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THE ASYMPTOTIC VARIANCE OF THE GIANT
COMPONENT OF CONFIGURATION MODEL RANDOM

GRAPHS

By Frank Ball and Peter Neal

For a supercritical configuration model random graph it is well
known that, subject to mild conditions, there exists a unique giant
component, whose size Rn is O(n), where n is the total number of
vertices in the random graph. Moreover, there exists 0 < ρ ≤ 1
such that Rn/n

p−→ ρ as n → ∞. We show that for a sequence of
well-behaved configuration model random graphs with a deterministic
degree sequence satisfying 0 < ρ < 1, there exists σ2 > 0, such that
var(

√
n(Rn/n − ρ)) → σ2 as n → ∞. Moreover, an explicit, easy

to compute, formula is given for σ2. This provides a key stepping
stone for computing the asymptotic variance of the size of the giant
component for more general random graphs.

1. Introduction. The theoretical treatment of random graphs goes
back to Erdös and Rényi (1959). The Erdös-Rényi random graph is con-
structed as follows. Suppose that there are n vertices, labeled 1, 2, . . . , n. An
edge exists between vertices i and j with probability µ/(n−1), independent
of the remainder of the graph, where it is assumed that 0 ≤ µ ≤ n − 1.
Therefore for any vertex i, its degree is Bin(n − 1, µ/(n − 1)) (a binomial
random variable with n− 1 trials and success probability µ/(n− 1)) and as
n → ∞ with µ fixed, the vertex degree distribution converges to Po(µ) (a
Poisson random variable with mean µ). It is well known that for large n,
the order of magnitude of the size of the largest connected component, Rn,
of the Erdös-Rényi random graph depends upon the threshold parameter µ.
If µ < 1 (subcritical), Rn = Op(log n), if µ = 1 (critical), Rn = Op(n

2

3 ) and

if µ > 1 (supercritical), there is a constant θ(µ) > 0 so that Rn
p∼ θ(µ)n.

(Here Rn = Op(f(n)) means that there exists a constant C < ∞ such that

P (Rn ≤ Cf(n)) → 1 as n → ∞ and Rn
p∼ f(n) means that Rn/f(n) con-

verges in probability to 1 as n → ∞.) If Rn
p∼ Cn, for some C > 0, we say

that a giant component exists. The size of the second largest component is
Op(log n) in the supercritical case, so there exists a unique giant component.
For a sequence of Erdös-Rényi random graphs {Gn}, indexed by the total
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2 BALL AND NEAL

number of vertices n, as n → ∞ with fixed µ > 1, it can be shown that

1

n
Rn

p−→ ρ as n → ∞,

where ρ is the non-zero solution to ρ = 1 − exp(−µρ) and
p−→ denotes

convergence in probability. Furthermore, a central limit theorem exists, with

√
n

(

1

n
Rn − ρ

)

D−→ N(0, σ2
ER) as n → ∞,(1.1)

where σ2
ER = ρ(1−ρ)

(1−µ(1−ρ))2
and

D−→ denotes convergence in distribution. See,

for example, Durrett (2006), Chapter 2, for a more detailed discussion of
Erdös-Rényi random graphs.

Many graphs observed in the social sciences, epidemiology and computing
do not have a Poisson (vertex) degree distribution, although the Erdös-Rényi
random graph provides a useful representation of the Reed-Frost epidemic
in an homogeneously mixing population, see Barbour and Mollison (1989).
Therefore there has been considerable interest in random graphs with arbi-
trary degree distributions. Random graphs with mixed Poisson degree dis-
tribution arise by letting each vertex i have a connectivity parameter Ci

with the probability of an edge existing between vertices i and j being pro-
portional to CiCj. Mixed Poisson random graphs have been studied in, for
example, Chung and Lu (2002) and Britton et al. (2006), Section 3, with
a central limit theorem for the size of the giant component given by Neal
(2007), Theorem 5.2. The mixed Poisson distribution has the property that
its variance is greater than or equal to its mean, with equality if and only if
the distribution is Poisson. By contrast the configuration model considered
in this paper allows for an arbitrary but specified vertex degree distribution.

In Molloy and Reed (1995), the configuration model with a deterministic
degree sequence was considered. The configuration model was introduced in
Bollobás (1980) and we refer the reader to Bollobás (2001), Section 2.4, for
further references. Suppose that Dn

i is the degree of vertex i and suppose
that Sn =

∑n
i=1D

n
i is even. Then to vertex i assign Dn

i half-edges and pair
up half-edges uniformly at random to form edges between vertices. This
we term the Molloy-Reed (MR) random graph. It is shown in Molloy and
Reed (1995) that if 1

n

∑n
j=1D

n
j (D

n
j − 2) → κ > 0 as n → ∞ and there

exists π = (π0, π1, . . .), satisfying
∑∞

i=0 πi = 1, such that for i = 0, 1, . . .,
∑n

j=1 1{Dn
j
=i}/n → πi as n → ∞, there exists a giant component of size

O(n), subject to there existing δ > 0 such that for all sufficiently large n,
∆n = max{1≤i≤n} D

n
i ≤ n1/4−δ. In Molloy and Reed (1998), it was shown
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ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 3

that Rn
p∼ ρn, where ρ satisfies

ρ = 1− f(z),(1.2)

and z is the solution in [0, 1) of

z =
1

µ
f ′(z),(1.3)

where f(s) =
∑∞

i=0 πis
i, f ′(s) =

∑∞
i=1 πiis

i−1 (s ∈ [0, 1]) and µ =
∑∞

i=1 iπi.
The equations for ρ given in (1.2) and (1.3) are based on those given in
Newman et al. (2001), where the deterministic degree sequence of Molloy and
Reed (1995) is replaced by takingDn

1 ,D
n
2 , . . . ,D

n
n to be iid (independent and

identically distributed) according to a non-negative integer-valued random
variable, D, with P (D = i) = πi (i = 0, 1, . . .). Note that using an iid degree
sequence can result in an infeasible degree sequence, with

∑n
i=1D

n
i being

odd. In such an event, the entire degree sequence may be resampled until a
feasible degree sequence is obtained or alternatively the final half-edge in the
construction of the random graph can simply be ignored. These equations
are equivalent, but simpler, than those given in Molloy and Reed (1998) for
ρ, and both the MR and NSW (Newman-Strogatz-Watts construction with
iid degree sequence) random graphs have the same asymptotic proportion
of vertices, ρ, in the giant component for a given π. The above construction
of the MR and NSW graphs can lead to a non-simple graph. That is, the
random graph contains imperfections, in that some individuals may be linked
to themselves and there may be multiple edges between pairs of individuals.
Provided that D has finite variance, such imperfections are sparse in the
limit as n → ∞, see Durrett (2006), Theorem 3.1.2. The results of this
paper also hold if the graph is conditioned on being simple, i.e. having no
such imperfections (cf. Janson (2009b) and Britton et al. (2007)).

The aim of the current work is to derive the (asymptotic) variance of the
giant component for the MR random graph, var(

√
n(Rn/n − ρ)) → σ2 as

n → ∞ with an explicit, easy to compute formula for σ2. This provides a
key stepping stone for computing the asymptotic variance of the size of the
giant component for more general random graphs such as the NSW random
graph which we discuss briefly in Section 7. Variance calculations for random
graphs are limited, although progress has been made in the near critical case,
Riordan (2012). In Section 2, we define a sequence of MR random graphs
{Gn} and state the key result Theorem 2.1, along with the weak conditions
required on the degree sequence, which are similar to the conditions stated in
Molloy and Reed (1995). Also in Section 2 we show that var(

√
n(Rn/n−ρ))

has the same asymptotic limit as n → ∞ as var(Ũn/
√
n), where Ũn is the
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4 BALL AND NEAL

total number of vertices which belong to components of size less than or
equal to [nβ] and β is any fixed real number satisfying 0 < β < 1/12. In
Section 3, we introduce a branching process approximation for the construc-
tion of components in the random graph Gn which assists with computing
limn→∞ var(Ũn/

√
n). The branching process approximation is valid for the

initial growth of components and mimics similar branching process approx-
imations used for epidemic models, see, for example, Whittle (1955) and
Ball and Donnelly (1995). In Section 4, we compute limn→∞ var(Ũn/

√
n)

and this section contains most of the technical details of the proof. Then in
Section 5, we show that the expression obtained for limn→∞ var(Ũn/

√
n) in

Section 4 is equal to σ2. In Section 6, we consider the weakly supercritical
case studied in Riordan (2012). In this case ρ = 0 and σ2 = ∞ but by index-
ing ρ and σ2 by n, we show that σ2

n ∼ Σn (i.e. σ2
n/Σn → 1 as n → ∞), where

Σn is defined in Riordan (2012), Theorem 1.1 (and Section 6) and shown to
satisfy var(

√
n(Rn/n−ρn)) ∼ Σn. In Section 7, we compare the asymptotic

calculations with simulation studies for graphs of size n = 200 and n = 1000
and conjecture the existence of a Gaussian central limit theorem for the size
of the giant component. We also outline how to compute the asymptotic
variance of the giant component of the NSW random graph, the details of
which will be presented elsewhere. Finally, in Appendix A we present some
useful results for Galton-Watson branching processes that are used in the
proof of Theorem 2.1.

2. Conditions on the degree sequence and statement of theorem.
For the asymptotic variance of the Molloy-Reed (MR) random graph, we
need to impose conditions upon the sequence of degree distributions {Dn}.
Let D̄n = (D̄n

1 , D̄
n
2 , . . . , D̄

n
n) denote the degrees of the vertices in Gn, where

{Gn} is a sequence of Molloy-Reed random graphs. However, we do not
at this stage assign a particular degree to a given vertex but instead look
to exploit the exchangeability of vertices with Dn simply being a random
permutation of D̄n with Dn

i denoting the degree of vertex i. The following
arguments are simpler using D̄n (and exchangeability) rather than usingDn.
Thus throughout the paper we take Gn to be constructed using D̄n with all
n! vertex labellings equally likely. For j = 0, 1, . . ., let πn

j =
∑n

i=1 1{D̄n
i =j}/n

with πn = (πn
0 , π

n
1 , . . .) and let µn =

∑n
i=1 D̄

n
i /n. We assume that there

exists a proper non-negative, integer-valued random variable D with P (D =
j) = πj (j = 0, 1, . . .) such that, for all j = 0, 1, . . ., πn

j → πj as n → ∞. Thus
the degree distributions are assumed to satisfy condition 1 of Molloy and
Reed (1995), being smooth and feasible. In Molloy and Reed (1995, 1998),
additional conditions are placed on the sequence of degree distributions for
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ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 5

them to be well-behaved. We place slightly stronger regularity conditions
upon the sequence of degree distributions as follows.

For k = 1, 2, 3, let Lk =
∑∞

j=0 j
kπj(= E[Dk]), which we assume to be

finite. (Note that µ = L1.) We require that ν =
∑∞

j=0 j(j − 1)πj/µ = (L2 −
L1)/L1 > 1 and π1 > 0. These ensure that the asymptotic degree sequence
is supercritical (i.e. that a giant component exists in the sense defined in
Section 1) and that 0 < z < 1 (where z satisfies (1.3)), respectively.

We require also that {D̄n} satisfies the following conditions.

(a) For all ǫ > 0, there exists n0 ∈ N such that for all n ≥ n0,

(i) for all j ≥ 0,

j2|πn
j − πj| < ǫ;(2.1)

and

(ii) for k = 1, 2, 3,
∣

∣

∣

∣

∣

∣

∞
∑

j=0

jkπn
j − Lk

∣

∣

∣

∣

∣

∣

< ǫ.(2.2)

(b) There exists β > 0 such that for all ǫ > 0, there exists n0 ∈ N such
that for all n ≥ n0,

n2β
∞
∑

j=0

j|πn
j − πj| < ǫ.(2.3)

(c) There exists δ > 0 such that n−(1/4−δ)∆n → 0 as n → ∞, where
∆n = max1≤i≤n D̄

n
i .

Note that condition (a)(i) implies Molloy and Reed (1995), condition 2.
Throughout this paper we take β to be an arbitrary, positive constant satis-
fying 0 < β < 1/12 and condition (b). Immediate consequences of the above
conditions include Molloy and Reed (1995), condition 3 (a): for all ǫ > 0,
there exists K and n1 such that |∑K

j=1 j(j − 2)πn
j −∑∞

j=0 j(j − 2)πj | < ǫ

for all n ≥ n1. Also µn =
∑n

i=1 D̄
n
i /n → µ(= E[D]), νn =

∑n
i=1 D̄

n
i (D̄

n
i −

1)/nµn → ν and λn =
∑n

i=1 D̄
n
i (D̄

n
i − 1)(D̄n

i − 2)/nµn → λ(= (L3 − 3L2 +
2L1)/L1) < ∞ as n → ∞.

Theorem 2.1 For a Molloy-Reed random graph satisfying conditions (a)-
(c), ν > 1 and π1 > 0,

var

(√
n

(

Rn

n
− ρ

))

→ σ2 as n → ∞,(2.4)
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6 BALL AND NEAL

with

σ2 = 1− ρ− f(z2) +
z2

1− f ′′(z)/µ
{(1 + z2)µ − 2f ′(z2)}

+
z2

(1− f ′′(z)/µ)2
{z2µ+ z2f ′′(z)− f ′(z2)− z2f ′′(z2)},(2.5)

where ρ satisfies (1.2).

A couple of remarks concerning Theorem 2.1 are as follows. Firstly, provided
a closed-form expression is available for the generating function f , the for-
mula for σ2 is easy to compute being a function of ρ, z, µ, ν, f ′(z2), f ′′(z2)
and f ′′(z) only. Note that computing z usually requires numerical solution
of a non-linear equation. Secondly, since f ′(s) is a convex function in s, z is
the solution in [0, 1) of z = f ′(z)/µ and f ′(0) ≥ 0, we have that f ′′(z)/µ < 1.

The initial observations in proving Theorem 2.1 are as follows. Firstly, let
Un = n − Rn be the total number of vertices outside of the giant com-
ponent and observe that to prove Theorem 2.1 it suffices to show that
var(

√
n(Un/n − ω)) = var(Un/

√
n) → σ2 as n → ∞, where ω = 1 − ρ.

We introduce Un as it is simpler to study small components than the giant
component as we can utilise a branching process approximation (Section 3)
for the initial growth of such components. However, working with Un directly
is difficult, so we introduce a new process Ũn defined below, which counts the
total number of vertices in small components (less than [nβ] vertices). For
vertices i and j in the graph Gn, let i ↔ j denote that vertices i and j belong
to the same connected component. For n = 1, 2, . . . and i = 1, 2, . . . , n, let
Cn
i = {j : j ↔ i} with Cn

i = |Cn
i |. Note that either Cn

i = Cn
j or Cn

i ∩ Cn
j = ∅.

Let χn
i = 1{Cn

i ≤[nβ ]} and Ũn =
∑n

i=1 χ
n
i . Since the second largest component

of a supercritical random graph almost surely consists of at most γ log n ver-
tices for some 0 < γ < ∞ (Molloy and Reed (1995), Lemma 11), the precise
value of β is not important as the asymptotic behaviour of Ũn is the same
for any value of 0 < β < 1/12 and that is why reference to β in the notation
of Ũn is omitted. (The above holds for any 0 < β < 1.) Furthermore using
the proof of Molloy and Reed (1995), Lemma 11, it is trivial to show that
nP (Un 6= Ũn) → 0, whence E[(Un − Ũn)

2]/n → 0 as n → ∞. Note that

var(Un/
√
n)− var(Ũn/

√
n)

= var((Un − Ũn)/
√
n) + 2cov((Un − Ũn)/

√
n, Ũn/

√
n).(2.6)

Now var((Un − Ũn)/
√
n) ≤ E[(Un − Ũn)

2]/n → 0 as n → ∞. Suppose that
var(Ũn/

√
n) → σ2 as n → ∞, where σ2 < ∞. Then a simple argument
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ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 7

using the Cauchy-Schwarz inequality shows that the right hand side of (2.6)
tends to 0 as n → ∞, whence

|var(Un/
√
n)− var(Ũn/

√
n)| → 0 as n → ∞.

Thus we proceed by introducing useful branching process approximations for
the construction of components (Section 3) before showing that var(Ũn/

√
n) →

σ2 as n → ∞ (Section 4).

3. Branching process approximation. To study Ũn it is helpful to
introduce approximating branching processes for the initial growth of com-
ponents in the random graph Gn. We begin by outlining the construction
of a component in a random graph with a coupled branching process ap-
proximation. We also consider the limit, as n → ∞, of the approximating
branching processes. At the end of the Section we draw together the cou-
plings of the size of a component in a random graph and the (total) size of
the approximating branching processes by providing useful bounds on the
probability that they are different.

Consider a subset of h of the n vertices in Gn and letHn = (Hn
k1
,Hn

k2
, . . . ,Hn

kh
)

denote the degrees of the h vertices. Often, but not always, we will take h = n
and Hn = D̄n. Let θn0 , θ

n
1 , . . . be independent with θn0 drawn uniformly from

{k1, k2, . . . , kh} and θn1 , θ
n
2 , . . . distributed according to θn, where

P (θn = ki) =

{

Hn
ki

hµn(Hn) (i = 1, 2, . . . , h),

0 otherwise,
(3.1)

with µn(Hn) = h−1
∑h

i=1 H
n
ki
. Let Bn(Hn) denote the (Galton-Watson)

branching process with one initial ancestor constructed from Hn as follows.
The initial ancestor in the branching process has Hn

θn
0

offspring and the jth

individual born in Bn(Hn) has Hn
θnj

−1 offspring. Now a component, Cn(Hn)

can be constructed from the h vertices in Hn using θn0 , θ
n
1 , θ

n
2 , . . . as follows.

Let Vn
0 = {θn0 }, En,U

0 be the set of the Hn
θn
0

half-edges belonging to θn0

and En,F
0 be the empty set. For k = 0, 1, . . . , at stage k in the construc-

tion, Vn
k , E

n,U
k and En,F

k are respectively the set of vertices currently in the
component Cn(Hn), the set of unattached half-edges and the set of formed
complete edges. The construction now proceeds sequentially through stages
k = 1, 2, . . . . The construction stops at stage k if En,U

k−1 is empty, in which
case the component Cn(Hn) is completely formed and Cn(Hn) = Vn

k−1. Oth-

erwise, a half-edge, E∗ say, is chosen uniformly at random from En,U
k−1 and

is attached to a half-edge belonging to vertex θnk , subject to the following
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8 BALL AND NEAL

conditions. If θnk 6∈ {θn0 , θn1 , . . . , θnk−1}, then (i) Vn
k = Vn

k−1∪{θnk}, (ii) the half-
edge E∗ is paired with a half-edge from θnk to form a complete edge, which

is added to the set En,F
k−1 to give En,F

k ; and (iii) En,U
k = (En,U

k−1 \ {E∗}) ∪ F∗,
where F∗ is the set of the other Hn

θn
k
− 1 half-edges that emanate from θnk . If

θnk ∈ {θn0 , θn1 , . . . , θnk−1}, then an attempt is made to add the same vertex for
a second (or higher order) time. In that case, choose a half-edge uniformly
at random from the Hn

θn
k
half-edges that emanated originally from θnk . If

the chosen half-edge belongs to En,U
k−1 \ {E∗} then pair it with E∗ to form a

complete edge; this creates a cycle in Cn(Hn), so Vn
k = Vn

k−1 with En,F
k and

En,U
k being defined in the obvious fashion. Otherwise a complete edge cannot

be formed, in which case θnk is not used in the construction of Cn(Hn) and

(Vn
k , E

n,U
k , En,F

k ) = (Vn
k−1, E

n,U
k−1, E

n,F
k−1).

Let Bn(Hn) denote the total size, including the initial ancestor, of the
branching process Bn(Hn). Let MA

n (Hn) = min{k : θnk ∈ {θn0 , θn1 , . . . , θnk−1}}
and note that if Bn(Hn) ≤ MA

n (Hn), then Cn(Hn)(= |Cn(Hn)|) = Bn(Hn).
That is, theBn(Hn) individuals in the branching process Bn(Hn) correspond
to distinct vertices in the graph Gn. We make extensive use of the above
coupling throughout the paper and this is the key motivation for focusing
upon Ũn, the total number of vertices in small components.

It is also helpful to introduce a branching process B which represents
the limit as n → ∞ of the branching processes Bn

1 (= Bn(D̄n)). Let D̃ be
the random variable with probability mass function P (D̃ = k) = kπk/µ(=
kP (D = k)/E[D]) (k = 1, 2, . . .). Let B denote the total size, including
the initial ancestor, of the branching (Galton-Watson) process B, having
offspring distribution D for the initial ancestor and D̃− 1 for all subsequent
individuals. The initial ancestor in Bn

1 has k offspring with probability πn
k and

subsequent individuals have k−1 offspring with probability kπn
k/µn. Since by

condition (a)(i), πn
k → πk as n → ∞ for all k ≥ 0, it follows that the offspring

distribution of {Bn
1 } converges in distribution to the offspring distribution

of B. Hence, Bn
1 (= Bn(D̄n))

D−→ B, the total size of the branching process
B, see, for example, Lefèvre and Utev (1999), Proposition 2.1. However, we
shall require the following explicit coupling of B and Bn

1 which goes beyond

Lefèvre and Utev (1999), Proposition 2.1. Let Tn(D̄
n) = 1

2

∑∞
j=0

∣

∣

∣
πn
j − πj

∣

∣

∣
,

T̃n(D̄
n) = 1

2

∑∞
j=1

∣

∣

∣

jπn
j

µn
− jπj

µ

∣

∣

∣
and T̂n(D̄

n) = max{Tn(D̄
n), T̃n(D̄

n)}. Thus
Tn(D̄

n) is the total variation distance between the offspring distributions of
the initial ancestor in the branching processes Bn

1 and B, and T̃n(D̄
n) is the

total variation distance between the offspring distributions of all subsequent
individuals in these two branching processes. Using the triangle inequality,
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ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 9

straightforward algebraic manipulation yields,

T̃n(D̄
n) ≤ 1

2µ

∞
∑

j=1

j|πn
j − πj |+

1

2µ
|µ − µn| ≤

1

µ

∞
∑

j=1

j|πn
j − πj|.(3.2)

Hence,

T̂n(D̄
n) ≤ 1

µ ∧ 2

∞
∑

j=1

j|πn
j − πj|,(3.3)

where µ ∧ 2 = min{µ, 2}. By the existence of a maximal coupling (see, for
example, Barbour et al. (1992), Appendix A1), random variables Xn

1 and
X1 having distributions given by P (Xn

1 = k) = πn
k and P (X1 = k) =

πk (k = 0, 1, . . .) can be defined on a common probability space so that
P (Xn

1 6= X1) = Tn(D̄
n). Similarly, for l = 2, 3, . . ., random variables Xn

l

and Xl having distributions given by P (Xn
l = k) = kπn

k /µn and P (Xl =
k) = kπk/µ (k = 1, 2, . . .) can be defined on a common probability space
so that P (Xn

l 6= Xl) = T̃n(D̄
n). The branching processes B and Bn

1 can
be defined on a common probability space using independent realisations of
(Xn

l ,Xl) (l = 1, 2, . . .) in the obvious fashion. Let MD
n = min{l : Xn

l 6= Xl}
and note that MD

n is stochastically larger than M̃D
n ∼ Geom(T̂n(D̄

n)), a
geometric distribution with support N and mean T̂n(D̄

n)−1. (A random
variable X is said to be stochastically larger than a random variable Y if
x ∈ R, P (X ≤ x) ≤ P (Y ≤ x) for all x ∈ R.) It follows that, if B < MD

n ,
then Bn

1 = B.
Let Cn

1 = Cn(D̄n), corresponding to setting Dn
1 = D̄n

θn
0

, let Cn
1 = |Cn

1 | and
let MA

n = MA
n (D̄n). For x ∈ R, let [x] denote the greatest integer ≤ x. The

above couplings give that for any 1 ≤ k ≤ [nβ],

P
(

1{Cn
1
≤k} 6= 1{Bn

1
≤k}

)

≤ P (MA
n ≤ [nβ])

= P





⋃

0≤i<j≤[nβ]

{

θni = θnj
}





≤ nβ(nβ + 1)

2

n
∑

l=1

(

D̄n
l

nµn

)2

→ 0 as n → ∞,(3.4)
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10 BALL AND NEAL

by condition (a)(ii), and

P
(

1{Bn
1
≤k} 6= 1{B≤k}

)

≤ P (MD
n ≤ [nβ])

≤ P (M̃D
n ≤ [nβ])

≤ nβ × 1

(µ ∧ 2)

∞
∑

j=1

j|πn
j − πj |

→ 0 as n → ∞,(3.5)

by condition (b). (Note that in (3.4), P (θn0 = θn1 ) =
1
n , P (θn1 = θn2 ) =

∑n
l=1

(

D̄n
l /nµn

)2

and application of the Cauchy-Schwarz inequality shows that P (θn0 = θn1 ) ≤
P (θn1 = θn2 ).) Equations (3.4) and (3.5) play a key role in the sequel and
by the triangle inequality imply that for any 1 ≤ k ≤ [nβ], P (1{Cn

1
≤k} 6=

1{B≤k}) → 0 as n → ∞.

4. Computing limn→∞ var(Ũn/
√

n) .

4.1. Introduction. We are now in position to start in earnest the proof
of (2.5). Since all labelings of the vertices D̄n of the random graph Gn are
exchangeable, we have that

var(Ũn/
√
n) =

1

n

n
∑

i=1

n
∑

j=1

cov(χn
i , χ

n
j )

= var(χn
1 ) + (n− 1)cov(χn

1 , χ
n
2 ).(4.1)

Since the degree sequences D̄n are well-behaved (Molloy and Reed (1995,
1998)),

var(χn
1 ) = E[χn

1 ](1− E[χn
1 ]) → ω(1− ω)(= ρ(1− ρ)) as n → ∞.

(4.2)

First, note that

(n− 1)cov(χn
1 , χ

n
2 )

= (n− 1)E
[

1{Cn
1
≤[nβ]}

(

1{Cn
2
≤[nβ ]} − E

[

1{Cn
2
≤[nβ ]}

])]

= (n− 1)E
[

1{2∈Cn
1
}1{Cn

1
≤[nβ]}

(

1{Cn
2
≤[nβ ]} − E

[

1{Cn
2
≤[nβ]}

])]

+ (n− 1)E
[

1{26∈Cn
1
}1{Cn

1
≤[nβ]}

(

1{Cn
2
≤[nβ ]} − E

[

1{Cn
2
≤[nβ]}

])]

.(4.3)
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The first term on the right hand side of (4.3) is equal to

(n− 1)E
[

1{2∈Cn
1
}1{Cn

1
≤[nβ ]}

(

1− E
[

1{Cn
2
≤[nβ ]}

])]

= (n− 1)E
[

1{2∈Cn
1
}1{Cn

1
≤[nβ ]}

]

(1− E [χn
2 ]) .(4.4)

The following lemma provides the limit of the right hand side of (4.4), and
hence also of the first term on the right hand side of (4.3), as n → ∞. Note
that {B < ∞} is the event that the branching process B goes extinct.

Lemma 4.1

(n− 1)E
[

1{2∈Cn
1
}1{Cn

1
≤[nβ ]}

]

(1− E [χn
2 ]) → E

[

(B − 1)1{B<∞}

]

ρ,(4.5)

as n → ∞.

Proof. Since (1− E[χn
2 ]) → ρ as n → ∞, it suffices to show that

(n− 1)E
[

1{2∈Cn
1
}1{Cn

1
≤[nβ ]}

]

→ E
[

(B − 1)1{B<∞}

]

as n → ∞.

Note first that, by exchangeability, P (2 ∈ Cn
1 |Cn

1 = k) = (k − 1)/(n − 1)
(k = 1, 2, . . . , n). Hence,

(n− 1)E
[

1{2∈Cn
1
}1{Cn

1
≤[nβ ]}

]

= (n − 1)

[nβ ]
∑

k=1

P (2 ∈ Cn
1 |Cn

1 = k)P (Cn
1 = k)

= (n − 1)

[nβ ]
∑

k=1

k − 1

n− 1
P (Cn

1 = k)

= E
[

(Cn
1 − 1)1{Cn

1
≤[nβ ]}

]

.(4.6)

Exploiting the couplings of Cn
1 , Bn

1 and B as at the end of Section 3, we have
that

∣

∣

∣E
[

(Cn
1 − 1)1{Cn

1
≤[nβ]}

]

− E
[

(B − 1)1{{B<[nβ ]}

]∣

∣

∣

≤ nβP ((Cn
1 − 1)1{Cn

1
≤[nβ ]} 6= (B − 1)1{B≤[nβ ]})

≤ nβP (MA
n ≤ [nβ]) + nβP (MD

n ≤ [nβ])

≤ nβ





nβ(nβ + 1)

2

n
∑

i=1

(

D̄n
i

nµn

)2

+ nβ × 1

(µ ∧ 2)

∞
∑

j=1

j|πn
j − πj|



 .(4.7)

By conditions (a)-(c), the right hand side of (4.7) converges to 0 as n → ∞.
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12 BALL AND NEAL

Thus the lemma follows by showing that

|E[(B − 1)1{B≤[nβ ]}]− E[(B − 1)1{B<∞}]| → 0 as n → ∞.

Note that

|E[(B − 1)1{B≤[nβ ]}]− E[(B − 1)1{B<∞}]| = E[(B − 1)1{[nβ ]<B<∞}]

=
∞
∑

j=[nβ]+1

(j − 1)P (B = j,B < ∞).(4.8)

By Markov’s inequality P (B = j,B < ∞) ≤ E[B31{B<∞}]/j
3 and since the

branching process B is super-critical, Lemma A.2 ensures that E[B31{B<∞}] <
∞. Therefore it follows that the right hand side of (4.8) converges to 0 as
n → ∞ and the lemma is proved. �

We turn to the second term on the right hand side of (4.3). Let Hn denote
a set of distinct vertices in Gn. Then, conditioning on the cardinality Cn

1 of
Cn
1 and exploiting exchangeability,

(n− 1)E
[

1{26∈Cn
1
}1{Cn

1
≤[nβ ]}

(

1{Cn
2
≤[nβ ]} − E

[

1{Cn
2
≤[nβ]}

])]

= (n− 1)

[nβ ]
∑

k=1

P (Cn
1 = k)E[1{26∈Cn

1
}(1{Cn

2
≤[nβ ]} − E[1{Cn

2
≤[nβ ]}])|Cn

1 = k]

= (n− 1)

[nβ ]
∑

k=1

P (Cn
1 = k)

∑

Hn:|Hn|=k

P (Cn
1 = Hn|Cn

1 = k)

×E[1{26∈Cn
1
}(1{Cn

2
≤[nβ ]} − E[1{Cn

2
≤[nβ ]}])|Cn

1 = Hn]

= (n− 1)

[nβ ]
∑

k=1

P (Cn
1 = k)

∑

Hn:|Hn|=k

P (Cn
1 = Hn|Cn

1 = k)

×
{

E[1{26∈Cn
1
}1{Cn

2
≤[nβ ]}|Cn

1 = Hn]− E[1{26∈Cn
1
}|Cn

1 = Hn]E[1{Cn
2
≤[nβ]}]

}

.

(4.9)

We note that |Hn| = k implies that

E[1{26∈Cn
1
}|Cn

1 = Hn] =
n− k

n− 1
,

which in turn gives

E[1{26∈Cn
1
}1{Cn

2
≤[nβ ]}|Cn

1 = Hn] = P (Cn
2 ≤ [nβ]|2 6∈ Cn

1 , Cn
1 = Hn)× P (2 6∈ Cn

1 |Cn
1 = Hn)

=
n− k

n− 1
P (Cn

2 ≤ [nβ]|2 6∈ Cn
1 , Cn

1 = Hn).(4.10)
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ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 13

Therefore it follows from (4.9) and (4.10) that

(n− 1)E
[

1{26∈Cn
1
}1{Cn

1
≤[nβ ]}

(

1{Cn
2
≤[nβ]} − E

[

1{Cn
2
≤[nβ ]}

])]

=

[nβ ]
∑

k=1

(n− k)P (Cn
1 = k)

∑

Hn:|Hn|=k

P (Cn
1 = Hn|Cn

1 = k)

×
{

P (Cn
2 ≤ [nβ]|2 6∈ Cn

1 , Cn
1 = Hn)− P (Cn

2 ≤ [nβ])
}

.

(4.11)

The final term on the right hand side of (4.11) is difficult to analyse directly.
Therefore we exploit further couplings of the component construction to the
branching process approximation to derive the limiting behaviour of (4.11).
In Section 4.2, we show that, as n → ∞, the limit of (4.11) is the same as
the limit of n times the difference between the extinction probabilities of
two sequences of branching processes, the latter being far more amenable to
analysis. Then in Section 4.3 we obtain the limit of the difference between
the extinction probabilities.

4.2. Recasting the limit of (4.11). Let D̄n
−Hn denote the set of vertices

in Gn excluding those vertices in a given set of vertices, Hn. Suppose that
2 6∈ Hn and let Čn

2 and B̌n
2 denote respectively the component containing

vertex 2 and the associated branching process constructed using vertices
D̄n

−Hn . For the present Hn is an arbitrary but specified set of vertices that

satisfies |Hn| ≤ [nβ]. Throughout the remainder of this section Hn will be
equated with Cn

1 and we will construct Čn
2 and the associated branching

process B̌n
2 using the vertices not in Cn

1 . Let Cn,I
2

D
= Cn

2 and Bn,I
2

D
= Bn

2 denote
the component containing vertex 2 and the associated branching process
constructed using vertices D̄n, independently of the construction of Cn

1 . Let

Čn
2 , B̌

n
2 , C

n,I
2 and Bn,I

2 denote the cardinalities of the appropriate sets. We
outline how the above four processes can be usefully coupled on a common
probability space. Let hn = n− |Hn|, µH

n = {nµn −∑i∈Hn D̄n
i }/hn and

P (θ̌n = i) =

{

D̄n
i

hnµH
n

(i ∈ {1, 2, . . . , n}\Hn),

0 otherwise.
(4.12)

Let θ̌n0 , θ̌
n
1 , . . . be independent with θ̌n0 distributed uniformly on

{1, 2, . . . , n}\Hn and θ̌nk
D
= θ̌n for k ≥ 1. Then Čn

2 and B̌n
2 can be con-

structed using D̄n
−Hn and θ̌n0 , θ̌

n
1 , . . . in an analagous fashion to that described

in Section 3. Let QA
n (k) =

∑k−1
i=0

∑k
j=i+1 1{θ̌ni =θ̌nj }

be the total number of

imsart-aap ver. 2011/12/06 file: mr_var_Mar16.tex date: March 24, 2016



14 BALL AND NEAL

matches in {θ̌n0 , θ̌n1 , . . . , θ̌nk}. Then if B̌n
2 = k and QA

n (k − 1) = 0, we have
that Čn

2 = B̌n
2 , that is, the addition of each new individual in the branch-

ing process corresponds to the addition of a new vertex to the component
containing vertex 2. (Recall that B̌n

2 includes the initial ancestor.) A key

observation going forward is that given a set Hn, Čn
2

D
= Cn

2 |Cn
1 = Hn, 2 6∈ Cn

1 .

To couple (Bn,I
2 , Cn,I

2 ) with (B̌n
2 , Čn

2 ), we use independent (givenHn) Bernoulli
random variables Un

0 , U
n
1 , . . . , U

n
[nβ ]+1

. Let P (Un
0 = 1|Hn) = |Hn|/n, the

probability that a randomly chosen vertex belongs to Hn and for k ≥ 1, let
P (Un

k = 1|Cn
1 ) =

∑

j∈Hn D̄n
j /(nµn), the probability that a randomly chosen

edge belongs to a vertex in Hn. For k ≥ 0, set θn,Ik = θ̌nk if Un
k = 0. If

Un
0 = 1, draw θn,I0 uniformly at random from Hn and for k ≥ 1, if Un

k = 1,

set θn,Ik = j with probability D̄n
j /
∑

i∈Hn D̄n
i (j ∈ Hn). It is straightforward

to show that θn,I0
D
= θn0 and for k ≥ 1, θn,Ik

D
= θn. Then construct (Bn,I

2 , Cn,I
2 )

as before using θn,I0 , θn,I1 , . . .. Let QB
n (k) =

∑k
i=0 U

n
i , the total number of

times in the first k+1 chosen vertices, a vertex from Hn appears in the con-
struction of Bn,I

2 . Note that if B̌n
2 = k and QB

n (k − 1) = 0 then Bn,I
2 = B̌n

2 .

Also if Čn
2 = k, QA

n (k) ≤ 1 and QB
n (k) = 0 then Cn,I

2 = Čn
2 , since we

need to take into account that there may exist 0 ≤ i < j ≤ k such that
θ̌ni = θ̌nj . (If Č

n
2 = k and there is at most one match among {θ̌n0 , θ̌n1 , . . . , θ̌nk}

then {θ̌n0 , θ̌n1 , . . . , θ̌nk} determines Čn
2 . It then follows that Cn,I

2 = Čn
2 (whence

Cn,I
2 = Čn

2 ), since QB
n (k) = 0 implies θn,Ij = θ̌nj (j = 0, 1, . . . , k).) Finally, if

Bn,I
2 = k with QA

n (k − 1) = 0 and QB
n (k − 1) ≤ 1 then Cn,I

2 = Bn,I
2 , since

QA
n (k − 1) = 0 and QB

n (k − 1) ≤ 1 ensure that all the individuals in Bn,I
2

correspond to distinct vertices in Cn,I
2 . (If QA

n (k − 1) = QB
n (k − 1) = 0 then

θn,I0 , θn,I1 , . . . , θn,Ik−1 are clearly distinct. If QA
n (k − 1) = 0 and QB

n (k − 1) = 1

then there exists 0 ≤ j0 ≤ k − 1 such that θn,Ij0
∈ Hn and θn,Ij = θ̌nj for

j = 0, 1, . . . , k − 1 (j 6= j0). Now θ̌nj 6∈ Hn (j = 0, 1, . . . , k − 1), so since

θ̌n0 , θ̌
n
1 , . . . , θ̌

n
k−1 are distinct then so are θn,I0 , θn,I1 , . . . , θn,Ik−1.)

Lemma 4.2

lim
n→∞

(n− 1)E
[

1{26∈Cn
1
}1{Cn

1
≤[nβ ]}

(

1{Cn
2
≤[nβ]} − E

[

1{Cn
2
≤[nβ ]}

])]

= lim
n→∞

(n− 1)E
[

1{26∈Cn
1
}1{Cn

1
≤[nβ ]}

(

1{Cn
2
≤[nβ]} − E

[

1
{Cn,I

2
≤[nβ ]}

])]

= lim
n→∞

E
[

1{Cn
1
≤[nβ]}1{26∈Cn

1
}

× (n− 1)
{

E
[

1{B̌n
2
≤[nβ]}|Hn = Cn

1

]

− E
[

1
{Bn,I

2
≤[nβ ]}

]}]

,(4.13)
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provided that the final limit exists and is finite.

Proof. The first equality follows from E[1
{Cn,I

2
≤[nβ ]}

] = E[1{Cn
2
≤[nβ ]}].

Using (4.11) and a similar decomposition for the right hand side of (4.13),
we have that

∣

∣

∣
(n− 1)E

[

1{26∈Cn
1
}1{Cn

1
≤[nβ ]}

(

1{Cn
2
≤[nβ ]} − E

[

1
{Cn,I

2
≤[nβ ]}

])]

− (n− 1)E
[

1{Cn
1
≤[nβ ]}1{26∈Cn

1
}

×
{

E
[

1{B̌n
2
≤[nβ ]}|Hn = Cn

1

]

−E
[

1
{Bn,I

2
≤[nβ]}

]}]∣

∣

∣

=

∣

∣

∣

∣

∣

∣

[nβ ]
∑

k=1

(n− k)P (Cn
1 = k)

∑

Hn:|Hn|=k

P (Cn
1 = Hn|Cn

1 = k)

×
({

P (Cn
2 ≤ [nβ]|2 6∈ Cn

1 , Cn
1 = Hn)− P (Cn,I

2 ≤ [nβ])
}

−
{

P (B̌n
2 ≤ [nβ]|Hn)− P (Bn,I

2 ≤ [nβ])
})∣

∣

∣ .(4.14)

Note that {Čn
2 |Hn = Cn

1 }
D
= {Cn

2 |2 6∈ Cn
1 , Cn

1 = Hn}, from the construction
of Čn

2 , so
P (Cn

2 |2 6∈ Cn
1 , Cn

1 = Hn) = P (Čn
2 |Hn = Cn

1 ).

Therefore it follows that the right hand side of (4.14) is less than or equal
to

max
{Hn;|Hn|≤nβ}

(n− 1)
∣

∣

∣{P (Čn
2 ≤ [nβ]|Hn)− P (Cn,I

2 ≤ [nβ])}

−{P (B̌n
2 ≤ [nβ]|Hn)− P (Bn,I

2 ≤ [nβ])}
∣

∣

∣ .(4.15)

We start by considering fixed Hn with |Hn| ≤ [nβ].
Using the above couplings, we have that, for k = 1, 2, . . . , [nβ]

P (Čn
2 = k|Hn) = P (B̌n

2 = k,QA
n ([n

β]) = 0, QB
n ([n

β ]) ≤ 1|Hn)

+P (Cn,I
2 = k,QA

n ([n
β]) = 1, QB

n ([n
β ]) = 0|Hn)

+P (Čn
2 = k,QA

n ([n
β]) +QB

n ([n
β]) ≥ 2|Hn).

Since the distribution of Cn,I
2 is independent of Hn, we have that, for k =

1, 2, . . . , [nβ ],

P (Cn,I
2 = k) = P (Cn,I

2 = k|Hn)

= P (Bn,I
2 = k,QA

n ([n
β]) = 0, QB

n ([n
β]) ≤ 1|Hn)

+P (Cn,I
2 = k,QA

n ([n
β]) = 1, QB

n ([n
β ]) = 0|Hn)

+P (Cn,I
2 = k,QA

n ([n
β]) +QB

n ([n
β ]) ≥ 2|Hn).
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16 BALL AND NEAL

Also, for k = 1, 2, . . . , [nβ],

P (B̌n
2 = k|Hn) = P (B̌n

2 = k,QA
n ([n

β]) = 0, QB
n ([n

β ]) ≤ 1|Hn)

+P (Bn,I
2 = k,QA

n ([n
β]) = 1, QB

n ([n
β ]) = 0|Hn)

+P (B̌n
2 = k,QA

n ([n
β]) +QB

n ([n
β]) ≥ 2|Hn).

Therefore, using a similar decomposition for P (Bn,I
2 = k), it is straightfor-

ward to show that

(n− 1)
∣

∣

∣
{P (Čn

2 ≤ [nβ]|Hn)− P (Cn,I
2 ≤ [nβ])}

−{P (B̌n
2 ≤ [nβ]|Hn)− P (Bn,I

2 ≤ [nβ])}
∣

∣

∣

≤ 2(n− 1)P
(

QA
n ([n

β]) +QB
n ([n

β]) ≥ 2|Hn
)

.(4.16)

We study the right hand side of (4.16) in order to bound the right hand side
of (4.14).

Given Hn, we have that QA
n ([n

β ]) and QB
n ([n

β]) are independent. There-
fore the right hand side of (4.16) is bounded above by

2
{

(n− 1)P (QA
n ([n

β]) ≥ 2|Hn) + (n− 1)P (QB
n ([n

β]) ≥ 2|Hn)

+ (n− 1)P (QA
n ([n

β]) = 1|Hn)P (QB
n ([n

β ]) = 1|Hn)
}

.(4.17)

We are interested in the caseHn = Cn
1 , where |Cn

1 | ≤ [nβ]. Under condition

(c), for all sufficiently large n, ∆n = max{1≤i≤n} D̄
n
i ≤ n

1

4 , and consequently,

we have that, for k ≥ 0, |∑i∈Hn(D̄n
i )

k| ≤ nβn
k
4 . Since β < 1/12, it follows

from condition (a)(ii) that, for k = 1, 2, 3, n−1
∑

i 6∈Hn(D̄n
i )

k > 1
2Lk and

n−1
∑n

i=1(D̄
n
i )

k ≤ 2Lk, for all sufficiently large n.
For QA

n ([n
β ]) ≥ 2, we require that either there exists distinct i, j, k ∈

{0, 1, . . . , [nβ]} such that θ̌ni = θ̌nj = θ̌nk or there exists distinct i, j, k, l ∈
{0, 1, . . . , [nβ]} such that θ̌ni = θ̌nj and θ̌nk = θ̌nl . Without loss of generality,
we may assume that i < j, k in the first case and i < j, k, l in the second
case. There are therefore two cases to consider i = 0 and i ≥ 1. For i = 0,

P (θ̌n0 = θ̌nj = θ̌nk |Hn) =
∑

l 6∈Hn







1

n− |Hn| ×
(

D̄n
l

∑

m6∈Hn D̄n
m

)2






≤ 8

L2
1n

3

n
∑

l=1

(D̄n
l )

2 ≤ 16L2

L2
1n

2
,
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for all sufficiently large n. For i ≥ 1,

P (θ̌ni = θ̌nj = θ̌nk |Hn) =
∑

l 6∈Hn

(

D̄n
l

∑

m6∈Hn D̄n
m

)3

≤ 8

L3
1n

3

n
∑

l=1

(D̄n
l )

3 ≤ 16L3

L3
1n

2
,

for all sufficiently large n. Using independence of θ̌ni , θ̌
n
j , θ̌

n
k , θ̌

n
l , we have that

for i ≥ 1,

P (θ̌ni = θ̌nj , θ̌
n
k = θ̌nl |Hn) = P (θ̌ni = θ̌nj |Hn)P (θ̌nk = θ̌nl |Hn)

=





∑

r 6∈Hn

(

D̄n
r

∑

m6∈Hn D̄n
m

)2




2

≤ 16

L4
1n

4

(

n
∑

r=1

(D̄n
r )

2

)2

≤ 64L2
2

L4
1n

2
,

for all sufficiently large n, and by similar arguments for i = 0,

P (θ̌n0 = θ̌nj , θ̌
n
k = θ̌nl |Hn) ≤ 64L2

L2
1n

2
,

for all sufficiently large n. Since β < 1/12 and the bound for i ≥ 1 is the
larger in both cases,

(n− 1)P (QA
n ([n

β]) ≥ 2|Hn)

≤ n− 1

n2

{

([nβ] + 1)3
16L3

L3
1

+ ([nβ ] + 1)4
64L2

2

L4
1

}

→ 0 as n → ∞.(4.18)

Similarly, for all sufficiently large n,

√
n− 1P (QA

n ([n
β]) = 1|Hn) ≤

√
n− 1([nβ ] + 1)2

n

8L2

L2
1

→ 0 as n → ∞.(4.19)
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18 BALL AND NEAL

Now turning to QB
n ([n

β]), we have that

(n− 1)P (QB
n ([n

β]) ≥ 2|Hn)

≤
[nβ−1]
∑

i=0

[nβ ]
∑

j=i+1

(n− 1)P (Un
i = 1, Un

j = 1|Hn)

=

[nβ−1]
∑

i=0

[nβ ]
∑

j=i+1

(n− 1)P (Un
i = 1|Hn)P (Un

j = 1|Hn)

≤ (n− 1)







[nβ]
|Hn|
n

∑

j∈Hn D̄n
j

nµn
+ [nβ]2

(

∑

j∈Hn D̄n
j

nµn

)2






≤ (n− 1)

{

n3β∆n

n2µ/2
+ n2β (n

β∆n)
2

n2µ2/4

}

(for all sufficiently large n)

≤ n4β+ 1

2

n

(

2

µ
+

4

µ2

)

→ 0 as n → ∞.(4.20)

Similarly, for all sufficiently large n, we have that

√
n− 1P (QB

n ([n
β]) = 1||Hn| ≤ nβ) ≤

√
n− 1





|Hn|
n

+ [nβ]
∑

j∈Hn

D̄n
j /nµn





≤
√
n− 1

(

nβ

n
+

2n2β+ 1

4

nµ

)

→ 0 as n → ∞.(4.21)

Therefore it follows from (4.18)–(4.21) that for any Hn satisfying |Hn| ≤
[nβ], (4.17) converges to 0 as n → ∞; moreover, this convergence is uniform
over such Hn. Hence, the right hand side of (4.14) converges to 0 as n → ∞
and the lemma follows. �

For a branching process, it is far simpler to study its extinction probability
than the probability that its total size is less than [nβ]. The following lemma
provides useful bounds between these two probabilities as n → ∞.

Lemma 4.3

(n− 1)E[1{Cn
1
≤[nβ]}1{26∈Cn

1
}(E[1{B̌n

2
<∞}|Hn = Cn

1 ]

−E[1{B̌n
2
≤[nβ]}|Hn = Cn

1 ])] → 0(4.22)

and

(n− 1)E[1{Cn
1
≤[nβ]}1{26∈Cn

1
}(E[1

{Bn,I
2

<∞}
]−E[1

{Bn,I
2

≤[nβ ]}
])] → 0

(4.23)
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ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 19

as n → ∞.

Proof. We prove (4.22) with (4.23) following by similar but simpler argu-
ments.

Given that Cn
1 ≤ [nβ], it follows from conditions (a)-(c) that there exists

δ > 0 such that for all sufficiently large n, regardless of the set Cn
1 , ν̌n =

∑

i 6∈Cn
1

D̄n
i (D̄

n
i − 1)/

∑

i 6∈Cn
1

D̄n
i > 1 + δ and λ̌n =

∑

i 6∈Cn
1

D̄n
i (D̄

n
i − 1)(D̄n

i −
2)/
∑

i 6∈Cn
1

D̄n
i < λ + 1 < ∞. Therefore, it follows by Corollary A.4 that

for any l ∈ N, there exists a finite constant A∗
l = Al,λ+1,δ such that for

sufficiently large n, E[(B̌n
2 )

l1{B̌n
2
<∞}] ≤ A∗

l .
By Markov’s inequality for any l ∈ N and for all sufficiently large n,

E[1{B̌n
2
<∞}|Hn = Cn

1 ]− E[1{B̌n
2
≤[nβ]}|Hn = Cn

1 ]

= P (B̌n
2 < ∞)− P (B̌n

2 ≤ [nβ], B̌n
2 < ∞)

= P (B̌n
2 > [nβ]|B̌n

2 < ∞)P (B̌n
2 < ∞)

≤ [nβ]−lE[(B̌n
2 )

l|B̌n
2 < ∞]P (B̌n

2 < ∞)

≤ [nβ]−lA∗
l .(4.24)

By choosing any l > 1/β, we can bound from above the left hand side of
(4.22) by (n− 1)[nβ ]−lA∗

l → 0 as n → ∞. �

By Lemma 4.3 and the triangle inequality, we have that

lim
n→∞

E
[

1{Cn
1
≤[nβ ]}1{26∈Cn

1
}

×(n− 1)
{

E
[

1{B̌n
2
≤[nβ ]}|Hn = Cn

1

]

− E
[

1
{Bn,I

2
≤[nβ ]}

]}]

= lim
n→∞

E
[

1{Cn
1
≤[nβ ]}1{26∈Cn

1
}

×(n− 1)
{

E
[

1{B̌n
2
<∞}|Hn = Cn

1

]

− E
[

1
{Bn,I

2
<∞}

]}]

,(4.25)

should the latter limit exist. Thus we have reformulated the limit, as n → ∞,
of (4.11) in terms of the limiting behaviour of the extinction probabilities of
two sequences of branching processes. Moreover, there is a straightforward
coupling between the two branching processes which is exploited in Section
4.3.

4.3. Comparing extinction probabilities of coupled branching processes.
Let y̌n = P (B̌n

2 < ∞|Hn = Cn
1 , C

n
1 ≤ [nβ]) and yn = P (Bn,I

2 < ∞) de-

note the extinction probabilities of the branching processes B̌n
2 and Bn,I

2 ,
respectively. Then y̌n = f̌n(žn) and yn = fn(zn), where for s ≥ 0, f̌n(s) =
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20 BALL AND NEAL

1
n−Cn

1

∑

j 6∈Cn
1

sD̄
n
j , fn(s) =

1
n

∑n
j=1 s

D̄n
j =

∑∞
k=0 π

n
k s

k, and žn and zn satisfy

žn =
1

µ̌n
f̌ ′
n(žn)

zn =
1

µn
f ′
n(zn)(4.26)

with µ̌n = 1
n−Cn

1

∑

j 6∈Cn
1

D̄n
j , f̌

′
n(s) = d

ds f̌n(s) and f ′
n(s) = d

dsfn(s). Note

that for all 0 ≤ s ≤ 1, f̌n(s)|{Cn
1 ≤ [nβ]}, fn(s)

p−→ f(s), f̌ ′
n(s)|{Cn

1 ≤
[nβ]}, f ′

n(s)
p−→ f ′(s), µ̌n|{Cn

1 ≤ [nβ]}, µn
p−→ µ and ν̌n|{Cn

1 ≤ [nβ]}, νn p−→
ν as n → ∞, where ν̌n = 1

(n−Cn
1
)µ̌n

∑

j 6∈Cn
1

D̄n
j (D̄

n
j − 1). Then, using Brit-

ton et al. (2007), Lemma 4.1, it is straightforward to show that žn|{Cn
1 ≤

[nβ]}, zn p−→ z as n → ∞.
For k = 0, 1, . . . , let bnk denote the total number of vertices in Cn

1 with
degree k. Let Hn

1 =
∑∞

k=1 kb
n
k , the sum of the degrees of the members

of Cn
1 . If Cn

1 contains no cycles then Hn
1 = 2(Cn

1 − 1). Using MA
n and

MA,2
n = min{k > MA

n ; θnk ∈ {θn0 , θn1 , . . . , θnk−1}}, it is straightforward to

show that P (Hn
1 = 2(Cn

1 − 1)|Cn
1 ≤ [nβ]) → 1 and there exists ǫ > 0 such

that n1+ǫP (Hn
1 > 2Cn

1 |Cn
1 ≤ [nβ]) → 0 as n → ∞, (cf. (3.4) and (4.18),

respectively). In words, if Cn
1 is small (≤ [nβ]) then with high probability it

contains no cycles and the probability of containing 2 or more cycles is very
small. For k = 0, 1, . . . , let π̌n

k = 1
n−Cn

1

∑

j 6∈Cn
1

1{D̄n
j =k}, so for 0 ≤ s ≤ 1,

f̌n(s) =
∑∞

k=0 π̌
n
k s

k.
The limit, as n → ∞, of the right hand side of (4.25) is computed in

Lemma 4.6 following a preliminary lemma and corollary. A key observation
in obtaining the limit is that, using the coupling of Cn

1 , Bn
1 and B, it is easily

shown that, for k = 0, 1, . . .,

bnk |{Cn
1 ≤ [nβ]} D−→ bk|{B < ∞} as n → ∞,(4.27)

where bk denotes the total number of individuals having degree k in the
branching process B, where an individual has degree k if it has k−1 offspring
(k offspring in the case of the initial ancestor).

Lemma 4.4

n(žn − zn)|{Cn
1 ≤ [nβ]} D−→ 1

1− f ′′(z)/µ
× 1

µ

∞
∑

k=0

kbk(z − zk−1)

∣

∣

∣

∣

∣

{B < ∞}

as n → ∞.
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ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 21

Proof. First, note that,

n(žn − zn) = n

{

1

µ̌n

∞
∑

k=1

kπ̌n
k ž

k−1
n − 1

µn

∞
∑

k=1

kπn
k z

k−1
n

}

=
n

µ̌nµn
(µn − µ̌n)

∞
∑

k=1

kπ̌n
k ž

k−1
n +

n

µn

∞
∑

k=1

k(π̌n
k − πn

k )ž
k−1
n

+
n

µn

∞
∑

k=1

kπn
k (ž

k−1
n − zk−1

n ).(4.28)

Since Cn
1 |{Cn

1 ≤ [nβ]} D−→ B|{B < ∞} and

Hn
1 |{Cn

1 ≤ [nβ]} D−→ 2(B − 1)|{B < ∞} as n → ∞, we have that

n(µn − µ̌n)|{Cn
1 ≤ nβ} =

(

− Cn
1

n−Cn
1

) n
∑

i=1

D̄n
i +

n

n− Cn
1

Hn
1

∣

∣

∣

∣

∣

{Cn
1 ≤ nβ}

D−→ −Bµ+ 2(B − 1)|{B < ∞} as n → ∞.

Then, since µ̌n|{Cn
1 ≤ nβ}, µn

p−→ µ, žn|{Cn
1 ≤ nβ} p−→ z and f̌ ′

n(žn)|{Cn
1 ≤

nβ} p−→ f ′(z) as n → ∞, where z and f ′(z) are defined in (1.3), we have
that

n

µ̌nµn
(µn − µ̌n)

∞
∑

k=1

kπ̌n
k ž

k−1
n

∣

∣

∣

∣

∣

{Cn
1 ≤ nβ} D−→

1

µ2
{2(B − 1)−Bµ}f ′(z)

∣

∣

∣

∣

{B < ∞}, as n → ∞.(4.29)
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Similarly,

n

µn

∞
∑

k=1

k(π̌n
k − πn

k )ž
k−1
n

∣

∣

∣

∣

∣

{Cn
1 ≤ nβ}

=
n

µn

∞
∑

k=1

k

(∑

j 6∈Cn
1

1{D̄n
j
=k}

n− Cn
1

−
∑n

j=1 1{D̄n
j
=k}

n

)

žk−1
n

∣

∣

∣

∣

∣

{Cn
1 ≤ nβ}

=
1

µn

∞
∑

k=1

k





∑

j 6∈Cn
1

1{D̄n
j =k}

(

n

n− Cn
1

− n

n

)

−
∑

j∈Cn
1

1{D̄n
j =k}



 žk−1
n

∣

∣

∣

∣

∣

∣

{Cn
1 ≤ nβ}

=
1

µn

∞
∑

k=1

k











1

n−Cn
1

∑

j 6∈Cn
1

1{D̄n
j =k}



Cn
1 − bnk







žk−1
n

∣

∣

∣

∣

∣

∣

{Cn
1 ≤ nβ}

D−→ 1

µ

∞
∑

k=1

k(πkB − bk)z
k−1

∣

∣

∣

∣

∣

{B < ∞}

=
Bf ′(z)

µ
− 1

µ

∞
∑

k=1

kbkz
k−1 as n → ∞.

(4.30)

(Convergence in distribution of the infinite sum can be justified by exploiting
that, for any z0 ∈ (0, 1),

∑∞
k=k0

kzk−1 → 0 as k0 → ∞ uniformly in z ∈
[0, z0].)

Turning to the third term on the right hand side of (4.28), by the mean
value theorem, for fixed n, there exists ϕn lying between zn and žn such that

n

µn

∞
∑

k=1

kπn
k (ž

k−1
n − zk−1

n ) = (žn − zn)
n

µn

∞
∑

k=1

k(k − 1)πn
kϕ

k−2
n .(4.31)

Now žn|{Cn
1 ≤ nβ} and zn both converge in probability to z as n → ∞,

hence so does ϕn. It then follows that 1
µn

∑∞
k=1 k(k − 1)πn

kϕ
k−2
n |{Cn

1 ≤
nβ} p−→ 1

µf
′′(z) as n → ∞. As noted in the paragraph following Theo-

rem 2.1, f ′′(z)/µ < 1. Therefore combining (4.29), (4.30) and (4.31) with
(4.28), we have that

n(žn − zn)|{Cn
1 ≤ nβ}

D−→ 1

1− f ′′(z)/µ

{

f ′(z)

µ2
{2(B − 1)} − 1

µ

∞
∑

k=1

kbkz
k−1

}∣

∣

∣

∣

∣

{B < ∞}

=
1

1− f ′′(z)/µ
× 1

µ

∞
∑

k=1

kbk(z − zk−1)

∣

∣

∣

∣

∣

{B < ∞} as n → ∞,
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since z = f ′(z)/µ and 2(B − 1) =
∑∞

k=1 kbk. �

Corollary 4.5

n(y̌n − yn)|{Hn = Cn
1 , C

n
1 ≤ [nβ]}

D−→
{

Bf(z)−
∞
∑

k=1

bkz
k +

z

1− f ′′(z)/µ
×

∞
∑

k=1

kbk(z − zk−1)

}∣

∣

∣

∣

∣

{B < ∞}

as n → ∞.(4.32)

Proof. Note that

n(y̌n − yn) = n(f̌n(žn)− fn(žn)) + n(fn(žn)− fn(zn)).(4.33)

It is straightforward using a similar argument to (4.30) to show that

n(f̌n(žn)− fn(žn))|{Cn
1 ≤ [nβ]} = n

∞
∑

k=1

(π̌n
k − πn

k )ž
k
n

∣

∣

∣

∣

∣

{Cn
1 ≤ [nβ]}

D−→
∞
∑

k=1

(Bπk − bk)z
k

∣

∣

∣

∣

∣

{B < ∞} as n → ∞.(4.34)

By the mean value theorem, there exists ϕ2
n

p−→ z as n → ∞, such that

n(fn(žn)− fn(zn)) = f ′
n(ϕ

2
n)n(žn − zn).(4.35)

The Corollary then follows by substituting (4.34) and (4.35) into (4.33), and

then using Lemma 4.4 and z = f ′(z)/µ. (It is easily shown that f ′
n(ϕ

2
n)

p−→
f ′(z) as n → ∞.) �

Lemma 4.6

E
[

1{Cn
1
≤[nβ ]}1{26∈Cn

1
} × (n− 1)

{

E
[

1{B̌n
2
<∞}|Hn = Cn

1

]

− E
[

1
{Bn,I

2
<∞}

]}]

→ E

[{

Bf(z)−
∞
∑

k=1

bkz
k +

z

1− f ′′(z)/µ
×

∞
∑

k=1

kbk(z − zk−1)

}

1{B<∞}

]

as n → ∞.(4.36)

Proof: The lemma follows from Corollary 4.5 by showing that
{

1{Cn
1
≤[nβ ]}1{26∈Cn

1
}(n− 1)

{

E
[

1{B̌n
2
<∞}|Hn = Cn

1

]

− E
[

1
{Bn,I

2
<∞}

]}}

=
n− 1

n
×
{

1{Cn
1
≤[nβ ]}1{26∈Cn

1
}n(y̌n − yn)

}

(4.37)
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is uniformly integrable.
For k = 1, 2, . . ., let φn

k = k
nµn

∑

j 6∈Cn
1

1{D̄n
j =k} and let̟n

k = 1
n

∑

j 6∈Cn
1

1{D̄n
j =k}.

Let φ̂n =
Hn

1

nµn
and ˆ̟ n =

Cn
1

n . For 0 ≤ s ≤ 1, let gn(s) =
∑∞

k=1 φ
n
ks

k−1 and

let hn(s) =
∑∞

k=0̟
n
k s

k. Let Bn,A and Bn,B be branching processes coupled

to B̌n
2 and Bn,I

2 such that if θnk 6∈ Cn
1 , the k

th individual in all four branching
processes has D̄n

θn
k
− 1 (k ≥ 1) offspring. (The 0th individual is the initial

ancestor and has D̄n
θn
0

offspring.) If θnk ∈ Cn
1 , let the kth individual in Bn,A

have no offspring, whilst the kth individual in Bn,B has infinitely many off-
spring. Let ŷn and ȳn denote the extinction probabilities of Bn,A and Bn,B,
respectively. Then ŷn and ȳn are given by

ŷn = hn(ẑn) + ˆ̟ n,

ȳn = hn(z̄n),

where ẑn and z̄n are the smallest solutions in [0, 1] of

ẑn = gn(ẑn) + φ̂n,

z̄n = gn(z̄n).

Then ŷn ≥ ȳn, ẑn ≥ z̄n and |n(y̌n − yn)| ≤ n(ŷn − ȳn), since ŷn and ȳn form
upper and lower bounds for the extinction probabilities of the branching
processes B̌n

2 and Bn,I
2 . Noting that d

dsgn(s) is increasing in s, and simple
algebraic manipulation gives

n(ẑn − z̄n) ≤
Hn

1

µn(1− g′n(ẑn))
.

Thus

|n(y̌n − yn)| ≤ Cn
1 + h′n(1)

Hn
1

µn(1− g′n(ẑn))
≤ Cn

1 +
Hn

1

1− g′n(ẑn)
,

(4.38)

since h′n(1) ≤ µn.
Fix 0 < ǫ < min{1, ν − 1} and K = 2f ′′′(1)/L1 = 2λ < ∞. It is

straightforward using Lemma A.3 to show that for all sufficiently large n,
1 − g′n(ẑn) > ǫ2/(4K). Therefore since n1+ǫP (Hn

1 > 2Cn
1 ) → 0 as n → ∞,

we have that for all sufficiently large n,

E
[

|n(y̌n − yn)|1+ǫ1{|Cn
1
|≤[nβ ]}1{26∈Cn

1
}

]

≤ 1 + E[(Cn
1 )

1+ǫ1{|Cn
1
|≤[nβ ]}]

(

1 +
8Kµ

ǫ2

)1+ǫ

.

(4.39)

imsart-aap ver. 2011/12/06 file: mr_var_Mar16.tex date: March 24, 2016



ASYMPTOTIC VARIANCE OF THE GIANT COMPONENT 25

By (3.4) and (3.5) at the end of Section 3, n2βP (1{Cn
1
≤[nβ ]} 6= 1{B≤[nβ ]}) → 0

as n → ∞. The lemma follows, since Lemma A.2 proves that E[B21{B<∞}] <
∞. �

5. Computing σ2. From (4.1) and (4.3), we have that

var(Ũn/
√
n)

=
1

n

n
∑

i=1

n
∑

j=1

cov(χn
i , χ

n
j )

= var(χn
1 ) + (n− 1)E

[

1{2∈Cn
1
}1{Cn

1
≤[nβ ]}

(

1{Cn
2
≤[nβ]} −E

[

1{Cn
2
≤[nβ ]}

])]

+(n− 1)E
[

1{26∈Cn
1
}1{Cn

1
≤[nβ ]}

(

1{Cn
2
≤[nβ]} − E

[

1{Cn
2
≤[nβ ]}

])]

.

(5.1)

Therefore it follows from Section 4 (specifically (4.1), (4.2) and Lemmas 4.1,
4.2, 4.3 and 4.6) that limn→∞ var(Ũn/

√
n) is equal to

ρ(1− ρ) +E[(B − 1)1{B<∞}]ρ

+ E

[{

Bf(z)−
∞
∑

k=1

bkz
k +

z

1− f ′′(z)/µ
×

∞
∑

k=1

kbk(z − zk−1)

}

1{B<∞}

]

.

(5.2)

We proceed by showing that (5.2) is equal to σ2, which concludes the proof
of Theorem 2.1. In order to complete this we need three preliminary lemmas
for the branching process B.

Let B̃ denote a single-type branching process with one initial ancestor
and offspring distribution D̃ − 1, where P (D̃ = k) = kπk/µ (k = 1, 2, . . .).
Let Y and X be non-negative integer valued random variables with prob-
ability mass functions P (Y = l) = zlπl/ω and P (X = l) = zl−2lπl/µ
(l = 0, 1, . . .), where ω and z are the extinction probabilities of the branch-
ing processes B and B̃, respectively. In the branching process B, the offspring
of the initial ancestor and subsequent individuals, conditional upon extinc-
tion of B, are distributed according to Y and X−1, respectively. (Note that
P (X = 0) = 0.) We start by deriving the expected value of bk (the total
number of individuals having degree k in the branching process B; see (4.27))
conditional upon extinction of the branching process.

Lemma 5.1 For k = 0, 1, . . .,

E[bk1{B<∞}] = P (B < ∞)P (Y = k) + E[(B − 1)1{B<∞}]P (X = k).

(5.3)
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Proof. Let Z0, Z1, . . . , be independent with Z0
D
= Y and Zi

D
= X − 1 (i =

1, 2, . . .). Let T = min{n : Z0 +Z1 + . . .+Zn = n}. Then T is the total size
(not including the initial ancestor) of the branching process B conditioned
on extinction. Fix k ∈ Z+. Let V0 = 1{Z0=k}−P (Y = k) and Vn = 1{Z0=k}−
P (Y = k) +

∑n
i=1(1{Zi=k−1} − P (X = k)) (n = 1, 2, . . .). Then {V0, V1, . . .}

is a martingale with respect to {Z0, Z1, . . .}. Also, T is a stopping time with
respect to {Z0, Z1, . . .}, E[T ] < ∞ as the branching process is subcritical
and E [|Vn+1 − Vn||Z0, Z1, . . . , Zn] ≤ 1 for all n. Thus by Corollary 3.1 on
page 260 of Karlin and Taylor (1975),

E[VT ] = E[V0] = 0.

Now,
VT = bk − P (Y = k)− TP (X = k),

so

E[bk|B < ∞] = P (Y = k) + P (X = k)E[T ].(5.4)

Equation (5.3) follows immediately from (5.4), since
E[T ] = E[(B − 1)|B < ∞] and E[bk1{B<∞}] = E[bk|B < ∞]P (B < ∞). �

Lemma 5.2

E[(B − 1)1{B<∞}] =
z2µ

1− f ′′(z)/µ
.

Proof. Let B̃ denote the total size of the branching process B̃. Then

E[B̃|B̃ < ∞] = 1 + E

[

X−1
∑

i=1

B̃i

∣

∣

∣

∣

∣

B̃ < ∞
]

,

where B̃1, B̃2, . . . are iid according to B̃ (and independent of X) and the
sum is vacuous if X = 1. Thus

E[B̃|B̃ < ∞] = 1 + E[X − 1]E[B̃|B̃ < ∞],

whence, since E[X − 1] = f ′′(z)/µ < 1 (see remarks after Theorem 2.1)

E[B̃|B̃ < ∞] =
1

1− E[X − 1]
=

1

1− f ′′(z)/µ
.

Now

E[(B − 1)1{B<∞}] = E[(B − 1)|B < ∞]P (B < ∞)

= E

[

Y
∑

i=1

B̃i

∣

∣

∣

∣

∣

B < ∞
]

P (B < ∞)

= E[Y ]E
[

B̃|B̃ < ∞
]

P (B < ∞),(5.5)
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where

E[Y ] =

∞
∑

l=0

l
zlπl
ω

=
zf ′(z)

ω
=

z2µ

ω
,

by (1.3). The lemma follows since P (B < ∞) = ω. �

Lemma 5.3 For any 0 ≤ s ≤ 1,

∞
∑

k=0

skE[bk1{B<∞}] = f(sz) +
szf ′(sz)

1− f ′′(z)/µ

and

∞
∑

k=1

ksk−1E[bk1{B<∞}] = zf ′(sz) +
zf ′(sz)

1− f ′′(z)/µ
+

sz2f ′′(sz)

1− f ′′(z)/µ
.

(5.6)

Proof. Using (5.3) and Lemma 5.2,

∞
∑

k=0

skE[bk1{B<∞}] = ω
∞
∑

k=0

sk
zkπk
ω

+
z2µ

1− f ′′(z)/µ

∞
∑

k=1

sk
zk−2kπk

µ

= f(sz) +
sz

1− f ′′(z)/µ

∞
∑

k=1

k(sz)k−1πk

= f(sz) +
sz

1− f ′′(z)/µ
f ′(sz).(5.7)

The proof of the lemma is completed by noting that (5.6) follows by differ-
entiating (5.7) with respect to s. �

We complete the proof of Theorem 2.1 by noting that ω = f(z) and, by
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(5.2) and Lemmas 5.2 and 5.3, we have that

lim
n→∞

var

(

Ũn√
n

)

= ρ(1− ρ) + E[(B − 1)1{B<∞}]ρ

+ E

[{

Bf(z)−
∞
∑

k=1

bkz
k +

z

1− f ′′(z)/µ
×

∞
∑

k=1

kbk(z − zk−1)

}

1{B<∞}

]

= ρ(1− ρ) +
ρz2µ

1− f ′′(z)/µ

+

{

ω +
z2µ

1− f ′′(z)/µ

}

ω − f(z2)− z2f ′(z2)

1− f ′′(z)/µ

+
z

1− f ′′(z)/µ

{

z

(

zf ′(z) +
zf ′(z)

1− f ′′(z)/µ
+

z2f ′′(z)

1− f ′′(z)/µ

)

−
(

zf ′(z2) +
zf ′(z2)

1− f ′′(z)/µ
+

z3f ′′(z2)

1− f ′′(z)/µ

)}

(5.8)

Straightforward algebraic manipulation, using ω + ρ = 1, ω = f(z) and
f ′(z) = zµ, gives

lim
n→∞

var

(

Ũn√
n

)

= ρ(1− ρ) + (1− ρ)2 +
z2µ

1− f ′′(z)/µ
− f(z2)

+
z2

1− f ′′(z)/µ
(−f ′(z2) + zf ′(z)− f ′(z2))

+
z2

(1− f ′′(z)/µ)2
{

z2µ+ z2f ′′(z)− f ′(z2)− z2f ′′(z2)
}

= σ2(5.9)

as required.

6. The weakly supercritical case. The weakly supercritical case,
studied in Riordan (2012), corresponds to νn ↓ 1 as n → ∞, sufficiently
slowly such that n1/3(νn − 1) → ∞ as n → ∞. In Riordan (2012), Theorem
1.1, it is shown that

√
n(Rn/n− ρn) is asymptotically normal with mean 0

and var(
√
n(Rn/n− ρn)) ∼ 2µn/(νn − 1), where ρn and zn denote the solu-

tions to (1.2) and (1.3), respectively, with {πi} replaced by {πn
i }, µ replaced

by µn, and f(s) and its derivatives replaced by fn(s) =
∑∞

i=0 π
n
i s

i and its
derivatives (cf. (4.26)). Similarly, let σ2

n be given by (2.5), with z, ρ, µ and
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f replaced by zn, ρn, µn and fn, respectively. We proceed by showing that

σ2
n ∼ 2µn

νn − 1
,(6.1)

whence from Riordan (2012), Theorem 1.1, it follows that var(
√
n(Rn/n−

ρn)) ∼ σ2
n. We assume that conditions (a)-(c) in Section 2 hold, and also

that
∑∞

j=0 j
4πj < ∞ and

∑∞
j=0 j

4πn
j →∑∞

j=0 j
4πj as n → ∞.

Let δn = 1 − zn, then δn → 0 (zn → 1) as n → ∞. Using (1.3), we have
that zn = 1

µn
f ′
n(zn), whence, using Maclaurin’s theorem,

1− δn =
1

µn

∞
∑

i=1

iπn
i (1− δn)

i−1

=
1

µn

∞
∑

i=1

iπn
i

(

1− (i− 1)δn +
(i− 1)(i− 2)

2
δ2n

)

+ o(δ2n)

= 1− νnδn +
λn

2
δ2n + o(δ2n).(6.2)

Recall that zn is the smallest solution in [0, 1] of s = 1
µn

f ′
n(s). Thus, (6.2)

implies that δn = 2(νn − 1)/λn + o(δn). Therefore, it follows from (1.2) that

ρn = 1−
∞
∑

i=0

(1− δn)
iπn

i = 1−
∞
∑

i=0

(1− iδn)π
n
i + o(δn)

= µnδn + o(δn) =
2µn

λn
(νn − 1) + o(δn).(6.3)

Thus, ρn ∼ 2(νn − 1)µn/λn, in agreement with Riordan (2012) equation
(1.11). It is straightforward using a binomial expansion to show that, for
k = 1, 2,

fn(z
k
n) =

∞
∑

i=0

πn
i (1− δn)

ki

=

∞
∑

i=0

πn
i (1− kiδn) + o(δn) = 1− kδnµn + o(δn),(6.4)

and, similarly, that

f ′
n(z

k
n) = µn(1− kδnνn) + o(δn),(6.5)

f ′′
n(z

k
n) = µn(νn − kδnλn) + o(δn).(6.6)
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Since δnλn ∼ 2(νn − 1), it follows from (6.6) that

1− f ′′
n(zn)/µn = 1− {νn − 2(νn − 1) + o(δn)}

= νn − 1 + o(δn).(6.7)

Therefore, turning to σ2
n (cf. (2.5)), it follows from (6.3) and (6.4) that

(6.8) 1− ρn − fn(z
2
n) = µnδn + o(δn);

using (6.5) and (6.7) that

(6.9)
z2n

1− f ′′
n(zn)/µn

{(1 + z2n)µn − 2f ′
n(z

2
n)} =

2δnµn(2νn − 1)

νn − 1
+ o(1);

and, using (6.5)–(6.7), that

z2n
(1− f ′′

n(zn)/µn)2
{z2nµn + z2nf

′′
n(zn)− f ′

n(z
2
n)− z2nf

′′
n(z

2
n)}

=
2δnµn(νn − 1) + δnµnλn + o(δn)

(νn − 1)2

=
2µn(1 + δn) + o(δn)

νn − 1
.(6.10)

Substituting (6.8)–(6.10) into the equation for σ2
n (cf. (2.5)) yields

(νn − 1)σ2
n = δnµn(νn − 1) + 2δnµn(2νn − 1) + 2µn(1 + δn) +

o(δn)

νn − 1

= 2µn +
o(δn)

δn
,

since νn − 1 ∼ δn, and (6.1) follows.

7. Concluding remarks. The main interest in the variance of the gi-
ant component of a configuration model random graph is for a given de-
gree sequence D̄n, where n is finite. Therefore we briefly illustrate that
the asymptotic expressions are applicable for moderate n by considering
n = 200 and n = 1000. For four different distributions, D, given be-
low, we generate D̄n mimicking D. That is, we ensure that D̄n satisfies
[nP (D = k)] ≤ ∑n

i=1 1{D̄n
i =k} < [nP (D = k)] + 1 for k = 0, 1, . . .. Then

using D̄n we simulated 10000 random graphs and recorded the size of the
giant component in each graph. For each D̄n, the mean proportion (ρn) and
scaled variance (σ2

n) of the giant component from the simulated graphs are
compared with ρ and σ2, the formulae for the mean and variance, respec-
tively, given by the asymptotic results. The results are presented in Table 1
for the four degree distributions:-
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1) P (D = 1) = P (D = 3) = 1/2;
2) D ∼ Geom(q) with q = 0.5 and support N, i.e. P (D = k) = 0.5k

(k = 1, 2, . . .);
3) D ∼ Po(µ) with µ = 2, i.e. P (D = k) = e−22k/k! (k = 0, 1, . . .);
4) P (D = k) ∝ k−m (k = 2, 3, . . . , n) and P (D = 1) = 2P (D = 3) with

m = 4.

Table 1 shows that there is good agreement for n = 1000 between the
theoretical calculations of the mean and variance of the giant component
and the results obtained via simulation. Although larger discrepancies are
observed for n = 200, the theoretical results are still useful in this case.

Theoretical n = 200 n = 1000
D ρ σ2 |ρn − ρ| |σ2

n − σ2| |ρn − ρ| |σ2
n − σ2|

1 0.8148 0.2936 0.0053 0.0456 0.0008 0.0051
2 0.7639 0.3416 0.0017 0.0152 0.0002 0.0050
3 0.7968 0.1365 0.0017 0.0025 0.0002 0.0016
4 0.8906 0.3530 0.0057 0.0346 0.0035 0.0167

Table 1. Simulation results against theoretical (asymptotic) calculations.
A natural extension of Theorem 2.1 is to seek a central limit theorem for

the size of the giant component Rn, cf. (1.1), that is,
√
n(Rn/n − ρ)

D−→
N(0, σ2) as n → ∞. This is supported by the simulation study as illustrated
by Figure 1 where, for degree distribution 1, a histogram of the simulated
Rn is plotted, together with the density of the N(nµ, nσ2) distribution.
Similar plots were observed for the other three degree distributions men-
tioned above. Further support for the existence of a central limit theorem
is given in Figure 2 as follows. For each of the four degree distributions and
for n = 200, 300, . . . , 1000, 10000 random graphs were simulated. For n =
200, 300, . . . , 1000 and i = 1, 2, . . . , 10000, the size Ri

n of the giant component
and the normalised squared differenceN i

n = (Ri
n−nρ)2/(nσ2) were recorded.

The latter were grouped into batches of 10 with, for j = 1, 2, . . . , 1000,
Sj
n =

∑10j
i=10j−9N

i
n. If a central limit theorem exists then S1

n will converge

in distribution to a χ2
10 distribution as n → ∞. In Figure 2, the empirical

5%, 50% and 95% quantiles for (S1
n, S

2
n, . . . , S

1000
n ) (n = 200, 300, . . . , 1000)

are plotted for each degree distribution, with the three horizontal lines de-
noting the corresponding quantiles of the χ2

10 distribution. Figure 2 shows
convergence of the Sn quantiles towards the χ2

10 quantiles as n increases.
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Size of the giant component
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Figure 1. Histogram of Rn with n = 1000, based upon a sample of size
10000, together with density plot of N(nρ, nσ2), both with degree

distribution 1.
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Figure 2. Empirical 5%, 50% and 95% quantiles for each degree
distribution (1 - dot; 2 - squares; 3 - diamonds; 4 - triangles) and

corresponding χ2
10 quantiles (lines).

A key extension of the results of this paper is the asymptotic variance
of the giant component of a Newman-Strogatz-Watts (NSW) random graph
model, where the deterministic sequence D̄n is replaced by taking
D̄1, D̄2, . . . , D̄n to be iid according to a non-negative integer-valued ran-
dom variable, D. As noted in Section 1 the degree sequence might be in-
feasible with

∑n
i=1 D̄

n
i being odd, in which case, we simply ignore the last

half-edge in the construction of the random graph. For the NSW random
graph, we can again show that var(

√
n(Rn/n−ρ)) and var(Ũn/

√
n) have the
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same asymptotic limit (should one exist) as n → ∞. However, in computing
var(Ũn/

√
n) = var(χn

1 ) + (n − 1)cov(χn
1 , χ

n
2 ), we need to take into account

variability in D̄n. As above it is straightforward to show that var(χn
1 ) →

ρ(1− ρ) as n → ∞. However, for (n− 1)cov(χn
1 , χ

n
2 ), we use the law of total

covariance, writing

(n− 1)cov(χn
1 , χ

n
2 )

= (n− 1)E[cov(χn
1 , χ

n
2 |D̄n)] + (n− 1)cov(E[χn

1 |D̄n], E[χn
2 |D̄n])

= E[(n − 1)cov(χn
1 , χ

n
2 |D̄n)] + var(

√
n− 1E[χn

1 |D̄n]),(7.1)

since, by exchangeability, E[χn
2 |D̄n] = E[χn

1 |D̄n]. That is, the covariance
comprises two parts, variation in the construction, and hence in the size of
the giant component of Gn given D̄n (this is the variation which is observed
for the MR random graph) and variance in the (mean) size of the giant
component of Gn due to variability in D̄n. For ǫ, δ > 0 and n = 1, 2, . . .,
let Kn

ǫ,δ denote the event that (i) n−(1/4−δ)∆n < ǫ, (ii) (2.1) holds for all

j ≥ 0 and (iii) (2.3) holds for k = 1, 2, 3, with the components of D̄n drawn
independently according to D. Note that the conditions ν > 1 and π1 > 0
are conditions upon D, which are satisfied if E[D(D − 1)] > E[D] and
P (D = 1) > 0. It is relatively straightforward, but lengthy, to show that
provided that there exists γ > 0, such that E[D8+γ ] < ∞, then there exists
δ > 0, such that for all ǫ > 0, nP ((Kn

ǫ,δ)
C) → 0 as n → ∞, from which it is

straightforward to show that the first term on the right hand side of (7.1)
converges to σ2

1 = σ2 − ρ(1− ρ) as n → ∞. It can also be shown that

var(
√
n− 1E[χn

1 |D̄n])

→ f(z2)− f(z)2 +

(

z

1− f ′′(z)/µ

)2

×
{

z2(f ′′(z2) + f ′′(1)− 3µ) + f ′(z2)(3 − 2f ′′(z)/µ)
}

(7.2)

as n → ∞. This gives for the NSW random graph that var(
√
n(Rn/n−ρ)) →

σ2
NSW , where

σ2
NSW = ρ(1− ρ) +

z2

1− f ′′(z)/µ
µ(1 + z2)

+
z4

(1− f ′′(z)/µ)2
(µ(ν − 2) + f ′′(z)).(7.3)

The details of the proof of (7.3) will be presented elsewhere along with other
extensions such as the variance of the size of a Reed-Frost epidemic which
becomes established on a (MR or NSW) random graph, Britton et al. (2007),
Section 2.3, and the size of the giant component of a percolation model on
a random graph, Janson (2009a).
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APPENDIX A: RESULTS FOR GALTON-WATSON BRANCHING
PROCESSES

In this section we present various useful results for Galton-Watson branch-
ing processes utilised in the proof of Theorem 2.1.

Let B be a Galton-Watson branching process where the initial ancestor
has offspring distribution Y and all subsequent individuals have offspring
distribution X. For 0 ≤ s ≤ 1, let f(s) = E[sY ] and g(s) = E[sX ]. Let B
denote the total size, including the initial ancestor, of the branching process
B. Then B = 1+

∑Y
i=1 B̃i where B̃1, B̃2, . . . are iid copies of B̃, the total size,

including the initial ancestor, of the branching process B̃ in which all indi-
viduals have offspring distribution X. Further, B̃1, B̃2, . . . are independent
of Y . Let p be the probability that the branching process B goes extinct.
Then p = f(z) where z is the smallest solution in [0, 1] of s = g(s). We
assume throughout that P (X = 0) > 0 implying that z > 0.

We present two lemmas concerning the moments of the total size of
branching processes. Lemma A.1 is for subcritical branching processes. Lemma
A.2 is for supercritical branching processes conditioned upon extinction and
follows straightforwardly from Lemma A.1.

Lemma A.1 Suppose that there exists k ∈ N, such that E[Xk] < ∞ and
E[X] < 1. Then E[B̃k] < ∞.

If in addition E[Y k] < ∞, then E[Bk] < ∞.

Proof. Note that, for E[X] < 1,

E[B̃] = 1 + E[X]E[B̃]

=
1

1− E[X]
.

We now prove that E[B̃k] < ∞ by induction on k.
Let B̃1, B̃2, . . . be iid according to B̃. Then,

E[B̃k] = E

[

(1 +

X
∑

i=1

B̃i)
k

]

= E





k
∑

j=0

(

k

j

)

(

X
∑

i=1

B̃i

)j




=

k
∑

j=0

(

k

j

)

E



E





(

X
∑

i=1

B̃i

)j
∣

∣

∣

∣

∣

∣

X







 .(A.1)
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Since for all j ∈ N, (
∑X

i=1 B̃i)
j ≤ Xj−1

∑X
i=1 B̃

j
i (as f(x) = xj is convex), it

follows that

E





(

X
∑

i=1

B̃i

)j


 = E



E





(

X
∑

i=1

B̃i

)j
∣

∣

∣

∣

∣

∣

X







(A.2)

≤ E

[

E

[

Xj−1
X
∑

i=1

B̃j
i

∣

∣

∣

∣

∣

X

]]

= E

[

Xj−1
X
∑

i=1

E[B̃j
i ]

]

= E[Xj ]E[B̃j].(A.3)

Therefore,

E[B̃k] ≤
k−1
∑

j=0

(

k

j

)

E[Xj ]E[B̃j ] + E





(

X
∑

i=1

B̃i

)k


 .(A.4)

Now

E





(

X
∑

i=1

B̃i

)k


 = E



E





(

X
∑

i=1

B̃i

)k
∣

∣

∣

∣

∣

∣

X







 ,

where the inner expectation consists of Xk terms of which X are E[B̃k].

The remaining Xk − X terms are of the form
∏M

j=1E[B̃
lj
ij
], where M ≥ 2

and l1, l2, . . . , lM ≥ 1 with l1 + l2 + . . .+ lM = k. By Jensen’s inequality, for
1 ≤ l < k, E[B̃l] = E[(B̃k−1)l/(k−1)] ≤ E[B̃k−1]l/(k−1), so

E





(

X
∑

i=1

B̃i

)k


 ≤ E[X]E[B̃k] + E[Xk −X]E[B̃k−1]
k

k−1 .

Hence, since E[X] < 1,

E[B̃k] ≤ 1

1− E[X]







k−1
∑

j=0

(

k

j

)

E[Xj ]E[B̃j ] + E[Xk −X]E[B̃k−1]
k

k−1







,

which is finite by induction.

A similar argument based upon B
D
= 1 +

∑Y
i=1 B̃i completes the proof of

the lemma. �
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Lemma A.2 Suppose that E[X] > 1. Then for any k ∈ N,

E[Bk1{B<∞}] < ∞.

Consequently, for any α, β > 0,

nα(P (B < ∞)− P (B ≤ [nβ])) → 0 as n → ∞.(A.5)

Proof. Fix k ∈ N. Let Ŷ and X̂ be integer-valued random variables with
P (Ŷ = l) = zlP (Y = l)/p and P (X̂ = l) = zl−1P (X = l) (l = 0, 1, . . .).
Then E[Ŷ k] < ∞ and E[X̂k] < ∞. Let B̂ be a branching process where
the initial ancestor has Ŷ offspring and all subsequent individuals offspring
distribution X̂ . Then E[X̂ ] = g′(z) < 1 implying that B̂ is a subcritical
branching process, and furthermore, letting B̂ denote the total size of B̂,
B|{B < ∞} D

= B̂, see, for example, Waugh (1958), Section 6. Thus

E[Bk1{B<∞}] = E[Bk|B < ∞]P (B < ∞) = E[B̂k]P (B < ∞),(A.6)

and the right hand side of (A.6) is finite by Lemma A.1.
Fix α, β > 0 and take l ∈ N such that l > α/β. Then note that

P (B < ∞) = P (B ≤ [nβ]) + P ([nβ] < B < ∞)

= P (B ≤ [nβ]) + P (B > [nβ]|B < ∞)P (B < ∞),

since {B ≤ [nβ]} ⊂ {B < ∞}. However by (A.6) and Markov’s inequality,
P (B > [nβ]|B < ∞)P (B < ∞) ≤ ([nβ])−lP (B < ∞)E[B̂l] and (A.5)
follows. �

It is well known that for supercritical branching processes z < 1, and
moreover, g′(z) < 1. However, g′(z) can be arbitrarily close to 1. Lemma
A.3 provides a useful upper bound for g′(z) in terms of the first and second
moment of X.

Lemma A.3 Suppose that there exists ǫ > 0 such that g′(1)(= E[X]) ≥
1 + ǫ. Then if g′′(1)(= E[X(X − 1)]) < ∞, we have that z ≤ 1− ǫ

g′′(1) and

g′(z) ≤ 1− ǫ2

4g′′(1)
.

Proof. Since g′′(s) is increasing in s, we have by the mean value theorem
that, for all w > 1 − ǫ/g′′(1), g′(w) > 1. Hence for all w > 1 − ǫ/g′′(1),
g(w) < w, implying that z ≤ 1− ǫ/g′′(1).

Let y = 1 − ǫ
2g′′(1) . Then similarly, g′(y) ≥ g′(1) − (1 − y)g′′(1) giving

g′(y) ≥ 1 + ǫ/2. Since g′(s) is increasing in s, by the mean value theorem,

g′(z)(y − z) ≤ g(y) − g(z) = g(y) − z,
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and

1− g(y) = g(1) − g(y) ≥ g′(y)(1 − y)

≥
(

1 +
ǫ

2

)

(1− y).(A.7)

Thus y − g(y) ≥ (1− y)ǫ/2, giving (since y − z ≤ 1)

g′(z) ≤ g(y)− z

y − z
= 1− y − g(y)

y − z

≤ 1− ǫ

2
(1− y) = 1− ǫ2

4g′′(1)
,

as required. �

Corollary A.4 follows from Lemma A.3 and is required for the proof of
Lemma 4.3.

Corollary A.4 For any k ∈ N and any 0 < ǫ < L < ∞, there exists a
constant Ak,L,ǫ < ∞ such that for any supercritical branching process B
with E[X] ≥ 1 + ǫ and E[X(X − 1)] ≤ L,

E[Bk1{B<∞}] ≤ Ak,L,ǫ.

Proof. For k ∈ N and 0 < ǫ < L < ∞, let Ck,L,ǫ =
∑∞

i=0 i
k(1 − ǫ/L)i

and Dk,L,ǫ =
∑∞

i=0 i
k(1 − ǫ/L)i−1. Then Ck,L,ǫ and Dk,L,ǫ are both finite.

Therefore, by Lemma A.3,

E[X̂ ] =
∞
∑

i=0

iP (X = i)zi−1 = g′(z) ≤ 1− ǫ2

4L
,(A.8)

E[X̂k] ≤
∞
∑

i=0

ikzi−1 ≤
∞
∑

i=0

ik(1− ǫ/L)i−1 = Dk,L,ǫ,(A.9)

E[Ŷ k] ≤ 1

p

∞
∑

i=0

ikzi ≤ 1

p

∞
∑

i=0

ik(1− ǫ/L)i = Ck,L,ǫ/p,(A.10)

where X̂ and Ŷ are defined as in Lemma A.2.
Recall the branching process B̃, defined at the start of the appendix. Let

B̌ denote the total size of B̃, conditional upon B̃ going extinct. Then it is
straightforward, using the proof of Lemma A.1, (A.8) and (A.9), to show
that there exists a constant Ãk,L,ǫ, such that

E[B̌k] ≤ Ãk,L,ǫ.(A.11)
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Following (A.4), we have that

E[B̂k] ≤
k
∑

l=0

(

k

l

)

E[Ŷ l]E[B̌l].(A.12)

From (A.10), (A.11) and (A.12), there exists a constant Ak,L,ǫ, such that

E[B̂k] ≤ Ak,L,ǫ/p. Finally, note that

E[Bk1{B<∞}] = P (B < ∞)E[B̂k] ≤ p
Ak,L,ǫ

p
= Ak,L,ǫ,

as required. �
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