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Abstract 

 

Drought frequency is projected to increase under future climate change. Large-scale 

droughts may have a huge effect on ecosystem carbon storage but despite the 

importance of drought events, their effect on soil carbon dynamics are less well 

understood. The above-belowground linkages that affect soil dynamics in forested 

areas during drought and immediately after rewetting can have a substantial impact 

on how soil carbon is stored. Soil respiration increases with addition of organic 

material, which also facilitates the release of stored carbon in the soil; known as a 

'priming effect'. In addition, soils that have undergone drought produce a large pulse 

of CO2 when rewet; a phenomenon known as the 'Birch effect'.  

I conducted lab incubations and a greenhouse experiment with poplar saplings to 

quantify soil carbon release during and after drought. I measured soil respiration to 

investigate potential interactions between the Birch and the priming effects and to 

establish whether post-drought soil CO2 release is intensified or mitigated with the 

addition of different amounts of leaf litter and the presence or absence of tree roots.  

In both experiments, soil respiration increased with litter inputs and decreased 

strongly during drought. However, I observed a larger pulse of soil CO2 efflux in 

response to litter inputs compared to rewetting after drought. In the incubation 

experiments, the low carbon content of the soil explains the overriding effect of the 

litter treatments, because the litter inputs represented the main source of carbon 

and nutrients to soil microbes. In the greenhouse experiment, I observed a 

substantial increase in soil carbon and microbial biomass upon rewetting after 
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drought but no clear peak in soil CO2 efflux. The apparent lack of a Birch effect in the 

greenhouse experiment is intriguing, because it suggests that plants have a 

mitigating effect on soil microbial responses to drought and rewetting.    
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Introduction  

Soils are huge repositories of carbon. Terrestrial carbon stocks contain three 

times the amount of carbon in the atmosphere and are vulnerable to change due to 

human activity (Batjes 1996). The vast majority of terrestrial carbon is stored 

belowground in soils and yet potential changes in soil carbon pools in climate change 

models are often inaccurate because we lack a detailed understanding of the 

processes involved in soil carbon storage and release (Wieder et al. 2013). 

Most organic carbon is introduced to the soil matrix during microbial 

decomposition of plant input; it is also released from the soil during this process by 

heterotrophic respiration. Organic carbon entering the soil is predominately part of 

long complex polymer chains; cellulose, proteins, hemicellulose and lignin are the 

most abundant forms of carbon in decaying organic matter (Swift 2001). As most soil 

microorganisms are heterotrophic, they are primarily limited by carbon and these 

large organic polymers need to be depolymerised by specialised bacteria and fungi to 

release the simple compounds and sugars that can be used for a source of energy for 

the rest of the soil microbial community (Killham 1995). After processing by 

decomposer organisms, most of the carbon from fresh organic matter is either: 1) 

incorporated into the organisms feeding off the organic matter; 2) released as CO2 

through microbial respiration; or 3) becomes part of the carbon pool in the soil 

(Killham 1995). The storage of carbon in soils is of critical importance because much 

of it is eventually stabilised, with turnover times in the range of hundreds or 

thousands of years (Swift 2001). Hence, the response of soils to climate change can 

influence ecosystem or even global carbon dynamics, and yet we still know little 
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about the processes underlying the storage or release of carbon from soils under 

different conditions.  

The functional rates of the biological processes that govern soil carbon dynamics 

are highly dependent on environmental conditions, in particular temperature and 

water availability (Raich & Schlesinger 2002). Drought can result in decreased 

microbial biomass and activity, however this is not uniform (van Gestel et al. 1993; 

Bapiri et al. 2010) as some slower-growing microorganisms, such as the slower 

growing fungi, are thought to be more resistant to desiccation (Schimel et al. 2007; 

Bapiri et al. 2010). Temperature is crucial for regulating microbial activity but it also 

plays a part in determining the size and diversity of the microbial community: an 

increase in temperature alone can result in greater microbial biomass but it can also 

decrease the diversity of the microbial community because it favours fast-growing 

competitive organisms (Scheik et al. 2011). However, a rise in temperature combined 

with low precipitation can cause more severe drought in soil, leading to an overall 

greater loss in microbial biomass (Scheik et al. 2011). 

Two phenomena are of particular interest for the study of soil carbon dynamics 

because they can release large pulses of CO2 from soils: 1) the 'Birch effect', which 

occurs after rewetting of dried soils, and 2) the 'priming effect', which occurs in 

response to increased inputs of fresh organic matter. Both phenomena involve 

complex microbial, biochemical and organo-mineral interactions that have been 

studied for decades, but the mechanisms underlying the pulsed release of CO2 from 

soils have yet to be conclusively identified.  
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The Birch effect was first described in experiments by H.F. Birch in the 1950s; he 

discovered that repeated drying and rewetting cycles in soils stimulate the 

mineralisation of soil organic matter, releasing carbon and mineral nitrogen (see 

Jarvis et al. 2007 for a review). Three principal mechanisms have been proposed for 

the pulse of CO2 associated with the Birch effect (Jarvis et al. 2007 and Kim et al. 

2012):  

i)  Labile organic substrate accumulates during drought, which facilitates rapid 

growth and expansion of the microbial community when the drought is 

alleviated. This substrate is derived from numerous sources such as dead roots, 

bacterial and fungal cells that did not survive the drought, and litter that has 

started to decompose on the surface of the soil. The rewetting of the soil 

therefore produces a pulse of labile substrate that surviving microbes can 

exploit, leading to rapid initial growth and activity, which in turn produces a 

large and sudden increase in microbial respiration. (Bottner et al. 1985); 

ii)  Intracellular osmolytes are synthesized by soil microbes to counteract the 

decrease in water potential as drought increases. Upon rewetting, the osmolytes 

are rapidly released and used as substrate because they are labile organic 

compounds. (Fierer andSchimel 2002) 

iii) Physical mechanisms are responsible for the spike in CO2, where drought breaks 

up soil aggregates, releasing physically protected organic matter accounting for 

part of the observed pulse in soil respiration. (Denef et al. 2001) 

Although it is generally accepted that these mechanisms contribute to increased CO2 

efflux during Birch effects, we still lack a good understanding of the processes 
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involved and their wider impact on ecosystem carbon dynamics (Xiang et al. 2008; 

Kim et al. 2012).  

The priming effect is characterised by additional decomposition of the soil 

organic carbon after increased inputs of easily-degradable organic material. The 

pulse of CO2 observed after substrate addition is largely derived from older soil 

organic matter, rather than the fresh organic inputs (Kuzyakov et al. 2000). There are 

currently three widely proposed theories for the mechanisms underlying priming 

effects:  

i) Soil microbes are typically C-limited, so the addition of easily degradable fresh 

organic matter provides energy and stimulates extracellular enzyme production, 

which results in the break down of soil organic matter (Kuzyakov et al. 2000).  

ii) Specific microbial functional groups control the turnover of distinct pools of 

organic matter. Additions of more complex substrates give a competitive 

advantage to slow-growing groups of microorganisms, which are capable of 

degrading more recalcitrant soil organic matter (Fontaine et al. 2003).  

iii) Microbial decomposition processes occur within a narrow range of the carbon-

to-nitrogen ratio (C:N). Soil organic matter is mineralized to acquire nitrogen to 

enable the decomposition of a high-C substrate (Craine et al. 2007; 

Blagodatskaya & Kuzyakov 2008).  

Studies of both “Birch” and priming effects have usually tested these theories in 

isolation and found evidence to support each of them. It is therefore unclear 

whether any single mechanism can explain each of these two effects or whether 

specific mechanisms apply under different conditions, soil types or ecosystems.  
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a)  b)  

Figure 1. Illustration of expected changes in soil respiration with a) positive priming and b) 

negative priming. i) represents CO2 respired from the soil without additional organic input; ii) 

shows the soil respiration in blue plus the CO2 released from the additional substrate in red; 

iii) shows changes in CO2 measured during positive and negative priming effects, where 

additional CO2 released by positive priming effects is shown in yellow; dashed lines indicate 

the difference in expected soil respiration with and without priming effects.  

Linking Birch effects and priming effects 

The mechanisms underlying Birch effects and priming effects have largely been 

studied in laboratory experiments. However, many of these studies were carried out 

without the presence of plants, even though there is strong evidence that plant roots 

can modify  the response of soil microbes to drought (Fuchslueger et al. 2014) and 

play a key role in priming effects (Subke et al. 2004; Crow et al. 2009). Recent work 

demonstrates that either the presence of roots or litter alone can release carbon as 

CO2 through priming effects but interactions between plant roots and litter inputs 
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can reduce CO2 release and increase soil C storage (Xu et al. unpublished data). 

Given that drought also affects the growth and production of organic matter by 

plants as well as microbial activity, it is reasonable to assume that the presence of 

plants can also modify Birch effects after a drought. 

There have been a number of drought experiments in grasslands, where the 

small size of individual plants and low vegetation allow observations of ecosystem 

processes. In contrast, studies of environmental change involving trees or wooded 

ecosystems are logistically challenging (Sayer 2014). Experiments to determine 

drought effects in forest soils often use partial throughfall exclusion to reduce water 

availability (e.g. Ogaya & Peñuelas 2007; Brando et al. 2008), or rainfall shelters in 

the understorey, which affect the surface soil and ground flora but not canopy tree 

growth (e.g. Borken et al. 2006; Cleveland et al. 2011). Initially, trees respond to 

water shortage by shifting biomass allocation from aboveground growth to root 

production to increase water uptake (Ryan 2011). A severe forest drought can also 

result in large quantities of dead plant material through leaf abscission to reduce 

transpiration losses and mortality both above- and belowground (Munné-Bosch & 

Alegre 2004).  At the end of a strong drought, it is therefore conceivable that the first 

rainfall could cause the simultaneous occurrence of Birch effects and priming effects, 

as the soil is rewetted and the accumulated plant material starts to decompose. If 

this is the case, and priming effects and Birch effects occur simultaneously (or in 

close succession) at the end of a drought, the release of CO2 could be larger than 

currently estimated by experiments studying either effect in isolation. 
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To address this, I established laboratory incubations combining different levels 

of leaf litter inputs with drought treatments, and a greenhouse experiment using 

pots with and without poplar saplings to investigate the influence of live roots on the 

amount of CO2 released during Birch- and priming effects. I measured soil CO2 efflux 

to assess changes in microbial activity in response to litter inputs, drought 

treatments and rewetting. The main aim of my experiments was to test the following 

hypotheses: 

1) Birch effects and priming effects are additive, resulting in a larger pulse of CO2 

upon rewetting when litter inputs are increased; 

2) The presence of plant roots moderates the release of CO2 through Birch effects 

after severe drought;  

3) Plant roots also reduce the amount of CO2 released through priming effects in 

response to increased litter inputs.  

 

Methods 

Incubation experiments  

Sample preparation 

Fresh commercial topsoil was homogenised by sieving (2-mm mesh). Three 

subsamples were weighed and then dried to constant weight for 48 hours at 105°C to 

measure soil water content. Soil water holding capacity was determined by placing 

200 g of dried soil in a 500 ml container with small holes to allow water to drain 
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freely. The soil was then submerged in water for 24 hours, left to drain for a further 

24 hours and then weighed to determine the water holding (field) capacity. 

A mixture of ash and sycamore leaf litter was collected during October 2013 from 

litter traps in Wytham Woods, mixed deciduous woodland in Oxfordshire UK. The 

litter was oven-dried to constant weight at 60ºC according to existing lab protocols, 

shredded, homogenised, and then sieved to retain fragments of 2-4mm diameter. 

Leachate was prepared following Schreeg et al. (2013) with modifications. Briefly, 1.5 

g of litter were shaken with 45 ml of deionised water and centrifuged at 3500 rpm for 

5 mins; 90 mL of leachate were prepared each week and stored at 5 ºC until needed.  

The dissolved organic content for the leachate was determined to be 240 μg kg -1. 

Incubations 

For the incubations, soil samples (80 g dry weight equivalent) were placed into 56 jars 

(500 ml) and rewetted to 60% water holding capacity (WHC). The jars were incubated 

at room temperature. The controls were maintained at 60 ±5% WHC throughout the 

experiment by measuring the weight lost by evaporation every 3-4 days and adding a 

corresponding amount of deionised water (dH2O).  

The soil CO2 efflux in each incubation jar was measured at least once a week and 

daily after applying treatments until the CO2 efflux settled. This was done using an 

infrared gas analyser with a multiplexer (Li-8100, LiCor Biosciences, Nebraska, USA) 

adapted for incubation vessels. Each incubation jar was capped before the 

measurements and then flushed for 30 seconds before measuring CO2 efflux for 2 

minutes. 
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Once the soil CO2 efflux of the incubations had stabilised (after 1 week), the 

incubation jars were grouped into seven blocks by mean soil CO2 efflux and two jars 

within each block were assigned to one of the following treatments: single-litter, 

double-litter, litter leachate, and controls without inputs. For the single-litter 

treatment, 1.22 g of chopped litter was spread evenly across the surface of the soil; 

the litter mass was based on field data from Wytham Woods and represents the 

monthly total during peak litterfall in October. Accordingly, 2.44 g of litter were added 

to the double-litter treatment. The leachate treatment represented the amount of 

leachate from rainfall and prepared litter leachate was added to these incubations to 

maintain WHC instead of dH2O. To maintain 60% soil WHC while accounting for the 

amount of water absorbed by the litter, the target weight of the single-litter 

treatments was increased by 2.5 g and the double-litter treatments by 5 g.   

Litter treatments were applied after 1 week and soil CO2 flux from the incubation jars 

was measured every 2 days for the following week. Once soil CO2 efflux had 

stabilised, half the incubations of each treatment were subjected to severe drought, 

whereas the other half was maintained at 60% WHC. This resulted in seven replicate 

incubations for each of eight treatments in a factorial design (four litter treatments × 

two drought treatments).  

 When the soil in the drought treatments reached 5% WHC, the soils were rewet to 

60% WHC using dH2O for the control, single-litter and double-litter treatments, and 

leachate solution for the leachate treatment. Soil CO2 efflux of all incubations was 

measured daily for another seven days after rewetting. 
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Three to four jars per treatment were destructively sampled for soil analyses 

immediately before rewetting and the remaining jars were sampled at the end of the 

experiment, c. 1 week after rewetting.  The litter was removed from the soil surface 

and the soil was homogenised by sieving prior to chemical analyses. Additional soil 

samples were taken from each incubation jar to determine total carbon and nitrogen 

content, gravimetric soil water content, and soil pH.  

Litter mass was determined using 17 extra single-litter and double-litter incubation 

jars, which were dried to constant weight at 60 ºC before the litter was carefully 

separated from the soil and weighed. 

 

Greenhouse experiment 

Experimental set-up 

The greenhouse experiment comprised 96 cylindrical pots (21.2 L) filled with 8.5 kg 

commercial topsoil (Table 1). 72 pots were planted with established poplar saplings 

grown from cuttings (height c. 30-40 cm) and 24 pots were left unplanted. All the 

pots were watered to field capacity. To enable measurements of soil CO2 efflux from 

the pots, a soil collar made of PVC pipe (9-cm long x 10-cm diameter) was sunk into 

the soil to 5-cm depth in each pot; the collar was placed on the north-facing side of 

each pot. The pots were kept well-watered for two weeks (establishment period) to 

allow the saplings to recover from transplantation before the start of the 

experiment. 
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Senesced maize leaves (C content: 43.10%; N content: 1.47%) were used as a 

standard litter. The leaves were gathered from Raines Hall Farm in Cumbria, England 

after the maize harvest in October 2014. The leaves were dried to constant weight at 

60ºC, shredded, homogenised, and then sieved to retain fragments of 2-4 mm 

diameter.  

 

Table 1. Initial chemical and physical properties of the commercial topsoil used in the greenhouse 
experiment, as given by the supplier; the pH value is given for a 1:1 ratio of soil to water. 
 

Soil chemistry  Soil texture 
     

Total organic matter (%) 5  Clay  23% 
Available P (µg g-1) 4.5  Silt 35% 
Available K (µg g-1) 135  Sand  41% 
Soil pH 7.1  Fine gravel  1% 
     

 

Experimental treatments and data collection 

Baseline measurements of soil CO2 efflux were taken during the initial establishment 

period, after which the pots were randomly subdivided into three groups and the 

following litter treatments were applied to 32 pots each: 'single-litter' with 19 g 

chopped maize, 'double-litter' with 38 g chopped maize and 'no-litter' controls 

without litter inputs. Soil CO2 efflux was measured during 2 weeks after the litter 

treatments were applied until it stabilised. Then half the pots per litter treatment 

were subjected to a drought treatment and the other half were watered daily. 

Hence, there were six treatments in a factorial design (three litter levels and two 

drought levels) with a total of 12 replicate planted pots and four replicate unplanted 

pots per treatment.  
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The drought treatment was applied for three weeks, at which point the trees would 

not have survived any longer without water (water content: 4.85%) and all pots were 

watered to field capacity.  

Soil CO2 efflux, soil moisture and soil temperature measurements were taken weekly 

throughout the experiment using an Infrared gas analyser (Li-8100, LiCor Biosciences, 

Lincoln NE, USA) with a 10-cm diameter soil chamber. Soil CO2 efflux was measured 

daily for four days after the start of the litter treatments and for six days after the 

soils were rewetted. The litter in the soil collars was carefully removed by hand 

before each measurement and then replaced immediately afterwards. Each soil CO2 

efflux measurement lasted 2 minutes and the system was flushed for 30 seconds 

between each measurement. Soil temperature readings were taken at the same time 

as CO2 measurements using a 20 cm probe. Measurements of soil water content 

were taken at 0-6 cm using a Theta-probe (Delta-T Devices Ltd., Cambridge UK). 

During the drought period, additional measurements were taken at 10-cm and 20-cm 

depth by inserting the probe through holes drilled into the side of a subset (32) of 

the pots. 

Soil cores (0-10 cm depth) were taken at the peak of the drought (planted pots only), 

and 1 week after rewetting (all pots). Soil subsamples were used to determine total 

carbon and nitrogen content, gravimetric soil water content, and soil pH. 
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Soil analyses 

Soil microbial biomass was determined by chloroform fumigation following Vance et 

al. (1987) with modifications as described by Jones & Willett (2006). Briefly, two soil 

subsamples of 8 g (dry weight equivalent) were taken from each incubation jar. One 

subsample was fumigated with chloroform for 24 hours and both subsamples were 

extracted in 40 ml 0.5M K2SO4. The extracts were shaken at 200 rpm for 1 hour, 

centrifuged at 3000 rpm and then filtered (2.5 μm). The extracts were stored at 5 ºC 

until analysis for total carbon.  

For total soil carbon and nitrogen content, subsamples were dried at 60 ºC for 24 

hours and ground using a ball mill before analysis on a Vario ELIII Element Analyser 

(Elementar, Hessia, Germany). Soil pH was measured in a slurry of 3 g soil in 9 ml 

dH2O using a S220 SevenCompact pH meter (Mettler Toledo, Columbus OH, USA).  

 

 

Data analyses 

All statistical analyses were conducted in R version 3.1.3 (R Core Team 2015); linear 

mixed effects models were constructed using the nmle package (Pinheiro et al. 

2015).  

To investigate the effects of litter treatment, drought treatment, and their 

interaction on soil respiration, I used linear mixed effects models (lme function) with 

litter and drought treatments as fixed effects and time as a random effect. To 

account for the variation in room temperature in the greenhouse experiment, the 
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pots were blocked by average soil temperature, and block was included as an 

additional random effect in the models. To determine the significance of each term, I 

used nested models and compared the AICs to check for model improvement 

(Pinheiro & Bates 2000); where there was no significant difference in the model fit, 

the simpler model was chosen.  

To assess the effects of litter and drought treatments on soil properties (total C and 

N, microbial biomass C) I used linear models. The full models included litter 

treatment, drought treatment, and their interaction. The models were simplified by 

sequentially dropping terms until a minimal adequate model was reached (Crawley 

2007). For the drought treatment only, I also used this approach to investigate the 

effects of rewetting and the influence of plants on soil properties. The full model for 

the rewetting effect included litter treatment and sampling date (before or after 

rewetting) and their interaction; the full model for planting effect included litter 

treatment, the presence of plants (planted or unplanted) and their interaction 

 

Results  

Incubation experiments 

Soil respiration in the incubation jars was extremely low before the start of 

treatments. Indeed, soil CO2 efflux was verging on the detection limit of the infrared 

gas analyser (0.01 µmol m-2 s-1). Soil CO2 efflux increased by more than one order of 

magnitude upon addition of leaf litter to the jars in the double- and single-litter 

incubations (Fig. 1). The initial pulse of soil CO2 at the time of litter application was 



Page | 17  
 

approximately twice as high in the double-litter compared to the single-litter 

treatment. However, there was no detectable change in the incubations that 

received the leachate treatment. During the drought phase of the experiment (20th 

March - 27th April), there was a noticeable decrease in soil CO2 efflux, with a more 

rapid decline in the double-litter treatment compared to the single-litter incubations 

(Fig. 2).  
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Figure 2. Soil CO2 efflux from incubation jars during a three-month experiment with 
factorial drought and litter manipulation treatments, showing means and standard errors 
for n = 7 before rewetting and n = 3 or 4 after rewetting. Vertical dotted lines show the 
application of litter treatments, the start of the drought treatment and the time of rewetting; 
red squares = 2L drought, orange circles = 2L watered, lime green triangles = 1L drought, 
green diamonds = 1L watered, turquoise crosses = 0L drought, blue circles = 0L watered, 
purple triangles = leachate drought and pink squares = leachate watered, where 2L, 1L 
and 0L are double- single and no-litter treatments, respectively. 
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During three months of incubation, soil respiration differed significantly among litter 

and drought treatments; the final model also included a significant litter × drought 

interaction (χ2 = 793.68, p < 0.001; Fig.3). 

   

 
To differentiate between the effects of litter treatments, drought treatments, and 

rewetting effects, I analysed the three periods of the experiment separately. During 

the two weeks following the start of litter treatments, soil respiration was 

significantly higher in jars with double-litter inputs compared to the other treatments 

(main treatment effect: χ2 =  329.36 p < 0.001). During the drought period, soil 

respiration remained higher in the double- and single-litter treatments compared to 

Figure 3. Cumulative soil CO2 efflux from incubation jars during a three-month 
experiment with factorial drought and litter manipulation treatments, showing means 
and standard errors for n = 7 before rewetting and n = 3 or 4 after rewetting; lime green 
triangles = 2L drought, green diamonds = 2L watered, red squares = 1L drought, 
orange circles = 1L watered, turquoise crosses = 0L drought, blue circles = 0L watered, 
purple triangles = leachate drought and pink squares = leachate watered, where 2L, 1L 
and 0L are double- single and no-litter treatments, respectively. 
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the no-litter and leachate treatments. However, the decrease in soil respiration with 

drought was greatest in the double-litter treatment and the final model included a 

significant litter × drought interaction (χ2  = 491.72 p < 0.001; Fig. 4). 

Similarly, the increase in soil respiration after rewetting was greatest in the double-

litter treatment and the final model included a significant litter × drought interaction 

(χ2 = 223.94 p < 0.001; Fig. 4).  

Total soil carbon and nitrogen content at the end of the drought period were 

significantly higher in the double-litter incubations compared to the other litter 

treatments (soil C: F3,24 = 4.21, p = 0.016; soil N: F3,24 = 3.86, p = 0.022; Figs. 4 and 5, 

respectively). Despite the differences in soil respiration, microbial biomass C was 

similar among drought and litter treatments both before and after rewetting (Fig. 7).  

In the incubation jars with litter additions, there was no effect of drought on litter 

decomposition but relative mass loss was greater in the single-litter compared to the 

double-litter treatments (F2,14 = 5.44, p = 0.018; Fig. 8). 

In the incubations subjected to drought, there were no significant differences in soil 

C, N or microbial biomass before and after rewetting in any of the litter treatments.   
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a) 

 
b) 

 
 

Figure 4 Differences in soil CO2 efflux between drought treatments for incubation jars with a) double-
litter inputs and b) single-litter inputs during a three-month experiment, showing means and standard 
errors for n = 7 before rewetting and n = 3 or 4 after rewetting; vertical dotted lines show the 
application of litter treatments, the start of the drought treatment and the time of rewetting, 
respectively; red squares indicate the drought treatment and blue circles are watered jars. 
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Figure 5 Soil carbon content in droughted (orange) and watered (blue) incubations with different litter 
addition treatments, measured before rewetting and after rewetting; boxplots show 1st and 3rd 
quartiles and 95% confidence interval of medians for n = 3 or 4. 
 
 

 
Figure 6 Soil nitrogen content in droughted (orange) and watered (blue) incubations with 
different litter addition treatments, measured before and after rewetting; boxplots show 1st 
and 3rd quartiles and 95% confidence interval of medians for n = 3 or 4. 
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Figure 7. Soil microbial biomass carbon in droughted (orange) and watered (blue) incubations 
with different litter addition treatments, measured before rewetting and after rewetting; 
boxplots show 1st and 3rd quartiles and 95% confidence interval of medians for n = 3 or 4.  

 

 

 
 

Figure 8. Relative mass loss of litter at the end of a three-month incubation experiment in droughted 

(orange) and watered (blue) jars with different litter addition treatments; boxplots show 1st and 3rd 

quartiles and 95% confidence interval of medians for n = 3-5. 
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Greenhouse experiment 

Similar to the incubation experiments, there were four distinct periods in the pattern 

of soil respiration during the course of the study: 1) a one-week establishment period 

before the application of the litter treatments; 2) a two-week pre-drought period, in 

which the largest litter treatment effects were observed; 3) the main drought period 

in which soil CO2 efflux declined steadily in most drought pots; and 4) the rewetting 

period, with highly variable soil CO2 efflux (Fig. 9). 

 

Soil respiration  

Overall, soil CO2 efflux was significantly affected by litter additions and drought 

treatments relative to controls (χ2 = 175.35, p < 0.001). Soil respiration was 

noticeably lower in the drought treatment compared to the watered pots and soil 

respiration also tended to increase with the amount of litter added (Fig. 8) but there 

was no significant litter × drought interaction (χ2 = 0.981, p = 0.7542). 

In the planted pots, I observed a distinct peak in soil CO2 efflux in response to the 

application of litter treatments in the second week of the study (Fig. 11). Over the 

remaining study period, soil CO2 efflux in the watered pots was consistently higher in 

the double-litter treatment (mean: 2.33 umol m-2 s-1) compared to the no-litter 

treatment (mean: 1.62 umol m-2 s-1). 

In pots without trees, there was a similar peak in respiration after litter addition and 

soil respiration was also highest in the double-litter treatments but the effects of 

drought were less clear because soil CO2 efflux was lower in the watered pots than in 

the drought treatment (Figure 12). 
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a) 

 
b) 

 
Figure 9 Soil respiration in pots planted with poplar cuttings with different litter treatments and a) 
subjected to a drought treatment or b) watered daily, showing the distinct periods during the 
experiment; means and standard errors are given for n = 12; red circles are double-litter treatments, 
blue squares are single-litter treatments and green triangles are no-litter treatments. 
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a) 

 
b) 

 
 

Figure 10 Cumulative soil CO2 efflux in a) pots planted with poplar seedlings and b) unplanted pots 
during a three-month greenhouse experiment with factorial drought and litter manipulation 
treatments; means and standard errors are given for n = 12 and n = 4 for planted and unplanted pots, 
respectively; yellow circles = 2L watered,  red squares = 2L drought, turquoise diamonds = 1L watered, 
green triangles = 1L drought, pink circles = 0L watered and blue crosses = 0L drought, where 2L, 1L and 
0L are double- single and no-litter treatments, respectively. 



Page | 27  
 

 

a) 

  
b) 

  
c) 

  
 
Figure 11 Soil respiration in pots planted with poplar cuttings and with a) double-litter, b) 
single-litter and c) no-litter treatments; blue triangles indicate watered treatments and red 
circles show droughted pots; means and standard errors are shown for n = 12. 
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a) 

  
b) 

  
c)            

  
 
Figure 12 Soil respiration in unplanted pots with a) double-litter, b) single-litter and c) no-
litter treatments; blue triangles indicate non-drought treatments and red circles show 
droughted pots; means and standard errors are shown for n = 4. 
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Effects of drought and litter additions on soil respiration  

For the drought period, the best model included the litter and drought treatments 

but not their interaction (χ2 = 89.299, p < 0.001); overall, the litter treatments 

explained more of the variation in soil CO2 efflux than drought (litter treatment 

effect: χ2 = 10.7668 p < 0.001; Fig. 11). 

In the period immediately after the drought, when the birch effect is typically 

observed, only the litter treatments had a significant effect on soil CO2 efflux (χ2 = 

38.089, p < 0.001). Surprisingly, including the drought treatment did not improve the 

model fit (χ2 = 1.3438; p = 0.2464). A comparison of planted and unplanted pots after 

rewetting showed the presence of trees and the litter treatments had a significant 

effect on soil CO2 efflux (χ2 = 33.05, p < 0.001), but there were no interactions 

between any of the treatments. 

 

Treatment effects on soil microbial biomass and soil chemistry 

In pots planted with poplar cuttings, there were no differences in soil C, soil N or 

microbial biomass C at the peak of the drought period. However, after rewetting, 

total soil C was higher in drought treatments compared to watered pots regardless of 

litter treatment (F3,18 = 3.93, p = 0.025; Fig. 13) and there was a significant litter x 

drought interaction on total soil N (F5,16 = 5.11; p = 0.005); total N in the soil after 

rewetting was highest in the drought treatments with single-litter addition (Fig. 14). 
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In the unplanted pots, total soil C after rewetting was best described by the model 

including the interaction of drought and litter treatments (F5,18 = 3.011; p = 0.038); 

total soil C was higher in drought treatments compared to watered pots and the 

difference was greatest with single-litter addition (Fig. 13). Soil microbial biomass C 

in unplanted pots was unaffected by litter addition but was marginally lower in 

Figure 13. Total soil carbon in droughted (orange) and watered (blue) pots with different litter 
addition treatments, measured at the peak of the drought period (before rewetting, planted 
pots only) and after rewetting at the end of the experiment; boxplots show 1st and 3rd 
quartiles and 95% confidence interval of medians for n = 12 and n = 4 for planted and 
unplanted pots, respectively. 
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drought treatments compared to watered pots at the end of the study (main 

treatment effect: F3,20 = 2.83; p = 0.064; Fig. 15).  

 

 

Figure 14. Total soil nitrogen in droughted (orange) and watered (blue) incubations with 
different litter addition treatments, measured at the peak of the drought period (before 
rewetting, planted pots only) and after rewetting at the end of the experiment; boxplots show 
1st and 3rd quartiles and 95% confidence interval of medians for n = 12 and n = 4 for planted 
and unplanted pots, respectively. 
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Figure 15. Microbial biomass carbon in droughted (orange) and watered (blue) pots with 
different litter addition treatments, measured at the peak of the drought period (before 
rewetting, planted pots only) and after rewetting at the end of the experiment; boxplots show 
1st and 3rd quartiles and 95% confidence interval of medians for n = 12 and n = 4 for planted 
and unplanted pots, respectively. 
 

In the pots subjected to drought, there was a significant increase in total soil C after 

rewetting (F3,20 = 3.29, p  = 0.04), and although there was no significant drought x 

litter interaction, the most pronounced increase was observed in the single-litter 

treatment (Fig. 15). Microbial biomass carbon was greater after rewetting regardless 

of litter treatment or the presence of plants (F3,17 = 3.22, p  = 0.049; Fig. 16).  
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Figure 16. Soil carbon and nitrogen content and microbial biomass carbon in droughted pots 
planted with polar cuttings and with different litter addition treatments, measured at the peak 
of the drought period (red boxes) and after rewetting at the end of the experiment (yellow 
boxes); boxplots show 1st and 3rd quartiles and 95% confidence interval of medians for n = 12. 
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Discussion 

The main goal of my experiments was to investigate the possible interaction 

between the Birch effect and the priming effect and their influence on soil 

respiration after drought. The results from the two different experiments tell 

different stories: in the incubation experiment, I only observed a response to drought 

in the treatments with added litter but there was little or no response to drought in 

the leachate and no-litter treatments. On the other hand, the results from the 

greenhouse show a strong drought response in planted pots but little interaction 

between litter and drought treatments. Extra litter additions increased respiration 

whereas the presence of poplar trees decreased the size of the Birch effect. 

Incubation experiment 

In my incubation experiments, the litter additions had an overall greater effect on 

soil respiration and soil properties than the drought treatment. The soil I used for the 

incubations was an artificial commercial ‘topsoil’, with very poor soil structure and 

very low biologically available carbon. As soil microorganisms are generally carbon-

limited (Smith & Paul 1990), the litter additions were probably necessary for 

microbial growth. Consequently, soil nitrogen and carbon content was higher in the 

double-litter treatment before rewetting, regardless of whether the incubations had 

been subjected to drought or kept watered. 

The extremely low respiration rates in the incubation jars at the start of the 

experiment indicates that the soil organic matter content was insufficient to sustain 

much microbial activity. Consequently, it is likely that the pulse of CO2 measured 

after the application of the litter treatments was largely due to soil microbial growth 
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and the rapid colonization by microorganisms (fungal mycelia and bacteria) of the 

added litter (Romani et al. 2006; Steffen et al. 2007; Snajdr et al. 2008). This is 

supported by the larger peak in response to the double-litter addition, which was 

approximately twice as high as the single-litter treatment. Correspondingly, soil 

respiration in the double-litter incubations declined much more rapidly after the 

start of drought, as water becomes limiting and the litter on the soil surface dried out 

rapidly (Clein and Schimel 1994; Berg et al. 1998). Leaching of organic solutes 

contributes to litter decomposition (Cotrufo et al. 2015) but the negligible effects of 

the leachate treatments on CO2 efflux suggest that the mineralization of dissolved 

organic carbon from litter and artificial leachates did not contribute substantially to 

the observed microbial respiration in my study.  

Although the drought imposed on the incubations was severe, I did not observe the 

characteristic peak in soil CO2 efflux during the first three to four days upon 

rewetting that is usually associated with the Birch effect (Kim et al. 2012; Fig. 3). This 

is likely a result of the lack of soil structure in the artificial ‘commercial topsoil’, as 

the presence of soil aggregates (Denef et al. 2001) and fine particles to which organic 

solutes associate (Lundquist et al. 1999; Wang et al. 2003; Casals et al. 2009) are 

thought to play a key role in the Birch effect. Instead, respiration increased steadily 

over the course of a week after rewetting. Three different mechanisms could explain 

the pattern in soil CO2 efflux after rewetting: i) leaching of labile components from 

the litter (Hagedorn and Machewitz 2007), ii) further microbial colonisation of the 

remaining litter, and iii) soil microbial growth and recovery from dormancy (Schimel 

et al. 2007). In my study, the peak in respiration in the droughted double-litter jars 

after rewetting is probably a combination of the three mechanisms, whereby a larger 
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amount of labile carbon from the remaining litter was available to microbial 

decomposers, which fuelled a sudden increase in microbial growth and colonisation 

of the litter. This explains the higher microbial biomass after rewetting (Fig. 6) and 

the greater relative mass loss of litter in the double-litter drought treatments (Fig. 7).  

Unexpectedly, the leachate treatment appeared to have no effect on soil respiration 

and a negligible effect on microbial biomass. Tree litter leachates are thought to be a 

major source of labile C for soil microbes (Kalbitz et al. 2000; Don and Kalbitz 2005). 

However, some studies have challenged this assumption, suggesting that only a 

fraction of the carbon in leachates is immediately available to soil microbes (Qualls 

and Haines 1992; De Troyer et al. 2011). The easily-degradable carbon in leachate 

can be consumed in a matter of hours (De Troyer et al. 2011), whereas recalcitrant 

solutes take a long time to decompose (Qualls and Haines 1992). In my incubations, 

soil respiration in the leachate treatments was very low (Figs. 1 and 2) which 

supports the notion that only a small fraction of the carbon was available for 

microbial use. In addition, I took soil CO2 measurements at least one day and up to 

four days after applying leachates. Hence, given the rapid cycling of the labile carbon 

from leachate (De Troyer et al. 2011), any potential microbial respiration in response 

to leachate addition could have happened very rapidly and not shown up in my 

measurements. 

Greenhouse experiment 

Overall the litter treatments had a greater effect on soil respiration than rewetting. It 

is important to note that soil respiration in the greenhouse experiment was strongly 

influenced by litter treatment, even though litter was removed from the soil collars 
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before measurements. This approach has previously been used in field studies using 

litter manipulation treatments because it excludes variation due to decomposition of 

different amounts of litter on the soil surface (Sayer et al. 2007), which allowed me 

to observe belowground responses to litter and drought treatments. 

Once the drought treatment was applied, there was a notable rapid drop in soil 

respiration in the drought treatments with poplar cuttings (Fig. 10), whereas the 

unplanted pots maintained high respiration rates throughout the drought period (Fig. 

11). The drought treatment was more effective in planted pots because plant water 

uptake (and transpiration) will have contributed to rapid desiccation of the soil 

(Jackson et al. 2000). To partly compensate for this in the unplanted pots, I extended 

the drought period for an extra week until they reached the same soil moisture 

content as the planted pots. 

I only analysed the data from unplanted pots subjected to the drought treatment 

because the watered pots without poplar cuttings quickly became waterlogged. At 

the start of the experiment, I decided to add the same quantity of water to all the 

watered pots because it was not feasible to individually determine water holding 

capacity in all 96 pots. I calculated the required amount of water for the planted pots 

but this proved to be too much for the unplanted pots due to the lack of water 

uptake by plants and the soil became waterlogged. Soil waterlogging is likely to have 

contributed to the lower respiration rates observed in the unplanted watered pots 

(Fig. 11), as it reduces air volume in soil pores, which can suppress microbial activity 

and gas diffusion (Linn and Doran 1984). 



Page | 38  
 

The drought treatment in the planted pots was highly effective; I observed 

substantial leaf loss from the poplars, which highlights the importance of considering 

the effect of additional litter inputs to the soil during severe drought. Indeed, the 

lack of clear differences in respiration rates between litter treatments after rewetting 

in the droughted pots could conceivably be a result of litterfall from the stressed 

plants. Even though I endeavoured to remove the extra litter from the pots regularly, 

it could have contributed nutrients and carbon to the soil before it was removed and 

may explain the large increase in total soil carbon in the single-litter treatment after 

rewetting (Fig. 12). 

I rewet the soil shortly before the plants had reached permanent wilting point to 

maximise the drought conditions but avoid killing the poplars. As the poplar trees 

were placed under severe stress, it is likely that significant fine-root mortality 

occurred within the pots. This would have provided another source of carbon and 

nutrients into the soil after rewetting (Jones et al. 2004). The additional carbon and 

nitrogen from plant litter probably decreased the difference in microbial biomass 

carbon among the litter treatments by providing labile C for immediate use by soil 

microbes. It could also partly explain the higher carbon and nitrogen content after 

rewetting in drought treatment compared to the watered treatments (Fig. 12-14). 

Many soils have a tendency to crack when undergoing drought. This phenomenon is 

normally exacerbated where the soil is contact with a solid object, such as the soil 

collars and the edge of pots. I did not measure soil respiration when the soil inside 

the collars was badly cracked, as the cracking would have changed the CO2 efflux in 

two ways; first the cracking increases the surface area of the soil while at the same 
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time exposing lower depths to the air; this exposure can increase the amount of CO2 

released from the soil (Rochette and Hutchinson 2005). Secondly, the cracks in the 

soil can potentially compromise the seal between the chamber and the soil collars 

during measurements. If the system is not properly sealed, air will be exchanged with 

the atmosphere during the measurements and the accumulation of the CO2 is 

disrupted. 

After the rewetting event, there was a much smaller CO2 efflux response in the pots 

planted with poplar cuttings compared to those without plants, even though the 

drought had a greater effect on soil respiration in the planted pots. Soil respiration in 

the planted pots recovered to values similar to those observed in the non-drought 

treatments but did not exceed them (Fig. 10), which would be expected with Birch 

effects. This lack of a large peak in soil CO2 efflux differs from the majority of the 

literature on drying and rewetting effects on soil, as many of the experiments are 

conducted without plants (Mikha et al. 2005; Miller et al. 2005; Wu & Brookes 2005; 

Beare et al. 2009; Xiang et al. 2008). This change in the pattern of soil CO2 efflux with 

the presence of plants is most likely due to the complex interaction between soil 

microbes and root products, in particular root exudates. Although a full investigation 

of these interactions was beyond the scope of my experiments, it presents an 

interesting avenue for future research. Plant-soil interactions are central to a large 

number of important biogeochemical processes and they are also influenced by 

properties of both the soil and the roots (Bouma & Bryla 2000). To further 

complicate matters, interactions between the rhizosphere and the bulk soil are not 

uniform throughout the soil, as root growth varies greatly in space and time.  
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The comparison of the drought treatments before and after rewetting revealed a 

sizeable increase in microbial biomass carbon suggesting an increase in microbial 

growth upon rewetting, possibly as a result of dead root material (discussed above). 

The higher soil carbon content in droughted pots after rewetting is probably largely 

accounted for by this microbial growth (Fig. 15). Thus, although I did not observe the 

clear peak in soil CO2 efflux associated with typical Birch effects, my results indicate 

that the more gradual increase in soil respiration after rewetting is a result of 

increased microbial biomass and activity, which is sustained by root carbon inputs.  

 

Conclusions 

I found evidence to suggest that the presence of plant roots moderated the release 

of CO2 from the soil after severe drought and that plant roots reduced the amount of 

CO2 potentially released through priming effects in response to increased litter 

inputs  However, I was unable to determine conclusively whether the observed 

responses were indeed Birch effects and priming effects. Further work is required to 

determine whether Birch effects and priming effects have an interactive effect on 

soil carbon release. There are also many possibilities to take the work beyond the 

initial scope of these experiments; interesting future avenues for research could 

include the effect of tree species, the influence of soil type, differences in the length 

and severity of drought, repeated rewetting and drying cycles, and importantly, 

scaling up experiments to simulate field conditions. This last point is critical, as both 

priming and Birch effects could result in substantial release of CO2 from soils after 
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drought, and we need to understand how different mechanisms and feedbacks affect 

one another to predict carbon dynamics in ecosystems under global change.   
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Appendix  

a)   

b)  

Figure A. Photographs of the experiments described in this thesis a) jars used for the incubation 
experiment with and without lids and different drought treatments b) some of the poplar 

saplings in the greenhouse pot experiment. 
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Figure B. Average soil temperatures in pots in the greenhouse experiment, showing standard 
errors of means for n = 96. 
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   1 

Figure C Gravimetric soil water content for individual incubation jars with varying amounts of litter, where 0L is no litter, 1L is single litter and 2 
2L is double litter addition. . 3 
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