. Proceedings. POLICY 2003. IEEE 4th
International Workshop on. IEEE, 2003, pp. 26–39.

[28] J. D. Moffett and M. S. Sloman, “Policy hierarchies for distributed
systems management,” Selected Areas in Communications, IEEE Journal
on, vol. 11, no. 9, pp. 1404–1414, 1993.

[29] R. Boutaba and I. Aib, “Policy-based management: A historical perspec-
tive,” Journal of Network and Systems Management, vol. 15, no. 4, pp.
447–480, 2007.

[30] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou,
“A methodological approach toward the refinement problem in policy-
based management systems,” Communications Magazine, IEEE, vol. 44,

no. 10, pp. 60–68, 2006.

