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Abstract

Fault detection in industrial processes is a field of application that has gaining

considerable attention in the past few years, resulting in a large variety of tech-

niques and methodologies designed to solve that problem. However, many of

the approaches presented in literature require relevant amounts of prior knowl-

edge about the process, such as mathematical models, data distribution and

pre-defined parameters. In this paper, we propose the application of TEDA -

Typicality and Eccentricity Data Analytics - , a fully autonomous algorithm,

to the problem of fault detection in industrial processes. In order to perform

fault detection, TEDA analyzes the density of each read data sample, which is

calculated based on the distance between that sample and all the others read

so far. TEDA is an online algorithm that learns autonomously and does not

require any previous knowledge about the process nor any user-defined param-
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eters. Moreover, it requires minimum computational effort, enabling its use for

real-time applications. The efficiency of the proposed approach is demonstrated

with two different real world industrial plant data streams that provide “nor-

mal” and “faulty” data. The results shown in this paper are very encouraging

when compared with traditional fault detection approaches.

Keywords: fault detection, industrial processes, typicality, eccentricity,

TEDA, autonomous learning.

1. Introduction

Nowadays, industries from a variety of production sectors increasingly seek

to meet the market requirements, such as production increase, continuity and

reliability of the processes, in addition to safety and environmental restrictions.

In order to cope with these challenges, industries have been investing more5

and more in automation of the production processes, increasing the general

complexity of the systems. Thus, process maintaining becomes a complex task

due to the large number of equipment and variables that need to be monitored.

Therefore, there is a growing demand for robust and reliable industrial con-

trol and monitoring systems. The industrial process should be able to perform a10

specified function, under determined conditions, in a given period of time, while

remaining safe for people, equipment and the environment (Isermann, 2006).

Moreover, these systems should be efficient in the sense of being able to handle

large amounts of variables and data provided by the equipment of the plant.

One of the approaches for tackling both problems is to increase quality,15

safety and robustness of the sensors, actuators and controllers, in addition to

the structure of the plant itself. However, over time, the industrial equipment

are likely to show a number of signs of degradation, such as exhaustion, dirt,

corrosion, cracks, damage caused by operators, among others. The appearance

of such signs turns the plant susceptible to fault occurrences during its operation.20

A fault consists of an unpermitted deviation of at least one characteristic

property or variable in a system from its acceptable, usual or standard condi-
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tion (Isermann, 1997). In an industrial process, a fault can be defined as an

unexpected change on the functioning of one or more process components that

can lead it to a critical situation. Sometimes, a fault may cause a number of25

problems, such as unexpected stoppages, production losses, reduction of equip-

ment lifespan, or even accidents with severe consequences to the environment

and human life (Venkatasubramanian, 2003).

Very often, a fault-free process is not feasible. Thus, the use of a fault

detection and diagnosis (FDD) system becomes crucial (Ding, 2008). FDD30

systems usually are responsible for the increase of process availability, reliability

and safety, in addition to cost reduction and more efficient maintaining. A FDD

system is often integrated to the traditional supervision and control systems, as

shown in Figure 1.

Figure 1: FDD system scheme.

The FDD systems work by monitoring process variables and analyzing their35

behaviors. Therefore, they should be able to determine the occurrence of a fault

- fault detection - , its location and cause - fault diagnosis - , by analyzing process

inputs/outputs and sending information regarding the fault to the supervisory

system. Therewith, the operator is able to decide how and when to act in order

to avoid a critical state of the process. With this strategy, it is possible to avoid40

unnecessary stoppages and accidents.

High demands for monitoring and fault detection in industrial systems re-

sulted in research and development of many FDD techniques in the last few

decades using different data analytics methods. These methods are often clas-

sified as model-based and process history-based (Venkatasubramanian et al.,45
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2003; Katipamula and Brambley, 2005).

Model-based methods use the concept of residual analysis. In this type of

approach, the residual error, which consist of the difference between a value

measured on the output and a value estimated from a previously defined quan-

titative or qualitative model, is calculated and considerable difference between50

the estimated and measured values might indicate the presence of a fault.

On the other hand, process history-based methods do not required pre-

defined models of the system. These methods, also known as data-driven, ana-

lyze the temporal evolution of data from the system in order to detect anomalies

in its behavior.55

Many different approaches have been used to tackle FDD problems, includ-

ing fuzzy systems (Mendonça et al., 2009; Oblak et al., 2007; Yang et al., 2011),

state observers (Zhou et al., 2014; Sobhani and Poshtan, 2011; Li and Yang,

2012; Chen and Saif, 2007), neural networks (Yuan et al., 2015; Mrugalski and

Korbicz, 2007; Zhou et al., 2011; Leite et al., 2009), principal component analy-60

sis (Cui et al., 2008), support vector machines (Zeng et al., 2013), parity equa-

tions (Zakharov et al., 2013), analytical redundancy (Halder and Sarkar, 2007;

Anwar and Chen, 2007; Xu and Tseng, 2007; Serdio et al., 2014b,a) and im-

mune system-based methods (Laurentys et al., 2010a,b). One of the main dis-

advantages of most of these approaches is that they require a pre-defined model65

(quantitative or qualitative) of the system, mathematically defined or estimated

by offline training.

However, most of the mentioned approaches are limited in the sense that they

require some kind of previous knowledge about the characteristics of the process.

Therefore, the availability of mathematical, physical or behavioral models or the70

non-intuitive definition of parameters and thresholds are required. Moreover,

large databases and extensive training are often mandatory.

Recently, methods for outlier detection have been applied to different prob-

lems, including fault detection in industrial problems (Hodge and Austin, 2004;

Chandola et al., 2007; Singh and Upadhyaya, 2012). An outlier consists of an75

element from a data set that is significantly distinct from the other elements.
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Considering a signal obtained from an industrial plant, an outlier might indicate

an anomaly or fault in the process.

Generally, the data in an industrial process is obtained continuously, in real

time and, thus, outlier detection methods must be able to handle the data in the80

form of data streams. Therefore, each sample analyzed has a temporal aspect

and is only available at the instant of the acquisition. In this context, an outlier

is detected from the observation of a sequence of data samples analyzed over

time.

Accordingly, other important aspects should be considering when choosing85

an outlier detection method, such as computational effort when handling high

dimensional streaming data. Hence, information about past data samples must

be stored and analyzed without compromising memory and execution time.

Many authors address such problem with time series analysis (Hu and Dong,

2015) and outlier detection methods, thoroughly discussed in Chandola et al.90

(2007) and Hodge and Austin (2004), which include Statistical Modeling (Ma

et al., 2013; Yan et al., 2016), Neural Networks (King et al., 2002; Li et al.,

2002), Spectral Decomposition (Fujimaki et al., 2005) and Rule-based Sys-

tems (Ramezani and Memariani, 2011).

In this work, we deal solely with the fault detection stage, omitting, then,95

the diagnosis stage. This is an application of the anomaly detection field of

study, consisting of a “one-class” classification problem, by deciding whether a

data sample belongs to the “normal” class or not (fault).

In order to solve this problem, we will make use of a recently proposed ap-

proach to anomaly detection within a data stream. Typicality and Eccentricity100

Data Analytics (TEDA) is based on the spatial proximity among the data sam-

ples and has been successfully applied to anomaly detection (Bezerra et al.,

2015), clustering, classification, regression, among other problems (Kangin and

Angelov, 2015).

This paper presents a practical application of TEDA algorithm to two dif-105

ferent real world industrial fault detection problems. The first application uses

the well known DAMADICS fault detection benchmark, that provides real data
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(not simulated) from the operation of a sugar factory plant. The second ap-

plication consists of a laboratory pilot plant for process control, equipped with

real industrial instruments.110

The remainder of this paper is organized as follows. Section 2 presents the

theoretical concepts of the fault detection method used in this work. Section 3

details both data sets used for validation of the proposed approach. Section 4

presents the obtained results. Finally, Section 5 presents final remarks, open

problems and future work.115

2. TEDA

The approach used in this paper for fault detection is based on TEDA al-

gorithm. TEDA was introduced by Angelov (2014) and builds upon the RDE

(Recursive Density Estimation) algorithm family. Since then, TEDA was ap-

plied to different detection and classification problems (Kangin and Angelov,120

2015; Costa et al., 2015b). The word “typicality” is related to the similarity of

a particular data sample to an entire data set in the sense of spatial proximity

on a n-dimensional feature space. On the other hand, “eccentricity” reflects

how distinct is a data sample from the data group. A data sample with high

eccentricity and, thus, low typicality, is very likely to be an outlier.125

TEDA approach presents many advantages over the traditional statistical

methods for anomaly detection. The first one that should be mentioned is that

TEDA does not require any a priori knowledge about the analyzed data set.

Therefore, previously known mathematical models or user-defined parameters

are not necessary. Moreover, TEDA does not rely on assumptions about data130

distribution or independence of data, which very often do not hold in real world

applications.

Another major advantage is that TEDA is a recursive algorithm, enabling

large amounts (theoretically infinite) of data in the form of data streams to be

processed with very low computational effort, very fast, online and in real-time,135

allowing its application to fault detection in industrial processes.
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To exemplify the ideas of typicality and eccentricity, consider the data sets

illustrated in Figure 2. It is easy to understand that the point P1 in Figure 2(a),

regarding spatial proximity to all the other points in the data set, is very “typ-

ical”, while the point P2 in Figure 2(b) is more “eccentric”. In other words, the140

sum of distances from P to all the other data points, or how close the point P

is to the data set, determines the degree of membership from P to the group.

(a) (b)

Figure 2: membership of a sample P to a data set.

In order to formulate this idea, consider a data space X ∈ ℜn, consisting of

a set of observations in the n-dimensional feature space, as an ordered sequence

{x1, x2, . . . , xk, . . .}, xi ∈ R
n, i ∈ N, where k represents the discrete time instant

of the observation. Consider d(xi, xj) the distance between the samples xi and

xj , where Euclidean, Mahalanobis, cosine or any other formulations can be used.

For the entire data set, which is in the form of a data stream, we define

πk(x) =
k∑

i=1

d(x, xi) (1)

as the sum distance a particular observation x ∈ X, for each element up to the

k-th one.

The eccentricity ξ of the data sample x at the time instant k can be defined

as (Angelov, 2014)

ξk(x) =
2πk(x)

∑k

i=1 π
k(xi)

= 2

∑k

i=1 d(x, xi)∑k

i=1

∑k

j=1 d(xi, xj)
, (2)

k ≥ 2,
k∑

i=1

πk(x) > 0
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The typicality τ of the data sample x at the time instant k is defined as a

complement to the eccentricity as (Angelov, 2014)

τ(xk) = 1− ξk(x) (3)

The eccentricity and typicality are both bounded (Angelov, 2014):

0 ≤ ξk(x) ≤ 1,
k∑

i=1

ξk(xi) = 2,

0 ≤ τk(x) ≤ 1,
k∑

i=1

τk(xi) = k − 2,

k ≥ 2,

k∑

i=1

πk(xi) > 0

Eccentricity ξ can be calculated recursively. It can be shown, that equation 2

can be derived as (Angelov, 2014)

ξk(x) =
1

k
+

(µk
x − x)T (µk

x − x)

k[σk
x]

2
µk
x =

(k − 1)µk−1
x

k
+

xk

k
, k ≥ 1, µ0

x = 0

(4)

µk
xT x =

(k − 1)µk−1

xT x

k
+

xT
k xk

k
, k ≥ 1, µ0

xT x = 0

(5)

[σk
x]

2 = µk
xT x − [µk

x]
Tµx (6)

where the mean µk
x and the variance k[σk

x]
2 are recursively updated.145

In a similar manner, typicality can be calculated as (Angelov, 2014)

τk(x) = 1− ξk(x) =
k − 1

k
−

(µk
x − x)T (µk

x − x)

k[σk
x]

2
(7)

Finally, the normalized eccentricity can be calculated by (Angelov, 2014)

ζk(x) =
1

2k
+

(µk
x − x)T (µk

x − x)

2k[σk
x]

2
(8)

The recursive nature of TEDA provides an efficient algorithm with very low

computational cost, processor- and memory-wise. It does not require storing

14



previous data observations in memory and only the mean and variation are

needed for the calculation of ξk. Although the data samples are not stored,

there is no data loss regarding eccentricity and typicality. Thus, TEDA is very150

suitable for a wide range or real-time problems, including those with limited

computational resources and where fast response is necessary.

TEDA is part of the fast growing set of methods known as autonomous

learning systems (Angelov, 2012). The whole life-cycle of the algorithm is data-

driven and, therefore, user- or problem-defined parameters are not necessary.155

Fault detection problems, on the other hand, may be frequently seen as one-

class classifiers. Thus, the task of defining the boolean membership to a certain

group of data (e.g. normal or faulty) requires the definition of a threshold which,

very often, does not need to be static.

A very well known principle for outlier detection is the use of the so called

“mσ” thresholds (Bernieri et al., 1996). However, using mσ requires the prior

strict assumption of a Gaussian distribution - one of the problems that TEDA

tries to avoid. However, for any distribution, but, assuming a representatively

large amount of independent data samples, it is possible to use the well known

Chebyshev inequality (Saw et al., 1984), which states that no more than 1/m2 of

the data observations are more thanmσ away from the mean, where σ represents

the standard deviation of the data. The authors in (Bernieri et al., 1996) show

that the condition that provides exactly the same result (but without making

any assumptions on the amount of data, their independence and so on) as the

Chebyshev inequality can be given as:

ζk >
m2 + 1

2k
, m > 0 (9)

3. Experimental Setup160

In order to validate the technique for fault detection problems, data from two

real-world (not simulated) industrial plants were used. Therewith, the proposed

approach needs to handle all characteristics that are intrinsic to real processes,
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such as inertia, environmental noise, uncertainties, unpredictable disturbances

and so on. The following subsections present both experimental setups.165

3.1. DAMADICS Benchmark

The first data set used was obtained from the well known DAMADICS (De-

velopment and Application of Methods for Actuator Diagnosis in Industrial

Control Systems) benchmark (Bartys et al., 2006; DAMADICS), which has

been largely used for fault detection and diagnosis and, thus, many different170

proposals and experimental results are available in literature.

DAMADICS benchmark provide an extensive set of real data collected from

a water evaporation process in a Polish sugar factory. This process consists

of three actuators, where each one of them is used for flow control of a specific

part of the process. DAMADICS is based on the actuator presented in Figure 3,175

which consists of the following components:

• Control valve: controls water flow in the pipes.

• Pneumatic servomotor: consists of a rod connected to the control valve,

allowing opening variations.

• Positioner: used for internally handle incorrect rod positioning caused by180

friction, pressure variations and so on.

DAMADICS provides a software toolbox for MATLAB/SIMULINK that al-

lows simulation and real-time monitoring of 19 different types of fault. However,

we chose to use only the real (not simulated) data set provided. The data is

organized in several files, where each file refers to a full working day of the185

plant. Each file contains data from 32 different variables/signals, with a sam-

pling rate of 1 sample/second. Thereby, each file provides a total of 86,400 x 32

observations.

The data set contains observations of 25 full working days of the plant,

however, only 4 of them present faulty behaviors, introduced in different periods190

of the day, therefore, only such files were used. There are 4 different types
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(a) (b)

Figure 3: model of the actuator used in DAMADICS. (Adapted from DAMADICS)

of faults, corresponding to the fault codes f16, f17, f18 e f19 defined by the

benchmark, as described in Table 1.

Table 1: fault codes and descriptions of DAMADICS.

Fault code Description

f16 Positioner supply pressure drop

f17 Unexpected pressure drop across the valve

f18 Partly opened bypass valve

f19 Flow rate sensor fault

A total of 19 fault items were added to the plant in each of its three actua-

tors. Since these faults are from different types and occur in different actuators,195

different subsets of signals/variables were used to analyze each of the fault items.

The selection of the features to be analyzed is based on the information pre-

sented in DAMADICS manual (DAMADICS). Table 2 presents the signals used

for each of the analyzed fault items.

Figure 4 shows the variables x1 and x2, respectively the signals FC57 03CV200

and FC57 03X of the process, representing the fault item #12, where the fault

period is indicated by vertical red dotted lines.
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Table 2: signals analyzed for fault detection.

Item Actuator Fault type Monitored variables

#1

1

f18 LC51 03CV LC51 03PV

#2 f16 LC51 03CV LC51 03PV

#3 f18 LC51 03CV LC51 03PV

#4 f18 LC51 03CV LC51 03PV

#5 f18 LC51 03CV LC51 03PV

#6 f16 LC51 03CV LC51 03PV

#7 f17 LC51 06 T51 01

#8

2

f17 P57 03 P57 04

#9 f17 P57 03 P57 04

#10 f19 FC57 03CV FC57 03X

#11 f19 FC57 03CV FC57 03X

#12 f19 FC57 03CV FC57 03X

#13 f17 P57 03

#14

3

f18 LC74 20CV LC74 20X

#15 f16 LC74 20CV LC74 20X

#16 f16 LC74 20CV LC74 20X

#17 f16 LC74 20CV LC74 20X

#18 f16 F74 00 LC74 20X

#19 f19 F74 00 LC74 20X

3.2. Pilot Plant

The second data set used in this work was obtained from a laboratory pilot

plant (do Brasil) and used in different fault detection and diagnosis applica-205

tions (Costa et al., 2014, 2015a; Precup et al., 2015). The plant, which is shown

in Figure 5, consists of two tanks, connected by a piping system, allowing liquid

flow between them. Moreover, the plant provides data from several sensors,

such as level, flow, pressure, and temperature. The flow between the two tanks

is controlled by two pneumatic control valves and a centrifugal pump. The plant210
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Figure 4: behavior of the fault item #12.

is controlled by a Programmable Logical Controller (PLC) and all sensors and

actuators are real-size devices and often used in real industrial environments.

Figure 5: Laboratory pilot plant.

Figure 6 illustrates the working scheme of the pilot plant. The liquid from

the tank T1 is transferred to the tank T2 by gravity, passing through valve

V1. The liquid is transferred from T2 to T1 by pressure generated in pump C1,215

passing through valve V2. The flow can be controlled by valve opening and/or

pressure from the pump.
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Figure 6: Scheme of the pilot plant.

Using a level control application on the pilot plant, 23 different fault items

were artificially generated. Some of the faults were physically generated (e.g.

tank leakages) while others were inserted by software (e.g. actuator offsets).220

Table 3 describes the whole set of generated faults. The generated fault items

are divided in three main groups, described as follows:

• Actuator and Sensor: faults generated by software, by applying fixed offset

values to the centrifugal pump.

• Structural: faults in the structure of the plant, that might be generated225

physically or by software. They represent physical problems in the equip-

ment of the plant, such as valves and tanks.

• Disturbance: consist of unexpected changes in the output of the plant.

Generated by the manual addition of different amounts of water to tank

T1 during plant operation.230

In each data stream, data were collected from normal, faulty and, again,

normal operation of the plant. The sampling period used in this experiment

20



Table 3: fault items generated on the pilot plant.

Fault item Group Description

#1

Actuator and Sensor

+2% actuator offset

#2 +4% actuator offset

#3 +8% actuator offset

#4 -2% actuator offset

#5 -4% actuator offset

#6 -8% actuator offset

#7 +2% sensor offset

#8 +4% sensor offset

#9 +8% sensor offset

#10 -2% sensor offset

#11 -4% sensor offset

#12 -8% sensor offset

#13

Structural

66% tank leakage

#14 100% tank leakage

#15 30% stuck valve V1

#16 50% stuck valve V1

#17 85% stuck valve V1

#18 100% stuck valve V1

#19 25% stuck valve V2

#20 50% stuck valve V2

#21 75% stuck valve V2

#22
Disturbance

Low disturbance

#23 High disturbance

is 100ms and the dataset consists of several files, one for each stream/fault

occurrence, following the format described in Table 4.

As an example of data stream, Figure 7 presents a chart for fault item235

#02, as available in the mentioned data set. The variables setpoint (r), process

21



Table 4: monitored variables in each data stream.

Variable Description

k discrete time

setpoint (r) reference signal

control signal (u) pressure applied to B1

process variable (y) level on T1

variable (y) and control signal (u) are visible in the chart. Fault occurrences

are bounded by vertical dashed lines. As one may notice, the plant is started

in a normal state of operation and, after approximately t = 20s, fault #02 is

initiated, being easily noticed by the high oscillation of the control signal (and240

minor oscillation on the plant output). The normal state of operation is, again,

achieved around t = 110 and this format is repeated for the other fault items.

0 50 100 150

20

30

40

50

Time(s)

(r)

(y)

(u)

Figure 7: behavior of fault #22 over time.

4. Results

The results of this work were obtained by applying TEDA to each of the fault

items described in Section 3. There is a total of 19 fault items for DAMADICS245

benchmark and 23 fault items for the pilot plant experiment. In each of these

fault streams we define an interval of occurrence and an interval of analysis of

the fault. Figure 8 illustrates the definition of both intervals.
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(a) (b)

Figure 8: Interval of occurrence and interval of analysis of a generic fault.

Interval of occurrence of a fault is the time frame in which all collected data

observations belong to a faulty state, while interval of analysis is the time frame250

used to obtain hit/miss rates, to be described further in this section, containing

both normal and faulty data samples. As one may notice in Figure 8, the interval

of analysis of the fault is started with a sequence of normal samples, followed

by a sequence of faulty samples and finalized, again, with a sequence of normal

samples, as illustrated in Figure 8(a). However, for some exceptional cases, the255

process does not return to its original state after the occurrence of the fault, as

shown in Figure 8(b).

Concerning to the interval of the fault occurrence, for DAMADICS, this in-

terval was defined according to the description manual of the benchmark (DAMADICS).

For the pilot plant, the interval of occurrence was experimentally defined (Costa260

et al., 2014). In relation to the analysis interval, it was defined as the whole

data stream, from the first to the last collected sample.

It should be stressed that the interval of occurrence and interval of analysis

are used solely for obtaining hit/miss rates, by comparing, for each read data

sample, the output from the detection system to the actual state of the plant.265

These intervals are not used for calculation/analysis/decision making of any

kind.

Moreover, it is important to remember that in a real application, where the

data is collected online, the location of the fault is unknown. Therefore, it is

not possible to accurately obtain the interval of fault occurrence. However, to270

measure the efficiency of the method, it is necessary to know the exact beginning
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and end of each fault. If these limits were unknown, the hit/miss rate method

would be infeasible.

The metrics used for performance analysis are based on the hit/miss count,

both for faulty and normal data observations. They are described as follows.275

True positive rate (TPR) determines the percentage of faulty data samples

correctly detected and is defined as

TPR =
nf

Nf

100 (10)

where nf is the number of correctly detected faulty samples and Nf is the total

of faulty samples within the interval of analysis.

False positive rate (FPR) determines the percentage of normal data samples280

incorrectly detected as faulty samples, being defined as

FPR =
nn

Nn

100 (11)

where nn is the number of normal samples incorrectly detected as faulty samples

and Nn is the total of normal samples within the interval of analysis.

Finally, total hit rate (THR) determines the percentage of correctly classified

data samples, both in normal and faulty states and is defined as285

THR =
nt

Nt

100 (12)

where nt is the number of correctly classified samples and Nt is the total of

data samples within the interval of analysis. Therefore, for each of the analyzed

fault streams, we calculate TPR, FPR and THR. The results obtained for each

specific experiment are shown as follows.

4.1. Obtained Result Using the DAMADICS Benchmark290

The detailed results obtained from the experiments using DAMADICS bench-

mark are presented in Table 5. The average value obtained from THR, consider-

ing all the 19 fault streams is 98.38% . This result presents the TEDA efficiency

in the correct detection of the condition for each sample analyzed.
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Furthermore, another very important result is that the average number of295

false positives obtained was very low, FPR = 1.26%. In relation to the samples

in a fault condition correctly detected, the result was also quite relevant. The

TPR average value obtained was 74.96%. Still, the value was limited once TEDA

failed to detect two of the analyzed fault items (fault items #4 and #13).

Table 5: results obtained with DAMADICS benchmark.

Item Actuator TPR FPR THR

#1

Actuator 1

92.01% 6.49% 93.49%

#2 83.33% 1.20% 98.75%

#3 36.63% 1.42% 98.50%

#4 0.00% 1.47% 98.41%

#5 72.28% 2.67% 97.30%

#6 73.27% 2.67% 97.30%

#7 100% 0.54% 99.46%

#8

Actuator 2

93.33% 0.29% 99.71%

#9 91.30% 0.28% 99.71%

#10 91.67% 0.17% 99.83%

#11 89.74% 0.17% 99.83%

#12 93.02% 0.16% 99.83%

#13 0.09% 0.22% 93.32%

#14

Actuator 3

80.76% 1.52% 98.36%

#15 68.63% 0.65% 99.33%

#16 83.52% 0.60% 99.38%

#17 83.93% 1.09% 98.91%

#18 93.65% 1.15% 98.84%

#19 97.16% 1.09% 98.91%

Mean 74.96% 1.26% 98.38%

It is easy to observe that the experiments resulted in high THR for all300

analyzed items. For example, for the fault stream #7, the total hit rate obtained
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is THR = 99.46%, where all faulty data samples were correctly classified (TPR

= 100%), with very low false positive rate (FPR = 0.54%). Similar results

may be observed for different fault items. Figure 9, for example, presents the

visual outcome of TEDA algorithm for the fault stream #1. The m = 3, or305

equivalently (5/k), threshold was used in these experiments.

5.85 5.9 5.95 6 6.05

·104

30

40

50

60

Time(s)

x1

x2

(a)

5.85 5.9 5.95 6 6.05

·104

0

0.5

1

1.5

·10−3

Time(s)

ζ

5/k

(b)

Figure 9: results obtained for fault item #1: (a) input vector x and (b) normalized eccentricity

ζ with 5/k threshold.

Figure 9(a) illustrates the behavior of two input variables (x1 and x2) an-

alyzed by TEDA, where the beginning and end of the fault are indicated by

red dotted vertical lines. One may observe the occurrence of abrupt changes in

both signals x1 and x2 at the exact instants where the fault begins and ends.310
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These changes are immediately followed by the eccentricity signal, indicated in

Figure 9(b), increasing its value (and surpassing the threshold) at the beginning

and decreasing it after the end of the fault.

Regarding false positives, the value of FPR < 1.00% was obtained for 9

fault items. Among them, one can highlight the fault #12 where, in addition315

to the lack of false positives (FPR = 0.16%), a TPR = 93.02% was obtained.

Figure 10 presents the visual outcome of TEDA algorithm for fault item #12.
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Figure 10: results obtained for fault item #12: (a) input vector x and (b) normalized eccen-

tricity ζ with 5/k threshold.

It should be highlighted that the eccentricity significantly increases if the

values of one or more input variables change, specially in the case of abrupt
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deviations. Similarly, Figure 11 presents the obtained results for fault item #2.320
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Figure 11: results obtained for fault item #2: (a) input vector x and (b) normalized eccen-

tricity ζ with 5/k threshold.

DAMADICS benchmark introduces the definition of a set of indexes that

should be calculated for fair comparison with other fault detection methods ap-

plied to the same benchmark. However, in our work, different metrics were used

for result analysis. Therefore, direct comparison with other existing techniques

is not an easy nor fair task, since 1) different metrics were chosen for analysis of325

the results that focus mainly on the aspect of detection of outliers in the data

streams provided by DAMADICS and 2) to the best of our knowledge, it is the

first application of a fully autonomous, online and data-driven method to the
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referred benchmark.

4.2. Results obtained using the pilot plant330

Table 6 presents the results obtained using the laboratory pilot plant, where

the mean TPR = 83.30%, the mean FPR = 0.50% and the mean THR =

97.12% were achieved. When comparing these results with those obtained from

DAMADICS benchmark, it is easy to observe that the obtained results in both

experiments were very similar.335

Note that the TEDA was applied in two different plants, under different types

and severities of faults and, still, presented good results in both cases. Some

features of TEDA deserve to be highlighted one more time. TEDA does not

need any training or pre-defined model of the process. It operates autonomously

with the data set presented to the algorithm, using solely statistical information340

extracted from the data stream.

In order to graphically represent the results obtained with TEDA for the

pilot plant, Figure 12 presents the charts for fault #1. More specifically, in

Figure 12(a) the input signals (x1 and x2) are presented. Note that x2 is very

oscillatory during the faulty state. This oscillation is due to the fact that the345

controller is trying to compensate the effect of the fault. Nevertheless, TEDA

was able to detect most of the faulty samples, since that, for fault #1, we

obtained a THR = 98.87% and a TPR = 93.82%, regardless of a FPR = 0.00%.

In Figure 12(b) the behavior of the eccentricity ζ and the threshold 5/k is shown.

It should be noted that the value of ζ reflects the oscillations from the input350

signals.

Figure 13 illustrates the behavior of TEDA when applied to fault #15.

Again, the signal x2, as shown in Figure 13(a) is very oscillatory during the

fault, which is reflected in the eccentricity shown in Figure 13(b).

The results, again, were successful if we consider the values of TPR =355

96.62%, FPR = 0.12% and THR = 97.41%. Is should be highlighted that,

around k = 30, 200, there is a noticeable oscillation in x2, resulting in a small
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Table 6: results obtained with the laboratory pilot plant.

Item Actuator TPR FPR THR

#1

Actuator 1

93.82% 0.00% 98.87%

#2 93.36% 0.00% 98.05%

#3 73.60% 0.05% 97.69%

#4 85.55% 0.01% 97.58%

#5 95.82% 0.01% 97.25%

#6 88.79% 0.02% 98.13%

#7 99.93% 0.15% 94.83%

#8

Actuator 2

99.90% 0.22% 96.42%

#9 99.88% 0.28% 96.26%

#10 99.87% 0.16% 96.82%

#11 99.87% 0.18% 97.05%

#12 99.85% 2.67% 95.92%

#13 42.32% 0.24% 96.55%

#14

Actuator 3

54.03% 0.04% 97.71%

#15 96.62% 0.12% 97.41%

#16 96.90% 2.57% 96.38%

#17 30.81% 0.03% 96.09%

#18 42.13% 0.21% 97.50%

#19 93.62% 0.08% 97.33%

#20 94.40% 0.07% 97.40%

#21 88.43% 0.10% 97.52%

#22 51.64% 3.89% 97.33%

#23 94.15% 0.32% 97.60%

Mean 83.30% 0.50% 97.12%

set of false positive samples, which is promptly corrected further in the experi-

ment.
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Figure 12: results obtained for fault stream #1: (a) input signals and (b) normalized eccen-

tricity ζ with threshold = 5/k.

5. Conclusion360

This paper presented a new approach to fault detection in industrial pro-

cesses. This approach is based on TEDA, a recently introduced algorithm for

anomaly detection in data streams. In order to validate the proposal, TEDA

algorithm was applied to two different real-world datasets, in the form of online

data streams, collected from two industrial plants.365

The obtained results have shown that TEDA was very efficient in both fault

detection applications, presenting high hit and low miss rates. The results are

even more significant if we consider that TEDA is fully autonomous, does not
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Figure 13: results obtained for fault stream #15: (a) input signals and (b) normalized eccen-

tricity ζ with threshold = 5/k.

require any training stages nor previous knowledge about the system, it is able

to start from scratch, from the very first acquired data sample, and is free370

of user-defined parameters. The algorithm is also fast and require very low

computational effort, being very suitable for real-time applications such as fault

detection in industrial processes.

It should be noted that the proposed approach might not be fully suitable

for incipient/gradual/smooth faults, that might not be easily distinguished from375

concept drift. Moreover, it might be sensible to natural signal oscillation, par-

ticularly if the “concept of normality” is not well established, i.e. the period
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of normal behavior is not significantly long. Nevertheless, these disadvantages

are easily overcome by the previously mentioned advantages, particularly in

applications where detailed information about the system, expertise from the380

operator or high computational power is not available.

It is also worth mention that the classification of a data sample as “normal”

or “fault” is based on the threshold (m2 + 1)/2k and, thus, on the parameter

m. Although it can be defined from different criteria, m = 3 is largely used

in literature (Cook et al., 1997; Liukkonen and Tuominen, 2004) as a standard385

value and presents satisfactory results for different data sets and different con-

figurations. The value of the threshold directly influences the sensibility of the

detection system. Lower values of m will result in more sensibility to oscillation

and vice versa. Obviously, m = 3 might not be an optimal value and future

work can be directed to autonomous adaptation of such parameter.390

As future work, TEDA algorithm will be used for both detection and classi-

fication (i.e. determination of location/cause/severity) of real-world industrial

faults, working as central core of a new unsupervised classification algorithm.

References

Angelov, P., 2012. Autonomous Learning Systems: From Data Streams to395

Knowledge in Real-time. Wiley. URL: https://books.google.com.br/

books?id=Cj5A01JxuxIC.

Angelov, P., 2014. Anomaly detection based on eccentricity analysis, in: Proc.

IEEE Symposium Series in Computational Intelligence (SSCI 2014), Orlando,

Florida, U.S.A.400

Anwar, S., Chen, L., 2007. An analytical redundancy-based fault detection

and isolation algorithm for a road-wheel control subsystem in a steer-by-wire

system. Vehicular Technology, IEEE Transactions on 56, 2859–2869.

Bartys, M., Patton, R., Syfert, M., de las Heras, S., Quevedo, J., 2006. Intro-

33



duction to the damadics actuator fdi benchmark study. Control Engineering405

Practice 14, 577–596.

Bernieri, A., G., B., C., L., 1996. On-line fault detection and diagnosis ob-

tained by implementing neural algorithms on a digital signal processor. IEEE

Transactions on Instrumentation and Measurement 45, 894899.

Bezerra, C., Costa, B., Guedes, L.A., Angelov, P., 2015. A comparative study of410

autonomous learning outlier detection methods applied to fault detection, in:

Proc. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015),

Istanbul, Turkey.

do Brasil, D.L., . De lorenzo do brasil web site. http://www.delorenzo.com.

br/. Accessed: 15 december 2015.415

Chandola, V., Banerjee, A., Kumar, V., 2007. Outlier detection: a survey.

Technical Report. University of Minnesota.

Chen, W., Saif, M., 2007. Observer-based strategies for actuator fault detec-

tion, isolation and estimation for certain class of uncertain nonlinear systems.

Control Theory Applications, IET 1, 1672–1680.420

Cook, G.E., Maxwell, J.E., Barnett, R.J., Strauss, A.M., 1997. Statistical pro-

cess control application to weld process. IEEE Transactions on Industry

Applications 33, 454–463. doi:10.1109/28.568010.

Costa, B.S.J., Angelov, P., Guedes, L.A., 2014. Real-time fault detection using

recursive density estimation. Journal of Control, Automation and Electrical425

Systems 25, 428–437. doi:10.1007/s40313-014-0128-4.

Costa, B.S.J., Angelov, P., Guedes, L.A., 2015a. Fully unsupervised fault

detection and identification based on recursive density estimation and self-

evolving cloud-based classifier. Neurocomputing 150, 289–303. doi:10.1016/

j.neucom.2014.05.086.430

34



Costa, B.S.J., Bezerra, C.G., Guedes, L.A., Angelov, P.P., 2015b. On-

line fault detection based on typicality and eccentricity data analytics, in:

2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–6.

doi:10.1109/IJCNN.2015.7280712.

Cui, P., Li, J., Wang, G., 2008. Improved kernel principal compo-435

nent analysis for fault detection. Expert Systems with Applications 34,

1210 – 1219. URL: http://www.sciencedirect.com/science/article/

pii/S095741740600409X, doi:http://dx.doi.org/10.1016/j.eswa.2006.

12.010.

DAMADICS, . Damadics information web site. http://diag.mchtr.pw.edu.440

pl/damadics/. Accessed: 15 december 2015.

Ding, S.X., 2008. Model-based Fault Diagnosis Techniques: Design Schemes,

Algorithms, and Tools. 1st ed., Springer Publishing Company, Incorporated.

Fujimaki, R., Yairi, T., Machida, K., 2005. An approach to spacecraft anomaly

detection problem using kernel feature space, in: Proceeding of the eleventh445

ACM SIGKDD international conference on Knowledge discovery in data min-

ing - KDD 0́5, Association for Computing Machinery (ACM). URL: http:

//dx.doi.org/10.1145/1081870.1081917, doi:10.1145/1081870.1081917.

Halder, B., Sarkar, N., 2007. Robust fault detection and isolation

in mobile robot, in: Zhang, H.Y. (Ed.), Fault Detection, Supervi-450

sion and Safety of Technical Processes 2006. Elsevier Science Ltd, Ox-

ford, pp. 1407 – 1412. URL: http://www.sciencedirect.com/science/

article/pii/B9780080444857502372, doi:http://dx.doi.org/10.1016/

B978-008044485-7/50237-2.

Hodge, V., Austin, J., 2004. A survey of outlier detection methodologies. Artif.455

Intell. Rev. 22, 85–126. doi:10.1023/B:AIRE.0000045502.10941.a9.

Hu, J., Dong, K., 2015. Detection and repair faults of sensors in sampled

control system, in: Fuzzy Systems and Knowledge Discovery (FSKD), 2015

35



12th International Conference on, pp. 2343–2347. doi:10.1109/FSKD.2015.

7382319.460

Isermann, R., 1997. Supervision, fault-detection and fault-diagnosis methods -

an introduction. Control Engineering Practice 5, 639–652.

Isermann, R., 2006. Fault-Diagnosis Systems. An Introduction from Fault De-

tection to Fault Tolerance. 1 ed., Springer.

Kangin, D., Angelov, P., 2015. Evolving clustering, classification and regression465

with TEDA, in: Proc. IEEE The International Joint Conference on Neural

Networks (IJCNN 2015), IEEE.

Katipamula, S., Brambley, M.R., 2005. Review article: Methods for fault de-

tection, diagnostics, and prognostics for building systemsa review, part i.

HVAC&R Research 11, 3–25.470

King, S., King, D., Astley, K., Tarassenko, L., Hayton, P., Utete, S., 2002. The

use of novelty detection techniques for monitoring high-integrity plant, in:

Proceedings of the International Conference on Control Applications, Insti-

tute of Electrical & Electronics Engineers (IEEE). URL: http://dx.doi.

org/10.1109/CCA.2002.1040189, doi:10.1109/cca.2002.1040189.475

Laurentys, C., Palhares, R., Caminhas, W., 2010a. Design of an artificial im-

mune system based on danger model for fault detection. Expert Systems with

Applications 37, 5145 – 5152.

Laurentys, C., Ronacher, G., Palhares, R., Caminhas, W., 2010b. Design of an

artificial immune system for fault detection: A negative selection approach.480

Expert Systems with Applications 37, 5507 – 5513.

Leite, D.F., Hell, M.B., Jr., P.C., Gomide, F., 2009. Real-time fault diagnosis

of nonlinear systems. Nonlinear Analysis: Theory, Methods & Applications

71, e2665 – e2673.

36



Li, X.J., Yang, G.H., 2012. Dynamic observer-based robust control and fault485

detection for linear systems. Control Theory Applications, IET 6, 2657–2666.

Li, Y., Pont, M.J., Jones, N.B., 2002. Improving the performance of radial basis

function classifiers in condition monitoring and fault diagnosis applications

where ‘unknown’ faults may occur. Pattern Recognition Letters 23, 569–

577. URL: http://dx.doi.org/10.1016/S0167-8655(01)00133-7, doi:10.490

1016/s0167-8655(01)00133-7.

Liukkonen, T., Tuominen, A., 2004. A case study of spc in circuit board as-

sembly: statistical mounting process control, in: Microelectronics, 2004. 24th

International Conference on, pp. 445–448 vol.2. doi:10.1109/ICMEL.2004.

1314857.495

Ma, H., Hu, Y., Shi, H., 2013. Fault detection and identification based on the

neighborhood standardized local outlier factor method. Industrial & Engi-

neering Chemistry Research 52, 2389–2402. URL: http://dx.doi.org/10.

1021/ie302042c, doi:10.1021/ie302042c.

Mendonça, L.F., Sousa, J.M.C., Sá da Costa, J.M.G., 2009. An architecture500

for fault detection and isolation based on fuzzy methods. Expert Syst. Appl.

36, 1092–1104. URL: http://dx.doi.org/10.1016/j.eswa.2007.11.009,

doi:10.1016/j.eswa.2007.11.009.

Mrugalski, M., Korbicz, J., 2007. Application of the {MLP} neural network

to the robust fault detection, in: Zhang, H.Y. (Ed.), Fault Detection, Su-505

pervision and Safety of Technical Processes 2006. Elsevier Science Ltd, Ox-

ford, pp. 1390 – 1395. URL: http://www.sciencedirect.com/science/

article/pii/B9780080444857502347, doi:http://dx.doi.org/10.1016/

B978-008044485-7/50234-7.

Oblak, S., Skrjanc, I., Blazic, S., 2007. Fault detection for nonlinear systems510

with uncertain parameters based on the interval fuzzy model. Engineering

Applications of Artificial Intelligence 20, 503 – 510.

37



Precup, R.E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M., 2015.

An overview on fault diagnosis and nature-inspired optimal control

of industrial process applications. Computers in Industry 74, 75515

– 94. URL: http://www.sciencedirect.com/science/article/pii/

S0166361515000469, doi:http://dx.doi.org/10.1016/j.compind.2015.

03.001.

Ramezani, S., Memariani, A., 2011. A fuzzy rule based system for fault diagno-

sis, using oil analysis results. International Journal of Industiral Engineering520

& Producion Research 22.

Saw, J.G., Yang, M., Mo, T.C., 1984. Chebyshev inequality with estimated

mean and variance. The American Statistician 38, 130–132.

Serdio, F., Lughofer, E., Pichler, K., Buchegger, T., Efendic, H., 2014a.

Residual-based fault detection using soft computing techniques for condition525

monitoring at rolling mills. Inf. Sci. 259, 304–320. doi:10.1016/j.ins.2013.

06.045.

Serdio, F., Lughofer, E., Pichler, K., Buchegger, T., Pichler, M., Efendic, H.,

2014b. Fault detection in multi-sensor networks based on multivariate time-

series models and orthogonal transformations. Information Fusion 20, 272–530

291. doi:10.1016/j.inffus.2014.03.006.

Singh, K., Upadhyaya, D.S., 2012. Outlier detection: Applications and tech-

niques. International Journal of Computer Science Issues 9.

Sobhani, M., Poshtan, J., 2011. Observer-based fault detection and isolation of

three-tank benchmark system, in: Control, Instrumentation and Automation535

(ICCIA), 2011 2nd International Conference on, pp. 759–763. doi:10.1109/

ICCIAutom.2011.6356755.

Venkatasubramanian, V., 2003. Abnormal events management in complex pro-

cess plants: Challenges and opportunities in intelligent supervisory control,

in: Foundations of Computer-Aided Process Operations, pp. 117–132.540

38



Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., 2003. A review of pro-

cess fault detection and diagnosis. part i: Quantitative model-based methods.

Computers and chemical engineering 27, 293–311.

Xu, L., Tseng, H., 2007. Robust model-based fault detection for a roll stability

control system. Control Systems Technology, IEEE Transactions on 15, 519–545

528.

Yan, Z., Chen, C.Y., Yao, Y., Huang, C.C., 2016. Robust multivariate statisti-

cal process monitoring via stable principal component pursuit. Industrial &

Engineering Chemistry Research 55, 4011–4021. URL: http://dx.doi.org/

10.1021/acs.iecr.5b02913, doi:10.1021/acs.iecr.5b02913.550

Yang, H., Xia, Y., Liu, B., 2011. Fault detection for t-s fuzzy discrete sys-

tems in finite-frequency domain. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on 41, 911–920.

Yuan, H., Lu, C., Ma, J., han Chen, Z., 2015. Neural network-

based fault detection method for aileron actuator. Applied Mathemat-555

ical Modelling 39, 5803 – 5815. URL: http://www.sciencedirect.

com/science/article/pii/S0307904X15001183, doi:http://dx.doi.org/

10.1016/j.apm.2015.02.032.

Zakharov, A., Tikkala, V.M., Jms-Jounela, S.L., 2013. Fault detection and di-

agnosis approach based on nonlinear parity equations and its application to560

leakages and blockages in the drying section of a board machine. Journal

of Process Control 23, 1380 – 1393. URL: http://www.sciencedirect.

com/science/article/pii/S0959152413000504, doi:http://dx.doi.org/

10.1016/j.jprocont.2013.03.006.

Zeng, J., Lu, D., Zhao, Y., Zhang, Z., Qiao, W., Gong, X., 2013. Wind turbine565

fault detection and isolation using support vector machine and a residual-

based method, in: American Control Conference (ACC), 2013, IEEE. pp.

3661–3666. URL: http://dx.doi.org/10.1109/acc.2013.6580398, doi:10.

1109/acc.2013.6580398.

39



Zhou, J.H., Pang, C.K., Lewis, F.L., Zhong, Z.W., 2011. Dom-570

inant feature identification for industrial fault detection and isola-

tion applications. Expert Systems with Applications 38, 10676 –

10684. URL: http://www.sciencedirect.com/science/article/pii/

S095741741100193X, doi:http://dx.doi.org/10.1016/j.eswa.2011.01.

160.575

Zhou, Y., Liu, J., Dexter, A.L., 2014. Estimation of an incipi-

ent fault using an adaptive neurofuzzy sliding-mode observer. En-

ergy and Buildings 77, 256 – 269. URL: http://www.sciencedirect.

com/science/article/pii/S0378778814000917, doi:http://dx.doi.org/

10.1016/j.enbuild.2014.02.001.580

40


