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Figure 1: Three examples of input 3D mesh and tactile saliency map (two views each) computed by our approach. Left: “Grasp” saliency
map of a mug model. Middle: “Press” saliency map of a game controller model. Right: “Touch” saliency map of a statue model. The blue
to red colors (jet colormap) correspond to relative saliency values where red is most salient.

Abstract
While the concept of visual saliency has been previously explored
in the areas of mesh and image processing, saliency detection also
applies to other sensory stimuli. In this paper, we explore the prob-
lem of tactile mesh saliency, where we define salient points on a
virtual mesh as those that a human is more likely to grasp, press,
or touch if the mesh were a real-world object. We solve the prob-
lem of taking as input a 3D mesh and computing the relative tactile
saliency of every mesh vertex. Since it is difficult to manually de-
fine a tactile saliency measure, we introduce a crowdsourcing and
learning framework. It is typically easy for humans to provide rela-
tive rankings of saliency between vertices rather than absolute val-
ues. We thereby collect crowdsourced data of such relative rank-
ings and take a learning-to-rank approach. We develop a new for-
mulation to combine deep learning and learning-to-rank methods to
compute a tactile saliency measure. We demonstrate our framework
with a variety of 3D meshes and various applications including ma-
terial suggestion for rendering and fabrication.

Keywords: saliency, deep learning, perception, crowdsourcing,
fabrication material suggestion
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1 Introduction
In recent years, the field of geometry processing has developed
tools to analyze 3D shapes both in the virtual world and for fab-
rication into the real-world [Bächer et al. 2012; Hildebrand et al.
2013; Prévost et al. 2013; Zimmer et al. 2014]. An important as-
pect of a geometric shape is its saliency, which are features that
are more pronounced or significant especially when comparing re-
gions of the shape relative to their neighbors. The concept of visual
saliency has been well studied in image processing [Itti et al. 1998;
Bylinskii et al. 2015]. “Mesh Saliency” [Lee et al. 2005] is a closely
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related work that explores visual saliency for 3D meshes. However,
other sensory stimuli have not been explored for mesh saliency. In
this paper, we introduce the concept of tactile mesh saliency. We
bring the problem of mesh saliency from the modality of visual ap-
pearances to tactile interactions. We imagine a virtual 3D model as
a real-world object and consider its tactile characteristics.

There are many potential applications in graphics for mappings of
tactile salience. In the virtual domain, tactile saliency can be ap-
plied to rendering appearance effects. A map of tactile salience
enables the prediction of appearance that is the result of human in-
teraction with an object. In the physical domain, tactile saliency
information can be used to fabricate physical objects such that a
surface may be enhanced to facilitate likely interactions.

We consider points on a virtual mesh to be tactile salient if they are
likely to be grasped, pressed, or touched by a human hand. For our
concept of tactile saliency, the human does not directly interact with
real objects, but considers virtual meshes as if they were real objects
and perceives how he/she will interact with them. We focus on a
subset of three tactile interactions: grasp (specifically for grasping
to pick up an object), press, and touch (specifically for touching
of statues). For example, we may grasp the handle of a cup to
pick it up, press the buttons on a mobile device, and touch a statue
as a respectful gesture. Previous work explored the idea of touch
saliency of 2D images on mobile devices [Xu et al. 2012]. The ideas
of grasp synthesis for robots [Sahbani et al. 2012] and generation of
robotic grasping locations [Varadarajan et al. 2012] have also been
explored in previous work. However, the existing work in these
areas solve different problems and have different applications. The
problem we solve in this paper is to take an input 3D mesh and
compute the relative tactile saliency of all vertices on the mesh.

We take a crowdsourcing and learning approach to solve our prob-
lem. This mimics a top-down or memory-dependent approach [Itti
2000] to saliency detection. The motivation for crowdsourcing is
that we wish to understand how humans interact with a virtual
shape. Hence it is natural to ask humans, collect data from them,
and learn from the data. A motivation for taking a learning ap-
proach is that it is difficult to manually define a measure for tactile
saliency. Moreover, if we use existing 3D shape descriptors, the
algorithm may be dependent on the human-specified features. We
leverage the strength of deep learning such that features do not need
to be manually defined.

Computing tactile mesh saliency from geometry alone is a challeng-
ing, if not impossible, computational problem. Yet humans have
great intuition at recognizing such saliency information for many
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3D shapes even with no color or texture. While a human finds it
difficult to assign absolute saliency values (e.g. vertex i has value
0.8), he/she can typically rank whether one point is more tactile
salient than another (e.g. vertex i is more likely to be grasped than
vertex j). Hence we do not, for example, solve the problem with
a regression approach. The human-provided rankings lead us to a
ranking-based learning approach. However, recent similar learning
approaches in graphics [Garces et al. 2014; O’Donovan et al. 2014;
Liu et al. 2015a] typically learn simple scaled Euclidean distance
functions. In contrast, we combine the key concepts of deep learn-
ing and learning-to-rank methods. We do not intend to replicate the
large scale of deep architectures that have been shown for image
processing problems. In this paper, we combine a deep architecture
(which can represent complex non-linear functions) and a learning-
to-rank method (which is needed for our “ranking”-based data) to
develop a deep ranking formulation for the tactile mesh saliency
problem and contribute a new backpropagation as the solution.

We first collect crowdsourced data where humans compare the tac-
tile saliency of pairs of vertices on various 3D meshes. We represent
a 3D shape with multiple depth images taken from different view-
points. We take patches from the depth images and learn a deep
neural network that maps a patch to a saliency value for the patch
center. The same deep neural network can be used across different
depth images and 3D shapes, while different networks are needed
for each tactile modality. After the learning process, we can take a
new 3D mesh and compute a tactile saliency value for every mesh
vertex. Since our approach is based on ranking, these are relative
values and have more meaning when compared with each other.

We compute saliency maps for three tactile interactions for 3D
meshes from online sources including Trimble 3D Warehouse and
the Princeton Shape Benchmark [Shilane et al. 2004]. We evaluate
our results with a comparison to user labeled data and a compari-
son to a typical learning-to-rank method with a linear function. We
demonstrate our framework with the applications of material sug-
gestion for rendering and fabrication.

The contributions of this paper are: (1) We introduce the concept
of tactile mesh saliency; (2) We develop a new formulation of deep
learning and learning-to-rank methods to solve this tactile saliency
problem; and (3) We demonstrate applications of material sugges-
tion for rendering and fabrication.

2 Related Work

2.1 Saliency
Saliency in Mesh Processing. The “Mesh Saliency” work of
Lee et al. [2005] introduced the concept of saliency for 3D meshes.
Earlier work [Watanabe and Belyaev 2001; Hisada et al. 2002] de-
tect perceptually salient features in the form of ridges and ravines
on polygon meshes. Howlett et al. [2005] study visual perception
and predict the saliency for polygonal models with eye tracking.
Instead of salient points or features, Shilane et al. [2007] identify
distinctive regions of a mesh that distinguish a mesh’s object type
compared to other meshes. Kim et al. [2010] take a visual per-
ception approach to compare the mesh saliency method [Lee et al.
2005] with human eye movements captured by eye tracking de-
vices. Song et al. [2014] include global considerations by incor-
porating spectral attributes of a mesh, in contrast to previous meth-
ods based on local geometric features. While there has been much
existing work on saliency and shape similarity [Gal and Cohen-Or
2006; Shtrom et al. 2013; Tao et al. 2015], their focus is on vi-
sual saliency. “Schelling points” provides another interpretation
of saliency on mesh surfaces in terms of human coordination by
“asking people to select points on meshes that they expect will be
selected by other people” [Chen et al. 2012]. Liu et al. [2015b] de-

tects the saliency of 3D shapes by studying how a human uses the
object and not based on geometric features. Our work is different
as we explore the concept of tactile saliency on mesh surfaces.

Saliency in Image Processing. Visual saliency is a well-studied
topic in image processing. Previous works compute saliency maps
and identify salient objects and regions in images [Itti et al. 1998;
Goferman et al. 2012], and build image saliency benchmarks [Borji
et al. 2012; Bylinskii et al. 2015]. Furthermore, there is work in
the collection of touch saliency information for mobile devices [Xu
et al. 2012], consisting of touch behaviors on the screens of mo-
bile devices as a user browses an image. The touch behaviors can
be used to generate visual saliency maps and be compared against
saliency maps computed with image processing methods. Our con-
cept of “touch” is for touching of 3D statue models.

2.2 Learning
Crowdsourcing and Learning. There exists previous work in ap-
plying crowdsourcing and learning techniques to solve problems re-
lated to 2D art, images, and 3D shapes. Our overall crowdsourcing
and learning approach is inspired by a previous method for learn-
ing a similarity measure of styles of 2D clip art [Garces et al. 2014].
Crowdsourcing has been used to develop tools to explore font col-
lections [O’Donovan et al. 2014]. Crowdsourcing has also been ap-
plied to solve vision problems such as extracting depth layers and
image normals from a photo [Gingold et al. 2012a], and to convert
low-quality inputs of drawings into high-quality outputs [Gingold
et al. 2012b]. For 3D shape analysis, “Schelling points” [Chen et al.
2012] on 3D mesh surfaces can be found by first having humans se-
lect them in a coordination game and then learning them for new
meshes. In our work, we take a crowdsourcing and learning frame-
work for a different problem of tactile mesh saliency.

Deep Learning. Previous works [Wang et al. 2014; Zagoruyko
and Komodakis 2015; Hu et al. 2014; Hu et al. 2015] have
combined these concepts of learning for image processing prob-
lems: deep learning, ranking-based learning, metric learning, and
Siamese networks (i.e. using same weights for two copies of net-
work). One key difference in our work is in our problem formula-
tion for our (A,B) and (C,D) data pairs and corresponding terms
throughout our backpropagation (for four copies of network). Deep
learning methods have also been recently applied to 3D modeling,
for example for 3D shape recognition [Su et al. 2015] and human
body correspondences [Wei et al. 2015]. We combine the concepts
of deep architectures and learning-to-rank to solve the tactile mesh
saliency problem. In particular, our solution for 3D shapes (i.e.
multi-viewpoint representation, deep neural network architecture
computing saliency for patch center, and combining results from
viewpoints) is fundamentally different.

2.3 Grasping and Haptics
Robotic Grasping. There exists much work on finding and ana-
lyzing robot grasps for real-world objects. Goldfeder et al. [2009]
build a robot grasp database and focus on generating and analyz-
ing the grasps of robotic hands to facilitate the planning of grasping
motions. Sahbani et al. [2012] provide an overview of grasp syn-
thesis algorithms for generating 3D object grasps with autonomous
multi-fingered robotic hands. Bohg et al. [2014] provide a survey of
work on grasp synthesis for finding and ranking candidate grasps.
The focus of previous work in this area is on grasp synthesis, while
our focus is on tactile saliency based on human perception and for
graphics purposes. Our output is different as for example a human
can perceive the touching of a shape without physically touching it.

There is also previous work on generating grasp points from im-
ages and shapes. Saxena et al. [2007] learn a grasping point for an
object in an image directly from the input image such that a robot



can grasp novel objects. Sahbani et al. [2009] first identify a gras-
pable part of a 3D shape by segmenting the shape into distinct parts.
They then generate contact points for grasping with a multi-fingered
robot hand. Klank et al. [2009] match CAD models to noisy camera
data and use preprocessed grasping points on the CAD models for
a robot to grasp them. Varadarajan et al. [2012] take RGB-depth
data from a cluttered environment, estimate 3D shapes from the
data, and then generate specific grasp points and approach vectors
for the purpose of planning of a robot hand. They generate specific
grasp locations for robotic applications. In this paper, we solve a
more general problem as we compute saliency information on the
whole mesh surface for different tactile interactions according to
human perception and for graphics applications.

Haptics. Haptic feedback devices allow a human to physically
touch and interact with virtual objects. A previous work on haptics
and perception [Plaisier et al. 2009] performs experiments where a
user’s hand recognizes the salient features of real objects, for ex-
ample to recognize a cube among spheres. Our work takes virtual
meshes as input but we do not directly touch and interact with them.

2.4 Applications
Rendering Appearances. Many techniques have been developed
for modeling the appearance of weathering and aging [Mérillou
and Ghazanfarpour 2008]. Modeling the appearance requires the
representation of a local effect, such as the development of patina
[Dorsey and Hanrahan 1996] and the spatial distribution of that lo-
cal effect. For some types of aging, the spatial distribution can be
determined by means of simulating natural phenomena such as flow
[Liu et al. 2005]. However, for spatial distribution of material ag-
ing due to human interaction, such a simulation is not feasible. Our
tactile saliency map can be used as a predictor of the spatial distri-
bution of appearance effects due to human interaction.

Fabrication and Geometry Modeling. Recent work has consid-
ered physical properties of virtual shapes for the purpose of fabri-
cation. For example, there is work in analyzing the strength of a
3D printed object [Zhou et al. 2013] and in learning the material
parameters including color, specularity, gloss, and transparency of
3D meshes [Jain et al. 2012]. In addition, there has been work in
fabricating objects based on virtual shapes. Lau et al. [2011] build
real-world furniture by generating parts and connectors that can be
fabricated from an input 3D mesh. Bacher et al. [2012] fabricate ar-
ticulated characters from skinned meshes. Hildebrand et al. [2013]
decompose a 3D shape into parts that are fabricated in an optimal
direction. Schwartzburg et al. [2013] and Cignoni et al. [2014] gen-
erate interlocking planar pieces that can be laser cut and slotted
together to resemble the original 3D shape. In this growing field
of fabrication, this paper makes a contribution by computing tac-
tile saliency on a 3D mesh surface from its geometry, which can be
useful for suggesting materials to fabricate the shape.

There have been many developments in the area of geometry pro-
cessing on analyzing virtual 3D meshes for various purposes. Some
of these relates to our work as a general understanding of meshes
can help to identify tactile saliency information. In particular, there
are many methods for segmenting and labeling 3D meshes [Chen
et al. 2009; Kalogerakis et al. 2010]. Given a segmentation, we may
be able to extract some information about tactile saliency. However,
computing our saliency directly without an intermediate segmenta-
tion step is more general and can avoid potential errors in the inter-
mediate step. Also, segmentation gives discrete parts whereas we
generate continuous values over a mesh surface. Given our saliency
information, we may be able to segment a mesh into distinct parts
but this is not our focus. To demonstrate our application of fabrica-
tion material suggestion, we do separate a mesh into distinct parts
if each part were to be fabricated with different materials.

Figure 2: (a) Two examples of images with correct answers given
as part of the instructions for Amazon Mechanical Turk HITs. Text
instructions were given to users: they are specifically asked to
imagine the virtual shape as if it were a real-world object, and to
choose which point is more salient (i.e. grasp to pick up, press, or
touch for statue) compared to the other or that they have the same
saliency. (b) Two examples of images of HITs we used. (c) Screen-
shot of software where user directly selects pairs of vertices and
specify which is more salient (or same).

3 Collecting Saliency Data
Our framework collects saliency data from humans and learns a
saliency measure from the data. This section describes the pro-
cess of collecting data from humans about the tactile saliency of
3D mesh points. The data for each tactile interaction is collected
separately. Throughout the data collection process, the users per-
ceive how they may interact with virtual meshes and are not given
any real objects. We collected 150 3D meshes representing various
types of objects from online datasets such as Trimble 3D Ware-
house and the Princeton Shape Benchmark [Shilane et al. 2004].

We ask humans to label saliency data. However, it is difficult for hu-
mans to provide absolute saliency values (for example, to provide a
real number value to a mesh vertex). The key to our data collection
is that humans can compare saliency between pairs of vertices more
easily, similar to [Garces et al. 2014] where humans can compare
relative styles of 2D clip art more easily. Hence we ask humans
to compare between pairs of vertices of a mesh and decide which
vertex is more salient (or that they have the same saliency).

We used two methods for collecting data. First, we generated im-
ages of pairs of vertices on virtual 3D meshes and asked humans
to label them on Amazon Mechanical Turk. A human user is ini-
tially given instructions and example images with correct answers
(Figure 2a). Each HIT (a set of tests on Amazon Mechanical Turk)
then consists of 24 images (see Figure 2b for some examples). For
each image, the user selects either “A” or “B” if one of the labeled
vertices is more salient, or “same” if he/she thinks that both vertices
have equal saliency. For the interaction of grasping, we specify that
we do not intend the human to grasp an object with one point, but
the user should think of grasping the object as a whole to decide
which point is more likely included in the grasping. For meshes
where the size is important, we also give the user information about
the size on the image (e.g. toy car of length 5 centimeters). We
paid $0.10 for each HIT. A user typically takes a few seconds for
each image and about one to two minutes for each HIT. We had 118
users and 4200 samples of data (2600 for grasp, 1100 for press, and
500 for touch) where each sample is one image. The crowdsourced
data may be unreliable. Before a user can work on the HITs, he/she
needs to pass a “qualification” test by correctly answering at least
four of five images. For each HIT, we have four control images and
the user must correctly answer three of them for us to accept the



data. We rejected 8.6% of HITs.

Second, we provide a software tool for users to select pairs of ver-
tices. The user visualizes a mesh in 3D space and directly clicks
on a vertex with the mouse to select it (Figure 2c). The user then
provides the label (i.e. which vertex is more salient or same) for
each pair of vertices with keyboard presses. We asked users to
try to select vertices over the whole mesh. This method provides
more reliable data as we can give more guidance to the users from
the start, and hence we do not reject any data collected with this
method. The tradeoff is that this method may not be able to col-
lect data on a large scale if needed. A user can label hundreds of
samples each hour and we paid $12 per hour. For this method, we
had 30 users and collected 13200 samples (7700 for grasp, 4100 for
press, and 1400 for touch).

From the data collection, we have the “original” data sets Iorig and
Eorig . Iorig contains pairs of vertices (vA, vB) where vertex A
is labeled as more salient than vertex B. Eorig contains pairs of
vertices (vC , vD) where vertices C andD are labeled as having the
same saliency. Each data sample from these sets has two different
vertices, and some vertices are repeated across samples. The set
V = {v1, . . . , vh} contains all the vertices, where h is the total
number of vertices on all meshes that were labeled. We have h
= 23517 vertices (13473 for grasp, 7523 for press, and 2521 for
touch). The total number of labeled vertices is much smaller than
the total number of vertices in all meshes.

4 Multi-View Deep Ranking
In this section, we describe our framework for learning a tactile
saliency measure with the collected data in Section 3. We learn a
measure that maps from a vertex to a saliency value. The problem
is challenging as we need to develop the appropriate data repre-
sentation, problem formulation, and network architecture. As our
collected data is ranking-based (i.e. some vertices are ranked to
be more salient than others), we take a learning-to-rank approach
which is commonly used in information retrieval and web page
ranking to rank the vertices of a mesh according to their salien-
cies. We leverage the strength of deep learning to learn complex
non-linear functions by using the fundamental concept of learning
multiple layers in a neural network architecture. We contribute a
deep ranking method: a formulation of learning-to-rank that works
with backpropagation in a deep neural network that can be used to
solve our tactile saliency problem.

We first describe the processing of the collected data into a
multiple-view representation. We then describe the deep ranking
formulation, including the overall loss function and the backprop-
agation in the neural network that takes into account the concept
of learning-to-rank. After the measure is learned, we can use it to
compute saliency values for all vertices of a mesh.

4.1 Multiple-View Data Representation
Inspired by approaches that take multi-view representations of 3D
shapes [Chen et al. 2003; Su et al. 2015] for other geometry pro-
cessing problems, we represent a 3D mesh with multiple depth im-
ages from various viewpoints. We scale each mesh to fit within each
depth image. The collected “original” data sets Iorig and Eorig
are converted to training data sets Itrain = (x

(viewi)
A ,x

(viewj)

B )

and Etrain = (x
(viewi)
C ,x

(viewj)

D ). Each pair in the original sets
(vA, vB) becomes various pairs of (x(viewi)

A ,x
(viewj)

B ). x
(viewi)
A

is a smaller and subsampled patch of the depth image from view i
for vertex vA. To convert from v to x for each viewpoint or depth
image, the vertex v that is visible from that viewpoint is projected to
coordinates in the depth image, and a patch with the projected coor-

Figure 3: Our deep neural network with 6 layers. x is a smaller
and subsampled patch of a depth image and y is the patch center’s
saliency value. The size of each depth image is 300x300. We take
smaller patches of size 75x75 which are then subsampled by 5 to
get patches (x) of size 15x15. This patch size corresponds to real-
world sizes of about 4-50 cm. The number of nodes is indicated for
each layer. The network is fully connected. For example, W(1) has
100x225 values and b(1) has 100x1 values. The network is only
for each view or each depth image and we compute the saliency
for multiple views and combine them to compute the saliency of
each vertex. Note that we also need four copies of this network to
compute the partial derivatives for the batch gradient descent.

dinates as its center is extracted as x. Each pair (vA, vB) can have
a different number of views (typically between six and fourteen).
The two vertices in the same pair can have two different viewpoints
as long as the corresponding vertices are visible.

4.2 Deep Ranking Formulation and Backpropagation
Our algorithm takes as input the sets Itrain and Etrain and learns
a deep neural network that maps a patch x to the patch center’s
saliency value y = hW,b(x) (Figure 3). We experimented with
different network architectures for our problem and found that it
can be difficult to represent the position of the pixel that we are
computing the saliency for. Our problem formulation was the most
effective among the architectures we tested. The neural network
is fully-connected. We learn W which is the set of all weights
(W(1), . . . ,W(5)) where W(l) is the matrix of weights for the
connections between layers l − 1 and l, and b which is the set of
all biases (b(1), . . . ,b(5)) where b(l) is the vector of biases for the
connections to layer l. The same neural network can be used across
different depth images and 3D shapes. Each tactile interaction is
learned separately and needs a different network.

In contrast to typical supervised learning frameworks, we do not
directly have the target values y that we are trying to compute.
Our data provides rankings of pairs of vertices. Hence we take a
learning-to-rank formulation and learn W and b to minimize the
following ranking loss function:

L(W,b) =
1

2
‖W‖22 +

Cparam

|Itrain|
∑

(xA,xB)∈Itrain

l1(yA − yB)

+
Cparam

|Etrain|
∑

(xC ,xD)∈Etrain

l2(yC − yD)

(1)

where ‖W‖22 is the L2 regularizer (2-norm for matrix) to prevent
over-fitting, Cparam is a hyper-parameter, |Itrain| is the number
of elements in Itrain, l1(t) and l2(t) are suitable loss functions for
the inequality and equality constraints, and yA = hW,b(xA). We
use these loss functions:

l1(t) = max(0, 1− t)2 (2)

l2(t) = t2 (3)



The two training sets Itrain and Etrain contain inequality and
equality constraints respectively. If (xA,xB) ∈ Itrain, vertex A
should be more salient than vertex B and h(xA) should be greater
than h(xB). Similarly (xC ,xD) ∈ Etrain implies equal saliency:
h(xC) should be equal to h(xD). The loss function l1(t) enforces
prescribed inequalities in Itrain with a standard margin of 1, while
the equality loss function l2(t) measures the standard squared de-
viations from the equality constraints in Etrain.

To minimize L(W,b), we perform an end-to-end neural network
backpropagation with batch gradient descent, but we have a new
formulation that is compatible with learning-to-rank and with our
ranking-based data. First, we have a forward propagation step that
takes each pair (xA,xB) ∈ Itrain and propagates xA and xB

through the network with the current (W,b) to get yA and yB
respectively. Similarly, xC and xD from each pair (xC ,xD) ∈
Etrain are propagated. Hence there are four copies of the network
for each of the four cases A, B, C, and D.

We then perform a backward propagation step for each of the four
copies of the network and compute these delta (δ) values:

δ
(nl)
i = y(1− y) for output layer (4)

δ
(l)
i = (

sl+1∑
k=1

δ
(l+1)
k w

(l+1)
ki ) (1− (a

(l)
i )2) for inner layers (5)

where the δ and y values are indexed as δAi and yA in the case for
A. The index i in δ is the neuron in the corresponding layer and
there is only one node in our output layers. nl is the number of
layers, sl+1 is the number of neurons in layer l + 1, w(l+1)

ki is the
weight for the connection between neuron i in layer l and neuron k
in layer (l+1), and a(l)i is the output after the activation function for
neuron i in layer l. We use the tanh activation function which leads
to these δ formulas. Note that due to the learning-to-rank aspect, we
define these δ to be different from the usual δ in the standard neural
network backpropagation.

We can now compute the partial derivatives for the gradient de-
scent. For ∂L

∂w
(l)
ij

, we split this into a ∂L
∂‖W‖2

∂‖W‖2
∂w

(l)
ij

term and

∂L
∂y

∂y

∂w
(l)
ij

terms (a term for each yA and each yB computed from

each (xA,xB) pair and a term for each yC and each yD computed
from each (xC ,xD) pair). The ∂L

∂y
∂y

∂w
(l)
ij

term is expanded for the

A case for example to ∂L
∂yA

∂yA
∂ai

∂ai
∂zi

∂zi

∂w
(l)
ij

where the last three par-

tial derivatives are computed with the copy of the network for the
A case. zi is the value of a neuron before the activation function.
The entire partial derivative is:

∂L

∂w
(l)
ij

= w
(l)
ij

+
2Cparam

|Itrain|
∑

(A,B)

max(0, 1− yA + yB) chk(yA − yB) δ
(l+1)
Ai a

(l)
Aj

−
2Cparam

|Itrain|
∑

(A,B)

max(0, 1− yA + yB) chk(yA − yB) δ
(l+1)
Bi a

(l)
Bj

+
2Cparam

|Etrain|
∑

(C,D)

(yC − yD) δ
(l+1)
Ci a

(l)
Cj

−
2Cparam

|Etrain|
∑

(C,D)

(yC − yD) δ
(l+1)
Di a

(l)
Dj

(6)

There is one term for each of theA,B,C, andD cases. (A,B) rep-
resents (xA,xB) ∈ Itrain and all terms in the summation can be

computed with the corresponding (xA,xB) pair. The chk() func-
tion is:

chk(t) = 0 if t ≥ 1 (7)
= −1 if t < 1 (8)

For each (A,B) pair, we can check the value of chk(yA − yB)
before doing the backpropagation. If it is zero, we do not have to
perform the backpropagation for that pair as the term in the sum-
mation is zero. The partial derivative for the biases is similar:
∂L

∂b
(l)
i

=
2Cparam

|Itrain|
∑

(A,B)

max(0, 1− yA + yB) chk(yA − yB) δ
(l+1)
Ai

−
2Cparam

|Itrain|
∑

(A,B)

max(0, 1− yA + yB) chk(yA − yB) δ
(l+1)
Bi

+
2Cparam

|Etrain|
∑

(C,D)

(yC − yD) δ
(l+1)
Ci

−
2Cparam

|Etrain|
∑

(C,D)

(yC − yD) δ
(l+1)
Di

(9)

The batch gradient descent starts by initializing W and b randomly.
We then go through the images for a fixed number of iterations,
where each iteration involves taking a set of data samples and per-
forming the forward and backward propagation steps and comput-
ing the partial derivatives. Each iteration of batch gradient descent
sums the partial derivatives from a set of data samples and updates
W and b with a learning rate α as follows:

w
(l)
ij = w

(l)
ij − α

∂L
∂w

(l)
ij

(10)

b
(l)
i = b

(l)
i − α

∂L
∂b

(l)
i

(11)

4.3 Using Learned Saliency Measure
After learning W and b, we can use them to compute a saliency
value for all vertices of a mesh. The learned measure gives a rel-
ative saliency value where the saliency of a vertex is with respect
to the other vertices of the mesh. For each vertex vi, we choose a
set of views viewj where vi is visible and compute the subsampled
patches x(viewj)

i . The views can in theory be random but in prac-
tice we pick a small set of views from the set used in the training
process. If a vertex is not directly visible from any viewpoint, we
can take a set of views even if the vertex is occluded. We compute
hW,b(x

(viewj)

i ) for each j with the learned W and b, and take the
average of these values to get the saliency value for vi.

5 Results: Tactile Saliency Maps
We demonstrate our approach with three tactile interactions. The
saliency maps show the results of the crowdsourced consensus as
they combine the data from various people. Note that the human
users only provided data for a very small number of vertices on
the training meshes, and it would be tedious for a human to label
them all. We generate the saliency maps by computing the saliency
values for each vertex, and then mapping these values (while main-
taining the ranking) to [0, 1] such that each vertex can be assigned a
color for visualization purposes. We also blend the saliency values
by blending each vertex’s value with those of its neighbors. The
saliency results should be interpreted as follows (as this is how the
data was collected): we should think of the virtual shape to be a real
object and perceive how likely we are to grasp, press, or touch each
point. Since our results provide a relative ranking, a single vertex
labeled red for example may not necessarily be salient on its own.



Figure 4: “Grasp” saliency maps (grasp to pick up objects). Each example has the input mesh and corresponding result (some with two
views). The top row shows meshes used in the training data while the bottom two rows show new meshes.

For the parameters of our network, we set the hyper-parameter
Cparam to 1000. We initialize each weight and bias in W and
b by sampling from a normal distribution with mean 0 and stan-
dard deviation 0.1. We go through all images at least 100 times or
more for the network to produce reasonable results. For each it-
eration of the batch gradient descent, we typically choose between
100 and 200 data samples for Itrain and Etrain. The learning rate
α is set to 0.0001. The learning process can be done offline. For
example, 100 iterations of batch gradient descent for one 3D mesh
with about 10 viewpoints and 100 data samples takes about 20 sec-
onds in MATLAB. This runtime scales linearly as the number of 3D
meshes increases. After the weights and biases have been trained,
computing the saliency of each vertex requires straightforward for-
ward propagations and the runtime is interactive.

5.1 Grasp Saliency Maps

Figures 1 (left) and 4 show the results for grasp saliency. These
are specifically for grasping to pick up objects as there can be other
types of grasping. Our method generalizes well when it is applied to
new data. For example, our method learns the parts in the 3D shapes
that should be grasped such as handles in the teapots and trophy
(Figure 4, 2nd row), and these overall shapes are new testing models
that are very different from those in the training data. The results
for the desklamps (Figure 4, 3rd row) are also interesting, since
these are new testing models that do not appear in the training data
and the graspable parts are successfully learned. Furthermore, the
results for the cup handles (Figure 4) may seem counter-intuitive,
as they are often computed to be more likely grasped at the top
part than the bottom part. However, these results are explained by
the user data which gives the crowdsourced consensus, as the users
ranked points near the top part of the handle as more likely to be
grasped than points near the middle and bottom parts of the handle.

Objects of Different Sizes. Figure 5 (left) shows grasping re-
sults that consider objects of different sizes. For each case in the
figure, we told the user whether it is a real size car or a toy size car
(e.g. telling user during data collection that car is of length 5cm).
We scale them according to their sizes in the depth images. Users
prefer to “grasp” a real size car on the door handles of the car. On
the other hand, users prefer to grasp a toy size car around the middle
more than at the front and back ends of the car. Our examples show
that we can obtain different results for objects of different sizes.

Figure 5: Left (Objects of Different Sizes): For the same car mesh,
the top image shows the grasp saliency for a real size car and the
bottom image shows a different grasp saliency for a toy size car.
Right (Grasping Sub-Types): For the same shovel mesh, the left
shovel is for grasping to pick up and the right shovel is for grasping
to use. The region near the blade in the right shovel is more likely
to be grasped than for the left shovel.

Grasping Sub-Types. Figure 5 (right) shows an example for two
sub-types of grasping: grasping to pick up an object and grasping to
use an object. These are considered to be different grasping modal-
ities and we collect the data and learn the saliency measures sepa-
rately. For the “grasping to use” case, a human typically grasp the
shovel’s handle with one hand and use the other hand to grasp at the
region near the blade. Our shovel example shows that, for the same
mesh, different modalities can lead to different results.

5.2 Press Saliency Maps
Figures 1 (middle) and 6 show examples of press saliency maps.
Our method learns to identify the parts of 3D shapes that can be
pressed such as buttons and touch screens. An interesting result
is in the perceived relative likelihood of pressing buttons on the
game controllers: some buttons are more likely to be pressed than
others. However, this is not the case for the microwave as there is
less consensus on which microwave buttons are more likely to be
pressed, since the buttons on different microwaves may be different.

Multiple Tactile Modalities for Same Object. We can learn mul-
tiple tactile saliency measures for the same object, as an object may
be grasped, pressed, touched, or interacted with in different ways.
An example is the watch models. Figure 4 shows the “grasping” of
watches where users prefer to grasp near the middle of the watch
and then progressively less towards the top and bottom ends. Fig-
ure 6 shows the “pressing” of watches where users prefer to press



Figure 6: “Press” tactile saliency maps. Each example has the input mesh and corresponding result (some with two views). The top row
shows meshes used in the training data while the bottom row shows new meshes.

Figure 7: “Touch” saliency maps are specifically for touching
statues. Each example shows the input mesh and the saliency map
(two views). The top row shows meshes used in the training data
while the bottom row shows new meshes.

the buttons on the sides of the watch more than any other parts.

5.3 Touch Saliency Maps
We demonstrate touch saliency specifically for the touching of stat-
ues and not for “touching” 3D shapes in general. We show exam-
ples of results in Figures 1 (right) and 7. The results show that
humans tend to touch the top part or the head regions of the statues,
and then also significant parts such as hands, mouth, and tail. The
algorithm learns to assign higher saliency values to these protruding
and/or significant parts.

6 Evaluation
6.1 Network Parameters and Robustness
There is typically a wide range of parameters for the learning to
find a solution for the 3D models that we have tested. The number
of iterations of batch gradient descent, the learning rate α, and the
initialization of the weights W and biases b are the parameters that
we adjust most often (in this order). We initially set the parame-
ters based on cross-validation. For example, the hyper-parameter
Cparam is chosen from {0.01, 0.1, 1, 10, 102, 103, 104}. For vali-
dation, we used only inequality constraints since the equality con-
straints will not be precisely met in practice. The optimal Cparam

is the one that minimizes the validation error.

We use a patch size of 15x15 (a smaller and subsampled patch of
a depth image). The disadvantage of this size is that we only have

Figure 8: Example plots (three colors for three cases) of the over-
all loss function L versus number of iterations in the batch gradient
descent. They show the convergence in our optimization.

Figure 9: Progression of results (grasp saliency) for a mug
model as the number of iterations (images show iteration number
10, 20, ..., 70) in the batch gradient descent increases.

local information. However, our result is that local information is
enough to predict tactile saliency. This patch size is a parameter.
Increasing this size can lead to more global information until we
get the original depth image with the pixel to be predicted at its
center, but this can also lead to a longer learning time. We take a
relatively small patch size as it already works well and is efficient.

Figure 8 shows plots of the overall loss function L versus the num-
ber of iterations. The value of L gradually converges. We can see
from the figure that it is intuitive to set the number of iterations after
visualizing such plots. Figure 9 shows the progression of results of
a mug model during the optimization. The results are not accurate
near the start and gradually moves towards a good solution.

We give some idea of what the neural network computes with the
images in Figure 10. We use the learned measures to compute the
saliency for each pixel in the depth images. These images already
show preliminary results and note that we combine multiple view-
points for each vertex to compute the final saliency value.

6.2 Quantitative Evaluation
We evaluate whether our learned measure can predict new examples
by comparing with ground truth data. We take the human labeled



Figure 10: We show the results for individual depth images for
various 3D models and viewpoints. These are intermediate results
and we combine them from different viewpoints to get our saliency
measure. The [0, 1] grayscale colors indicate least to most salient.
Top row: for grasping. Bottom row: for pressing (first three) and
touching (last two).

data itself to be the ground truth. We perform a 5-fold cross valida-
tion of the collected data, where the training data is used to learn a
saliency measure and we report the percentage error for the left-out
validation data (Table 1, Deep Ranking column). We take only the
data in the inequality set Iorig , as the equality set Eorig contains
vertex pairs with the “same” saliency and it is difficult to numer-
ically determine if two saliency values are exactly equal. For the
pairs of vertices in Iorig , the prediction from the learned measure
is incorrect if the collected data says vA is more salient than vB ,
but the computed saliency of vA is less than that of vB .

We also compare between our deep ranking method and an exist-
ing learning-to-rank method that has an underlying linear represen-
tation (Table 1, RankSVM column). For “RankSVM”, we com-
pute features manually, use the same saliency data we already col-
lected, and learn with the RankSVM method [Chapelle and Keerthi
2010]. We explicitly compute a feature vector of 3D shape descrip-
tors for each mesh vertex, except that we use a variant of the com-
monly used version of some descriptors as we compute features
for a vertex relative to the whole model rather than for the whole
model. The features include: D2 Shape Distribution [Osada et al.
2001], Gaussian Image [Horn 1984], Light Field Descriptors [Chen
et al. 2003; Shilane et al. 2004], and Gaussian and Mean curvatures
[Surazhsky et al. 2003]. We then use RankSVM which computes a
weight vector with the same dimensions as our feature vector. The
saliency measure is a linear function and is the dot product of the
learned weight vector and a feature vector. We use the same overall
loss function as in Equation 1 except with the linear function and
weights. We minimize this loss function using the primal Newton
method as originally developed by Chapelle [Chapelle and Keerthi
2010] for inequality constraints and subsequently adapted by Parikh
and Grauman [Parikh and Grauman 2011] for equality constraints.
The results show that a deep multiple layer architecture makes a
significant difference compared to a linear saliency measure.

6.3 User Study
We performed a user study to evaluate our learned saliency mea-
sures. The idea is to evaluate our measures by comparing them with
data perceived by real-world users for virtual meshes and physical
objects. The user experiment started by questions about each user’s
previous 3D modeling experiences followed by tasks with four ob-
jects. For the first object, we ask the user to take a real mug (Fig-
ure 11 left) and choose ten pairs of points on it. For each pair, they
should select which point is more likely to be grasped. They were
told to pick points evenly on the object’s surface. We recorded the
approximate location of each point on the real mug as the vertex
on the corresponding virtual mesh that we modeled. For the second
object, they were given a real laptop (Figure 11 right) and to choose
ten pairs of points on it and tell us for each pair which point is more
likely to be pressed. For the third object, they were given a virtual
mesh of a cooking pan. The users can visualize and manipulate (i.e.

No. of RankSVM Deep Ranking
3D Model Samples (% error) (% error)
Mug 114 10.5 1.8
Cooking Pan 181 9.4 3.3
Screwdriver 64 7.8 1.6
Shovel 88 26.1 2.3
Cell Phone 76 27.6 2.6
Laptop 23 4.3 4.3
Alarm Clock 48 12.5 2.1
Game Controller 262 3.4 1.5
Statue of Dog 95 3.2 1.1
Statue of Human 49 10.2 4.1

Table 1: Comparison between a learning-to-rank method with a
typical linear function (RankSVM) and our deep learning-to-rank
method. “No. of Samples” is the number of (vA, vB) pairs from
the inequality set Iorig . “% error” is the percentage of samples
that are incorrectly predicted based on cross validation. There are
3 groups of models for the grasp, press, and touch modalities.

Figure 11: For real objects: we took a real mug and laptop, cre-
ated 3D models of them, and computed the grasp saliency map for
the mug and the press saliency map for the laptop.

rotate, pan, zoom) the virtual shape with an interactive tool. In this
case, we have already selected ten points on the shape and we asked
them to rank the ten points in terms of how likely they will grasp
them. Points that are similar in ranking are allowed. For the fourth
object, they were given a virtual mesh of a mobile phone. Similar to
the third object, they were asked to rank ten already selected points
in order of how likely they will press them.

We had 10 users (2 female). Each user was paid $6 and each session
lasted approximately 30 minutes. Two users have previous experi-
ences with Inventor and two users have experiences with Blender.

We took the data that users gave for the real mug as ground truth and
compared them with our grasp saliency measure. Our predictions
have an error rate of 2.4%, where 16 responses were pairs of ver-
tices perceived to have the same saliency and we did not use these
responses. For the data of the real laptop, our press saliency pre-
dictions have an error rate of 3.2%, where 7 responses were pairs
of vertices perceived to have the same saliency. For the ranking
of each set of ten points for the virtual objects, we compared the
user rankings with our corresponding saliency measures. We used
the NDCG ranking score which is used in information retrieval
[Järvelin and Kekäläinen 2002] to give an indication of accuracy.
We first use our saliency measure to rank each set of ten points of
each object. We then compare this ranking and the user rankings
with the NDCG score. The mean NDCG score for the “grasp” ob-
ject is 0.92 and for the “press” object is 0.90. The results show that
our saliency measures correspond to users’ perception of saliency.

6.4 Comparison with Real-World Objects
For a real mug and laptop, we created corresponding 3D virtual
models of them, and computed their saliency maps (Figure 11). The
saliency maps visually correspond to our perception of grasping and
pressing. Users prefer to grasp the handle and middle parts of the
mug, and users prefer to press the keys and mouse pad of the laptop.



Figure 12: Fabrication Material Suggestion: Papercraft. The
more likely it is to grasp or touch, the more sturdy the material. Top
row: input bunny mesh, grasp saliency map, saliencies discretized
into 4 clusters, and fabricated paper model (two views). The mate-
rials are softer paper (blue in figure), normal paper (white), thicker
card (light brown), and cardboard-like paper (brown). Bottom row:
input dog statue mesh, touch saliency map, saliencies discretized
into 3 clusters, and fabricated paper model (two views).

6.5 Failure Cases
An example failure case is the knife model in the left
figure. For this knife, the handle and blade parts are
very similar in geometric shape and hence it is diffi-
cult to differentiate between them. Moreover, another
category of failure cases is meshes of object types that
we have no training data for. As our framework is
data-driven, it relies on the available training data.

7 Applications
7.1 Fabrication Material Suggestion: Papercraft
We apply our computed saliency information to fabricate papercraft
models. The key concept is that the more likely a surface point of
the mesh will be grasped or touched, the more sturdy or stronger
the paper material can be. The resulting papercraft model will be
more likely to stay in shape and/or not break.

We fabricate papercraft models as follows. An input mesh is sim-
plified to a smaller number of faces while maintaining the overall
shape. We compute the saliency map for the simplified shape. The
saliency values on all vertices are then discretized into a fixed num-
ber of clusters such that each cluster can be made with one material.
For each cluster, we unfold the faces into a set of 2D patterns with
Pepekura Designer. We print or cut each pattern with a material
based on the average saliency of the vertices in the cluster. The pat-
terns are then folded and taped together. Figure 12 shows a bunny
paper model and a dog statue paper model. The thickest cardboard-
like paper makes it easy to grasp the paper bunny by its ears and
makes the head of the dog statue more durable even if that part is
touched more.

7.2 Fabrication Material Suggestion: 3D Printing
We can also apply our computed saliency information to suggest
different materials for different parts of a mesh depending on how
likely the surface points are grasped. The key concept is that the
more likely a surface point will be grasped, the more soft the 3D
printed material can be. The resulting object will then be more
comfortable to grasp. This is motivated by real-world objects such
as screwdrivers and shovels where the parts that are grasped are
sometimes made with softer or rubber materials.

We fabricate a mesh as follows. We compute the grasp saliency
map with the input mesh. The saliency values are separated into a
fixed number of clusters. The whole shape is then separated into
different volumetric parts by first converting it into voxel space.
Each voxel is assigned to the cluster of its closest surface point.

Figure 13: Fabrication Material Suggestion: 3D Printing. The
more likely it is to grasp, the more soft the material to make it
more comfortable to grasp. Input screwdriver mesh, grasp saliency
map, saliencies discretized and blended into 4 clusters of volumet-
ric parts, and screwdriver with 6 discrete parts and 4 suggested ma-
terials fabricated with an Objet Connex multi-material 3D printer.

These voxel clusters can be blended with their neighbors to make
the result more smooth. Each volumetric cluster is converted back
to a mesh with the Marching Cubes algorithm. Each part can then
be assigned a different material based on the saliency of the clus-
ter. The parts may be 3D printed into a real object with different
materials. Figure 13 shows an example of the above process for a
screwdriver input mesh. The 3D printed screwdriver is more com-
fortable to grasp near the middle. The softer material in the middle
also inherently suggests to users that they should grasp it there.

7.3 Rendering Properties Suggestion
We can apply our computed saliency information to suggest vari-
ous colors, material properties, and textures for 3D models. The
motivation is to apply the potential effects of human interactions to
render a 3D model with only its geometry with realistic and inter-
esting appearances. There are many possible ways to create these
effects. We can modulate the color and material properties (such
as shininess and ambience properties) of 3D shapes based on the
computed saliency values. We can also map different textures to
different parts of a mesh based on the saliencies. Figure 14 shows
examples of such renderings. We cluster the computed saliencies in
different ways to modulate the rendered properties, textures, and to
simulate a dirt effect for the mug. We map different textures (e.g.
grip textures) to the mug, cooking pan, shovel, screwdriver, and
alarm clock to indicate the parts that are more graspable or press-
able. We modulate the color, shininess, and map different textures
to the dog and human statues to indicate the parts that are more
likely to be touched and to make them look more interesting.

8 Discussion
We have introduced the concept of computing tactile saliency for
3D meshes and presented a solution based on combining the con-
cepts of deep learning and learning-to-rank methods. For future
work, we will experiment with other tactile modalities and other
possible types of human interactions with virtual and real objects.
We collected data on user perceptions of interactions with virtual
3D meshes in this paper. In the future, we can also collect data
where humans interact with real-world objects, although this may
be difficult to scale to a large amount of data.

We have leveraged two fundamental strengths of deep learning by
having an architecture with multiple layers and by not using hand-
crafted 3D shape descriptors. However, there is more to deep learn-
ing that we can explore. One assumption we have made is that local
information and a small patch size in our learning is enough. Even
though we already achieve good results, it would be worthwhile to
explore higher resolution depth images and patch sizes to account
for more global information, experiment with a larger number of 3D
models, and incorporate convolutional methods to handle a larger
network architecture.



Figure 14: Rendering Properties Suggestion. Our computed
saliency information can be used to suggest different ways to render
the 3D shapes to make them look more realistic and interesting.

A limitation of our method is that it may not work without existing
training data for some types of shapes, unless there are other shapes
with similar parts in the data. However, this makes sense for a data-
driven framework. If a human has never seen an object before, it
may not be clear what the important points to grasp the object are.
To resolve this limitation, it may be helpful in the future to have
some way to indicate how confident the saliency measure is.

There are other potential applications of our work beyond the
saliency idea. In robotics, our work can be applied to computing
how a robot arm can grasp and/or manipulate an object. In func-
tionality analysis, understanding the saliency of a virtual shape can
help to understand its functionality as if it were a real object.

If we can segment and label [Kalogerakis et al. 2010] a 3D mesh
first, we may have a better understanding of the shape before com-
puting saliency values. In addition, there is work on assigning ma-
terials to 3D models [Jain et al. 2012]. Combining these ideas with
our method can be a direction for future work.
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