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ABSTRACT 9 

 10 

Availability and reliability are among the priority concerns for deployment of distributed generation 11 

(DG) systems, particularly when operating in a harsh environment. Condition monitoring (CM) can 12 

meet the requirement but has been challenged by large amounts of data needing to be processed in 13 

real time due to the large number of sensors being deployed. This paper proposes an optimal sensor 14 

selection method based on principal component analysis (PCA) for condition monitoring of a DG 15 

system oriented to wind turbines. The research was motivated by the fact that salient patterns in 16 

multivariable datasets can be extracted by PCA in order to identify monitoring parameters that 17 

contribute the most to the system variation. The proposed method is able to correlate the particular 18 

principal component to the corresponding monitoring variable, and hence facilitate the right sensor 19 

selection for the first time for the condition monitoring of wind turbines. The algorithms are examined 20 

with simulation data from PSCAD/EMTDC and SCADA data from an operational wind farm in the time, 21 

frequency, and instantaneous frequency domains. The results have shown that the proposed 22 

technique can reduce the number of monitoring variables whilst still maintaining sufficient information 23 

to detect the faults and hence assess the system’s conditions. 24 

 25 
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Nomenclature L Characteristic root matrix 
  mik ith envelope of a signal at k iteration 
Acronyms r Pearson’s correlation coefficient 
DG Distributed generation ri ith residual signal in EMD 
CM Condition monitoring rz Fisher’s correlation coefficient 
CoE Cost of electricity R Resistance, Ω 
O&M Operation and maintenance S Covariance matrix 
PCC Point of common coupling Srr Covariance matrix of retained dataset 
HHT Hilbert-Huang transform Sdd Covariance matrix of discarded 

dataset 
EMD Empirical model decomposition Srr.d Partial covariance matrix of retained 

dataset 
IMF Intrinsic mode function U Characteristic vector matrix 
PCA Principal component analysis V Grid voltage, V 
cppv Cumulative percentage partial covariance Vdc DC-link voltage, V 
PMSG Permanent magnet synchronous generator Vw Wind speed, m/s 
SCADA Supervisory control and data acquisition x(t) Real part signal in Hilbert transform 
  X Input dataset matrix 
Roman symbols y(t) Imaginary part signal in Hilbert 

transform 
ai                Instantaneous amplitude at level i Z Principal component matrix 
ci ith intrinsic mode function  
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C Capacitance, F Greek symbols 
Cp Wind turbine power coefficient β Pitch angle, ° 
E(X) Information entropy of variable X, bit ηe Percentage entropy, % 
h Sum of the squared correlations λ Tip speed ratio 
hik ith temporary IMF at k iteration ω Angular frequency, rads/s 
H(X) Normalised information entropy of variable 

X 
ωi Instantaneous frequency, rads/s 

I Grid current, A ϕ Phase angle, ° 
Idc DC-link current, A ϑi  Instantaneous phase angle at level i, ° 
L Inductance, H   

 29 

 30 

1.  Introduction 31 

 32 

Distributed generation (DG) systems comprising of renewable energy generation technologies will play 33 

a significantly increasing role in future power systems [1, 2]. A distributed generation system normally 34 

consists of hybrid renewable energy generation units embedded in the system. An example of wind-35 

turbine-based DG system is shown in Fig. 1, where turbines are interfaced with the grid at a point of 36 

common coupling (PCC). Two of the major challenges for deployment of a DG system are its reliability 37 

and maintainability, which can be overcome by condition monitoring. The condition monitoring 38 

process can be divided into several components including data acquisition, signal processing and 39 

diagnosis and prognosis [3]. To achieve effective condition monitoring, accurate and reliable 40 

measurements are crucial. Fig. 2 shows the architecture of a distributed condition monitoring system 41 

that was originally developed for conventional power plants but has been used for wind farm condition 42 

monitoring for some time. In this system, a large amount of condition monitoring data and SCADA 43 

(supervisory control and data acquisition) data need to be transferred to a local CM server for 44 

processing and storing or, alternatively, to a remote support centre for further fault analysis. 45 

A condition monitoring system can incorporate present and past data monitored by the sensors to 46 

diagnose and predict potential failures. By doing so, the performance, availability and reliability of wind 47 

turbines can be improved. Studies have shown that operation and maintenance (O&M) cost  plays a 48 

significant role in calculating the cost of energy (CoE); a higher-quality O&M regime can achieve higher 49 

availability, lower through-life costs and hence a lower CoE [4]. Moreover, the deployment of 50 

condition-based maintenance has been proven to be far superior to the conventional preventive and 51 

periodic maintenance strategies [5, 6]. However, handling, processing and transmitting a huge amount 52 

of data will lead to more complex CM systems being built up and hence result in a negative impact on 53 

the performance, maintainability and cost of the CM systems [7]. For a typical wind turbine, there can 54 

be more than 250 sensors required to monitor most subsystems; it is envisaged the number of sensors 55 

will be significantly increased for a wind farm [8, 9]. Therefore, if the number of sensors or 56 

measurements installed can be reduced whilst still maintaining a necessary number to assess the 57 

system’s condition, the data acquisition system can be simplified and the performance, maintainability 58 

and cost benefit of CM systems to be developed can be enhanced.  59 

 60 
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Fig. 1. An example of distributed generation (DG) network, taking the wind turbines as DG units. 62 

Currently, data acquisition for condition monitoring systems is implemented mainly based on 63 

information maximisation principle, which means sensors are installed to obtain as much data as 64 

possible. Due to relationships existing among sensors, there is redundancy within the data collected. 65 

Thus, an appropriate sensor selection technique is desirable in order to identify and remove these 66 

unnecessary redundancies due to there being too many sensors carrying out similar functions. In the 67 

meantime, the method should be able to retain the provision of vital information, which is critical for 68 

fault diagnosis, prognosis and maintenance scheduling. 69 
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Fig. 2. A distributed condition monitoring system for wind farms.  72 

There are a number of researches that have been carried out regarding sensor selection in complex 73 

sensor network systems. Information-based techniques are commonly adopted such as mutual 74 

information, information entropy, and fisher information. An entropy based sensor-selection approach 75 

has been proposed in [10] for an aerospace propulsion health monitoring system based on 76 

quantification of particular fault conditions and diagnostics. Sensor selection schemes were also 77 

proposed for tasks like target tracking and mission assignments in order to minimise the number of 78 

active sensors in a sensor network and hence reduce the energy use and prolong the lifetime of the 79 

sensor network [11]. A stochastic dynamic programming method was proposed to solve the sensor 80 

selection problem of robotic systems in real time [12]. Furthermore, filtering and estimation methods 81 

using Cramer-Rao bound criteria are also widely used in sensor selection for non-linear tracking 82 

problems [13]. It has been proven that there are fewer outputs from the filter or estimator than the 83 

input measurements, and the estimated parameters have better accuracy than from the direct 84 
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measurement. However, all measurements are still required for prediction and update of the improved 85 

estimated outputs.  86 

PCA has been used widely in dimension reduction and feature extraction applications because the 87 

transformed signals are orthogonal and found with a cost function of maximising variance. As with the 88 

PCA, other techniques like Linear Discriminant Analysis (LDA) and Locally Linear Embedding (LLE) are 89 

also commonly used for dimension reduction. The PCA performs dimension reduction while preserving 90 

as much of the data variance in the high-dimension space as possible, whereas the LDA performs 91 

dimension reduction while preserving as much of the class discriminatory information in the high-92 

dimension space as possible. The LLE attempts to discover nonlinear structure in high dimensional data 93 

by exploiting its local properties. The objective of this nonlinear method is to maintain and reconstruct 94 

the local properties of the data manifold by writing the high-dimensional data points as a linear 95 

combination of their nearest neighbours [14].  96 

 97 

However, PCA has the advantage of parametric mapping capability from the extracted features to the 98 

monitoring variables through estimation of the eigenvectors and principal eigenvalues. Each principal 99 

component corresponds to a particular feature of the data, and because these components are 100 

uncorrelated, there is no redundancy present. In this paper, PCA analysis incorporating the optimal 101 

variable selection based on data variability is investigated in order to optimise set of sensors for wind 102 

turbine condition monitoring systems. The optimal variable selection in this context is taken to mean 103 

that the variables are selected through maximising variability and minimising degrees of correlation 104 

among the retained variables. Moreover, one major contribution of the proposed method is that the 105 

actual number of physical sensors can be potentially reduced through estimation of the least significant 106 

variables. For wind turbines, the method can be used to reduce the complexity in developing a 107 

condition monitoring system. Furthermore, de-noising of data is not required prior to the analysis as 108 

the proposed method essentially assesses and selects the variables based on their variation. In our 109 

study, the analysis of measurement data focuses on transient characteristics not only in the time 110 

domain but also in terms of the frequency and instantaneous frequency domains (note: instantaneous 111 

frequency domain means frequency components as a function of time, referred to as the instantaneous 112 

frequency data later in this paper). The paper is organised as follows. The proposed sensor selection 113 

techniques are described in Section II. CM data used to test the proposed method are presented in 114 

Section III. The results are shown and discussed in Section IV, followed by the conclusions and a 115 

description of future work. 116 

 117 

2. Methodology  118 

 119 

The block diagram of the selection process is shown in Fig. 3, which comprises i) transformation of data 120 

into frequency and instantaneous frequency domain, ii) application of PCA to obtain the ranked 121 

principal components, and iii) use of different selection methods to retain the desirable variables.  122 
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Fig. 3. Block diagram of the selection process using PCA. 124 
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Conventionally, time series data with large magnitude variations are retained and those with small 125 

magnitude variations are removed. This may not be ideal for sensor selection, simply because the 126 

selection process only captures features of the data in the time domain, whereas frequency 127 

components in measurement data are ignored. The wind sources are generally intermittent and 128 

stochastic, and hence are abundant in frequency components; so are the grid fluctuations. Frequency 129 

domain signals may contain more salient information than time domain, especially under fault 130 

conditions [15]. Therefore, it is worth to examine PCA with signals in the form of time-series, 131 

frequency-series and instantaneous-frequency data.  132 

 133 

2.1 Instantaneous frequency transformation 134 

We use the fast Fourier transform (FFT) and the Hilbert-Huang transform (HHT) to transform the time 135 

series data into frequency and instantaneous frequency domain data. The HHT is a combination of 136 

empirical mode decomposition (EMD) proposed by Huang [16] and the Hilbert spectral analysis. Zhang 137 

has applied the HHT in earthquake motion recordings [17], where it was proved that HHT outperforms 138 

the conventional methods such as FFT to analyse non-stationary dynamic earthquake motion 139 

recordings. Besides, EMD can decompose the signal into a series of intrinsic mode functions (IMF), 140 

which may contain critical physical information. Furthermore, the signal reconstructed from certain 141 

levels of IMF can be useful for capturing important frequency features contained in the original signal. 142 

It has also been shown that under certain conditions, the HHT is superior to the short time Fourier 143 

transform (STFT) and wavelet analysis to analyse vibration signals for machine health monitoring and 144 

to diagnose localised defects in roller bearings [18].  145 

 146 

EMD decomposes the original signals x(t) into a set of IMFs, each of which represents the intrinsic 147 

oscillatory modes of the signal. The IMF is found by first identifying the local extrema and then by 148 

fitting cubic spline line through all the maxima and minima to obtain the upper envelope xup(t) and 149 

lower envelope xlow(t). Their mean is defined as mik(t) and the difference between the original signal 150 

and the envelope mean is hik(t). 151 

𝑚𝑖𝑘(𝑡) = [𝑚𝑢𝑝(𝑡) + 𝑚𝑙𝑜𝑤(𝑡)]/2                                                                                              (1) 152 

ℎ𝑖𝑘(𝑡) = ℎ𝑖(𝑘−1)(𝑡) − 𝑚𝑖𝑘(𝑡)                                                                                                     (2) 153 

The process repeats k times until the hik(t) satisfies the criteria defined for the IMF, where hi(k-1) is the 154 

original signal when k = 1. 155 

Once a IMF is found, it is then subtracted from the original signal and a residual signal ri(t) is obtained. 156 

The process repeats i iterations until the final residual is a constant or a monotonic function. 157 

𝑐𝑖(𝑡) = ℎ𝑖𝑘(𝑡)                                                                                                                             (3) 158 

𝑟𝑖(𝑡) = 𝑥(𝑡) − 𝑐𝑖(𝑡)                                                                                                                  (4) 159 

The original signal can be reconstructed by summing all the n IMFs and the residual using the 160 

formula below. 161 

𝑥(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑛(𝑡)𝑛
𝑖=1                                                                                                           (5) 162 

 163 

The Hilbert transform calculates the instantaneous frequency of the IMFs obtained through EMD. The 164 

original signal can be expressed as the real part of the form      tjytxtz  : 165 

𝑥(𝑡) = ℜ(∑ 𝑎𝑖(𝑡)𝑒𝑗 ∫ 𝜔𝑖(𝑡)𝑑𝑡𝑛
𝑖=1 )                                                                                                (6) 166 

where y(t) is the complex conjugate of x(t); n is the total number of IMFs; ai is the amplitude of the 167 

signal of IMF at level i; ωi(t) is the frequency of the signal at level i and j2=-1.  168 

At level i, the corresponding amplitude ai(t) and phase θi(t) can be found by, 169 
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𝑎𝑖(𝑡) = √𝑐𝑖(𝑡)2 + 𝑦𝑖(𝑡)2                                                                                                           (7) 170 

where ci(t) is the IMF at level i, and 171 

𝜃𝑖(𝑡) = tan−1 (
𝑦𝑖(𝑡)

𝑐𝑖(𝑡)
)                                                                                                                  (8) 172 

Finally, the instantaneous frequency ωi(t) at level i can be found by, 173 

𝜔𝑖(𝑡) =
𝑑(𝜃𝑖(𝑡))

𝑑𝑡
                                                                                                                           (9)  174 

Consequently, the HHT transforms the original time series signal x(t) into a new set of instantaneous 175 

frequency signals f(t), i.e., the frequency changing with respect to time of x(t). In our study, the signal 176 

reconstructed from all IMFs except the residual is used to produce the instantaneous frequency data 177 

for sensor selection in order to avoid feature losses due to data transformation.  178 

 179 

2.2 Overview of PCA  180 

Essentially, PCA is a variant of multivariate analysis relying on the data-analytic technique and tries to 181 

reveal the multivariate structure of the data. PCA transforms a set of data into a set of uncorrelated 182 

principal components (PCs). The uncorrelated PCs are calculated by maximising variance and then 183 

ranking them in terms of their magnitude [19]. PCA is initially used as a dimension reduction technique 184 

in different fields [20]. Researchers have shown that by retaining first few components, the dimension 185 

of the data can be reduced dramatically, while little information is sacrificed. These properties of PCA 186 

make it ideal to be used as a feature selection technique incorporated into the artificial neural network 187 

(ANN) to predict turbine performance and detect faults [21].  188 

PCA is also known as the Karhumen-Loeve transforms. It is an orthogonal transformation that converts 189 

the original dataset X (p × n dimensions) with p variables and n samples into a set of principal 190 

components Z (q × n dimensions) with q PCs and n samples. The transformation of the dataset is 191 

completed by Single Value Decomposition (SVD) of the covariance matrix S (S = XXT) of the dataset X 192 

by optimising the variance. This means that the first principal component has the highest variance. 193 

Therefore, each PC is uncorrelated and ranked with a descending order. 194 

Finding the principal components involves eigenanalysis of the covariance matrix S. The eigenvalues of 195 

S are solutions L (l1, l2,..., lp) to the characteristic equation 0-S IL , where I is the identity matrix. The 196 

eigenvalues l1, l2,..., lp are the variances of each principal component and the sum of all p eigenvalues 197 

equals the sum of the variances of the original variables. Hence, PCs are obtained by satisfying the 198 

relationship in (10) using SVD of the covariance matrix S,  199 

𝑼′𝑺𝑼 = 𝑳                                                                                                                                  (10) 200 

As the diagonal matrix L (l1, l2,..., lp) is already known, the corresponding characteristic vectors or 201 

eigenvectors U (u1, u2,..., ui,…, up, ui are the columns of U) are therefore calculated. U (u1, u2,...,up) are 202 

also called as loadings representing correlations between variables and principal components. 203 

 204 

The relationship between the PCs, Z =(z1, z2, ..., zq), and the original dataset X is mathematically 205 

expressed below,  206 

 207 

𝑧1 = 𝑢11𝑥1 + 𝑢12𝑥2 + ⋯ + 𝑢1𝑝𝑥𝑝

𝑧2 = 𝑢21𝑥1 + 𝑢22𝑥2 + ⋯ + 𝑢2𝑝𝑥𝑝

⋮                                                         ⋮
𝑧𝑞 = 𝑢𝑞1𝑥1 + 𝑢𝑞2𝑥2 + ⋯ + 𝑢𝑞𝑝𝑥𝑝

                                                                                          (11) 208 

Equation (11) represents the maximum possible proportion of variance in the original variables can 209 

be displayed in the first q principal components. 210 
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2.3 Selection methods 211 

To link the ranked PCs back to the original variables, three different selection methods, i.e., B2 method, 212 

B4 method and H method, are used.  213 

 214 

The B2 selection process starts by selecting principal components which have a variance that is less 215 

than l0 (li<l0, 1≤i≤q). The number of variables retained is highly dependent on the predefined threshold 216 

l0. It was suggested by Jolliffe [22-23] that l0=0.7 is a reasonable choice. For the k selected PCs, each 217 

component i (1≤i≤k) is related to the original variables as described in eq. (11). The original variable xi, 218 

which has the largest absolute coefficient uij in the row vector ui is eliminated. The process ends when 219 

all the selected PCs are examined. The rest of the original variables are then retained.  220 

 221 

In contrast to B2, the B4 method starts with PCs, whose variance is larger than the predefined value. 222 

Original variable xi with largest absolute eigenvector value uij is retained. It is also suggested by Jolliffe 223 

that, for the B4 method, the value of l0 is reasonable if selected in a range of 0.66 ≤ 𝑙0 ≤ 0.74. 224 

 225 

As a new method, the H method is performed based on one of the selection criteria for principal 226 

variables proposed in [24, 25]. The selection relies on the optimisation of minimising the squared norm 227 

of the original variables. The H method examines the H values, h1, h2, ..., hp, which are known as the 228 

sum of the squared correlations between variable xi as described in eq. (12). H values are ranked in a 229 

decreasing order after H values are calculated for all original variables. Variables that have the highest 230 

H value hi are retained. The process stops when the sum of the H value of the k retained variables 231 

exceeds the predetermined threshold. The hi is obtained by 232 

ℎ𝑖 = ∑ (𝑙𝑗𝑢𝑖𝑗)
2𝑝

𝑗=1                                                                                                                      (12) 233 

where l and u are the eigenvalue and eigenvector, respectively, as described earlier.  234 

 235 

2.4 Validation measures 236 

Cumulative variance, average correlation and information entropy are used to validate the results from 237 

proposed selection algorithms. Each of these measures has its own purpose in examining the 238 

performance of retained variables. 239 

 240 

Cumulative variance is a measure of percentage variability of the retained variables with regards to the 241 

whole dataset, where the multivariate structure of the dataset is considered [24]. For a dataset X (p × 242 

n) with q variables (q < p) being retained and m (m=p-q) variables being discarded, the covariance 243 

matrix of the dataset X can be divided into 𝑺𝒓𝒓 (q × q), 𝑺𝒓𝒅 (q × m), 𝑺𝒅𝒓 (m × q), 𝑺𝒅𝒅 (m × m) as shown 244 

in (13). The subscripts r and d represent the retained set with q number of variables and the discarded 245 

set with p-q number of variables, respectively. 246 

𝑺 = [
𝑺𝒓𝒓 𝑺𝒓𝒅

𝑺𝒅𝒓 𝑺𝒅𝒅
]                                                                                                                        (13) 247 

The partial covariance matrix Srr.d for retained variables is: 248 

𝑺𝒓𝒓.𝒅 = 𝑺𝒓𝒓 − 𝑺𝒓𝒅𝑺𝒅𝒅
−𝟏𝑺𝒅𝒓                                                                                                         (14) 249 

The cumulated percentage variance can then be obtained by the equation below, where tr is the trace 250 

of the partial covariance matrix, i.e., sum of the elements on the main diagonal. 251 

𝑐𝑝𝑝𝑣 = 𝑡𝑟(𝑺𝓻𝓻.𝓭)/𝑡𝑟(𝑺)                                                                                                         (15) 252 

 253 

However, cppv does not explain the repetition of features among variables, for example, between 254 

power, current and voltage; this measure only calculates fluctuation of the magnitude of the signal. 255 

Thus, an average correlation coefficient is introduced to measure the degree of associations between 256 

variables in the dataset. Due to the fact that Pearson’s correlation coefficients are not additive, the 257 
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average correlation coefficient cannot be calculated using a simple arithmetic mean method. To be able 258 

to calculate the average correlation coefficient, Pearson’s correlation coefficient is first transformed 259 

using Fisher’s transformation, and then the arithmetic average of the transformed value is converted 260 

back. The Fisher’s transform and its corresponding inverse transform are given below: 261 

𝑟𝑧 =
1

2
ln (

1+𝑟

1−𝑟
)   (1)) 262 

𝑟 =
𝑒2𝑟𝑧−1

𝑒2𝑟𝑧+1
 (17) 263 

 264 

where rz is the transformed correlation coefficient and r is the Pearson correlation coefficient. This 265 

measure considers the multi-collinearity behaviour of the dataset, and a higher value indicates high 266 

degrees of correlation among dataset, and a low value indicates less dependency between variables. 267 

 268 

As a measure of information discrepancy, entropy has been used extensively in communication, data 269 

compression and data encoding [26], and also in feature selection and classification for ANN and fault 270 

detection [27]. After application of PCA, the information entropy of original dataset and those retained 271 

variables from each selection method are calculated individually.  272 

With a given variable X and the probability mass function of the variable p(x)=Pr{X=x}, x , the 273 

information contained or the uncertainty in the variable X can be quantified by the information entropy 274 

E(X), 275 

𝐸(𝑋) = − ∑ 𝑃(𝑥𝑖) log𝑏 𝑃(𝑥𝑖)
𝑛
𝑖=1                                                                                              (18) 276 

where P(xi) is the probability p(X=xi) and b is the base for each different entropy unit. In this paper, the 277 

Shannon's entropy is used, where b=2; hence the unit of the entropy is the bit. Moreover, normalised 278 

entropy is also introduced in order to compare different variables, as the normalised entropy is 279 

bounded between 0 and 1, which is obtained by 280 

𝐻(𝑋) = − ∑
𝑝(𝑥𝑖) log𝑏(𝑝(𝑥𝑖))

log𝑏(𝑛)
𝑛
𝑖=1                                                                                                  (19) 281 

where n is the length of the signal and logb(n) is the maximum entropy of the signal. 282 

 283 

 284 

3.  Condition monitoring data 285 

 286 

3.1 Simulation data 287 

The purpose of the simulations presented in this work is to investigate and therefore obtain useful 288 

data under various operation conditions. A DG network with wind turbines as the DG units is given in 289 

Fig. 1. A 2.1 MW wind turbine connected to the grid is modelled and shown in Fig. 4. The model has 290 

been simulated using PSCAD/EMTDC, a general-purpose time domain simulation program with a 291 

graphical interface for studying transient behaviour of complex electrical networks. The software 292 

allows a flexible time step ranging from nanoseconds to seconds to simulate electromagnetic 293 

transients in the electrical network; the time step chosen for the simulation is 100μs. 294 

The input to the turbine is wind speed Vw. The turbine model is responsible for simulation of the 295 

mechanical energy generation including mechanical torque and power to drive the connected PMSG 296 

(permanent magnet synchronous generator), which converts mechanical power into electrical power. 297 

The aerodynamic torque and power are especially related to the effective wind speed and the pitch 298 

angle of the rotor blades β adjusted in a nonlinear relationship. The aerodynamic power coefficient, 299 

Cp, used for calculation of the aerodynamic power and torque is given by: 300 

𝐶𝑝 = 0.5(𝛾 − 0.022𝛽2 − 5.6)𝑒−0.17𝛾                                                                                    (20) 301 
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where γ = 2.237Vw/ωt, ωt is the wind turbine shaft rotation speed. Essentially, γ is a function of the tip-302 

speed ratio λ, i.e., γ =2.237Rt/λ, where λ = ωtRt /Vw and the turbine radius Rt = 46.2m in this study. The 303 

coefficients of Cp in equation (20) are obtained through nonlinear function fitting from experimental 304 

data in order to describe properly the aerodynamic behaviour of the blades under different operational 305 

conditions [28]. At low wind speed, the pitch angle β is forced to zero to maximise the power coefficient 306 

Cp. As the wind speed increases above the rated value (14 m/s in our simulation), dynamic pitch control 307 

is adopted to regulate the output power to its rated value. More information about the dynamic pitch 308 

control can be referenced in [29]. 309 

 310 
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Fig 4. PMSG wind turbine model with grid connection simulated in PSCAD/EMTDC.312 

The turbine is coupled to a PMSG and the grid connection is made through an AC-DC-AC converter and 313 

a step-up transformer. The AC-DC-AC converter is necessary in order to connect the variable voltage 314 

and frequency output from the generator to the fixed grid voltage and fixed 50 Hz grid frequency. The 315 

converter is composed of a diode rectifier, a DC bus with a storage capacitance voltage and a six-pulse 316 

bridge thyristor inverter. The AC output from PMSG is rectified into DC voltage and a RLC circuit is then 317 

used to filter out noise and stabilize the electrical voltage input for a 6-bridge inverter. The inverter 318 

has two main purposes: control the active power flow from DC-link to grid and voltage stabilisation of 319 

the DC-link. A generic current controller is incorporated to maintain the voltage dependent current in 320 

the DC bus, and produce the firing pulses for the inverter based on the DC bus current Idc and voltage 321 

Vdc. The phase angle of the converted AC voltage is synchronised through the phase locked loop (PLL). 322 

The transformer is required to step-up the voltage from 1.7kV to 12.5kV. A filtering capacitor is added 323 

to smooth output voltages and compensate for output reactive power.  324 

The network is simulated by a three-phase 34.5 kV/300 MVA network with an ideal voltage source and 325 

equivalent system impedance. A transformer is used to step-down the voltage to 12.5kV. Grid faults 326 

between phases or between one or more phases and ground can be incorporated. A simplified radial 327 

distribution system is considered in this paper, where the loads are modelled with 2.133 MW and 1.6 328 

MVar. Loads and loss in the transmission line are represented by resistive and inductive load R and L. 329 

The voltage drop ΔV due to losses from the loads in the grid is described by, 330 

∆𝑉 = 𝑅𝐼 cos 𝜑 + 𝐿𝐼𝜔 sin 𝜑                                                                                                     (21) 331 
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where I is the current, ω is the angular velocity of power frequency and φ is a leading or lagging phase 332 

angle. 333 

Wind speeds can be simulated as constant speed, constant speed superimposed with ramps and gusts 334 

representing wind speed fluctuations, or on-site wind speed measurements. In our study, real wind 335 

speeds collected on Hazelrigg site at Lancaster University are used, where a )4-metre wind turbine of 336 

2.1 MW is erected and operational. As an example, Fig. 5 shows simulation results of the turbine 337 

mechanical torque and the active power under the actual wind speeds. The turbine torque is strongly 338 

related to the wind speed when a fixed power coefficient Cp is used, as shown in the Fig. 5. It is 339 

necessary to keep the rotor speed at an optimum value of the tip-speed ratio λopt when the wind speed 340 

varies. For the wind speed below the rated value, the generator produces maximum power at any wind 341 

speed within the allowable range following the adjusted λopt. For the wind speed above the rated value, 342 

the wind turbine energy capture is limited by applying the pitch control, as described above. 343 

Consequently the active power remains relatively constant under the given wind speeds (most wind 344 

speeds exceed the rated value of 14 m/s in our simulation). 345 

 346 

 347 
Fig. 5. Examples of simulation results showing wind speed, turbine torque and active power with 348 

actual wind speed as inputs. 349 

3.2 SCADA data 350 

SCADA data used in this paper are obtained from an operational wind farm, with time duration of 15 351 

months. It is essential to use actual operational data of wind turbines to validate the proposed 352 

algorithms. SCADA data are usually sampled at 10-minute intervals in order to significantly reduce the 353 

amount of data that need to be processed while still reflecting normal and faulty status of wind turbine 354 

operations. The SCADA data for each turbine consist of approximately 128 readings for various 355 

temperatures, pressures, vibrations, power outputs, wind speed and digital control signals. Pre-356 

processing of the data is carried out to eliminate those digital and constant signals, which are 357 

ineffective to the PCA analysis. Gaps in SCADA data exist due to occasions when a wind turbine is 358 

inactive during periods of low and high wind speeds, and due to the occurrence of maintenance 359 

periods. It is necessary to remove these gaps when no power is generated prior to PCA analysis. In 360 

order to obtain generic models applicable to the entire wind farm, SCADA data from a wind turbine 361 

selected at random have been used for validation of the general variable selection technique. 362 

 363 

As an example, Fig. 6 shows wind speed, generator winding temperature and active power from one 364 

of the turbines in the wind farm for a time period of one month. Thermal aging is one of the most 365 

common stator insulation deterioration processes that might be caused by localised defects during 366 

operation; thus generator winding temperature monitoring has been widely used on multi-megawatt 367 

(multi-MW) wind turbines. The generator winding temperature depends not only upon the wind 368 
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speed, but also the power output of the turbines [9]. In this case, at low wind speeds, the generator 369 

winding temperature fluctuates between 50-60 °C. When the wind speed increases and the turbine is 370 

operating at the rated value, the winding temperature can reach a maximum of approximately 80 °C. 371 

 372 

 373 

 374 

Fig. 6. Example of SCADA data showing wind speed, generator winding temperature and active 375 

power.  376 

4.  Results and discussions 377 
 378 

4.1 General variable selection 379 

The proposed selection algorithms are validated against both simulation and SCADA data. After pre-380 

processing the data, there are a total of 29 and 77 variables for simulation and SCADA data, 381 

respectively. One crucial step of PCA concerns the choice of the number of principal components to be 382 

retained. In this paper, it is determined by a threshold value based on the cumulative variance, i.e., the 383 

ratio between the sum of the eigenvalues of the kept q principal components and the sum of all p 384 

eigenvalues of the original variables. In order to accommodate the dominant percentage of variances, 385 

the threshold value is set to be 99.7% in the paper. This means that 15 and 35 variables are sufficient 386 

to be used for the simulation and SCADA data, respectively. Measures described in previous sections 387 

are used to verify these retained variables and have shown that the retained variables have minimal 388 

information loss. Table 1 shows the results of three measures using each selection method in time, 389 

frequency and instantaneous frequency domains.  390 

By looking at each measure individually, the cumulative variances from the time and frequency 391 

domains have similar values and are considerably higher than those from instantaneous frequency 392 

data. This might be because the instantaneous frequency data are reconstructed from IMFs in HHT. 393 

Moreover, among the three selection methods in the time and frequency domain, although H method 394 

has the lowest performance, they are still all above 83%; and the B2 method has the highest variance 395 

for both data cases. For the average correlation coefficients, the original datasets have a value of 0.34 396 

and 0.11 for simulation and SCADA data. Out of these results, the B2 method in time domain for 397 

simulation data and the B2 method in frequency domain for SCADA data have the lowest average 398 

correlation coefficients. The results indicate that there is a lower interdependency among retained 399 

variables using the B2 method, which is desirable. In addition, it should be noted that the average 400 

correlation coefficient of the selected variables can be higher than the original dataset, implying that 401 

the presence of a higher degree of redundancy might be possible within the retained dataset, such as 402 

the result from using H method, which is undesirable.  403 

 404 
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Figures 7 and 8 show the combination of cumulative percentage variance and average correlation 405 

coefficient, taking the simulation and SCADA data in the time domain as the examples. The blue crosses 406 

are the variables of the original dataset and the red circles are the variables retained with the 407 

respective selection algorithm. The scatter plots show a relationship between the cppv and average 408 

correlation coefficient, where the variable of higher cumulative variance will give a higher correlation 409 

coefficient. Moreover, it can be seen that variables retained with the B2 and B4 methods are those 410 

variables selected across the entire area. On the contrary, the H method always retains variables with 411 

the highest cumulated variances, which also correspond to the highest average correlations. This 412 

indicates there still exists a considerable amount of information redundancy in the variables retained 413 

using the H method. This finding infers that critical information will also exist in variables with low 414 

variances, which is consistent with the result found by Hawkins in his research [30].  415 

 416 

Table 1 417 

Results from selection methods B2, B4 and H in the time, frequency and instantaneous frequency 418 

domains using simulation and SCADA data. 419 

 420 
It seems that the selected variables are relatively random with the B2 and B4 method, as shown in 421 

Figures 7 and 8; however, those variables are discarded because they have high correlations with the 422 

retained ones. Moreover, the variance and correlation coefficients of the signals are dependent on the 423 

sample size, which may lead to a biased result. Therefore, information entropy is used to further 424 

validate the results. Suppose Et is sum of information entropy of all variables, Er is sum of entropy of 425 

the retained variables (Table 1) and the percentage of entropy ηe is the ratio of Er/Et. Thus, ηe can be 426 

used as a measure for comparison among selection methods. Figures 9 and 10 shows the percentage 427 

entropy of the selection methods (B2, B4 and H) in the time, frequency and instantaneous frequency 428 

domains, as represented by t, f and ft respectively, using simulation and SCADA data. It can be seen 429 

that for both cases, the H method has the lowest performance and the t_b4 and t_b2 have the highest 430 

percentage of entropy. This again agrees with the results obtained based on the cumulative variance 431 

and average correlation measures. 432 

    Time Frequency Instantaneous frequency 

  
Original 
dataset 

B2 B4 H B2 B4 H B2 B4 H 

SCADA data  

Cumulative variance 100% 99.00% 97.90% 83.62% 99.27% 98.79% 83.39% 72.24% 70.63% 51.19% 

Average correlation 0.3418 0.162 0.1344 0.7945 0.1178 0.1313 0.7824 0.2634 0.2187 0.7175 

Total entropy 59.47 48.36 47.25 22.45 45.55 48.06 22.93 41.68 43.38 16.18 

Simulation  data 

Cumulative variance 100% 99.81% 99.47% 91.43% 99.81% 99.55% 96.77% 79.81% 80.19% 55.79% 

Average correlation 0.1107 0.0082 0.093 0.3702 0.1058 0.1329 0.0998 0.0113 0.0091 0.422 

Total entropy 21.24 18.88 18.99 8.47 18.61 18.3 10 17.66 17.76 9.11 

 1 
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 433 
 434 

Fig. 7.  Average correlation coefficient vs. cumulative variance with three selection methods in the time 435 

domain using simulation data. 436 

 437 

 438 
 439 

Fig. 8.  Average correlation coefficient vs. cumulative variance with three selection methods in the time 440 

domain using SCADA data. 441 

 442 

In order to further evaluate the optimality of the proposed methods, measures are also calculated 443 

using randomly selected variables in time domain for comparison. Table 2 gives the measures of the 444 

original dataset, B2 selection method and the mean measures of the 10 random trials. As with the B2 445 

method, 15 and 35 variables are randomly selected for each trial using the simulation and SCADA data, 446 

respectively. It can be seen that the random trials have a lower performance across all three measures 447 

when compared to the t_b2 method. Consequently, based on these measures and the results of using 448 

them in combination, the B2 selection method in time domain demonstrates the best performance.  449 

 450 
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Table 2 451 

Performance comparison between the B2 selection method and randomly selected variable set in time 452 

domain 453 

 454 

  Original dataset t_b2 
Random dataset 
(mean values of 10 trials) 

SCADA data     

Cumulative variance 100% 99.00% 92.)2% 

Average correlation 0.3418 0.1)2 0.35)2 

Total entropy 59.47 48.3) 35.)1 

Simulation  data    

Cumulative variance 100% 99.81% 95.75% 

Average correlation 0.1107 0.0082 0.1144 

Total entropy 21.24 18.88 14.42 

 455 

For the simulation data, variables such as firing angle, pitch angle and active/reactive powers are 456 

almost always selected; variables with high dependency between them such as bus voltages and 457 

currents are not all selected. On the contrary, SCADA data have a more complex data structure than 458 

simulation data, as SCADA data consist of more signal variability, including variables like various 459 

temperatures and environmental conditions. Apart from these general parameters (e.g., temperatures, 460 

oscillations and vibrations), most variables retained are related to the generator and grid. Variables 461 

related to blades (e.g. pitch angle, maximum pitch speed.) or environmental conditions (e.g. air 462 

pressure, relative humidity) are less likely to be selected because they may be highly dependent on 463 

wind speeds. It is worth noting that the wind speed and speed related variables are almost always 464 

selected. The B2 method is also applied to the SCADA data from a different turbine on the same wind 465 

farm; the variables selected are consistent with the result presented here. 466 
 467 

 468 
Fig. 9. Percentage of entropy obtained from different selection methods using simulation data in three 469 

domains. 470 
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 471 
Fig. 10. Percentage of entropy obtained from different selection methods using SCADA data in three 472 

domains. 473 

 474 

4.2 Selection under fault condition 475 

To further evaluate whether the vital information relating to the particular fault is not being removed 476 

with the above selection methods, a DC-link capacitor fault, as an example, is simulated in 477 

PSCAD/EMTDC and data are collected. For multi-MW turbines, DC link capacitors are required to 478 

endure high ripple currents leading to self-heating, which, in addition to high ambient operating 479 

temperatures, can result in the deterioration of the electrolyte material and the loss of electrolyte by 480 

vapour diffusion. When the capacitor is operating at higher temperatures than the rated temperature, 481 

the DC voltage will be de-rated. The working life of a capacitor is also dependent upon operating 482 

voltage, current, and frequency. Consequently, DC link capacitors, although well designed, are 483 

considered one of the weakest components used in multi-MW power converters in the wind turbine. 484 

 485 

Following the PCA of the original data, the PC, which is revealing the DC-link capacitor ageing fault in 486 

the original dataset, is first identified. The PCA then applies to the retained variables to obtain the new 487 

PCs, which are then compared to the original PC indentified. If the fault feature can be identified from 488 

the relevant new PC, it is confident to say that critical information associated with the fault is kept. In 489 

order to achieve this, the capacitor ageing fault is simulated several times to emulate the occurrence 490 

and severity of DC capacitor fault. The collected time-series data are then transformed using PCA to 491 

obtain the featured PCs. Having observed all the PCs, it is found that the DC capacitor fault is featured 492 

dominantly in the 7th principal components, i.e., PC 7. Fig. 11 shows PC 7 transformed with data of the 493 

capacitor fault in increasing order of severity from no-fault occurred through 4% and 8% to 16% of 494 

capacitance loss. It can be seen that the peak amplitude during the fault increases rapidly when the 495 

fault severity increases. In order to quantify this change, the normalised entropy H(X), as given in eq. 496 

(19), is used as the measure, allowing comparison of entropy contained in different signals. Fig. 12 497 

shows the normalised entropy of the capacitor fault at different fault levels. The fault level is simulated 498 

from the no-fault case to a highest level (16% in our study) with a constant increment of 1% capacitance 499 

loss. The blue dots are the actual calculated normalised entropy and the red line represents the fitted 500 

curve. The result clearly shows a decreasing trend of the normalised entropy. Consequently, a more 501 

severe fault will result in a larger change of waveform during the fault, which in turn leads to a larger 502 

change in the normalised entropy. 503 

 504 
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 505 

Fig. 11. The featured principal components of the dc-link capacitor fault at different ageing levels.  506 

 507 

Fig. 12. Normalised entropy of the 7th principal components of the DC-link capacitor fault at different 508 

ageing levels. 509 

 510 

Fig. 13. Comparison of DC capacitor fault between original dataset and retained variables. 511 
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Fig. 13 shows an example of comparison of the signals for DC capacitor fault found in the original 512 

dataset and in the retained set of variables using the B2 method in the time domain. The first two plots 513 

are the featured 7th principal components transformed from the original dataset and from the reduced 514 

dataset; the Pearson’s correlation coefficients between the first 15 principal complements from both 515 

datasets are also shown in the figure. This result clearly demonstrates that only the 7th principal 516 

component has a dominant correlation coefficient of 0.9682 and the rest are all close to 0. This again 517 

proves that the proposed selection algorithm has kept vital information of the fault, which can be used 518 

for further fault diagnosis. 519 

 520 

Moreover, a nonlinear autoregressive exogenous artificial neural network (ANN) model with three 521 

layers and 10 neurons in the hidden layer [31] is used to further validate if fault feature is present in 522 

the retained variables based on the model prediction using different input datasets. We take SCADA 523 

data as an example. The ANN model is trained using SCADA data obtained from a fault-free turbine and 524 

then employed to predict the gearbox oil sump temperature of a faulty turbine on the same farm. The 525 

actual temperature and temperatures predicted using the original dataset and the B2 retained 526 

variables in time domain are shown in Fig. 14 (top). It can be seen that both predictions match the 527 

actual measurement precisely. The rise of temperature between 1)).)7 and 258.33 hours is due to a 528 

gearbox fault as indicated in the alarm log and from investigation of the data. The residuals, that is, the 529 

discrepancies between the model output and the actual output, using the original dataset and the B2 530 

retained variables are shown in Fig 14 (bottom), where a zero line is also plotted as a reference. The 531 

coefficient of determination R2 is employed here as a measure of how well the models explain the 532 

actual output data. The R2 values for the models with all data variables and B2 selected variables are 533 

0.99)8 and 0.9934. This indicates that both models provide a precise fit, thus proving that the fault 534 

feature is present in the retained dataset. Consequently, results show that the proposed selection 535 

algorithm is able to reduce the dimension of the dataset while maintaining vital information of the fault. 536 

 537 

 538 
Fig 14. ANN model validation of SCADA data with gearbox fault. Upper: actual and predicted gearbox 539 

oil sump temperatures; bottom: residuals between the actual output and the model outputs. 540 

 541 

5.  Conclusions 542 

 543 

In this paper, a new sensor selection technique is proposed, which uses PCA for condition monitoring 544 

of the distributed generation system oriented to wind turbines. The proposed method aims to identify 545 

a set of variables from huge amount of measurement data which can potentially reduce the number 546 

of physical sensors installed for condition monitoring whilst still maintaining sufficient information to 547 
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assess the system’s conditions. The selection process is examined not only with time series data but 548 

also with frequency series data and instantaneous frequency data in order to optimise sensor selection. 549 

The proposed technique is able to reduce the data dimension to 51.7% (15 out 29 variables) and 45.4% 550 

(35 out of 77 variables) for simulation and SCADA data, respectively. Findings from all three measures 551 

(cumulative variance, average correlation and information entropy) coincide with each other. It is found 552 

that the B2 method using both simulation and SCADA data in the time domain outperforms others, 553 

where the retained dataset has a cumulated percentage variance, average correlation and information 554 

entropy of 99.81%, 0.0082 and 81.32% for simulation data, and 99%, 0.1)2 and 88.88% for SCADA data, 555 

respectively. The results demonstrate that sufficient information is maintained in the retained dataset, 556 

while low degrees of correlation are ensured among the retained variables. 557 

 558 

Furthermore, the selection methods are evaluated using simulation data of DC-link capacitor ageing 559 

fault to reveal whether the fault feature in the original dataset is still kept by comparing the featured 560 

principal components produced by the original dataset and retained dataset, respectively. Results have 561 

shown that under a fault condition, the selection algorithm not only reduces the dataset dimension 562 

but also keeps the vital features associated with the fault in the retained dataset with a high accuracy. 563 

The vital information of the fault present in the retained variables has been further validated by the 564 

ANN models. Consequently, the work has demonstrated the feasibility of the proposed selection 565 

methodology. Future work will be focussed on the study of the time-frequency domain data for the 566 

selection algorithms, as time-frequency data in 2D may reveal more abundant information. A more 567 

sophisticated selection criterion such as setting of multiple target objectives needs to be investigated 568 

for a more precise sensor selection process. Future work will also use simulation and practical data 569 

under different operational conditions of wind turbines to further validate the proposed algorithm and 570 

for further fault detection. 571 

 572 

Acknowledgement 573 

 574 

The authors would like to thank the UK Engineering and Physical Sciences Research Council (EPSRC) for 575 

their support under Grant EP/I03732)/1. The permission of use SCADA data from Wind Prospect Ltd is 576 

also gratefully acknowledged. 577 

 578 

References 579 
 580 

[1] Ma X, Wang Y, Qin J. Generic model of a community-based microgrid integrating wind turbines, 581 

photovoltaics and CHP generations. Applied Energy 2013; 112:1475-1482. 582 

[2] Krishna SK, Kumar SK. A review on hybrid renewable energy systems. Renewable and 583 

Sustainable Energy Reviews 2015; 52:907-916. 584 

[3] Jardine AKS, Lin D, Bajevic D. A review on machinery diagnostics and prognostics implementing 585 

condition-based maintenance. Mechanical Systems and Signal Processing 2006; 20:1483-1510. 586 

[4] Tavner PJ. Offshore wind turbines: reliability, availability and maintenance. Stevenage: 587 

Institution of Engineering and Technology 2012. 588 

[5] Tian Z, Jin T, Wu B, Ding F. Condition based maintenance optimization for wind power generation 589 

systems under continuous monitoring. Renewable Energy 2011; 36:1502-1509. 590 

[6] Nilsson J, Bertling L. Maintenance management of wind power systems using condition 591 

monitoring systems - life cycle cost analysis for two case studies. IEEE Transactions on Energy 592 

Conversion 2007; 22: 223-229.  593 

[7] Marquez FPG, Tobias AM, Perez JMP, Papaelias M. Condition monitoring of wind turbines: 594 

Techniques and methods. Renewable Energy 2012; 46:169-178. 595 

[8] Ma X.  Novel early waning fault detection for wind turbine-based DG systems.  Proceedings of 596 

2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies 597 

(ISGT Europe), 2011. 598 



19 

 

[9] Cross P, Ma X. Nonlinear system identification for model-based condition monitoring of wind 599 

turbines. Renewable Energy 2014; 71:166-175. 600 

[10] Liu L, Wang S, Liu D, Zhang Y, Peng Y. Entropy-based sensor selection for condition monitoring 601 

and prognostics of aircraft engine. Microelectronics Reliability 2015; 55(9-10):2092-2096. 602 

[11] Shen X, Liu S, Varshney P. Sensor selection for nonlinear systems in large sensor networks. IEEE 603 

Transaction on Aerospace and Electronics Systems 2014; 50(4):2664-2678.  604 

[12] Hovland G, McCarragher B. Control of Sensory Perception in Discrete Event Systems Using 605 

Stochastic Dynamic Programming. Journal of Dynamic Systems, Measurement and Control 1999; 606 

121(2):200-205. 607 

[13] Mohammadi A, Asif A. Consensus-based distributed dynamic sensor selection in decentralised 608 

sensor networks using the posterior Cramer-Rao lower bound. Signal Processing 2015; 108:558-609 

575. 610 

[14] Van der Maaten LJP, Postma EO, Van den Herik HJ. Dimensionality Reduction: A Comparative 611 

Review. Tilburg University Technical Report, TiCC-TR 2009-005, 2009. 612 

[15] Feng Z, Liang M. Fault diagnosis of wind turbine planetary gearbox under nonstationary 613 

conditions via adaptive optimal kernel time-frequency analysis. Renewable Energy 2014; 614 

66:468-477. 615 

[16] Huang NE, Shen SSP. Hilbert-Huang transform and its applications. Singapore: World Scientific 616 

2005. ISBN: 978-981-4480-06-2. 617 

[17] Zhang RR, Ma S, Safak E, Hartzell E. Hilbert-Huang transform analysis of dynamic and earthquake 618 

motion recordings. Journal of Engineering Mechanics 2003; 129:861–875.  619 

[18] Yan R, Gao RX. Hilbert-Huang transform-based vibration signal analysis for machine health 620 

monitoring. IEEE Transactions on Instrumentation and Measurement 2006; 55: 2320-2329. 621 

[19] Jackson J. Users guide to principal components. A Wiley-Interscience Publication, 1999.  ISBN 0-622 

471-62267-2. 623 

[20] Skittides C, Fruh WG. Wind forecasting using Principal Component Analysis. Renewable Energy 624 

2014; 69:365-374. 625 

[21] Ata R. Artificial neural networks applications in wind energy systems: a review. Renewable and 626 

Sustainable Energy Reviews 2015; 49:534-562. 627 

[22] Jolliffe IT. Principal component analysis. New York: Springer. 2002. ISBN: 978-0387954424. 628 

[23] Al-Kandari N, Jolliffe IT. Variable selection and interpretation of covariance principal 629 

components. Communications in Statistics - Simulation and Computation 2001; 30(2):339-354. 630 

[24] Cumming JA, Wooff DA. Dimension reduction via principal variables. Computational statistics & 631 

data analysis 2007; 52:550-565.  632 

[25] McCabe P. Principal variables. American Statistical Association 1984; 26:137-144.  633 

[26] Grunwald P, Vitanyi P. Shannon information and kolmogorov complexity. IEEE Trans. 634 

Information Theory 2004.  635 

[27] Tang B, Song T, Li F, Deng L. Fault diagnosis for a wind turbine transmission system based on 636 

manifold learning and Shannon wavelet support vector machine. Renewable Energy 2014; 62:1-637 

9. 638 

[28] PSCAD power system simulation: wind turbine application technical paper, 2006. Available at  639 

http://www.cedrat-640 

technologies.com/fileadmin/user_upload/cedrat_groupe/Publications/Publications/2006/06/2641 

006_Wind_turbine_PSCAD_V42_ref.pdf, accessed on 29th Jan 2016. 642 

[29] Haque ME, Muttaqi KM, Negnevitsky M. A control strategy for output maximisation of a PMSG-643 

based variable-speedwind turbine. Australian Journal of Electrical and Electronics Engineering 644 

2009; 5: 263-270. 645 

[30] Hawkins DM. Exploring multivariate data using the minor principal components. Statistician 646 

1984; 33:325-338. 647 

[31] Cross P, Ma X. Model-based and fuzzy logic approaches to condition monitoring of operational 648 

wind turbines. International Journal of Automation and Computing 2015; 12: 25-34. 649 

http://www.cedrat-technologies.com/fileadmin/user_upload/cedrat_groupe/Publications/Publications/2006/06/2006_Wind_turbine_PSCAD_V42_ref.pdf
http://www.cedrat-technologies.com/fileadmin/user_upload/cedrat_groupe/Publications/Publications/2006/06/2006_Wind_turbine_PSCAD_V42_ref.pdf
http://www.cedrat-technologies.com/fileadmin/user_upload/cedrat_groupe/Publications/Publications/2006/06/2006_Wind_turbine_PSCAD_V42_ref.pdf

