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Summary. When functional data come as multiple curves per subject, characterizing the source of variations is not a trivial
problem. The complexity of the problem goes deeper when there is phase variation in addition to amplitude variation. We
consider clustering problem with multivariate functional data that have phase variations among the functional variables. We
propose a conditional subject-specific warping framework in order to extract relevant features for clustering. Using multivariate
growth curves of various parts of the body as a motivating example, we demonstrate the effectiveness of the proposed approach.
The found clusters have individuals who show different relative growth patterns among different parts of the body.
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1. Introduction
The rapid development of technology in recording and storing
of data makes it possible to collect simultaneous recordings
of several longitudinal variables. Often physiological and bio-
logical processes are continuously monitored for a number of
subjects, resulting in a set of multivariate longitudinal trajec-
tories. When the measurements are viewed as realizations of
smooth random functions, the field of functional data analy-
sis (FDA) provides a wealthy suite of techniques to explore
and analyze such types of data. For an overview, we refer to
Ramsay and Silverman (2002, 2005) and Ferraty and Vieu
(2006). Although FDA is proven useful to deal with data in
the form of curves, its extension to multivariate functional
data is not yet fully developed and it is an active area of
ongoing research. In this work, we focus on the problem of
clustering multivariate functional data.

Multivariate functional data can arise in many different
settings. The three-dimensional curves from the coordinates
of a geometrical object are a good example. Alternatively,
we may observe multiple response curves from the same ob-
ject sharing the common underlying process. For example,
in functional Magnetic Resonance Imaging, simultaneously
measured signals from neighboring voxels could be viewed as
replicates of brain signals subject to some regional or spatial
variability. Different types or techniques of spectroscopy used
to study molecules in chemistry rely on the same principle
that molecules absorb specific frequencies that are character-
istic of their structure. A well-known example comes from
a longitudinal growth study, where measurements of various
body parts are simultaneously obtained from the same sub-
ject. The growth curves have served as a benchmark dataset
for functional data, but mostly discussed in the context of
one-dimensional curves (e.g., Ramsay and Silverman, 2005).

The particular dataset that we are interested in, the Zürich
longitudinal growth study database, includes measurements

on six different variables: height, sitting height, leg height,
arm length, bihumeral width (shoulder), and biiliac width
(pelvis) (Gasser et al., 1984; Sheehy et al., 1999, 2000). Fig-
ure 1 shows an example of the growth response curves, in
relative velocity, for the first 10 subjects from boys and
girls, respectively. Remarkably, the common characteristics
are shared by all the variables.

There is no doubt that the growth process of arms is dif-
ferent from that of legs, for example. Nevertheless, it may
be assumed that there is a common growth process that co-
ordinates differential developments of different body parts.
Then, it is of great interest to characterize the growth process
and to identify groups with different growth patterns. Earlier
works were successful in characterizing the growth process in
the analysis of single body part measurements, however, the
analysis of joint behaviors of growth of various body parts
has been scarcely developed. Sheehy et al. (1999) is the ear-
lier reference to attempt to analyze the multiple curves si-
multaneously, though more in line with classical multivariate
analysis.

When an object is represented by multivariate responses,
it is important to take into account the dependence between
the responses. There are many standard dependence mea-
sures for multivariate Euclidean data, often under certain dis-
tributional assumptions. However, it is not so obvious how
to embed such concepts into functional data as an infinite-
dimensional object, with various sources of variation influ-
encing the structure of the curves. Multivariate Functional
Principal Component Analysis (MPCA) provides a standard
tool to capture the variation in a parsimonious way, utilizing
the dependence through covariance function, which is suitable
to describe a linear dependence between the curves. Never-
theless, the notion of dependence can be closely linked to the
scientific questions associated with the data and thus the for-
mulation requires a careful consideration.
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Figure 1. Growth curves in relative velocity for a sample of subjects for different body parts. First 10 subjects in the girls
(left) and the boys (right).

Going back to the example, the growth data have several
unique features that standard functional clustering methods
do not take into account (Gasser et al., 1984; Gasser and
Kneip, 1995). Firstly, the main information of the growth pro-
cess is contained in the speed of growth, that is, the derivatives
of the original measurements. Secondly, the main variation of
interest in derivatives occurs in phase, rather than in ampli-
tude. In fact, amplitude variation could be dominant in size,
but considered as a nuisance for comparison of the speed of
growth. In addition, due to the natural limit in size for differ-
ent body parts, it is more natural to compare the variables on
a standardized scale. Thirdly, although the variables could be
made comparable, there is no natural scale to combine infor-
mation from different sources once standardization is applied.

With these considerations in mind, we consider ways to
describe the joint patterns of growth that differentiate de-
velopmental phases among the subgroups. For example, one
might conjecture that on average,

� legs grow faster than shoulder;
� arm and shoulder tend to grow together;
� nonuniform growth across different body parts is more com-

mon compared to uniform growth of all body parts;
� and so on.

To express these ideas in statistical terms, we note that a main
signal in growth pattern comparisons is related to the ordering
of variables with respect to timing of prominent features, that
is, the notion of the phase variation. Phase variation is well
understood in the context of one-dimensional curves, though
often considered as a nuisance. Our focus is on capturing a
relative phase variation across multiple variables to account
for dependence, a distinguishing feature of our methodology
in contrast with the existing methods dealing with phase vari-
ation. As will become clear, our approach offers a complemen-
tary and nonstandard view of the growth pattern.

Our main contributions could be summarized as follows.
Although the problem of phase and amplitude variation is

well known in general, its implication in multivariate func-
tional data analysis has not been well studied yet. Even if we
focus on estimation of phase variation and curve alignment,
the multivariate version does not exist because it essentially
requires to define a proper concept of multivariate monotone
functions at its full generality. The first novelty of our article
is the very new formulation of the problem of phase varia-
tion in multivariate functional data, and its characterization
in terms of different parametrization required. As will be seen
later, mathematically as well as practically, the multivariate
extension is not unique and it requires serious consideration
in the context of the problem at hand. Once said, it sounds
obvious, but its implication is far greater. We demonstrate
the implications in the context of functional clustering. The
second novelty is the new clustering method for phase varia-
tion only. As many other new developments, many ingredients
of the proposed method are borrowed from existing methods.
However, amplitude and phase variations are not comparable
to each other, and thus direct translation of amplitude method
to phase or a naive mixing and matching strategy does not
work. With proper considerations of these issues, we develop
a new clustering approach applicable to phase variation only.
The third novelty is the application itself. As far as we know,
the joint analysis of growth phases has not been done before
(possibly due to the difficulty in getting such data), and there
is no standard methodology available.

This article is organized as follows. Section 2 introduces
the framework for phase variation in multivariate functional
curves. Section 3 develops a clustering approach based on
multivariate phase variation. Section 4 illustrates numerical
performance in terms of simulation studies and a real data
example.

2. Functional Data and Source of Variation

One of the fundamental challenges in exploring functional
data lies in understanding the source of variation. It is well
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known that the variation in one-dimensional functional data
could be understood in two different directions, vertically (in
amplitude) and horizontally (in phase). The amplitude vari-
ation can be mostly captured by linear techniques such as
principal component analysis (PCA) while phase variation
is inherently nonlinear and, without proper adjustment, the
analysis as well as its interpretation could be misleading.

2.1. Source of Variation in One-Dimensional Functional
Curves

Suppose we observe a sample of n curves on a compact interval
I = [0, T ], subject to measurement error. The ith response
curve can be represented as Yi(t) = Xi(t) + εi(t), where εi(t) is
the stationary residual process with E[εi(t)] = 0, E[ε2

i (t)] = σ2

and Cov(εi(t), εi(s)) = 0, s �= t. Assume that Xi is an element
of L2(I).

When the curves share common characteristics subject to
individual variability, that is, when we assume there exist a
common mean μ and a common covariance function �, we
may further decompose Xi into Xi(t) = μ(t) + Vi(t), where
E[Vi(t)] = 0 and Cov(Vi(s), Vi(t)) = �(s, t).

Often the observed curves exhibit additional variability in
the horizontal direction representing delayed or accelerated
responses, for which we introduce the time transformation
function or warping function h and its inverse ω = h−1 as

Yi(t) = Xi(t) + εi(t) , Xi(ωi(t)) = μ(t) + Vi(t) , (1)

where ωi(or hi)s are monotonically increasing functions from
I to I satisfying the boundary conditions ωi(0) = 0 and
ωi(T ) = T . It is common to assume that ωis are continuously
differentiable. Conceptually, we imagine that there is a com-
mon underlying process, often characterized by common fea-
tures or landmarks, so that ωi summarizes the timings of the
onsets of the common features for the ith curve.

Most standard approaches developed in the literature to
handle this unwieldy problem of phase variation have taken
the view that phase variation is a nuisance and can be ac-
counted for in a preprocessing step (Gasser and Kneip, 1995;
Ramsay and Li, 1998; Wang and Gasser, 1997, 1999; Gervini
and Gasser, 2004; James, 2007; Tang and Müller, 2008). Re-
cent developments attempt to explicitly model the component
of phase as the main step of the analysis, although the pri-
mary focus is on amplitude in general (Kneip and Ramsay,
2008; Liu and Yang, 2009; Tang and Müller, 2009; Slaets et al.,
2012; Peng et al., 2014; Hadjipantelis et al., 2015).

As timings can be measured only relatively, there needs fur-
ther constraints. For example, if we decide to use a reference
curve, say X1, then

X1(t) = (μ ◦ h1)(t) + (V1 ◦ h1)(t) = μ̃1(t) + Ṽ1(t).

Consequently, the timings of the other curves can be expressed
as

Xi(t) = (μ ◦ hi)(t) + (Vi ◦ hi)(t)

= (μ̃1 ◦ h̃i)(t) + (Ṽi ◦ h̃i)(t),

where h̃i(t) = h−1
1 ◦ hi(t). For standard one-dimensional

curves, this is often expressed as E[ωi(t)] = i(t), where

the identity map i(t) = t and its sample version as
n−1

∑n

i=1
ωi(t) = t, implying that on average there is no phase

variation and we define a reference as the average response
times. In other words, there is a representative curve with
common features and the ωi(t) measures delays or acceler-
ations relative to the timings of the representative curve at
time t.

2.2. Source of Variation in Multivariate Functional
Curves

Suppose now that for each subject, there are p components in
the response defined on a common interval I, denoted by X =
(X1, . . . , Xp) and there might be some measurement errors. A
general model could be written as

Y i(t) = Xi(t) + εi(t) .

In the presence of phase variability, we introduce a vector
of warping functions, denoted by hi = (hi1, . . . , hip) with its
inverse ω = h−1 to compensate for horizontal variability.

When it comes to multivariate functional data, the issues
of phase and amplitude variations still exist but are more dif-
ficult to address due to its inherent geometry (Kurtek et al.,
2012; Brunel and Park, 2014). Consequently, an extension to
multivariate functional curves is not unique and thus needs
some careful consideration. In what follows, we list several
plausible parametrizations, each of which is based on a differ-
ent underlying data-generating mechanism.

2.2.1. Marginal component-wise warping. The marginal
warping is a direct component-wise extension of the one-
dimensional curve alignment formulation to multivariate case.
Here, we assume that each component has its own average re-
sponse pattern and phase variation in individual curves vary
only relative to the average response time for each component,
independent of other components. Then, we would proceed by
repeating one-dimensional registration analysis p times, that
is, for each component r, r = 1, . . . , p, the warping function ωc

r

satisfies

E[
(
Xir ◦ ωc

ir

)
(t)] = μr(t), (2)

subject to n−1
∑n

i=1
ωc

ir(t) = t for r = 1, . . . , p. This strategy
is useful as a preprocessing or the primary interest is the
amplitude variation, and also it is the approach taken by
most multivariate FDA works. However, as individual ac-
celeration/delay is measured relatively within each compo-
nent variable, this does not allow us to compare relative de-
lays across components. For illustration, an example from the
growth data is shown in Figure 2 in the third column.

2.2.2. Conditional subject-specific warping. As in the
growth data example, when the component variables are com-
parable, the comparison across the variables are of interest.
For example, in the case where a certain component tends
to respond systematically later than others across subjects,
this cannot be reflected within component-wise standardiza-
tion. Instead the subject-specific average response curve can
be used as a reference for the individual warping function
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Figure 2. An example of warping profiles extracted from subject-specific warping (middle) and component-wise warping
(right) for the first subject in each group. The left column shows the original growth velocity curves.

ωs
i . Denote the ith subject specific average by Si and assume

that

E[
(
Xir ◦ ωs

ir

)
(t)|Xi] = Si(t), (3)

subject to p−1
∑p

r=1
ωs

ir(t) = t for each i = 1, . . . , n. From the
viewpoint of variance decomposition, Si(t) can be regarded as
the conditional mean of the subject-specific random effect. In
particular, if the decomposition in (1) were to hold for each
component, the subject-specific reference could be identified
as μ(t) + E[Vir(t)|Xi], assuming a common trend for all com-
ponents.

Now individual warping profiles (ωs
i) can be compared be-

tween subjects, without reference to the pattern of the pop-
ulation average. An example from the growth data is shown
in Figure 2 in the second column. This is our model used to
extract features of differential growth pattern for each subject
for clustering, discussed in Section 3.

2.2.3. Universal warping for all components. In contrast
to the previous scenarios, often the registration problem oc-
curs in the study of the displacement of an object (e.g., Kurtek
et al., 2012; Brunel and Park, 2014) so that the response
curves could be identified with respect to some underlying
coordinate system. It is then more appropriate to assume a
common warping function for all response curves:

E[
(
Xir ◦ ωi

)
(t)] = μr(t) , r = 1, . . . , p ,

subject to n−1
∑n

i=1
ωi(t) = t. In this case, the unit of analysis

is the vector of response curves as a whole and the warping
function acts as a nuisance parameter in characterizing the
variability in the population of the vector of response curves.

3. Multivariate Phase-Cluster Model

Viewing the multiple response curves as a whole unit, we are
interested in grouping subjects based on the phase variation
differentiating joint growth patterns. When variability in the
size or the magnitude of each variable could be of interest,
the methodology based on multivariate FPCA could be used
(e.g., Jacques and Preda, 2012), and, if necessary, registration
methods are combined as a preprocessing (e.g., Ieva et al.,
2013). These methods could be efficient but have the same
drawbacks as one-dimensional approach when phase variation
is of main interest. Sangalli et al. (2010) extend a k-means-like
clustering algorithm to three-dimensional curves with phase
variation by explicitly specifying a class of (linear) warping
functions in the template so that the curves are aligned within
each cluster. Brunel and Park (2014) directly focus on general
phase variation in so far as estimating the structural mean
function but do not address the problem of clustering. In fact,
it is a nontrivial problem to find a representation for a cluster
center when both variability are present, due to the fact that
the functions spaces do not coincide. This is well illustrated
in Liu and Müller (2004).

In this section, we present our formulation of the problem
of clustering multivariate functional data. Unlike the standard
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view of functional clustering, we focus on the case where phase
variation prevails and amplitude variation is considered as a
nuisance. There are at least two possible approaches to finding
clusters based only on phase variation and the two approaches
can be explained via characterizing the clusters that they set
out to find. In the first approach, one can try to find clusters
that have different phase patterns (ω) in certain components.
The second approach, which is our focus, is to find clusters
that have different phase variability across components within
an observation.

Figure 2 illustrates extracted features of the first subject
in each growth dataset for a comparison. The first column
shows the original velocity curves, and the second column
shows the curves defined as ω̂(t) − t, called deformation func-
tions, from the proposed conditional subject-specific warp-
ing in (3). Here, it is expected that the deformation curves
have zero mean from the formulation. The crossing patterns
in the deformation curves indicate that a measurement vari-
able reaches a growth peak earlier than some others and then
its growth slows down later. The third column shows the de-
formation curves from marginal component-wise warping in
(2). Here, the curves are showing how the subject’s growth
is delayed or accelerated compared to other subjects in the
data, component-wise.

We assume that the population consists of a mixture of
K clusters that have distinct patterns of delays. Our earlier
discussion in Section 1 suggests that the dynamic ordering of
the warping profiles could be used to define a cluster. How-
ever, as the ordering may change continuously over time, this
is rather a difficult problem. Instead, we detect the effect of
changes in ordering through the relative changes in warping
profiles across the component variables. This can be achieved
by incorporating the conditional warping as opposed to other
types of warping.

3.1. A Phase-Cluster Model

Given the multivariate functional curves, we consider a phase-
cluster model represented as follows. Our observation model
is Yir(t) = Xir(t) + εir(t), i = 1, . . . , n; r = 1, . . . , p for t ∈ [0, T ]
with

E[Xir(ω
(k)
ir (t))|Xi] = Si(t) , for k = 1, . . . , K , (4)

subject to p−1
∑p

r=1
ω

(k)
ir (t) = t and ω

(k)
ir (0) = 0 and ω

(k)
ir (T )=

T and K is the number of clusters. Under the subject-
specific warping (p−1

∑p

r=1
ωir(t) = t), it follows that

n−1
∑n

i=1
ωir(t) �= t for r = 1, . . . , p. In particular, if there

is a systematic delay in certain component variable, for
example, if shoulder tends to grow later than other body
parts on average for subjects in a certain cluster, the
corresponding warping function ω for shoulder would tend
to lie above the identity line for each individual. Then, on
average, n−1

∑n

i=1
ωir(t) − t tends to be positive for shoulder.

Motivated by this observation, we define a cluster based on
relative delays or deformation function for the ith subject
defined by ui(t) = ωi(t) − t. It is clear that the relative phase
variations can be translated into the differences in mean
of the deformation functions. In addition, the space of the
deformation function is better approximated by a linear
space and thus alleviates the issues of directly dealing with

the space of the warping functions, which is non-Euclidean
and not a linear vector space.

3.2. Characterization of Phase Clusters

Defining clusters may or may not require the information on
variability. In order to characterize the cluster in the vector of
warping functions ω, we formulate a latent functional mixture
model through the deformation functions.

Viewing the deformation functions as an element of
L2(I), we assume that u belongs to a Hilbert space H , of
p-dimensional vectors of functions in L2(I). We define a
cluster by its mean function in H , allowing for different
variability across the cluster groups. Chiou and Li (2007)
proposed a functional K-center clustering for univariate
functional data which takes into account variation of the
curves through FPCA in defining the cluster center. The
same principle can be applied to multivariate functional
data, if we replace FPCA by its multivariate version.

To define multivariate functional principal component anal-
ysis, we need to define the corresponding norm in the extended
function space. For a multivariate function f = (f1, . . . , fp)
with ‖fr‖2 < ∞ for r = 1, . . . , p, define the p-variate norm by
‖f‖2 = ∑p

r=1
‖fr‖2. Define the cross-covariance function by

�r,s(t, u) = cov(ur(t), us(u)), r, s = 1, . . . , p. Denote by �(t, u)
the p × p matrix of the cross-covariance function whose
(r, s)th element is given by �r,s(t, u). Then, the correspond-
ing eigenvalues and eigenfunctions could be defined and
the covariance function has the representation as �(t, u) =∑∞

j=1
λjφj(s)φj(t)

T , where λjs are ordered eigenvalues and

φj(t) = (φj1(t), . . . , φjp(t))
T are the unit-norm eigenfunctions

satisfying

p∑
s=1

∫
�r,s(t, u)φjs(u) du = λjφjr(t) .

Now, we assume that there are K subgroups in u. Based on
the eigenfunction expansion, we assume that each cluster has
its own variability expressed through cluster-dependent eigen-
values and eigenfunctions:

u(k)(t) = α(k)(t) +
∞∑

j=1

ξ
(k)
j φ

(k)
j (t) , (5)

where ξ
(k)
j are uncorrelated and E[(ξ

(k)
j )2] = λ

(k)
j for k =

1, . . . , K.
Putting things together, the phase-cluster model (4) is re-

fined to incorporate the additional information on variability
for each cluster through (5). Note that within each cluster,
amplitude function as well as phase function can vary. In par-
ticular, the amplitude function X can have its own represen-
tation in terms of multivariate FPCA similar to the equa-
tion (5).

Remark: Although the FPCA representation is commonly
assumed in joint analyses with the additive model struc-
ture (e.g., Kneip and Ramsay, 2008), the monotonicity of the
warping function may not strictly be adhered to and may
bring about some mild issues with interpretability. Peng et al.
(2014) provide an example of nonmonotone warping func-
tions to describe economic cycle in housing market. If one
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insists, we can use a monotone parametrization by assuming
that d

dt
log ω can be expressed by the basis function expansion.

Here, we keep the additive structure for simplicity as this pro-
vides a good approximation to describe the main variability in
phase.

3.3. Estimation of Functional Phase-Cluster Model

Although our formulation resembles a standard mixture
model, due to identifiability constraints for the latent warping
functions, simultaneous estimation of this type of model is not
straightforward. On the other hand, the problem is formulated
in such a way that estimation of the latent warping functions
is not directly related to how they are clustered. In fact, we
consider estimation of the warping profiles as the step for fea-
ture extraction in clustering multivariate functional curves.
Thus, we propose the following two-stage algorithm and give
some details in the following.

(i) [Feature extraction by conditional warping] For each
subject i, i = 1, . . . , n, estimate ωi by subject-specific
warping and obtain deformation function ui(t) =
ωi(t) − t.

(ii) [Functional clustering] Apply multivariate functional
clustering to u.

3.3.1. Feature extraction by conditional warping. The
subject-specific warping amounts to registration of multiple
response curves for each subject. Let 	 = {ω : I → I, ω ≥
0, ω(0) = 0, ω(T ) = T, ω is a diffeomorphism} be the set of
warping functions. For i = 1, . . . , n,

(Si, ωi) = arg infS∈L2(I)inf(γ1,...,γp):γr∈	

p∑
r=1

d(Xir ◦ γir, S) .

This problem falls into the general problem of curve alignment
for one-dimensional curves, a well-studied area in FDA. Most
standard algorithms that treat phase variation as a nuisance
are applicable to our case (Gasser and Kneip, 1995; Wang and
Gasser, 1997; Ramsay and Li, 1998; Wang and Gasser, 1999;
Gervini and Gasser, 2004; Liu and Müller, 2004; James, 2007;
Tang and Müller, 2008; Tucker et al., 2013).

The main difficulty in directly solving this optimization
problem is that the reference function S is also unknown
so that some form of iteration would be necessary. In ad-
dition, the γ is an infinite-dimensional object that should
satisfy monotonicity constraints. Different strategies in the
choice of the metric d(·, ·), the parametrization of γ ∈ 	, the
scheme of updating the reference S, as well as the optimiza-
tion algorithm itself lead to different methods. One of the
original methods known as landmark registration (Gasser and
Kneip, 1995) exploits the fact that features that could iden-
tify S are available or could be well estimated using appro-
priate smoothing techniques for estimating derivatives. The
standard monotone registration method in Ramsay and Sil-
verman (2005) uses an explicit monotone parametrization
with spline functions and solves iteratively a nonlinear least
squares problem. Most methods developed an algorithm based
on the standard L2 distance as d(X1, X2) = ‖X1 − X2‖2 for
X1, X2 ∈ L2(I) whereas Tucker et al. (2013) based their al-

gorithm on Fisher–Rao metric that compares a normalized
derivative function defined as

qX(t) = Ẋ(t)
/√

|Ẋ(t)| · (|Ẋ(t)| �= 0) ,

and dFR(X1, X2) = ‖q1 − q2‖. This formalizes the intuition
that curves are better aligned based on the features in the
derivatives. They developed an efficient algorithm based on
dynamic programming. Comparison of different registration
methods is beyond the scope of the article.

We used the registration method based on the Fisher–Rao
metric (Tucker et al., 2013) in our analysis. It is algorithmi-
cally efficient and is known to be one of the most successful
methods for registration. In our simulation studies, we eval-
uate the effectiveness of the registration method and its im-
pact on clustering in comparison to the monotone registration
method (Ramsay and Silverman, 2005) as a standard refer-
ence.

3.3.2. Estimation of functional clusters in deformation
function. It turns out that the computation of multivariate
FPCA can be simplified for the warping functions. We first
define an extended curve as the concatenation of the multi-
ple curves over the extended period of time. For each curve
ur(t), r = 1, . . . , p, ur(0) = ur(T ) = 0. Let U(t), t ∈ [0, pT ] be
the concatenation of the curves (u1, . . . , up) defined as

U(t) = ur(t), for t ∈ [(r − 1)T, rT ] .

Denote the mean function by α and the covariance function by
�(t, u) = Cov(U(t), U(u)). Then, U can be identified as a ran-
dom process in L2([0, pT ]). In terms of procedural definition,
the multivariate FPCA is equivalent to a univariate FPCA
with these extended curves. Normally, the one-dimensional
view requires additional continuity assumption at end points
of each curve, which in general is not always satisfied by mul-
tivariate functions. However, viewing the warping function
as a diffeomorphism with boundary conditions imposed on
implies that ur(0) = ur(T ) = 0 and thus preserves continuity
in concatenation. Although not required, further smoothness
condition could be considered at the boundaries. Now, we re-
formulate the clustering problem with the extended curves of
the deformation functions as follows. For the population of
the kth cluster, we assume that

U(k)(t) = α(k)(t) +
∞∑

j=1

ξ
(k)
j φ

(k)
j (t) .

Another issue with multivariate functional principal com-
ponent analysis is the comparability of the measure of
variability across the variables, say Xr, r = 1, . . . , p. Chiou
et al. (2014) proposed to define the principal compo-
nent analysis based on the standardized variables Zr(t) =
�r,r(t, t)

−1/2(Xr(t) − μr(t)) where μ is the mean function and
� is the covariance function of X. However, we note that the
deformations functions are comparable across the variables
and do not require further standardization.
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4. Numerical Studies

4.1. Simulation Studies

We identify two influential and inseparable factors that af-
fect the performance being the success of the estimation of
the warping profiles and the success of functional clustering
method on the curves. In this section, we use simulated data
to investigate relative performances of each component, with a
standard implementation as a reference. For warping function
estimation, the registration method by the Fisher–Rao metric
is compared with the standard monotone registration method
(Ramsay and Silverman, 2005). For clustering, Chiou and Li
(2007)’s functional clustering with concatenated deformation
function is compared with high-dimensional curve clustering
method implemented in CCToolbox by Gaffney (2004).

As for the settings, we use total six different settings.
Among those two are “null” settings for which the signals
in data are not necessarily what the proposed method sets
out to find. In one of the null settings, the two clusters are
different only in their amplitude patterns, for which usual
(multivariate) functional clustering approaches would target
at. The other null setting is based on the marginal component
warping model discussed in Section 2. These two settings are
to illustrate that the proposed approach sets out to solve fun-
damentally different scientific problems than existing meth-
ods to begin with, thus for the null settings we expect to see
random assignments in clustering with our approach.

The other four settings are designed to see not only whether
the proposed approach works as intended but also which
warping method and clustering method works best under var-
ious scenarios. As the warping profiles are latent and the am-
plitude information is a nuisance for clustering, we consider
four distinct scenarios to evaluate the method of extracting
phase variation in the presence of amplitude dilution as well as
phase variation. The level of dilution is introduced by varying
the covariance structure for phase functions in each cluster.

Each observation, belonging to one of the two clusters of
size n = 25 each, is a set of four curves (p = 4) that are anal-
ogous to the different body parts in the growth data example.
All curves are defined on the time range −3 ≤ t ≤ 3 and gen-
erated as y(t) = S(h(t)), where S(t) represents the amplitude
pattern and h(t) for phase variation. The amplitude of the rth
component curve in an individual, Sr(t), r = 1, . . . , 4 is one of
the following:

S1r(t) = Z1r exp{−.05(t − 2)2} + Z2r exp{−10(t + 1)2}/6 ,

S2r(t) = Z1r exp{−.05(t − 2)2} + Z2r exp{−10(t + 1)4}/6 ,

where Zkr are N(1, .22), k = 1, 2, r = 1, . . . , 4.
The phase function hr(t), r = 1, . . . , p is constructed based

on a functional PCA model. For scenarios 1-5, let a =
(−3, −1, 1, 3)′ + Np(0, .52Ip). The mean functions of hr(t),
r = 1, . . . , 4, are either not crossed

mu
r (t) = 6 exp{ar(t + 3)/6} − 1

ear − 1
− 3,

or crossed

mc
r(t) = I(t ≤ 0)

(
3 exp{ar(t + 3)/6} − 1

ear − 1
− 3

)

+ I(t > 0)

(
3 exp{−ar(t + 3)/6} − 1

ear − 1

)
.

As for the covariance structures of hr(t), we consider three
cases: (i) φ1

1(t) = 0, φ1
2(t) = 0, that is, identity, (ii) φ2

1(t) =
sin(πt/3)

√
3, φ2

2(t) = cos(πt/2)/
√

3, (iii) φ3
1(t) = {cos(πt/3) +

1}/3, φ3
2(t) = sin(πt/3)/

√
3.

Then, we set hj,u
r (t) = mu

r (t) + ξ1φ
j

1(t) + ξ2φ
j

2(t) + ε(t) for
crossed warping and hj,c

r (t) = mc
r(t) + ξ1φ

j

1(t) + ξ2φ
j

2(t) + ε(t)
for uncrossed warping, where ξk ∼ N(0, θ2

k ), θ1 = 1 and θ2 = .5
and ε(t) are white noise with variance 0.032.

The six scenarios are introduced below. The first four sce-
narios have different mean warping structures within an ob-
servation, for which the proposed method aims for:

� Scenario 1: both clusters have identical amplitude patterns
and the common covariance structure for phase variation,
S1r(h

1,u
r (t)) versus S1r(h

1,c
r (t)). That is, the two clusters are

the same except the crossing pattern of the mean warping
functions.

� Scenario 2: both clusters have identical amplitude patterns,
but have different covariance structure as well as mean for
phase variation, S1r(h

2,u
r (t)) versus S1r(h

3,c
r (t)).

� Scenario 3: clusters have different amplitude patterns, and
different mean but identical covariance structure for phase
variation, S1r(h

3,u
r (t)) versus S2r(h

3,c
r (t)).

� Scenario 4: clusters have different amplitude patterns, and
have different covariance structure for phase variation,
S2r(h

2,u
r (t)) versus S1r(h

3,c
r (t)).

� Scenario 5: (null case) clusters have different amplitude pat-
terns, but have identical phase variation. S2r(h

2,u
r (t)) versus

S1r(h
2,u
r (t)).

� Scenario 6: (a component-wise warping model) let b be an
equal-sized grid of n = 25 on [−3, 3] with added Gaussian
noise with variance 0.05. Then, ã is the randomly permuted
version of b differently for each component and each clus-
ter. For the rth component curve, r = 1, ..., 4, the jth obser-
vation, j = 1, ..., n is Yj(t) = S1j(h

1,u
j (t)) for Cluster 1 and

Yj(t) = S2j(h
1,u
j (t)) for Cluster 2, where h

1,h
j (t) = mu

j (t) ex-
cept that ar, r = 1, . . . , 4 is replaced with ãj, j = 1, . . . , n.

For a numerical summary for comparison of the clustering
outcomes, we use the Adjusted Rand Index (ARI) score pro-
posed by Rand (1971) and Hubert and Arabie (1985). The
index is essentially the proportion of the agreements between
two partitions. Its value is always between −1 and 1, with
−1 corresponding to the perfect disagreement and 1 to the
perfect agreement. The value of zero can be achieved between
two purely random partitions.

Choosing the number of clusters, say K, is a critical prob-
lem in any clustering analysis. In this simulation study, we run
the clustering methods with K = 2, 3, 4, and used Calinski–
Harabasz (CH) index (Calinski and Harabasz, 1974) to choose
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Table 1
Mean warping errors and mean clustering accuracies,

measured in adjusted Rand Index, for two choices of warping
methods and two choices of clustering methods

Chiou CCToolbox

Scenario Warping MSE(ĥ) ARI2 ARIK ARI2 ARIK

F–R 0.0864 1.0000 0.9676 0.9984 0.8732
1

Ramsay 0.0981 0.9888 0.7422 0.9936 0.8782

F–R 0.2013 0.9231 0.7960 0.9400 0.8388
2

Ramsay 0.2881 0.4781 0.4053 0.6424 0.4743

F–R 0.1768 0.7846 0.6709 0.8546 0.7150
3

Ramsay 0.2568 0.2442 0.2627 0.4614 0.3715

F–R 0.2130 0.9225 0.8095 0.9228 0.8206
4

Ramsay 0.3064 0.3289 0.2808 0.4489 0.3526

F–R 0.2632 −0.0010 −0.0039 0.0001 −0.0015
5

Ramsay 0.3644 0.0197 0.0146 0.0203 0.0158

F–R N/A 0.0013 0.0115 0.0031 0.0041
6

Ramsay N/A −0.0026 −0.0027 −0.0035 −0.0049

K. The CH index is analogous to the F -ratio statistic, that
is, the ratio of between cluster variation and within cluster
variation, each adjusted for respective degrees of freedom.

Table 1 summarizes the simulation results based on 50 rep-
etitions. First, we report the mean squared error of the esti-
mated warping function computed as

MSE(ĥ) = (np)−1

n∑
i=1

p∑
r=1

∫
I
(ĥir(t) − hir(t))

2 dt ,

to compare the accuracy in estimation of warping profiles.
Note that in Scenario 6, we do not report MSE, since it is not
relevant to the considered model. Also, we report ARI when
we fix K = 2 (ARI2) and also when we let CH index choose
K (ARIK).

The findings can be summarized as follows:

� F–R warping is more accurate than Ramsay’s method, in
terms of MSE, which affects the subsequent clustering re-
sults.

� Under the null settings, that is, Scenarios 5 and 6, the pro-
posed method does not yield a meaningful clustering, which
is desirable.

� Chiou’s clustering is better in Scenario 1 while CCTool-
box is better in Scenario 3, especially in ARI2. With F–R
warping, the difference between clustering methods is not
substantial in Scenarios 2 and 4.

� Performance patterns are similar when K is fixed and when
K is adaptively chosen, the latter generally yields a bit lower
ARI.

4.2. An Application to Multivariate Growth Curves

We analyze the growth data, introduced in Section 1 with a
goal to identify subgroups that have different comparative ac-
celeration/delay patterns among different body measurement
growths. We standardize the original curves and consider the

Figure 3. Clusters found in the girls. Deformation curves
are shown. Cluster mean curves show differences in relative
growths among legs, shoulders, and sitting heights.

velocity as the response curves. In any clustering analysis,
verifying whether found clusters are “meaningful” is not a
straightforward problem. In this work, in order to verify the
clusters, we randomly split data into two groups, say A and
B, run the clustering in A, and using the cluster centers in
A, we assign the individuals in B. Then, we run the cluster-
ing algorithm in B and compare the two cluster assignments
in B in terms of ARI. We repeated this 50 times. As for the
number of clusters, we choose K = 2, which yields the lowest
ARIs. For the girls, mean ARIs with Chiou and CCToolbox
are, respectively, 0.6205 (0.1745) and 0.2024 (0.2344) with
standard deviation inside the parentheses. For the boys, the
ARIs are 0.0859 (0.1707) and 0.0469 (0.0801), which indicates
no meaningful clusters.

Results show that for girls, there are two clusters that show
clearly different patterns in the warping functions. Main dis-
tinction is in the relative delay pattern in leg length, shoul-
ders, and sitting, as shown in Figure 3. The girls in the first
cluster (n = 60) share the pattern that legs grow rapidly at
the earlier ages while the growth spurt of legs of the girls
in the second cluster (n = 42) relatively constant and longer
lasting.

It is of interest to see how the above cluster solution is com-
pared with the clustering with original velocity curves or the
warped velocity curves that contain (supposedly) only am-
plitude variation left after warping. We also compare results
based on the component warping approach. Table 2 shows the
disagreements among the cluster solutions based on different
types of curves. As a reference, Figure 4 shows the found clus-
ters with original curves. It is clear that the usual clustering
with multivariate functional curves has a fundamentally dif-
ferent goal than our problem presented here.

5. Discussion

The problem of phase variation and curve alignment is a long-
standing issue in functional data analysis. Although phase
variation is commonly observed in practice, the treatment is
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Table 2
Cross tabulated clustering results

Girls Original Amplitude C. Amplitude C. Phase Total

33 27 33 27 33 27 39 21 60
Phase

21 21 21 21 21 21 31 11 42

Total 54 48 54 48 55 47 70 32 102

Boys Original Amplitude C. Amplitude C. Phase Total

31 8 27 12 28 11 18 21 39
Phase

43 17 31 29 35 25 26 34 60

Total 74 25 58 41 63 36 44 55 99

rather limited and phase variation is rarely the focus of the
main analysis. Notably, many statistical procedures developed
for FDA are inherently linear, relying on the linear represen-
tation of an object in a Euclidean space, while phase variation
is an exception. Recent interests in geometrical approaches in
data analysis will become more relevant (e.g., Kurtek et al.,
2012), though its exploration in the context of FDA is still
in its infancy. We demonstrated the importance and utility
of proper consideration of the problem in the context of clus-
tering multivariate functional data. In contrast to standard
clustering problems, our targets are implicitly defined groups
based on the patterns of phase variation only, which could be
contaminated by amplitude variations. Our solution exploits
the parametrization of the curves with respect to amplitude
and phase variations. We used the growth data as an illustra-
tion and believe that a similar approach will be appropriate
to analyze many biological and physiological signals collected
in modern times.

Figure 4. Clusters found in the girls with original velocity
curves. Mean curves show that the differences between the
two clusters are mostly in the shoulder growths.

6. Supplementary Materials

The accompanying matlab codes to implement our method as
in Section 4 are available with this article at the Biometrics
website on Wiley Online Library.
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