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Highlights 

• A two-phase reactor is a promising alternative to traditional three-phase 

reactor. 

• The spouted bed region defined an interesting operating domain.  

• Study of current density and the liquid flow rate on the system 

performance. 

• A model is developed for the adsorption and electrochemical regeneration 

process. 

 



  

Abstract 

A novel spouted bed reactor is evaluated for water treatment by an adsorption and 

electrochemical regeneration process. The adsorbent is a bisulphate graphite intercalation 

compound with low specific surface area but high electrical conductivity, suitable for 

adsorption of contaminants and simultaneous electrochemical regeneration within a single 

unit. The effects of current density and liquid flow rate on Acid Violet 17 removal were 

investigated. The hydrodynamic behavior of the liquid spouted bed reactor was characterized 

by a flow regime map. A four-parameter model has been developed to describe the 

adsorption and electrochemical regeneration process in the liquid spouted bed reactor. It was 

found that the experimental data of dye removal agrees well with the modelled simulations. 
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1. Introduction 

     Adsorption technology is widely used for the removal of organic and inorganic 

contaminants from water and wastewater. Many absorbents are in use, among which 

activated carbon is the most widely used for removal organic pollutants. Once the activated 

carbon has been exhausted, it must either be regenerated, typically by an energy intensive 

thermal process, or disposed of, which is economically and environmentally unattractive [1].  

     There are two approaches suggested by many researchers to resolve the problems related 

to the exhausted activated carbon. The first is to develop low cost natural adsorbents that can 

be used once, such as using orange peel [2], plum kernels [3] and sunflower seed hull [4], etc. 

However, this approach only transfers the pollutant from the liquid to solid phase [5]. The 



  

second is by regenerating the adsorbent. Among regeneration methods, thermal regeneration 

is the choice for most industrial applications. This method, however, has high energy 

consumption (operating temperatures are 800 ~ 850 ℃), and leads to 5~15% carbon loss due 

to oxidation and attrition [6]. Therefore, alternative regeneration methods have been 

investigated by researchers, including microwave [7], ultrasound [8], biological [9], Fenton 

oxidation [10], wet air oxidation [11] and electrochemical [12-15].  

     Electrochemical regeneration has been found to be effective for the regeneration of 

activated carbon, which can achieve regeneration efficiencies of 80-99% [12-15]. However, 

the adsorption and regeneration process was slow because of the limited rate of intra-particle 

diffusion. Thus long adsorption and regeneration times are required [5]. For example Zhang 

[12] reported that 24h was required to achieve adsorption equilibrium and 5h was needed for 

85.2% electrochemical regeneration for granular activated carbon.  

     An alternative approach was investigated by using a non-porous, highly-conducting 

graphite-based adsorbent material, a flake graphite intercalation compound (GIC) [5]. 

Because this adsorbent lacks internal surface area, it can significantly reduce the adsorption 

and regeneration time, but has a low adsorbent capacity. Anodic regeneration leads to 

oxidation of organic adsorbates on the surface of the GIC. The rapid adsorption and 

electrochemical regeneration have allowed the design of a treatment process that can adsorb 

contaminants and electrochemically regenerate adsorbents simultaneously within a single unit 

[16]. 

     Most previous work exploited air-lift fluidized bed reactors for waste water treatment by 

adsorption and electrochemical regeneration [16,17]. This is because fluidized beds have 

certain unique characteristics such as enhanced mass transfer rates, high mixing rates and 

homogeneous reaction conditions [18]. However, their disadvantages are the possibility of 



  

forming a bubbling regime which would lead to non-uniform current distribution and high 

ohmic drop, i.e. increasing the energy consumption [17]. Mathur and Gishler [19] developed 

a spouted bed which can effectively deal with coarse particles with the same efficiency as a 

conventional fluidized bed. Since then, spouted beds have been used extensively in wheat 

drying, coating, granulation, coal gasification, combustion and wastewater treatment [20].  

     A novel spouted bed electrochemical reactor (SBER) for water treatment by an adsorption 

and electrochemical regeneration process is described in this work. Water to be treated is 

introduced at discrete locations to obtain a regular cyclic motion of particles in the spouted 

bed, to improve the mixing efficiency between fluid and particles [19,21-23]. The spouted 

bed has the advantage that parts of the bed are remain as a close packed moving bed, 

allowing the passage of current through the bed of adsorbent without the problems associated 

with intermittent contact that arise in a fluidised bed [17]. The main objective of the present 

study, therefore, is to evaluate the treatment of a model effluent by adsorption and 

electrochemical regeneration in an SBER under a range of operating conditions, to study the 

hydrodynamics of the spouted bed, and to develop a reactor model of the SBER.  

2. Materials and methods 

2.1. Materials 

2.1.1 Adsorbent  

     The adsorbent used in this study was a bisulphate GIC and was supplied by Arvia 

Technology Ltd under the trade name Nyex 1000. This material has been used in several 

previous studies of adsorption/electrochemical regeneration process [16,24]. The particles of 

adsorbent have a characteristic flake like appearance (Fig.1) associated with the graphite 

precursor. GIC is more hydrophilic than graphite flake, and has surface functional groups 

[25] that enhance the adsorption performance. The GIC used in this study had a carbon 



  

content of about 95% w/w, a density of 2.225 g cm-1 with particle diameters of 100 to 700 

µm, and mean particle diameters of around 500 µm [16]. All particles of size less than 140 

µm were sieved out to avoid leaving the reactor because of the small particle size. Based on 

nitrogen adsorption, the value of Brunauer Emmet Teller (BET) surface area was determined 

to be 1.0 m
2
g

-1
. This is very low compared with typical activated carbons with surface area in 

the range 600-2000 m
2
g

-1
 [26]. By mercury porosimetry, it was revealed that essentially no 

internal pores existed in the material. GIC has a high concentration of free electron carriers at 

room temperature leading to a relatively high bed electrical conductivity of 0.16 (Ω·cm)
-1

 

compared to around 0.025 (Ω·cm)
-1

 for GAC [5].   

 

 

Fig. 1. SEM micrograph of the GIC adsorbent used in this study (Nyex™1000) 

2.1.2 Adsorbate  

     Acid Violet 17 (AV 17) was used as the adsorbate in this study and was supplied by 

Sigma-Aldrich Company Ltd UK under the trade name Coomassie
®
 Violet R200. It was 



  

chosen as the target compound because it has low toxicity and used in previous studies [16]. 

It is commercial grade and was used in the experiments without further purification. The 

supplier indicated that the AV 17 content of the Coomassie® Violet R200 was 50%, the 

remainder is an inorganic salt used in the dye manufacture process. The dye content was 

confirmed by total organic carbon (TOC) analysis. The AV 17 solutions were prepared using 

distilled water and mixing for 30 min. The chemical structure and the characteristics of AV 

17 are shown in Table 1.  

Table 1 

The physical and chemical characteristic of the Acid Violet 17 used in this study 

Generic Name            

Color index   

Molecular Formula  

Molecular Weight 

Purity 

Chromophore 

λmax(nm) 

 

 

 

  

Molecular Structure 

   

          

Acid Violet 17 

42650 

C41H44N3NaO6S2 

761.93 

50% ( the remainder is inorganic salt) 

Triphenyl methane 

542 

 

 

 

 

λmax: wavelength of maximum absorbance 

2.2. Experimental set up and procedures  

     The removal of colour from wastewater and the electrochemical regeneration of the GIC 

adsorbent were performed in a liquid-lift cell at ambient laboratory temperature of 20°C and 

atmospheric pressure. A schematic diagram of the experimental set up is shown in Fig.2. This 



  

reactor operated with simultaneous adsorption and electrochemical regeneration occurring 

within a single unit. The main body of the Liquid-Lift reactor consisted of two rectangular 

sheets of transparent polyvinyl chloride (PVC) of 6 mm thickness (see Fig.3 (a)) and the 

internal dimensions of the process unit were 40 cm tall, 20 cm wide and 2.5 cm deep. Two 

liquid inlets were provided on either side of the lower sidewalls of the unit. The adsorbent 

(solid phase) formed a bed at the bottom of the anodic chamber. The liquid to be treated was 

injected into an inlet chamber below the anodic chamber and distributed through a perforated 

plate (see Fig.3 (c)), which had four equidistant inlets, each of diameter 1 mm. During 

operation liquid and solid phases flowed concurrently to the top of the adsorbent bed where 

they were separated under gravity, with the solid phase circulating back to the base of the 

reactor and the liquid phase flowing over a weir at the top of the reactor to provide a uniform 

flow at the outlet. For the range of flowrates used, the 35 cm high chamber above the anode 

compartment was found to be sufficient to separate the adsorbent particles so that no particles 

flowed over the weir. 

        The lower outside of the anode chamber was fitted with a graphite plate (20 cm wide by 

5 cm tall) which formed the anode current feeder. The adsorbent in contact with the graphite 

plate was thus anodic, and was separated from a stainless steel cathode (316L perforated with 

3mm holes, 33% open area, 1mm thickness) by means of a micro porous polyethylene 

membrane (Daramic 350, Grace GmbH Germany). The anodic conditions in the adsorbent 

bed leads to electrochemical oxidation of the adsorbed AV17, regenerating the adsorbent. 

The cathode was directly adjacent to the membrane and the distance between the graphite 

plate and the membrane was 2 cm (Fig. 3 (b)). The projected area of the anode current feeder, 

separator and cathode were 20×5 cm. The catholyte in the cathode compartment was 

acidified 0.3% w/w NaCl solution. The catholyte was acidified using 37% HCl solution to pH 



  

2 to neutralise any hydroxide formed due to water electrolysis and to maintain the 

conductivity of the separator, which is highest at low pH.      

      The batch, simultaneous method comprises a single multi-step phase in which a quantity 

of AV 17 is contacted with a fixed mass of GIC whilst the adsorbent is simultaneously being 

electrochemically regenerated under constant current conditions. A volume of 4 L of water 

containing 100 mg L-1 AV 17 solution was charged to the reservoir. The anode compartment 

of the liquid-lift cell was then partially filled from the reservoir and a mass of 140 g of GIC 

was added. A recirculating flow of AV 17 solution was established simultaneously with the 

selected regeneration current and the start of the timer. The DC current was maintained at a 

constant value throughout each experiment. Samples were taken from the outlet of the liquid-

lift reactor every 10 min until the colour was completely removed. These samples were 

centrifuged and analysed for AV 17 by visible spectroscopy at 542 nm (JENWAY 6715, 

UV/VIS spectrometer, 1.5 nm spectral bandwidth). Each sample was analysed in triplicate 

with respect to each condition and the standard deviation of these measurements was found to 

be around ±2%. Based on calibration data, the detection limit was estimated to be around 1 

mg L-1. 



  

 

Fig. 2. Schematic diagram of the experimental setup for simultaneous adsorption and 

electrochemical regeneration of GIC loaded with AV 17 in a liquid-lift electrochemical cell. 

 

                                                  (a) 



  
 

                                       (b) 

 

                                                  (C) 

Fig. 3. Schematic diagram of the batch electrochemical reactor (a) isometric view (a) cross 

section of the anode and cathode compartments (C) distribution plate 

2.3 Flow regime map 

     Measurement of the minimum spouting velocity,  ��� , was accomplished by visually 

observing the GIC adsorbent bed through the transparent front panel (For these experiments, 

a second flow visualisation setup was used with the same dimensions as the electrochemical 

reactor, but without the cathode compartment and with the graphite plate and membrane 

replaced with a transparent PVC panels in order to observe the flow regime in the anode  

compartment). The flow regime experiments were carried out for a range of different 

amounts of GIC, corresponding to different static bed heights in the reactor. The liquid used 

in this experiment was 105 mg L-1 AV 17 solution. The liquid flow rate was increased until 

spouting conditions were observed. Subsequently, the flow rate was decreased gradually until 

the spouting fountain collapsed at which point the minimum spouting flow rate was recorded.  



  

     Similarly, the minimum fluidizing velocity, ��� , was measured by first increasing the 

liquid flow rate to until fluidizing bed conditions were observed and then decreasing slowly 

until the fluidized regime collapsed back to a spouting regime. The liquid flow rate at this 

transitional point was used to determine the minimum fluidizing velocity.   

     A flow regime map for the liquid-lift reactor system was constructed by plotting the static 

bed height versus the superficial liquid velocity of ���  and  ���  to identify the stable 

spouting domain.  

3. Results and discussion  

3.1 Effect of current density 

     Fig. 4 shows the effect of current density (based on electrode area) on the concentration of 

AV 17 for the simultaneous adsorption and electrochemical regeneration experiments. The 

colour removal was calculated by the following Equation: 

Colour removal �%) = C� − C�C� × 100%                                                                                        �1) 

where C� is the initial dye concentration and C� is the remaining dye concentration at given 

time t. The colour removals obtained were 54.9%, 69.9%, 98.2% and 99.0% for current 

densities of 1.0, 2.5, 5.0 and 7.5 mA cm-2, respectively after a treatment time of 60 min. The 

colour removal increased with the current density. However, the colour was almost entirely 

removed after 60 min for current densities of 5.0 and 7.5 mA cm-2, so further increasing the 

current density does not increase colour removal significantly.  

      The advantage of higher current density is that the treatment time for complete colour 

removal is lower which will reduce the number of cells required resulting in lower capital 

costs. Fig. 4 shows that there was a linear decrease in AV 17 concentration, corresponding to 



  

a linear increase in colour removal, until the removal approached 98%, (a few mg L-1 of AV 

17). This observation suggests that the current efficiencies were constant during each 

experiment (i.e. at each of the applied current densities) for AV 17 concentrations greater 

than a few mg L
-1

. However, a linear increase in cell potential with current density was 

obtained (Fig. 5) and resulted in increased energy consumption (Fig. 6).  

The energy consumption per kg AV 17 was calculated by equation (2): 

EC �kwh/kg) =  ! × "#$%#��&� − &#)'                                                                                                                �2) 
where I is the applied current (A), "#is cell potential at time t (V), and ' is AV 17 solution 

volume.  

The electrical resistance of the cell can be calculated to be 7.92 ohm from the gradient of the 

trend line in Fig. 5. Thus, there will be a trade-off between capital and operating costs to give 

an optimum economic solution. Although a current density of 7.5 mA cm
-2

 can remove the 

colour in slightly less time than a current density of 5 mA cm
-2

 (50 min compared to 60 min), 

the energy consumption of the former is much higher than the latter (13.2 kwh per kg AV 17 

compared to 7.3 kwh per kg AV 17). A current density of 5 mA cm-2 for subsequent 

simultaneous adsorption and electrochemical regeneration experiments.  This current density 

is relatively low but is still consistent with previous work on electrochemical regeneration of 

GICs, which are typically in the range 5~20 mA cm-2. 

 

 

 



  

 

Fig. 4. Treatment time for complete colour removal at different current densities. 4L of AV 17 

initial concentration 105 mg L-1; 140g adsorbent; 7.26 ml s-1 flow rate; electrode area 100 cm
2
. 

 



  

 

Fig. 5. Cell potential as a function of current density. 4L of AV 17 initial concentration 105 mg 

L-1; 140g adsorbent; 7.26 ml s-1 flow rate; electrode area 100 cm
2
. 

 

Fig. 6. Energy consumption per kg AV17 removal at different current densities. 4L of AV 17 

initial concentration 105 mg L-1; 140g adsorbent; 7.26 ml s-1 flow rate; electrode area 100 cm2. 



  

3.2 Effect of liquid flow rate 

     To study the effects of AV 17 solution the flow regime on colour removal, a set of 

experiments was carried out with three flow rates of: 4.61 ml s
-1

 (quiescent bed), 7.26 ml s
-1

 

(spouted bed) and 11.6 ml s
-1

 (fluidized bed). A constant current of 0.5A (current density 

5mA cm
-2

) was used in this study. Fig. 7 shows the colour removal obtained as a function of 

time for each of these flow rates. The colour removal increased with the liquid flow rate. In 

this work, the colour removals were 64.8%, 98.2%, and 98.9% after 60 min for flow rates of 

4.61 ml s
-1

 (static bed), 7.26 ml s
-1

 (spouted bed) and 11.61 ml s
-1

 (fluidized bed), 

respectively. When the liquid flow rate was increased from 4.61 ml s-1 to 7.26 ml s-1, the 

colour removal rate increased significantly. This can be explained as the increasing the liquid 

flow rate will decrease the boundary layer and hence the film resistance to mass transfer 

surrounding the adsorbent particles. However, when the liquid flow rate was increased from 

7.26 ml s
-1

 to 11.6 ml s
-1

 (fluidised), the colour removal rate remained almost the same. The 

film diffusion (external mass transfer) may not be the rate controlling step at this liquid flow 

rate range. On the other hand, the cell potential increased as the flow rate through the bed was 

increased (Fig. 8). When flow rate was 4.61 ml s
-1

 and 7.26 ml s
-1

, the mean cell potential 

(with some fluctuation) was 5.3 V and 6.1V respectively. The cell potential was much higher 

(8 to 14V) and was very unstable when the flow rate was increased to 11.6 ml/s (fluidized). 

This was probably due to the poor inter-particle contact and the intermittent contact of 

adsorbent particles and the anode current feeder.  



  

 

Fig. 7. The AV 17 colour removal at different liquid flow rates. 4L of AV 17 initial 

concentration 105mg/L; 140g adsorbent; current density 5 mA cm-2; electrode area 100 cm2. 

 

Fig. 8. The cell potential at different liquid flow rates. 4L of AV 17 initial concentration 

105mg/L; 140g adsorbent; current density 5 mA cm-2; electrode area 100 cm2. 



  

3.3 Flow regime map 

     The flow regime map obtained as on a plot of bed height versus liquid superficial velocity 

for the water-GIC system is shown in Fig. 9. Three different flow regimes were observed for 

all bed heights studied: static bed, spouted bed, and fluidized bed. In Fig. 9, the solid lines 

represent the transition between flow regimes. For bed heights ranging from 3 to 23 cm, all 

the transitional points were located by varying the liquid flow rate as described in section 2 

above. Fig. 9 shows that the minimum spouting velocity , ��� , increases as the bed heights 

increased. The experimental data were subsequently fitted to equation (3) [27], which is a 

widely used equation to estimate the minimum spouting velocity. 

��� = * + $,- ./ +-0- .1 +2-.3   4252�67 − 6�)6�                                                                                  �3) 

where, -0 =diameter of fluid inlet, -=column width, H= bed depth, usually measured as 

loose–packed static bed depth after spouting, $7= particle diameter or mean diameter, 67= 

density of particles, 6�= density of fluid, μ= viscosity of fluid, 5= gravitational acceleration. 

     With dimensional analysis, the value of *, :, ; and < can be found by applying the method 

of least squares to experimental data points. The best fits resulted when *, :, ; and < were 

equal to 0.388, 0.869, 0.446, and -0.049 respectively, with a correlation coefficient of 0.986. 

The 95% confidence intervals for these regression parameters *, :, ; and < are (0.383, 0.393), 

(0.865, 0.872), (0.443, 0.449) and (-0.119, 0.021) respectively.  

Fig. 9 shows that the minimum fluidizing velocity, ���, is approximately independent of 

bed heights. This phenomenon can be consistent with standard methods of estimating the 

minimum fluidizing velocity when particle size is very small such as Nyex, which are not 

correlated to the bed height [28]. Generally, the superficial velocity at minimum fluidizing 



  

conditions, ���, is given by Equation (4). For very small particles, Equation (4) simplifies to 

Equation (5).  

150�1 − >��)>�� ?Φ@A B$,���6�C D + 1.75>�� ?Φ@ B$,���6�C DA = $,?6�H67 − 6�I5CA                              �4) 

 ��� = $,AH67 − 6�I5150C >�� ?
Φ@A

1 − >�� ,        Re,,LM  < 20                                                                      �5) 
where, εLM = void fraction in a bed at minimum fluidizing conditions, Φ@ = sphericity of a 

particle, Re,,LM = particle Reynolds number at minimum fluidizing conditions. 

        Unlike the fluidisation velocity, the spouting velocity ums does vary with the bed height, 

consistent with previous studies of spouting bed flow regimes [21,22]. For this system there 

are a broad range of flow rates for which a stable spouting bed can be obtained. 

 

Fig. 9. Flow regime map for adsorbent bed in liquid-lift reactor. The solid lines show the 

minimum spouting velocity expression (Equation (3)) and minmium fluidizing velocity 

expression (Equation (4)) fitted to the experimental data (triangles). 



  

3.4 Adsorption and electrochemical regeneration modelling 

A model was developed to predict the outlet concentration of pollutant (AV 17), Cp,o , for a 

given set of operating conditions. The feed flow of AV 17 aqueous solution enters the 

adsorption and regeneration reactor from the tank at a constant flow rate Q and at the 

concentration of AV 17 in the tank, Cp,tank. The reactor is considered to include an adsorption 

zone which refers to the volume occupied by liquid spouts region with dispersed particles, 

and a regeneration zone which refers to the adjacent regions where the adsorbent bed is 

present as a moving packed bed. The adsorbent circulates between the adsorption and 

regeneration zones, as shown in Fig. 10. 

 

Fig. 10. Schematic representations of the adsorption and electrochemical regeneration 

processes 

The key assumptions used in the model were as follows: 

• The tank was assumed to be well mixed with a uniform concentration of AV 17 of 

&#/PQ. 
• Adsorption was assumed to occur in the fluidised spouting regions (adsorption zone) 

in the anode compartment, and this has a fixed volume '/R�. 



  

• The adsorption zone was assumed to be well mixed, with uniform AV 17 

concentration in solution &7,S. 
• All of the adsorbent in the adsorption zone was assumed to have a uniform loading of 

AV 17 T7,S. 
• The rate of adsorption was assumed to be controlled by mass transport, with an 

overall mass transport coefficient UV:. This is also equivalent to first order adsorption 

kinetics with the mass transfer coefficient replaced by an adsorption rate constant. 

• Regeneration was assumed to occur only in the moving packed bed region 

(regeneration zone) in the anode compartment. 

• The adsorbent in the regeneration zone was assumed to have a uniform loading of AV 

17 T7,W. 
• The rate of regeneration was assumed to be Faradic (i.e. proportional to the applied 

current), but with a current efficiency that was a function of the loading (T7,W) in the 

regeneration zone. 

• The rate of exchange of liquid between the adsorption and regeneration zones was 

assumed to be negligible. 

• Adsorbent was assumed to be exchanged with the adsorption zone at a fixed rate XY . 
This implies that the mass of adsorbent in the regeneration zone was fixed. 

A mass balance for the tank gives: 

$Z#/PQ$% = [&7,S − [&7,#/PQ                                                                                                                 �6) 
For adsorption zone, the mass balance for the liquid phase gives: 

$Z/R�,]$% = [&7,#/PQ − [&7,S − '/R�UV:H&7,S − &7∗I                                                                      �7) 

and for the adsorbent phase: 

$Z/R�,�$% = XY T7,W − XY T7,S + '/R�UV:H&7,S − &7∗I                                                                          �8) 

where Z#/PQ, Z/R�.] and Z/R�,�  are the mass of AV 17 in the tank, adsorption zone liquid 

phase and adsorption zone solid phase respectively. XY  is the mass flow rate (g min-1) of 

adsorbent circulating between the adsorption zone and the electrochemical regeneration zone, 



  

and T7,S  and T7,W  are the loading of AV 17 on the adsorbent (mg g-1) leaving and returning to 

the adsorption zone respectively. '/R�  is the volume of adsorption zone. UV:  is the mass 

transfer coefficient from the liquid to the adsorbent interface, &7∗  is the liquid phase 

concentration at the liquid-adsorbent interface (mg L
-1

). 

Assuming the adsorption follows a Langmuir isotherm: 

T7,S = ;*V&7∗1 + ;&7∗                                                                                                                                        �9) 
Then 

&7∗ = T7,S;*V − ;T7,S                                                                                                                                 �10) 
where ;  and *V  are Langmuir constants obtained from adsorption isotherm experiment 

[16,29]. 

From Faraday’s law, for electrochemical regeneration zone gives: 

$ZWab$% = XY T7,S − XY T7,W − ! Mdef g                                                                                                  �11) 
g = g�/h B T7,WT7,i/]� + T7,WD                                                                                                                �12) 

where ZWab  is the mass of AV17 in the electrochemical regeneration zone, ! is the applied 

current (A),  Zj  is molecular weight of AV 17, e  is number of electrons required per 

molecule of AV 17 oxidized, f  is Fraday’s constant, 96487 C mol-1 and g is current 

efficiency, which is assumed to be a simple function of the amount of adsorbate (AV 17) on 

the adsorbent (GIC) from Equation (12). T7,i/]�  is an assumed constant which gives a 

constant current efficiency at relatively high loadings whilst the efficiency asymptotes to zero 

at zero loading.  

      This coupled set of mass balance equations (6), (7), (8) and (11) represent an initial value 

problem which can be integrated from the conditions at % = 0 to yield the variation in the 



  

adsorbate concentration with time recursively. Thus for given flow rate [ , feed 

concentration &7,#/PQ , '/R�, ;, and *V the outlet concentration &7,S can be determined from a 

numerical solution of Equations (6)~(12). A simple Euler’s method was used for the 

integration, and a time interval of 30 s was found to be sufficiently small to obtain accurate 

results. The feed concentration in the tank was found to change by less than 0.1% during the 

first 40 minutes when the time step was halved, confirming that a more accurate integration 

scheme was not required. The model includes four parameters, UV:, XY , g�/h  and T7,i/]�, and 

these parameters were obtained by fitting the data to the experimental data using a non-linear 

least squared error method. All the ordinary differential equations (Equation (6), (7), (8) and 

(11)) can be calculated from time t=0 to t=60 min with 30 s time intervals. Fig. 11 shows a 

comparison of outlet concentration, &7,S, obtained from the  experimental data and the fitted 

model. The value of the fitted parameters are shown in Table 2. Each parameter was 

examined using “sensitivity analysis” to determine relative importance of the factor in 

influencing the model from Equation (13). The “sensitivity analysis” of each parameter in 

Table 2. was conducted by making a small change ∆l0 in parameter l0, and determining the 

change in the sum of the squared error, mn�l0) = n�l0 + ∆l0) − n�l0), where n�l0) the sum 

of the square of the error between the experimental &7,S values and the model calculated 

values using parameter values l0 . The corresponding sensitivity coefficient was obtained 

using Equation (14). The “sensitivity analysis” indicated that compared to XY  (the mass flow 

rate of adsorbent circulating between the adsorption zone and the electrochemical 

regeneration zone) the parameter UV:,  g�/h and T7,i/]� had only small effects on the model. 

The results shown in Fig. 11 indicate that the model gives a good prediction of the outlet 

concentration for the range of conditions studied.  



  

n�l0) = op&7,S,S1�aWqaR�l0) − &7,S,3/]3r]/#aR�l0)sAP
0tu

                                                                 �13) 
The sensitivity coefficient is calculated using: 

Φ0 = %mn�l0)%ml0                                                                                                                                      �14) 
 

Table 2 

Values of the parameters used in Equation (6)~(12) 

Parameter Value Unit Sensitivity coefficient 

UV:   2.85 min
-1

 0.21 

XY   20.0 g min-1 53.7 

g�/h 0.75 – 0.015 

T7,i/]� 0.0079 mg g-1 0.43 

 

Fig. 11. Modelling of the outlet concentration of the adsorption and electrochemical 

regeneration reactor. The solid line show the modelling predictions fitted to the experimental 

data (triangles). 



  

 

Conclusions 

     Electrochemical regeneration of GIC loaded with AV 17 was investigated in a novel 

spouted bed reactor. The effect of the operating conditions, including the current density and 

the liquid flow rate, on the system performance of the process was investigated. As expected, 

higher current density increased the rate of treatment, but increased the energy consumption. 

It was shown that a current density of 5 mA cm
-2

 is a good compromise between the rate of 

colour removal and energy consumption. It was found that good performance for 

simultaneous adsorption and electrochemical regeneration can be achieved by forming a 

spouted bed in the electrochemical reactor, e.g. with a liquid flow rate of 7.26 ml s
-1

. Under 

those conditions, around 98% of AV17 was removed from 4 L of 100 ppm AV 17 solution 

within 60 min by simultaneous adsorption and electrochemical regeneration, using an 

electrode area of 100 cm2 and 140 g of GIC adsorbent. The energy consumption was 7.32 

kWh per kg of AV 17. 

     The spouted bed region defined an interesting operating domain of liquid flow rate for 

simultaneous adsorption and regeneration. Under spouting bed conditions, there are fluidized 

spouts where the liquid and adsorbent are turbulent and adsorption can occur, along with 

zones with of moving packed bed providing a continuous conductive pathway for the 

regeneration current. The conditions to have a stable spouted bed, between the minimum 

spouting velocity and the minimum fluidizing velocity, were determined and plotted on a 

flow regime map. 

  For batch simultaneous adsorption and electrochemical regeneration system, a four-

parameter model was proposed and fitted to the experimental data.  A sensitivity analysis 

indicated that the circulation rate of the adsorbent, XY , was the key parameters effecting 



  

treatment performance. Experimental data and the fitted model predictions of the dye 

removal achieved were found to be in good agreement. 

     The technical feasibility of the adsorption and electrochemical regeneration using a two-

phase liquid spouted bed reactor has been demonstrated by the results presented in this paper. 

The potential benefit of using such a reactor is likely to be lower energy consumption, 

simpler reactor configurations compared to conventional three-phase gas-liquid-solid reactor. 

However significant further work is required before its commercial acceptance. 
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Highlights 

 

• A two-phase reactor is a promising alternative to traditional three-phase 

reactor. 

• The spouted bed region defined an interesting operating domain.  

• Study of current density and the liquid flow rate on the system 

performance. 

• A model is developed for the adsorption and electrochemical regeneration 

process. 

 

 




