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Abstract—This paper investigates group secret key generation
problems for different types of wireless networks, by exploit-
ing physical layer characteristics of wireless channels. A new
group key generation strategy with low-complexity is proposed,
which combines the well established point-to-point pairwise key
generation technique, the multi-segment scheme, and the one-
time pad. In particular, this group key generation process is
studied for three types of communication networks: 1) the three-
node network, 2) the multi-node ring network and 3) the multi-
node mesh network. Three group key generation algorithms
are developed for these communication networks, respectively.
The analysis shows that the first two algorithms yield optimal
group key rates, whereas the third algorithm achieves the optimal
multiplexing gain. Next, for the first two types of networks, we
address the time allocation problem in the channel estimation
step to maximize the group key rates. This non-convex max-
min time allocation problem is first reformulated into a series of
geometric programming, and then a single-condensation-method
based iterative algorithm is proposed. Numerical results are
also provided to validate the performance of the proposed key
generation algorithms and the time allocation algorithm.

Index Terms—Information-theoretic security, group key gener-
ation, multiplexing gain, time allocation, geometric programming

I. INTRODUCTION

Recently, secret key generation based on physical layer
(PHY) resources and information-theoretic security concepts
has received a significant attention. The notion of information-
theoretic security was first introduced by Shannon in [1]. In
his seminal work, an one-time pad operation was proposed to
protect the secret message whose rate cannot exceed the key
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rate, such that “perfect secrecy” can be achieved. This means
that the eavesdropper cannot retrieve any information about the
secret message even if it has unlimited computational power.
Following this pioneering work, Wyner first utilized a PHY-
based approach to realize information-theoretically secure
communications in a wiretap channel, where the secrecy ca-
pacity was characterized as the difference between the mutual
information of the main channel and the eavesdropper channel
[2]. This type of models is known as “channel model” in the
literature. In recent years, a variety of channel model based
approaches have been studied as evidenced by the work in
[3]–[5] and the survey in [6], where intelligent channel coding
designs are exploited to avoid the requirement of secret keys.
However, it has been shown that the secrecy rates achieved by
these channel model approaches are limited even with large
amount of transmit power, which unintentionally improves the
decoding capability of the eavesdropper [4].

In contrast to the channel model based techniques, recently
the source model based PHY security approach has received a
considerable attention, where correlative source observations
between legitimate users are exploited to generate common
randomness and information-theoretically secure symmetric
keys. The works in [7]–[15] aimed to find information-
theoretic secrecy key capacities in a variety of source models,
however, they have not provided methods to obtain the source
observations. Due to channel reciprocity in time-division
duplex (TDD) systems, the correlative observations can be
obtained via estimates of the wireless fading channels between
the legitimate users, which demonstrates the advantages of
the source model based key generation approach to support
secure multimedia service. Along this direction, many works
have investigated this channel reciprocity based key generation
problem [16]–[26]. In addition, it is exploited the fact that the
eavesdropper channels are independent from channels between
the legitimate users as long as the eavesdroppers are half-
wavelength away from the legitimate users, which is a general
case in wireless networks [27].

The key generation problem between a group of terminals
is more challenging due to the different random channels
associated with these terminals. The information-theoretic
secret key capacity (i.e., the optimal key rate) for the group
key generation in the multi-terminal source model was first
provided in [10]. Since then, several tree-based algorithms
have been developed to achieve the group secret key capacity
for the multi-terminal pairwise independent network (PIN)
[11]–[15]. On the other hand, effective group key generation
algorithms have been proposed for wireless networks by ex-
ploiting channel characteristics in [28]–[30]. These algorithms



2

are more practical for real systems at the expense of some
scarification in the group key rate.

This paper proposes new group key generation algorithms
for three types of wireless topologies, namely, the three-node
network, the multi-node ring network and the multi-node mesh
network. Firstly, this proposed scheme is demonstrated using
a simple three-node wireless network, where three legitimate
nodes wish to agree on a common group key without reveal-
ing this key to an external eavesdropper. Secondly, a more
complicated ring network is considered, where the wireless
links among the M(≥ 3) legitimate nodes are in ring-shape1.
Finally, the proposed key generation protocol is extended
to the mesh wireless network, where a wireless link exists
between every two nodes. To realize optimal or order-optimal
group key rates, the propose key generation strategy is based
on the careful combination of the well established point-to-
point pairwise key generation technique, the multi-segment
scheme (i.e., divide each pairwise key into multi-segments
[11], [12]), and the one-time pad [1]. The main contributions
for each type of wireless network are summarized as follows.
• Three-node network: a two-segment key generation algo-

rithm is proposed for a three-node network, whose main
feature is to divide each pairwise key into two segments,
and then use them to generate the three-way group key.
Then, the optimal rate allocated to each segment is ana-
lyzed, and the achievable group key rate of the proposed
algorithm is demonstrated to be optimal for the three-node
network.

• Multi-node ring network: a multi-segment key generation
algorithm is proposed for a ring network with M legitimate
nodes, where each pairwise key is divided into M − 1
segments to a generate group key. Then, the optimal rate
allocated to each segment is analyzed, and the group key
rate of the proposed algorithm is demonstrated to be
optimal for the multi-node ring network.

• Multi-node mesh network: we extend the proposed two-
segment based algorithm for the three-node network to a
mesh network with M legitimate nodes, where each pair-
wise key is also divided into two segments for generating
group secret keys. This proposed algorithm achieves order-
optimal performance among training-based key generation
approaches in the mesh wireless network with the optimal
multiplexing gain M/2 as defined in [21].

• For the first two types of networks, the time allocation is
addressed in the training phases to maximize the group key
rate. The non-convex time allocation max-min problem is
first reformulated into a series of geometric programming
through an approximation, and then an iterative algorithm2

is proposed by exploiting single condensation method. In
addition, it is proven that the solution obtained through
the proposed algorithm satisfies the KKT conditions of

1Formal definitions of a ring network will be given later in this paper. An
example of this ring network could arise in a scenario, where a number of
legitimate users are located surrounding a mansion, and each of them can
only communicate with the nearest two users via wireless channels.

2Note that the time allocation algorithms are essentially different from the
key generation algorithms, the latter is used to generate keys, while the former
is used to maximize the rates of the generated keys.

the original key rate maximization problem. However, the
optimality of the proposed iterative algorithm is validated
by comparing with the exhaustive search results.

Now, we briefly explain the difference between the proposed
group key generation algorithms and the related existing ones
to highlight our contributions. Firstly, compared to the key
generation problem between two terminals in [19], [21], [22],
the group key generation problem considered in this paper is
more challenging. Specifically, in the key agreement process,
the algorithms in [19], [21], [22] do not give consideration
to the multi-segment scheme for each pairwise key, whereas
the proposed algorithms not only design the segment-pairing
scheme to perform the one-time pad, but also analyze the opti-
mal rate allocated for each segment. Secondly, compared to the
tree-based algorithms in [11]–[13], the proposed algorithms
enjoy high efficiency and low complexity. Specifically, the
tree-based group key algorithms divide each pairwise key into
multiple one-bit segments. Then, in order to propagate these
one-bit segment, the nodes adopt a transmission scheduler
via repeatedly finding spanning trees in the corresponding
multigraphs. Whereas, the proposed algorithms only divide
each pairwise key into a small number of segments with
optimal rate allocation, such that only a simple round robin
scheduler is adopted by the nodes to transmit one-time pads
of these segments in the group key agreement. Finally, this
paper solves the key rate optimization problem with respect to
optimal time allocation for some networks, which is nontrivial
due to the non-convex characteristic. To the authors’ best
knowledge, such an optimization problem has not been solved
in any existing work.

II. GROUP KEY GENERATION: MODEL AND REVIEW

In this section, we first define the group key generation
system model, and then review some previous related works
for the considered model.

A. System Model

We consider a group key generation model, where M
(M ≥ 3) terminals wish to generate a common group secret
key through wireless fading channels in the presence of a
passive eavesdropper. In this model, all the legitimate terminals
can transmit signals over the wireless channels and they are
assumed to be half-duplex and equipped with a single antenna.
Each node m (m ∈ {1, · · · ,M}) sends a signal sm in a given
channel use. The received signals at the rest of the nodes and
the eavesdropper are

yi = hm,ism + ni, ∀i ∈ {1, · · · ,M}, i ̸= m;

yE = hm,Esm + nE , (1)

where hm,i and hm,E denote the fading channel coefficients
from node m to node i and the eavesdropper, respectively; ni

and nE are zero mean additive Gaussian noises with variance
δ2 at node i and the eavesdropper, respectively. All the channel
gains are assumed to be independent of each other, hence,
hm,i is independent of hm,E . In addition, it is assumed that
none of the terminals have a priori channel state information,
however, their distributions are available at each nodes. For
simplicity, each channel gain is assumed to be a Gaussian
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random variable and the corresponding results can be easily
extended to other fading channel coefficients. Moveover, we
assume that channels between two nodes are reciprocal, i.e.,
hi,j = hj,i for ∀i, j ∈ {1, · · · ,M}, and they are constant over
a period of T symbols and change randomly at the beginning
of the next period of T , which is known as a quasi static block
fading model in the literature. Note that these assumptions are
commonly used in existing related works for key generation
in wireless TDD systems [19], [21], [22].

For each m = 1, · · · ,M , let Sm = [sm(1), · · · , sm(Lm)]T

denote the signals transmitted by node m in Lm channel uses.
Following [21], we assume that each node transmits signals
with an equal power constraint for simplicity, i.e.,

1

Lm
E{ST

mSm} ≤ P,∀m ∈ {1, · · · ,M}. (2)

In addition to the wireless channels, the legitimate terminals
can also use the noiseless public channel with infinite capacity
to exchange messages which can be completely accessed by
the eavesdropper. This assumption of the public channel access
has been widely used in existing literature [7], [8], [22]. The
eavesdropper is passive, which means that it only receives
from the public and wireless channels and does not send any
signals. Let F denote all the messages transmitted over the
public channel. Each of the legitimate terminal exploits the
signals received from wireless channels and the public channel
to generate a group secret key. Let fm be the key generation
function at node m, i.e., KN,m = fm(Sm,Ym,F). A group
key rate Rkey is defined to be achievable, if for any ϵ > 0,
there exists a coding scheme and a random variable Kg such
that

Pr(KN,m ̸= Kg) ≤ ϵ, m = 1, · · · ,M,

1

N
I(Kg;F) ≤ ϵ,

1

N
H(Kg) ≥ Rkey − ϵ. (3)

Remark 1: Note that a more general group key generation
problem is to share a key among a subgroup of terminals,
and the other terminals outside this subgroup act as dedicated
helper nodes [10], [12]. Such a general key generation problem
has been recognized as a challenging issue, and the key
capacity has not been achieved by any existing algorithm. This
paper mainly consider the case that all the terminals wish to
share the group key. However, the proposed key generation
algorithms in the following sections can be extended to this
general scenario, based on the combination with cooperative
key generation approaches in [21] for the dedicated helper
nodes. We will take a mesh network as an example to discuss
this issue, as shown later in Section V-C.

B. Review of Previous Works

In this subsection, we review previous related work includ-
ing the pairwise key and the group key generation schemes.

1) Pairwise key generation: By exploiting the channel
reciprocity, the basic idea of the PHY based pairwise key
generation (i.e., point-to-point key generation), between each
pair of nodes are reviewed here [16], [17], [19], [21], [22]. This

will provide necessary background for further development
key generation algorithms in this paper. There are two main
steps involved the pairwise key generation via wireless fading
channel reciprocity: (1) Channel estimation via training sym-
bols and (2) Pairwise key agreement via Slepian-Wolf coding.

In the channel estimation step, each fading block is divided
into M phases with each duration Tm, m = 1, · · · ,M , where
the M nodes take turns to broadcast training sequences in
these phases. Suppose node m broadcasts a known sequence
Sm using Tm symbols in each fading block, from which node
i obtains the estimate h̃m,i, ∀i ̸= m. The size of Sm is Tm×1
and the corresponding energy is defined as ||Sm||2 = TiP .

For each channel hi,j , i, j ∈ 1, · · · ,M and i < j, the
received signals after the training process, at node j and node
i can be written as

Y
(i)
j = hi,jSi +N

(i)
j , (4)

Y
(j)
i = hi,jSj +N

(j)
i (5)

in the i-th and the j-th phases, respectively. Then node j and
node i can obtain the following estimates:

h̃i,j =
ST
i

||Si||2
Y

(i)
j = hj,i +

ST
i

||Si||2
N

(i)
j , (6)

h̃j,i =
ST
j

||Sj ||2
Y

(j)
i = hj,i +

ST
j

||Sj ||2
N

(j)
i . (7)

In the pairwise key agreement step, each node pair (i, j) can
agree on a nearly uniformly distributed pairwise key Ki,j(=
Kj,i) with arbitrarily small error probability and the rate is
Ri,j = Ii,j/T , where Ii,j is defined as [19], [21], [22]

Ii,j = Ij,i = I(h̃i,j ; h̃j,i)

= −1

2
log

1− 1(
1 + δ2

δ2i,jPTi

)(
1 + δ2

δ2i,jPTj

)
 . (8)

The above key rate can be achieved based on Slepian-Wolf
coding and through additional transmissions over the public
channel and the additional details can be found in many
existing works [19], [21], [22].

2) Group Key Generation: A classical strategy for group
key generation using the pairwise keys is to utilize tree-based
algorithms related to graphs [11], [12]. The basic idea is to
treat the group key generation model as a multigraph, in which
each pairwise key rate can be viewed as the weight of the
edge associated with the corresponding two nodes. Then, a
spanning tree can be found in this multigraph, and the group
key information can be propagated over this spanning tree by
dividing each pairwise key into multiple one-bit segments and
transmitting one-time pads of these segments. By determining
the maximal packing of the spanning tree in this multigraph,
the achieved group key rate can be obtained, which has been
proved to achieve the group key capacity (i.e., the optimal
group key rate).

For a given time tuple (T1, · · · , TM ), an upper bound
on achievable key rates for the training-based group key
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Fig. 1. The wireless network with three legitimate terminals, where each
pairwise key and its rate are illustrated. For simplicity, node m is denoted as
Nm, m = 1, 2, 3.

generation approaches can be expressed as [11], [12]

RM
upper(T1, · · · , TM ) = min

2≤m≤M

1

T (m− 1)
I ′m(A), (9)

where I ′m(A) = min
(B1,··· ,Bm)∈Bm(A)∑
(i,j):i∈Bl;j∈Br;l<r

I(h̃i,j , h̃j,i), (10)

when all the M legitimate nodes wish to share a common key.
Here Bm(A) denotes the set of all m-partitions (B1, · · · , Bm)
with each element Bl, 1 ≤ l ≤ m, intersects with the set
A = {1, · · · ,M}.

The above upper bound can be achieved by applying
existing tree-based algorithms in [11], [12] to the wireless
networks. However, in the following sections, we develop
simple multi-segment algorithms to achieve or approach the
upper bound. In addition, the key rate optimization problem
in (9) with respect to time allocation is also solved for some
scenarios in Section VI.

III. GROUP KEY GENERATION AMONG THREE NODES

In this section, we study the simplest group key generation
problem among three legitimate nodes (i.e., nodes 1, 2 and
3, as shown in Fig. 1). For simplicity, we assume that
h3,1 ∼ N (0, δ21), h1,2 ∼ N (0, δ22), h2,3 ∼ N (0, δ23). A
two-segment based algorithm is proposed for this model and
the corresponding parameters are also established. This key
generation problem with a larger number of legitimate nodes
will be investigated in Section IV and Section V.

A. Key Generation Algorithm

The proposed two-segment based key generation algorithm
is summarized in Algorithm A, where the three legitimate
nodes first generate pairwise keys based on channel estimation.
Then a three-way group key is derived based on a two-
segment scheme and through additional communications over
the public channel. More details of this algorithm are discussed
as follows.

In the pairwise key agreement step, based on channel
estimates (shown in Fig. 1) from a training process and the
pairwise key generation method in Section II-B, every pair of
nodes can agree on a nearly uniformly distributed pairwise

Algorithm A: Group Key Generation Among Three Nodes

Step 1: Pairwise Key Agreement:
• According to Section II-B, pairwise keys can be gen-

erated based on the training process, where the node
pair (i, j) agrees on a pairwise key Ki,j for (i, j) ∈
{(1, 2), (2, 3), (3, 1)}.

Step 2: Three-way Key Agreement:
• Each pairwise key is divided into two independent seg-

ments, i.e., K3,1 = (K3
3,1,K

1
3,1), K1,2 = (K1

1,2,K
2
1,2),

K2,3 = (K2
2,3,K

3
2,3).

• Node 1 broadcasts K1
1,2 ⊕K1

3,1, so that nodes 1, 2 and
3 can obtain both K1

1,2 and K1
3,1. They choose the first

group secret key as the one with a smaller rate, denoted
as K1

3,1∧K1
1,2. Similarly, nodes 2 and 3 broadcast K2

2,3⊕
K2

1,2 and K3
3,1 ⊕ K3

2,3 respectively, so the three nodes
can obtain the second and third group keys, denoted by
K2

2,3 ∧K2
1,2 and K3

3,1 ∧K3
2,3.

• Nodes 1, 2 and 3 concatenate (K1
3,1 ∧ K1

1,2,K
2
2,3 ∧

K2
1,2,K

3
3,1 ∧K3

2,3) as the final group key.

key Ki,j whose rate is Ri,j = I1/T , where Ij is defined as

Ij,I(h̃i,j ; h̃j,i)=
−1

2
log

1− 1(
1+ δ2

δ2jPTi

)(
1+ δ2

δ2jPTj

)
 ,

(11)

where (i, j) ∈ {(3, 1), (1, 2), (2, 3)}. Since the pairwise key
agreement based on channel estimation has been widely stud-
ied in many existing works (e.g., [19], [21], [22]), the details
are omitted here for simplicity.

The three-way key agreement step is emphasis of the
proposed algorithm, in which the two-segment scheme is
utilized, i.e., each pairwise key is divided into two independent
segments. For example, let K3,1 to be K3,1 = (K3

3,1,K
1
3,1),

which can be obtained by the one-to-one mapping: K3,1 →
K1

3,1×K3
3,1. Such a mapping criteria is known by all the nodes

including the eavesdropper. Similar mappings are employed
for K1,2 and K2,3, i.e., K1,2 = (K1

1,2,K
2
1,2) and K2,3 =

(K2
2,3,K

3
2,3). Then, node 1 sends K1

3,1⊕K1
1,2 over the public

channel, so nodes 2 and 3 can obtain both K1
3,1 and K1

1,2.
In this case, the three nodes choose the one with a smaller
rate as the first group key, denoted as K1

3,1∧K1
1,2. Obviously,

the eavesdropper learns nothing about K1
3,1 ∧K1

1,2 due to the
one-time pad operation. Furthermore, let R1

3,1 and R1
1,2 denote

the rates of K1
3,1 and K1

1,2, so the rate of K1
3,1 ∧ K1

1,2 is
min{R1

3,1, R
1
1,2}. Similarly, nodes 2 and 3 send K2

1,2 ⊕K2
2,3

and K3
2,3 ⊕ K3

3,1, respectively. Hence, the three nodes can
obtain the second and the third group keys K2

1,2 ∧ K2
2,3 and

K3
2,3∧K3

3,1 with rates min{R2
1,2, R

2
2,3} and min{R3

2,3, R
3
3,1},

respectively. Concatenating the three group keys, the final
group key (K1

3,1 ∧ K1
1,2,K

2
1,2 ∧ K2

2,3,K
3
2,3 ∧ K3

3,1) can be
obtained with the rate

R3
key=min{R1

3,1,R
1
1,2}+min{R2

1,2,R
2
2,3}+min{R3

2,3,R
3
3,1},
(12)



5

where Ri
i,j +Rj

i,j = Ri,j , and (i, j) ∈ {(3, 1), (1, 2), (2, 3)}.

B. Optimal Rate Allocation

In this subsection, the optimal rate allocation
scheme for each segment is analyzed, i.e., analyzing
(R1

3,1, R
1
1,2, R

2
1,2, R

2
2,3, R

3
2,3, R

3
3,1) in (12), for a fixed time

tuple (T1, T2, T3). Then, we establish the group key rate
achieved by the proposed algorithm.

Assume that I1 ≤ I2 ≤ I3, so R3,1 ≤ R1,2 ≤ R2,3 and let
R1

3,1 = xa, R3
3,1 = xb = R3,1 − xa for simplicity. Then (12)

can be expressed as

R3
key =min{xa, R

1
1,2}+min{R3

2,3, xb}
+min{R1,2 −R1

1,2, R2,3 −R3
2,3}, (13)

where R1,2 ≥ R1
1,2, R2,3 ≥ R3

2,3. We will show that it is
optimal to set R1

1,2 = xa and R3
2,3 = xb. Specifically, R3

key in
(13) can be upper bounded as

R3
key ≤ min{R1,2 +min{R3

2,3, xb}, R2,3 +min{xa, R
1
1,2}}

≤ min{R1,2 +R3,1 − xa, R2,3 + xa}, (14)

where “≤” in each step can be replaced by “=” when R1
1,2 =

xa and R3
2,3 = xb = R3,1 − xa.

Thus, it is optimal to set x∗
a = [(R3,1+R1,2−R2,3)/2]

+ =
[(I1 + I2 − I3)/(2T )]

+, where [x]+ = max{0, x}. Then
R3

key = min{(I1 + I2)/T, (I1 + I2 + I3)/(2T )} can be
obtained for the case R3,1 ≤ R1,2 ≤ R2,3. Symmetrically,
by considering other five possible orderings of (I1, I2, I3), the
achievable group key rate can be expressed as

R3
key =

1

T
min

{
I1 + I2, I2 + I3, I3 + I1,

1

2
(I1 + I2 + I3)

}
.

(15)

The following theorem states that the proposed algorithm is
optimal in terms of achieved key rates.
Theorem 1: Among the training-based approaches for se-

cret key generation among three nodes, Algorithm A achieves
the optimal key rate for a given tuple (T1, T2, T3), which is
defined in (15).

Proof: Setting M = 3 in Eq. (9), obviously the upper
bound R3

upper is equal to R3
key in (15) for a given tuple

(T1, T2, T3). Hence Algorithm A achieves the optimal group
key rate.

IV. GROUP KEY GENERATION IN RING NETWORKS

In this section, we study the group key generation prob-
lem for a ring network, where M legitimate nodes wish to
establish a common key in a ring-shaped topology. To be
more specific, assume that hi,j = hj,i ∼ N (0, δ2j ) when
(i, j) ∈ {(1, 2), · · · , (m,m + 1), · · · , (M − 1,M), (M, 1)},
and hi,j = hj,i = ∅ otherwise. Here ∅ denotes that there does
not exist any wireless link between nodes i and j. An example
of the ring network with four legitimate nodes is shown in Fig.
2. A multi-segment based algorithm is proposed for this model
and the corresponding parameters are also established in the
following subsections.
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Fig. 2. An example of the ring network with four legitimate nodes, where
each pairwise key and its rate are illustrated.

A. Group Key Generation Algorithm

Similar to Section III, the pairwise and group key agree-
ments steps are included in the key generation protocol, as
shown in Algorithm B.

In the pairwise key agreement step, based on channel
estimates from a training process (shown in Fig. 2) and the
pairwise key generation method in Section II-B, M pairwise
keys can be generated using the channel estimates, as shown in
Section II-B. According to (8), the rate of Ki (i = 1, · · · ,M )
can be derived as Ri = Ii/T , where Ii can be expressed as

Ii = I(h̃i,i−1; h̃i−1,i) =

−1

2
log

1− 1(
1+ δ2

δ2iPTi−1

)(
1+ δ2

δ2iPTi

)
 . (16)

In the group key agreement step, we generate
M independent group keys to establish the final
group key. Firstly, each pairwise key is divided
into M − 1 independent segments, Specifically, let
Km = (K

]1[
m , · · · ,K ]m−1[

m ,K
]m+1[
m , · · · ,K ]M [

m ) when
2 ≤ m ≤ M − 1, KM = (K

]1[
M , · · · ,K ]M−1[

M ). We denote the
rate of the segment K ]i[

j as R
]i[
j for ∀i ̸= j.

Secondly, we use these segments of pairwise keys to agree
on M group keys. For generation of the m-th group key,
m = 1, · · · ,M , node m first generates a random key K ]m[

with a rate 3 R]m[ = minj∈{1,··· ,M},j ̸=m{R]m[
j }. Specifically,

K ]m[ is generated by randomly and uniformly selecting a
element from the set {1, · · · , 2R]m[}, which is independent
of each pairwise key Km. Then it delivers K ]m[ to the next
node m+1 by sending K ]m[⊕K

]m[
m+1 over the public channel,

so that node m + 1 can decode K ]m[ since it knows K
]m[
m+1.

Repeat delivering this key M − 1 times until all the M
nodes obtain it. Note that the delivering order among these
nodes is (m,m+ 1, · · · ,M, 0, 1, · · · ,m− 1). Obviously, the
eavesdropper learns nothing about each group K ]m[, since the
one-time pad operation is exploited. Third, the final group
key (K ]1[, · · · ,K ]M [) can be obtained by concatenating these

3In the key generation process, the rate of each segment is known by all
nodes (including the eavesdropper) a priori, so that node m can determine the
rate of K]m[. Note that a segment is a uniformly distributed random variable,
and its rate is a constant, which only represents the value of the entropy but
has nothing to do with the randomness of the segment.
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Algorithm B: Group Key Generation in the Ring Network

Step 1: Pairwise Key Agreement:
• According to Section II-B, pairwise keys can be gener-

ated based on the training process, where nodes M and
1 agree on a pairwise key K1, and nodes m− 1 and m
agree on a pairwise key Km, m = 2, · · · ,M .

Step 2: Group Key Agreement:
• Each pairwise key is divided into M − 1 independent

segments.
• For generation of the m-th group key, node m first

generates a random key K ]m[, then delivers it to the next
node (i.e., node m + 1 when m < M , or node 1 when
m = M ), by encrypting it using a certain segment of the
pairwise key Km+1. Deliver this group key one-by-one
M − 1 times, until all the M nodes obtain it.

• All the M nodes concatenate these M groups
(K ]1[, · · · ,K ]M [) as the final group key.
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1
1) K K⊕

Generation of        with rate x4
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K

Generation of        with rate x1
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K Generation of        with rate x3
]4[

K

Fig. 3. An example of the group key agreement process with four legitimate
nodes, where the ordering of (I1, I2, I3, I4) is I3 ≤ I1 ≤ I4 ≤ I2, i.e.,
(3, 1, 4, 2) = ((1), (2), (3), (4)), and the values of (x1, x2, x3, x4) are given
in Lemma 2.

group keys with the rate of

RM
ring =

M∑
i=1

min
j∈{1,··· ,M},j ̸=i

R
]i[
j (17)

where
∑

i∈{1,··· ,M},i̸=j R
]i[
j = Rj = Ij/Tj , for ∀j ∈

{1, · · · ,M}. An example of the group key agreement process
with four legitimate nodes is shown in Fig. 3.

B. Optimal Rate Allocation
In this subsection, the optimal rate allocation scheme for

each segment is analyzed, i.e., analyzing the optimal R
]i[
j

(i, j ∈ {1, · · · ,M}, i ̸= j) in (17) for a fixed time tuple
(T1, · · · , TM ). Then, we analyze the group key rate of the
proposed algorithm.

Let R(1) ≤ R(2) ≤ · · · ≤ R(M) be the ordering of the rate
tuple (R1, R2, · · · , RM ). Then, (17) can be rewritten as

maximize Rof =
M∑
i=1

min
j∈{1,··· ,M},j ̸=i

R
](i)[
(j) (18)

s.t.
∑

i∈{1,··· ,M},i ̸=j

R
](i)[
(j) =R(j), for ∀j ∈ {1, · · · ,M}; (19)

R
](i)[
(j) ≥ 0, for ∀i ̸= j, i, j ∈ {1, · · · ,M}. (20)

First, define the min function minj=2,··· ,M R
](1)[
(j) in (18) as

x1. Then according to each equation in (19),

x1= min
j=2,··· ,M

R(j)−
∑

i∈{2,··· ,M},i̸=j

R
](i)[
(j)

 . (21)

Furthermore, let xk , R
](k)[
(1) for each k = 2, · · · ,M , so∑M

k=2 xk = R(1). Then we can show that it is optimal to set
R

](k)[
(j) = xk for ∀j ̸= k and k ̸= 1. Specifically, the objective

function Rof in (18) can be expressed as

Rof = x1 +
M∑
i=2

min
j∈{1,··· ,M},j ̸=i

R
](i)[
(j) ,

and its upper bound can be calculated as

Rof ≤ x1 + min
k=2,··· ,M

{ ∑
i∈{2,··· ,M},i̸=k

R
](i)[
(k)

+ min
j′∈{1,··· ,M},j′ ̸=k

R
](k)[
(j′)

}

≤ min
k=2,··· ,M

{
R(k) + min

j′∈{1,··· ,M},j′ ̸=k
R

](k)[
(j′)

}
≤ min

k=2,··· ,M

{
R(k) + xk

}
, (22)

where “ ≤” in each step can be replaced by “=” when
R

](k)[
(j) = xk, ∀j ̸= k and k ̸= 1. This means that it is optimal

to set the rate of the segment K ](k)[
(j) equal to the rate of the

segment K
](k)[
(1) , ∀j ̸= k and k ̸= 1. In this case, x1 can be

calculated as

x1 = min
j=2,··· ,M

R(j) −
∑

i ̸=1,i̸=j

xi


= min

j=2,··· ,M

(
R(j) −R(1) + xj

)
, (23)

where the last relationship is due to the fact that
∑M

i=2 xi =
R(1). So x1 ≥ 0 is obtained. Furthermore, since x2 can be
expressed as

x2 = R(1) −
M∑
i=3

xi, (24)
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the objective function in (22) and the corresponding optimiza-
tion problem can be formulated as

maximize Rof = min

{
R(1) +R(2) −

M∑
i=3

xi, R(3) + x3,

· · · , R(M) + xM

}
(25)

s.t. xi ≥ 0, i = 2, · · · ,M. (26)

The following lemma provides the optimal solution of the
above optimization problem, and hence defines the optimal
rate allocation policy in (17).
Lemma 2: For a given rate tuple (R(1), · · · , R(M)), we

have the optimal solution of the optimization problem in (25)
with respect to M − 1 distinct cases.
• Case 1: i.e., R(1) + R(2) ≤ R(3), the optimal solution

is x∗
1 = R(2), x∗

2 = R(1), x∗
i = 0 for 3 ≤ i ≤ M ;

R∗
of = R(1) +R(2).

• Case m (2 ≤ m ≤ M − 2): i.e.,
∑m′+1

j=1 R(j)

m′ > R(m′+2)

for 1 ≤ m′ ≤ m − 1 and
∑m+1

i=1 R(j)

m ≤ R(m+2), the

optimal solution is x∗
i =

∑m+1
j=1 R(j)

m − R(i) for 1 ≤ i ≤
m+ 1, x∗

i = 0 for m+ 2 ≤ i ≤ M ; R∗
of =

∑m+1
i=1 R(j)

m .

• Case M − 1: i.e.,
∑m′+1

j=1 R(j)

m′ > R(m′+2) for 1 ≤ m′ ≤
M −2, the optimal solution is x∗

i =
∑M

j=1 R(j)

M−1 −R(i) for

1 ≤ i ≤ M ; R∗
of =

∑M
i=1 R(j)

M−1 .
Proof: Refer to Appendix A.

Based on the above lemma, we can conclude that the
proposed multi-segment based algorithm is optimal.
Theorem 3: Among the training-based approaches for se-

cret key generation in the M -node ring network, the proposed
multi-segment based algorithm in Algorithm B achieves the
optimal key rate for a given tuple (T1, · · · , Tm), which can
be written as

RM
ring =

1

T
min

m∈{2,··· ,M}

∑m
i=1 I(i)

m− 1
, (27)

where I(1) ≤ · · · ≤ I(M) is the ordering of (I1, · · · , IM ) with
Ii defined in (16).

Proof: An upper bound of the group key rate for the
wireless mesh network has been defined in (9). Here, we
simplify this upper bound according to the characteristic of the
ring network considered in this section. For a given m-partition
(B1, · · · , Bm) of the set of legitimate nodes A = {1, · · · ,M},
denote the number of legitimate nodes in the l-th bin Bl as
Ml, where

∑m
l=1 Ml = M , 1 ≤ Ml < M . Then it can

be observed that, the term
∑

(i,j):i∈Bl;j∈Br;l<r I(h̃i,j , h̃j,i) in
(10) is formed by the sum of the mutual information with
respect to all the wireless links that connect the nodes in
different bins. For the ring network, we can show that there
exist at least m such wireless links. Specifically, for each
l = 1, · · · ,m, there are at most Ml−1 wireless links inside bin
Bl when Ml < M . Hence, at most

∑m
l=1(Ml − 1) = M −m

links exist inside all the bins. Since the total number of
wireless links is M , the smallest number of links that connect

the nodes in different bins is M−(M−m) = m. In this case,
Eq. (10) can be expressed as

I ′m(A) = min
{a1,··· ,am}⊆A

am∑
i=a1

Ii =
m∑
i=1

I(i), (28)

where Ii is defined in (16). Then, the upper bound can
be simplified as RM

upper = min2≤m≤M

∑m
i=1 I(i)

T (m−1) , which is
consistent with (27).

On the other hand, the key rate defined in (27) can be easily
obtained via Lemma 2. Hence the proposed multi-segment
algorithm achieves the optimal group key rate among training-
based approaches.

C. Discussion

This subsection discusses the key rate achieved by applying
the two-segment algorithm in Section III to the M -node ring
network, where M ≥ 4.

If we divide each pairwise key into two segments, 2M
segments can be obtained. Since the generation of a group key
requires at least M−1 segments obtained from M−1 different
pairwise keys, at most ⌊2M/(M − 1)⌋ = 2 group keys can
be generated when M ≥ 4, which require 2(M −1) segments
and the other two segments are useless. Thus, we only need to
divide M − 2 pairwise keys, and keep the two other pairwise
keys undivided. Naturally, we keep the two pairwise keys K(1)

and K(2) undivided, and divide each of the other M − 2

pairwise keys into two segments, i.e., K(m) , (K1
(m),K

2
(m)),

∀m ≥ 3.
For the key generation process, two group keys

will be generated. Similar to Algorithm B, the
first group key K1 can be generated based on the
M − 1 segments (K(1),K

1
(3), · · · ,K

1
(M)), whose

rate is min{R(1), R
1
(3), · · · , R

1
(M)}; the second group

key K2 can be generated based on the M − 1
segments (K(2),K

2
(3), · · · ,K

2
(M)), whose rate is

min{R(2), R
2
(3), · · · , R

2
(M)}. Combing these two group

keys, we can obtain the final group key (K1,K2) with rate

Rtwo
ring =min{R(1), R

1
(3), · · · , R

1
(M)}

+min{R(2), R
2
(3), · · · , R

2
(M)}, (29)

where R(m) = R1
(m) + R2

(m), ∀m ≥ 3. It is not difficult
to prove that the maximum value of Rtwo

ring is min{R(1) +
R(2), R(3), · · · , R(M)}, which can be achieved by setting
R1

(m) = R(1), ∀m ≥ 3.
In summary, applying the two-segment algorithm in Section

III to the M -node ring network, the achievable rate is

Rtwo
ring =

1

T
min{I(1) + I(2), I(3), · · · , I(M)}. (30)

Remark 2: Comparing (27) and (30), Algorithm B obvi-
ously achieves a larger group key rate than the two-segment
algorithm, i.e., Rring ≥ Rtwo

ring . This means that dividing each
pairwise key into M − 1 segments is more appropriate than
the two-segment scheme, for the M -node ring network.
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Algorithm C: Group Key Generation in the Mesh Network

Step 1: Pairwise Key Agreement:
• According to Section II-B, pairwise keys can be generated

based on the training process, where every two nodes
(i, j), i < j, agree on a pairwise key Ki,j(= Kj,i) from
the pair of channel estimates (h̃j,i, h̃i,j).

Step 2: Group Key Agreement:
• Each pairwise key is divided into two independent seg-

ments, i.e., Ki,j = (Ki
i,j ,K

j
i,j), where Ki

i,j and Kj
i,j can

also be expressed as Ki
j,i and Kj

j,i, respectively, ∀i < j.
• For generation of the m-th group key, node m

first chooses the shortest key among {Km
m,l,∀l ∈

{1, · · · ,M}, l ̸= m}, denoted as Km
m,lm

; then node m
broadcasts Km

m,lm
⊕Km

m,l for ∀l ̸= m & l ̸= lm over the
public channel, such that all the M nodes can obtain this
group key Km

m,lm
.

• All the M nodes concatenate (K1
1,l1

,K2
2,l2

, · · · ,KM
M,lM

)
as the final group key.

V. GROUP KEY GENERATION IN MESH NETWORK

In this section, Algorithm A proposed for the three-node
scenario in Section III is extended to the wireless mesh
network with M legitimate nodes, where every two nodes are
connected via a wireless link. Assume that hi,j = hj,i ∼
N (0, δ2i,j) for ∀i, j ∈ {1, · · · ,M}, i < j.

A. Group Key Generation Algorithm

As shown in Algorithm C, the proposed algorithm also
includes two key agreement steps: pairwise key agreement and
group key agreement.

In the pairwise key agreement step, based on channel esti-
mates from a training process and the pairwise key generation
method in Section II-B, every two nodes (i, j), i < j, agree on
a pairwise key Ki,j(= Kj,i) from the pair of channel estimates

(h̃j,i, h̃i,j). Hence, there are
(
M
2

)
= M(M−1)

2 independent

pairwise keys. The rate of Ki,j (=Kj,i) can be expressed as
Ri,j = Ii,j/T (=Rj,i = Ij,i/T ), where Ii,j (or Ij,i) has been
given in (8).

In the group key agreement step, each pairwise key is di-
vided into two independent segments, i.e., Ki,j = (Ki

i,j ,K
j
i,j)

where Ki
i,j and Kj

i,j can also be expressed as Ki
j,i and

Kj
j,i respectively, ∀i < j. The rate of Ki

i,j and Kj
i,j are

defined as Ri
i,j(= Ri

j,i) and Rj
i,j(= Rj

j,i), respectively, where
Ri

i,j + Rj
i,j = Ri,j . Using these segments, all the M le-

gitimate nodes take turns to send messages over the public
channel. For each m = 1, · · · ,M , node m first chooses
the shortest key Km

m,lm
among M − 1 segments, where

lm = argminl∈{1,··· ,M},l ̸=m Rm
m,l. Then, it successively sends

Km
m,lm

⊕Km
m,l for ∀l ̸= m & l ̸= lm, from which node l can

obtain Km
m,lm

since it knows Km
l,m(= Km

m,l). Finally, all the
M nodes concatenate (K1

1,l1
,K2

2,l2
, · · · ,KM

M,lM
) as the final

group key with the rate

RM
key =

M∑
m=1

Rm
m,lm =

M∑
m=1

min
l∈{1,··· ,M},l ̸=m

Rm
m,l, (31)

where Rm
m,l +Rl

m,l = Rm,l(= Rl,m) = Im,l/T .
The above key rate generally is not optimal for the wireless

mesh networks, however it is order-optimal as shown in the
following theorem.

Theorem 4: Algorithm C achieves the multiplexing gain
M/2, and such a multiplexing gain is order-optimal.

Proof: On the one hand, set the rates of Km
m,l and Kl

m,l

to be Rm
m,l = Rl

m,l = Rm,l/2(= Rl,m/2). Then according to
(31), Algorithm C achieves the following group key rate:

RM
key =

1

2

M∑
m=1

min
l∈{1,··· ,M},l ̸=m

Rm,l

=
1

2T

M∑
m=1

min
l∈{1,··· ,M},l ̸=m

Im,l. (32)

According to (8), it can be shown that limP→∞ Im,l/Rs = T
by setting T1 = T2 = · · · = TM = T/M , where Rs =
logP/T . Based on the definition of the multiplexing gain of
a key rate in [21], the multiplexing gain of RM

key is

lim
P→∞

RM
key

Rs
=

1

2T

M∑
m=1

min
l∈{1,··· ,M},l ̸=m

(
lim

P→∞

Im,l

Rs

)
=

M

2
.

(33)

On the other hand, by choosing m = M in (9) and (10),
the upper bound of the group key rate satisfies:

RM
upper ≤ 1

T (M − 1)
I ′M (A) =

1

T (M − 1)
×

min
(B1,··· ,BM )∈BM (A)

∑
(i,j):i∈Bl;j∈Br ;l<r

I(h̃i,j , h̃j,i)

=
1

T (M − 1)

∑
i,j∈{1,··· ,M},i<j

Ii,j , (34)

where the last relationship is due to the fact that there is only
one node in each bin Bl for the M -partition of the set of

legitimate nodes A. Since there are
(
M
2

)
= M(M−1)

2 such

Ii,j , we have

lim
P→∞

RM
upper

Rs
≤ 1

T (M − 1)

∑
i,j∈{1,··· ,M},i<j

(
lim

P→∞

Ii,j
Rs

)
=

TM(M − 1)

2T (M − 1)
=

M

2
. (35)

Now, it is proved that the achieved multiplexing gain of the
proposed algorithm is order-optimal.

Remark 3: For the M -node ring network considered in
Section IV, the optimal multiplexing gain is M/(M − 1),
which can be easily derived from Theorem 3. The mesh
network achieves a larger multiplexing gain M/2 with M > 3
compared to the ring network. This is due to that each
legitimate node in the mesh network can dominate more PHY
resources (i.e., wireless channels) for generating a group key.
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Remark 4: Since a simple round robin scheduler is adopted
by the nodes to transmit one-time pads of the segments
in the group key agreement, the proposed algorithms (both
Algorithms B and C) only have complexity O(M) for a given
time tuple. This means that the proposed algorithms have
linear complexity with respect to the number of legitimate
nodes. Compared to the existing tree-based algorithms in ref-
erences [11]–[13] with polynomial complexity, the proposed
algorithms enjoy lower complexity.

B. Optimal Rate Allocation

In this subsection, the optimal rate allocation for each
segment in (31) is solved for a fixed time tuple (T1, · · · , TM ),
where the corresponding optimization problem can be formed
as follows:

maximize RM
key =

M∑
m=1

min
l∈{1,··· ,M},l ̸=m

Rm
m,l, (36)

s.t. Rm
m,l +Rl

m,l = Rm,l, 0 ≤ Rm
m,l ≤ Rm,l, (37)

∀l,m ∈ {1, · · · ,M}, l ̸= m.

For a fixed time tuple (T1, · · · , TM ), this non-convex problem
can be transformed into a convex one as follows:

maximize
M∑

m=1

zm (38)

s.t. zm ≤ Rm
m,l, (39)

Rm
m,l +Rl

m,l = Rm,l, 0 ≤ Rm
m,l ≤ Rm,l, (40)

∀l,m ∈ {1, · · · ,M}, l ̸= m.

However, a general closed-form solution for the optimal rate
allocation of this linear programming problem does not exist,
and this optimization problem will be solved later in Section
VII using existing convex optimization softwares [31], [32].

C. Discussion

This subsection discusses an achievable multiplexing gain
for a general mesh network, based on a simple combination
of the proposed algorithm and a cooperative key generation
approach in [21]. As defined in [10], [12], only a subgroup
of terminals, denoted as A , {1, · · · , L}, wish to share a
common key, and the other subgroup of terminals, denoted as
B , {L+ 1, · · · ,M}, act as dedicated helper nodes.

We also utilize the training method to generate pairwise
keys between every pair of terminals, denoted as Ki,j(= Kj,i)
with rate Ri,j = Ii,j/T , where Ii,j is defined in (8), i, j ∈
{1, · · · ,M}. For the group key generation process, two group
keys can be generated. We first utilize the proposed algorithm
in Section V-A (i.e., Algorithm C) to generate a group key by
exploiting all pairwise keys for the terminal pairs inside group
A. Denote this group key as K

(g)
1 . From (32), K(g)

1 achieves
the rate

R
(g)
1 =

1

2T

L∑
m=1

min
l∈A,l ̸=m

Im,l. (41)

The second group key is generated with the help of the termi-
nals in group B, i.e., it is generated by exploiting all pairwise

keys for the terminal pairs (i, j), ∀i ∈ A, j ∈ B. Specifically,
based on the cooperative key generation approach in [21], each
terminal j ∈ B sends Kj,ij ⊕Kj,i, ∀i ∈ A, i ̸= ij , over the
public channel in turns, where Kj,ij is the shortest key among
{Kj,i, ∀i ∈ A}. Then, all terminals in A can agree on the key
Kj,ij with the rate

Rj,ij =
1

T
min
i∈A

Ij,i, ∀j ∈ B. (42)

Concatenating (Kj,ij ,∀j ∈ B), the second group key can
be obtained, denoted as K

(g)
2 . Furthermore, concatenating

(K
(g)
1 ,K

(g)
2 ), the final group key is generated, whose rate is

R
(g)
A = R

(g)
1 +

M∑
j=L+1

Rj,ij . (43)

In the following lemma, R
(g)
A is shown to achieve the

optimal multiplexing gain in the considered general network.
Lemma 5: When considering the general group key gen-

eration problem among subgroup A, the optimal multiplexing
gain can be achieved by simply combining Algorithm C
with the cooperative key generation approach in [21], that is
M − L/2.

Proof: Similar to the proof of Theorem 4, we have
limP→∞ R

(g)
1 /Rs = L/2 and limP→∞ Rj,ij/Rs = 1, so the

achievable multiplexing gain is L/2 +M − L = M − L/2.
Furthermore, M − L/2 can be proved to be the optimal

multiplexing gain. Based on the proof method for Theorem 4
and a general expression of RM

upper in [11] (Lemma 1), it is
not difficult to obtain limP→∞ RM

upper/Rs ≤ M − L/2. The
details are omitted here for simplicity.

VI. GROUP KEY RATE OPTIMIZATION

In this section, we propose an algorithm to solve key rate
optimization problem as shown in (9) with respect to time
allocation in the training frame. This optimization problem
is non-convex and difficult to be solved in general. In this
section, in order to maximize the group key rate, we solve
the time allocation problem for two cases: the three-node
network and the multi-node ring network. Note that the time
allocation problem is solved not only to optimize the proposed
multi-segment algorithms but also to optimize the previous
tree-based algorithms (e.g., [11], [12]) when applying them
in wireless networks. Since a closed-form solution of the
linear programming problem in (38)-(40) does not exist for
a given time tuple, the optimal time allocation problem for
the mesh network in Section V is untractable, which will be
solved based on an exhaustive search later in Section VII.

A. Three-Node network

From (9) (or (15)), this problem can be formulated as

maximize min

{
I1+I2, I2+I3, I3+I1,

1

2
(I1+I2+I3)

}
(44)

s.t.
3∑

i=1

Ti = T, Ti ≥ 0, i = 1, 2, 3. (45)
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It can be easily verified that this problem is not convex in terms
of Ti, i = 1, 2, 3 due to the non-convex objective function.
Without loss of generality, we rewrite the original problem
into the following form:

maximize τ0 (46)
s.t. I1+ I2 ≥ τ0, I2+ I3 ≥ τ0, I3+ I1 ≥ τ0,

1

2
(I1 + I2 + I3) ≥ τ0, (47)

3∑
i=1

Ti = T, Ti ≥ 0, i = 1, 2, 3, τ0 ≥ 0. (48)

In order to approximate this problem into a convex prob-
lem (geometric programming), the equivalent constraints are
rewritten as fractions of two posynomials as follows [33]:

minimize τ1 (49)

s.t. ϕi(T1, T2, T3) =
fi(T1, T2, T3)

gi(T1, T2, T3)
≤ τ1, i = 1, 2, 3,

ϕ4(T1, T2, T3) =
f4(T1, T2, T3)

g4(T1, T2, T3)
≤ τ21 , (50)

3∑
i=1

Ti = T, Ti ≥ 0, i = 1, 2, 3, τ1 ≥ 0, (51)

where f1(T1, T2, T3) =
(
δ2δ1

2PT3 + δ2δ1
2PT1 + δ4

)
×
(
δ2δ2

2PT2 + δ2δ2
2PT1 + δ4

)
(52)

g1(T1, T2, T3) =
(
δ1

2PT3 + δ2
) (

δ2 + δ1
2PT1

)
×
(
δ2 + δ2

2PT1

) (
δ2 + δ2

2PT2

)
=
∑
k

g1k(T1, T2, T3),

(53)

and f2(T1, T2, T3) (or g2(T1, T2, T3)) and f3(T1, T2, T3)
(or g3(T1, T2, T3)) are similarly defined by substituting
(δ21 , δ

2
2 , T3, T1, T2) into (δ22 , δ

2
3 , T1, T2, T3) and

(δ23 , δ
2
1 , T2, T3, T1), respectively. Moveover,

f4(T1, T2, T3) =
(
δ1

2PT3δ
2 + δ2δ1

2PT1 + δ4
)

(54)

×
(
δ2δ2

2PT2 + δ2δ2
2PT1 + δ4

)
×
(
δ2δ3

2PT3 + δ2δ3
2PT2 + δ4

)
(55)

g4(T1, T2, T3) =
(
δ1

2PT3 + δ2
) (

δ2 + δ1
2PT1

)
×
(
δ2 + δ2

2PT1

) (
δ2 + δ2

2PT2

)
×
(
δ2 + δ3

2PT2

) (
δ2 + δ3

2PT3

)
=
∑
k

g4k(T1, T2, T3).

(56)

Note that here gik(T1, T2, T3), i = 1, 2, 3, 4 represents the
individual summation terms obtained by expanding the cor-
responding function. The constraints in (50) and (51) are
quadratic fractional functions and therefore the corresponding
optimization problem cannot be solved directly. However, the
original non-convex problem can be converted into a series
of geometric programming by exploiting single condensa-
tion method. In general, a fractional constraint where both
the numerator and the denominator are posynomials, is not
convex, whereas the constraint with a posynomial numerator

and a monomial denominator is convex [33]. Therefore, the
basic idea in single condensation method is to approximate
the denominator posynomial into a monomial, which will
convert the non-convex constraint into a convex one. Based
on this approximation, the posynomials in the denominators
of the constraints in (50)-(51) are approximated to the best
monomial at a given solution and the optimal time allocations
can be efficiently determined. In order to approximate these
posynomial into the corresponding monomial the following
lemma is required [33]:

Lemma 6: Let h(x), be a posynomial and defined as

h(x) =
K∑

k=1

wk(x) =
K∑

k=1

ckx
n1k
1 xn2k

2 · · ·xnmk
m , (57)

where ck and nlk are the positive constants and arbitrary
real numbers, respectively. For this posynomial, the following
inequality holds:

h(x) ≥ ĥ(x) =
K∏
k

(
wk(x)

ak

)ak

(58)

where ak > 0 and
∑K

k=1 ak = 1. ĥ(x̂) is the best approxi-
mation of h(x̂) at a given point x̂ with ak = wk(x̂)

h(x̂) and the
inequality holds with an equality at this point.

Proof: This can be easily proven based on arithmetic-
geometric mean inequality. The proof is omitted here due to
space limitation.
Based on Lemma 6, the denominator in (50) is rewritten as
follows:

g1(T1, T2, T3) = ĝ1(T1, T2, T3) =
∏
k

(
g1k(T1, T2, T3)

a1k

)a1k

,

(59)
where

a1k =
g1k(T1, T2, T3)

g1(T1, T2, T3)
, ∀k (60)

Similarly gi(T1, T2, T3), i = 2, 3, 4 can be rewritten based on
Lemma 6 and the original problem in (49) can be reformulated
as

minimize τ1 (61)

s.t. ϕ̃i(T1, T2, T3) =
fi(T1, T2, T3)

ĝi(T1, T2, T3)
≤ τ1, i = 1, 2, 3,

ϕ̃4(T1, T2, T3) =
f4(T1, T2, T3)

ĝ4(T1, T2, T3)
≤ τ21 , (62)

3∑
i=1

Ti = T, Ti ≥ 0, i = 1, 2, 3, τ1 ≥ 0. (63)

The above optimization problem can be formulated into stan-
dard geometric programming (convex optimization problem
[34]) and can be efficiently solved using existing convex op-
timization softwares [31], [32]. Based on single condensation
method we develop an algorithm, where time allocation is
iteratively optimized. The key steps of the proposed algorithm
is summarized in Algorithm D.

Next, we show that the solution obtained from Algorithm D
satisfies the KKT conditions of the original problem in (44).
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This can be proven by validating the following three conditions
[35]:

1) ϕi(T1, T2, T3) ≤ ϕ̃i(T1, T2, T3), ∀ i, T1, T2, T3.
2) ϕi(T

′

1, T
′

2, T
′

3) = ϕ̃i(T
′

1, T
′

2, T
′

3), ∀ i, where T
′

1, T
′

2, T
′

3

are the solution obtained from the previous iteration in
Algorithm D.

3) ∇ϕi(T
′

1, T
′

2, T
′

3) = ∇ϕ̃i(T
′

1, T
′

2, T
′

3), ∀ i

The first condition is satisfied due to gi(T1, T2, T3) ≥
ĝi(T1, T2, T3), which is developed based on Lemma 6. The
second condition can be shown based on the fact that the
inequality in (58) is satisfied with equality when

∑K
k=1 ak = 1

as follows:

gi(T1, T2, T3) =
∑
k

gik(T1, T2, T3),

ĝi(T1, T2, T3) =
∏
k

 gik(T1, T2, T3)(
g
′
ik(T

′
1 ,T

′
2 ,T

′
3)

gi(T
′
1 ,T

′
2 ,T

′
3)

)


aik

, (64)

When (T1, T2, T3) = (T
′

1, T
′

2, T
′

3).

ĝi(T1, T2, T3) =
∏
k

(gi(T
′

1, T
′

2, T
′

3))
aik

ĝi(T
′

1, T
′

2, T
′

3) =
(
gi(T

′

1, T
′

2, T
′

3)
)∑

k aik

. (65)

Since
∑

k aik = 1, ĝi(T
′

1, T
′

2, T
′

3) = gi(T
′

1, T
′

2, T
′

3),
therefore ϕi(T

′

1, T
′

2, T
′

3) = ϕ̃i(T
′

1, T
′

2, T
′

3), ∀ i. The third
condition can be verified by showing ∇ĝi(T

′

1, T
′

2, T
′

3) =
∇gi(T

′

1, T
′

2, T
′

3).

ĝi(T1, T2, T3) =
∏
k

 gik(T1, T2, T3)(
g
′
ik(T

′
1 ,T

′
2 ,T

′
3)

gi(T
′
1 ,T

′
2 ,T

′
3)

)


aik

∇ĝi(T
′

1, T
′

2, T
′

3) =

[
∂ĝi
∂T1

∣∣∣∣
T1=T

′
1

∂ĝi
∂T2

∣∣∣∣
T2=T

′
2

∂ĝi
∂T3

∣∣∣∣
T3=T

′
3

]
∂ĝi
∂T1

∣∣∣∣
T1=T

′
1

=

[∏
k

ĝi(T
′

1, T
′

2, T
′

3)
aik

] ∑
j αjT

−1
1

ĝi(T
′
1, T

′
2, T

′
3)

= ĝi(T
′

1, T
′

2, T
′

3)
∑

k aik ×
∑

j αjT
−1
1

ĝi(T
′
1, T

′
2, T

′
3)

=

∑
j αj

T
′
1

=
∂gi
∂T1

∣∣∣∣
T1=T

′
1

, (66)

where αj’s is the aik’s corresponding to the components of
gik’s with T1. Similarly, the following derivatives can be
verified:

∂ĝi
∂T2

∣∣∣∣
T2=T

′
2

=
∂gi
∂T2

∣∣∣∣
T2=T

′
2

,
∂ĝi
∂T3

∣∣∣∣
T3=T

′
3

=
∂gi
∂T3

∣∣∣∣
T3=T

′
3

.

(67)

Hence, the solution of Algorithm D satisfies the KKT condi-
tions of the original problem in (44).

Remark 5: In the proposed algorithm, the denominator
posynomial is approximated into a monomial in each iteration
based on the time allocation obtained from the previous
iteration. Therefore, the accuracy of the approximation of
the posynomial improves over the number of iterations as

Algorithm D: Optimal Time Allocation Algorithm Among
Three Nodes

Step 1: Initialization of time allocations of T1, T2 and T3

Step 2: Repeat
• Calculate g1(T1, T2, T1), g2(T1, T2, T1), g3(T1, T2, T1)

and g4(T1, T2, T1) for given T1, T2 and T3.
• Calculate aik, i = 1, 2, 3, 4, ∀k from (60)
• Determine ĝ1(T1, T2, T3), ĝ2(T1, T2, T3), ĝ3(T1, T2, T3)

and ĝ4(T1, T2, T3)
• Solve the problem in (61)-(63)

Step 3: Until required accuracy.

the difference between the time allocations obtained from the
previous and current iterations decreases. The accuracy of the
approximation of the proposed algorithm will be validated
through comparison with exhaustive search results in simu-
lations in Section VII.

Remark 6: The computational complexity of the proposed
algorithm is less than that of the exhaustive search method.
The proposed iterative algorithm solves a geometric program-
ming (convex optimization problem) at each iteration with
polynomial time complexity, whereas the exhaustive search
method has non-polynomial time complexity. Therefore, the
main advantage of the proposed algorithm is the computational
complexity reduction.

B. Four-Node Ring Network

In this subsection, we consider the four-node ring network
(i.e., M = 4) to discuss the optimal time allocation issue.
In this case, the optimization problem in (9) (or (27)) can be
expressed as

maximize R4
key =

1

T
min

{
I1+I2, I1 + I3, I1 + I4, I2+ I3,

I2 + I4, I3 + I4,
1

2
(I1 + I2 + I3),

1

2
(I1 + I3 + I4),

1

2
(I1 + I3 + I4),

1

2
(I2 + I3 + I4),

1

3
(I1 + I2 + I3 + I4)

}
,

(68)

s.t.
4∑

i=1

Ti = T, Ti ≥ 0, i = 1, 2, 3, 4. (69)

Without loss of generality, the above max-min problem can
be rewritten similar to the problem in (49)-(51) by introducing
a new slack variable. In addition, an iterative algorithm can be
developed similar to the Algorithm D to find the optimal time
allocation based on a series of geometric programming and
single condensation method. Due to space limitation, we omit
the key steps of the algorithm here. Note that the proposed
Algorithm D can be easily extended to a network with different
number of nodes.

VII. NUMERICAL RESULTS

In this section, some numerical examples are provided to
illustrate the analytical results derived in this paper. For the
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TABLE I
THREE-NODE NETWORK WITH THE BLOCK LENGTH T = 9

Equal Time
Allocation

Proposed
Algorithm

Exhaustive
Search

T1 3 4.31 4.27
T2 3 4.1 4.14
T3 3 0.59 0.59
I1 0.1093 0.0361 0.0360
I2 1.0632 1.2686 1.2689
I3 2.0024 1.3107 1.3115

R3
key(BPCU) 0.1303 0.1450 0.1450
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Fig. 4. Illustration of key rate in Eq. (9) or (44) using different time allocation
schemes in the three-node network.

three-node and ring networks, both the proposed algorithms
and existing algorithms in [11], [12] can achieve the optimal
key rate, and we mainly illustrate the proposed time allocation
algorithms. For the mesh network, the proposed algorithm is
compared with the optimal tree-based algorithm [11], [12].
For simplicity, all noise variances are assumed to be one (i.e.,
δ2 = 1), therefore the signal-to-noise ratio (SNR) is equal to
the power P .

We first consider an asymmetric three-node network, where
the variance of each channel gain is δ21 = 0.1, δ22 = 1.2,
δ23 = 5.1, and the channel coherence time is T = 9.
The algorithm is initialized with equal time allocation (i.e.,
T1 = T2 = T3 = 3). Table I represents the simulation results
of three time allocation schemes with P = 2, where the
accuracy of the time distribution is set to 0.01. As can be seen
from these results, there is only a slight difference between
the results of the proposed algorithm in Section VI-A and
the optimal exhaustive search results. Nevertheless, both of
them achieve the same group key rate 0.1450 bits per channel
use (BPCU), which is bigger than that of the equal time
allocation scheme. Fig. 4 depicts more numerical results of
these three time allocation schemes. Form this figure, it can
be observed that the key rate curve of the proposed iterative
algorithm coincides with the one from the exhaustive search
scheme, and outperforms the equal time allocation especially
at low SNRs. However, differences between these two curves
becomes smaller as the SNR increases. This is because the
transmit power becomes as the dominant factor in terms of the
achievable key rate at high SNRs, and hence the performance
improvement using the optimal time allocation is limited.
Similar phenomenons are observed in [22] with respective to

TABLE II
FOUR-NODE NETWORK WITH THE BLOCK LENGTH T = 12

Equal Time
Allocation

Proposed
Algorithm

Exhaustive
Search

T1 3 5.51 5.53
T2 3 0.23 0.23
T3 3 0.71 0.71
T4 3 5.55 5.53
I1 0.5963 0.9110 0.9110
I2 2.1029 0.9174 0.9175
I3 0.0023 5× 10−5 5× 10−5

I4 1.4098 0.9133 0.9130
R4

ring(BPCU) 0.0499 0.0759 0.0759
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Fig. 5. Illustration of key rate in Eq. (9) or (68) using three time allocation
schemes in the four-node ring network.

the optimal power allocation.
Secondly, an asymmetric four-node ring network similar to

the previous scenario is also considered, where the variance of
each channel gain is assumed to be δ21 = 0.5, δ22 = 5.9, δ23 =
0.01, δ24 = 2.1, and the channel coherence time is set to be
T = 12. Table II provides the simulation results of three time
allocation schemes with P = 2, where the required accuracy
of the time distribution has been set to the second decimal. As
shown in this table, the difference between the results of the
proposed algorithm and the optimal exhaustive search scheme
is negligible, and both of them achieve the same group key
rate 0.0759 BPCU. From Fig. 5, it can be observed that the
key rate curve of the proposed iterative algorithm is the same
as the one from the exhaustive search scheme. In addition,
the proposed iterative algorithm outperforms the equal time
allocation.

Thirdly, the key rate of the four-node mesh network is
considered as a function of the power P , with T = 12,
δ21,3 = δ21,4 = δ22,3 = δ22,4 = δ23,4 = 2.5, and different values of
δ21,2. Fig. 6 compares the group key rate of the proposed key
generation algorithm (i.e., Eq. (32)) and the optimal upper
bound (i.e., Eq. (9)). Note that the optimal rate allocation
of Algorithm C in Section V is obtained by solving the linear
programming problem in (38), and the optimal time allocation
is obtained based on an exhaustive search. As shown in this
figure, the proposed algorithm achieves the optimal upper
bound only for a symmetric network (δ21,2 = 2.5). The reason
will be explained. Specifically, Algorithm C achieves the upper
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Fig. 6. Key rate of the proposed key generation (KG) algorithm (Eq. (32))
and the optimal upper bound (Eq. (9)) in the four-node mesh network, where
T = 12, δ21,3 = δ21,4 = δ22,3 = δ22,4 = δ23,4 = 2.5.
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Fig. 7. Key rates of the proposed key generation algorithms for the ring
network (Eq. (27)) and mesh network (Eq. (31)) versus the number of
legitimate nodes, where T = 15, and the variances of all channel gains are
unit.

bound in Eq. (34) only when all pairwise keys have the
same rate, as discussed in the proof of Theorem 4. Moreover,
numerical results demonstrate that an equal time allocation is
optimal for the upper bound in Eq. (34) only in a symmetric
network, which means that all pairwise keys have the same
rate and Algorithm C achieves this upper bound only in the
symmetric case. For an asymmetric network (δ21,2 = 1.1 or
1.2), a gap exists between the key rate curves of the proposed
algorithm and the optimal one in Eq. (9). However, this gap
remains constant as the SNR increases. This is due to the fact
that the proposed algorithm achieves the optimal multiplexing
gain as shown in Theorem 4.

Finally, key rates of symmetric ring and mesh networks are
considered as a function of the number of legitimate nodes
(i.e., M ), where T = 15, the variances of all channel gains
are unit, and the power P = 10 or 20. Fig. 7 shows the group
key rates of Algorithm B for the ring network and Algorithm
C for the mesh network, i.e., RM

ring in Eq. (27) and RM
key in

Eq. (31). As shown in this figure, RM
ring decreases with M

and RM
key increases with M . This is because they achieve

multiplexing gains M/(M − 1) and M/2, respectively, as
discussed in Remark 3.

VIII. CONCLUSIONS

A new key generation strategy with low-complexity has
been proposed for different types of wireless networks, which
is based on the careful combination of well established point-
to-point pairwise key generation technique, the multi-segment
scheme, and the one-time pad. In the proposed algorithms,
each pairwise key is divided into two segments for the three-
node network, whereas each pairwise key is divided into
M − 1 segments for the M -node ring network. Both of these
algorithms are optimal in terms of the achieved group key
rates. Moreover, the proposed two-segment based algorithm
for the three-node scenario has been extended to the M -node
mesh wireless network and shown to achieve the optimal
multiplexing gain M/2. Next, the optimal time allocation
problems have been solved for some cases where the original
non-convex max-min problem is reformulated into a series of
geometric programming and an iterative algorithm has been
developed by exploiting single condensation method.

APPENDIX A
PROOF OF LEMMA 2

To obtain the optimal solution of the max-min optimization
problem in (25), we consider (M − 2) potential steps as
follows.

1) Step 1: this step compares R(1) +R(2) and R(3).
If R(1) + R(2) ≤ R(3), the optimal solution is x∗

i = 0 for
3 ≤ i ≤ M . Such a solution maximizes the first term in the
min function in (25), and this term becomes R(1)+R(2) now.
Furthermore, the objective function achieves the optimal rate
R(1) + R(2), since R(1) + R(2) ≤ R(3) ≤ · · · ≤ R(M) in this
case. Moreover, x∗

2 = R(1) can be obtained according to (24),
hence x∗

1 = R(2) according to (23).
If R(1) +R(2) > R(3), comparing the first two terms in the

min function in (25), obviously it is optimal to set x3 to be
x3 = (R(1)+R(2)−R(3)−

∑M
i=4 xi)/2, such that R(1)+R(2)−∑M

i=3 xi = R(3) + x3 = (R(1) + R(2) + R(3) −
∑M

i=4 xi)/2.
Then, one can refer to the following steps to find the optimal
tuple (x∗

1, · · · , x∗
M ).

The derivations from step 2 to (M −2) can be summarized
as follows:

2) Step m(2 ≤ m ≤ M − 2): this step corresponds to the
case ∑m′+1

j=1 R(j)

m′ > R(m′+2) for 1 ≤ m′ ≤ m− 1. (70)

Moreover, the optimization problem in this step is formulated
as

maximize Rof = min

{∑m+1
j=1 R(j) −

∑M
i=m+2 xi

m
,

R(m+2) + xm+2, · · · , R(M) + xM

}
(71)

s.t. xi ≥ 0, i = 2, · · · ,M, (72)
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where x2 is given in (24) and xi is iteratively given by

xi =

∑i−1
j=1 R(j) − (i− 2)R(i) −

∑M
i′=i+1 xi′

i− 1
for 3 ≤ i ≤ m+ 1. (73)

These m− 1 relationships are iteratively obtained from step 1
to step m− 1.

Now, we will compare
∑m+1

i=1 R(j)

m and R(m+2). First con-
sider the case that ∑m+1

j=1 R(j)

m
≤ R(m+2). (74)

Obviously the optimal solution is x∗
i = 0 for m+2 ≤ i ≤ M .

Then, when 3 ≤ i ≤ m + 1, xi can be obtained using the
iterative relationship in (73) and the inductive method:

• Since xi = 0 for m+ 2 ≤ i ≤ M , according to (73),

xm+1 =

∑m
j=1 R(j) − (m− 1)R(m+1)

m

=

∑m+1
j=1 R(j)

m
−R(m+1). (75)

Note that when m = 2, x3 is given by the above equation
and this problem has been solved. When m ≥ 3, we carry
out with the following inductive process.

• Assume that xi′ =
∑m+1

j=1 R(j)

m − R(i′) for i + 1 ≤ i′ ≤
m + 1, where 3 ≤ i ≤ m, then

∑M
i′=i+1 xi′ can be

calculated as
M∑

i′=i+1

xi′ =
m+1∑

i′=i+1

xi′ =
m+1∑

i′=i+1

(∑m+1
j=1 R(j)

m
−R(i′)

)

=
m− i+ 1

m

m+1∑
j=1

R(j) −
m+1∑

i′=i+1

R(i′)

=
m− i+ 1

m

i∑
j=1

R(j) −
i− 1

m

m+1∑
j=i+1

R(j).

(76)

So according to (73), the optimal xi can be calculated as

x∗
i =

1

m(i− 1)

(
m

i−1∑
j=1

R(j) −m(i− 2)R(i)

− (m− i+ 1)
i∑

j=1

R(j) + (i− 1)
m+1∑
j=i+1

R(j)

)

=
1

m(i− 1)

(
(i− 1)

i−1∑
j=1

R(j) − [m(i− 2)

+m− i+ 1]R(i) + (i− 1)

m+1∑
j=i+1

R(j)

)

=

∑i−1
j=1 R(j) − (m− 1)R(i) +

∑m+1
j=i+1 R(j)

m

=

∑m+1
j=1 R(j)

m
−R(i). (77)

Therefore, x∗
i =

∑m+1
j=1 R(j)

m − R(i) has been proved for 3 ≤
i ≤ m+ 1. Then, according to (24),

x∗
2 = R(1) −

m+1∑
i=3

(∑m+1
j=1 R(j)

m
−R(i)

)

= R(1) −
m− 1

m

m+1∑
j=1

R(j) +
m+1∑
i=3

R(i)

=
R(1) +

∑m+1
j=3 R(j)

m
− m− 1

m
R(2)

=

∑m+1
j=1 R(j)

m
−R(2). (78)

According to (23), x∗
1 can be obtained

x∗
1 = min

{∑m+1
j=1 R(j)

m
−R(1), R(m+2) −R(1),

· · · , R(M) −R(1)

}
=

∑m+1
j=1 R(j)

m
−R(1), (79)

where the last relationship holds, since the case in (74) is
considered here.

Now, one can verify that x∗
i ≥ 0 for ∀i ∈ {1, · · · ,M}

since the case in (74) is considered. So this solution satisfies
the condition in (72), and the optimal value of the objective

function is R∗
of =

∑m+1
j=1 R(j)

m .

On the other hand, consider the second case
∑m+1

j=1 R(j)

m >
R(m+2). When m < M − 2, we set

xm+2 =

∑m+1
j=1 R(j) −mR(m+2) −

∑M
i=m+3 xm

m+ 1
, (80)

and then go to step m + 1. When m = M − 2, xM can be
calculated as

x∗
M =

∑M
j=1 R(j)

M − 1
−R(M). (81)

Then, for i = 1, · · · ,M − 1,

x∗
i =

∑M
j=1 R(j)

M − 1
−R(i) (82)

can be obtained following similar inductive derivations from
(76) to (79). Hence R∗

of =
∑M

j=1 R(j)

M−1 .
Summarizing these M − 2 steps, Lemma 2 can be proved,

and there exist M − 1 distinct cases as shown in Lemma 2.
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