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Abstract
We introduce the problem of computing a human-perceived soft-
ness measure for virtual 3D objects. As the virtual objects do not
exist in the real world, we do not directly consider their physical
properties but instead compute the human-perceived softness of the
geometric shapes. We collect crowdsourced data where humans
rank their perception of the softness of vertex pairs on virtual 3D
models. We then compute shape descriptors and use a learning-
to-rank approach to learn a softness measure mapping any vertex
to a softness value. Finally, we demonstrate our framework with a
variety of 3D shapes.

Keywords: 3D modeling, crowdsourcing, learning, fabrication

Concepts: •Computing methodologies → Perception; Shape
analysis;

1 Introduction
There are many physical properties of real-world objects that are
identifiable by humans. Softness or compliance [Tiest 2010] is one
such property. Objects in our daily lives frequently have parts with
varying softness. For example, a couch, bed, or shoe has vary-
ing softness that humans may identify just by observing it. In this
paper, we consider the softness of virtual 3D shapes as opposed
to physical objects. Our definition of “softness” is as follows: a
human thinks of the softness of a virtual object given only its geo-
metric shape, and imagines the virtual shape as a real-world object
and pressing into points on its outer surface towards the direction of
the surface normal; if he/she can imagine pressing into the virtual
shape, then the more easily the virtual point can be “pressed”, the
more soft it is. Computing the spatially varying perceived softness
of an object can be useful for both rendering and fabrication. In ren-
dering, we can use this property to convey the sense of softness of
an object in a scene. In fabrication, we can use this to manufacture
objects that are consistent with user expectations.

The perception of softness when an object is touched depends on
physical properties such as stiffness and Young’s modulus [Tiest
2010]. However, humans can make judgements on softness with-
out touch, but just by looking at objects. Hence we collect crowd-
sourced data of human perception which will gather the crowd’s
consensus to compute softness. We expect humans to recognize the
object or parts of it unconsciously as a real object even though the
only information provided is a 3D virtual shape (or images of it).
This perceived context and recognition of objects will be included
in the collected data itself. We are inspired by Thurstone’s law of
comparative judgment, as we study how humans perceive objects
rather than performing any measurements of physical objects. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SAP 2016, July 22-23, 2016, Anaheim, CA
ISBN: 978-1-4503-4383-1/16/07
DOI: http://dx.doi.org/10.1145/2931002.2931019

Figure 1: An input 3D object and softness map computed by our
approach (front and back views). The jet colormap corresponds to
relative softness values (red is softer).

also use the concept of pairwise comparison when asking users to
compare between pairs of points on a shape.

This paper presents a crowdsourcing and learning framework to
solve the problem of computing a softness measure for virtual 3D
objects. We take as input a 3D shape and automatically compute as
output the softness of every vertex on the shape. Our approach is
inspired by recent methods for learning similarity measures (e.g.
for 2D clip art [Garces et al. 2014]). We collect crowdsourced
data where humans compare the softness of pairs of vertices on
3D shapes. For each 3D shape, we compute shape descriptors sim-
ilar to those used in 3D shape retrieval or classification [Shilane
et al. 2004]. We then use a learning-to-rank approach [Chapelle
and Keerthi 2010] typically used in machine learning for web page
ranking and information retrieval to learn a softness measure map-
ping each vertex to a relative softness value. After a softness mea-
sure is learned, we can use it to compute the human-perceived soft-
ness for a new 3D shape of an object type that we have collected
data for.

We demonstrate our approach by computing softness maps of 3D
shapes from 3D Warehouse and the Princeton Shape Benchmark
[Shilane et al. 2004]. We perform a user study to evaluate our ap-
proach. We then show the application of fabricating a real-world
object with the softness information computed by our approach.

The contributions of this paper are:
• We introduce the problem of computing a human-perceived

softness measure for virtual 3D shapes.
• We solve this problem with a crowdsourcing + learning-to-

rank approach.

1.1 Related Work
Human Perception. When it comes to conveying the physical
properties of virtual objects, research shows that human perception
can be stimulated in various ways to deliver the desired information.
Users can perceive textures [Lécuyer et al. 2004] on the desktop by
modifying the cursor’s motion on the screen. Garcia et al. [2010]
studies the perception of deformations in 3D shapes. They present a
new method which adds local deformations to modal analysis simu-
lations in order to improve the realism of the overall deformations.
Sanz et al. [2013] allows users to perceive local elasticity in im-
ages. When a user interacts with an image with a mouse, their
system gives visual feedback and generates deformation effects to
induce the perception of stiffness in the image. While a lot of per-
ception related research relies on stimulating human perception for
conveying information, we investigate the expectation of the user
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(softness in our case) instead of providing a pre-defined feedback
to be perceived by the user.

Geometry Modeling. There exists work in analyzing the virtual
properties of 3D shapes for various purposes. If one can simul-
taneously segment and label parts in 3D models [Kalogerakis et al.
2010], it may be possible to gather some information about softness
from the labels. However, humans may still have to specify such in-
formation between labels and softness beforehand. Our work com-
putes the softness of each vertex in one step, which may help to
avoid potential errors introduced in an intermediate labeling step.

Physics-based Deformations of 3D Shapes. Early work in this
area [Terzopoulos et al. 1987; Kass et al. 1988] described meth-
ods for modeling deformable shapes. Modal analysis methods can
simulate deformations by defining a deformation energy, and can
be used for many purposes such as segmenting a shape into parts
[Huang et al. 2009]. Our method does not have an underlying sim-
ulation, but we instead target the human perceptual process and ex-
tract data from it by taking a combined framework of 3D modeling,
crowdsourcing, and learning.

Computational Fabrication. There has been previous work on
fabricating objects to resemble virtual shapes. Bickel et al. [2010]
fabricate real-world objects with desired softness or deformable
properties. Lau et al. [2011] builds real-world furniture by gen-
erating parts and connectors that can be fabricated from an input
3D model. Schwartzburg et al. [2013] and Cignoni et al. [2014]
generate interlocking planar pieces that can be laser cut and slotted
together to resemble the original 3D shape. In the growing field of
fabrication, we make a contribution by computing softness infor-
mation on the surface of a 3D shape from its geometry alone. This
allows for the fabrication of objects with softness consistent with
user expectations.

2 Human-Perceived Softness Measure
We present the details of our method in this section. First, we com-
pute 3D shape features for each vertex. Second, we describe the
process for collecting softness data from humans. Third, the shape
features and crowdsourced data are then used to learn a human-
perceived softness measure mapping each vertex to a softness value.

2.1 3D Shape Features
To learn the relation from a vertex to a softness value, we need to
compute a feature vector (x) for a vertex on a 3D model. We take
3D shape descriptors from previous work that have been used for
classification and retrieval. Hence the features are not new on their
own. Note that for some features, we use a variant of the commonly
used version of the descriptor, as we compute features for a vertex
v relative to the whole model M rather than for the whole model.

We build a feature vector with descriptors that are based on geom-
etry alone. The main aspects of the features relate to the 3D shape
(D2 Shape Distribution [Osada et al. 2001], Gaussian Image [Horn
1984]), projected 2D shapes (Light Field Descriptor [Chen et al.
2003; Shilane et al. 2004]), and curvatures (Gaussian and Mean
curvatures [Surazhsky et al. 2003], Sobel operators on voxels). The
input is a 3D model, and we compute a 117-dimensional feature
vector x for any vertex v of a model M . We do not decide a pri-
ori the importance of each feature, but we include many possible
features and allow the learning method to decide the weight or sig-
nificance of each feature.

2.2 Crowdsourcing Softness Data
We collected 155 3D models from online datasets: the Princeton
Shape Benchmark [Shilane et al. 2004] and Trimble 3D Warehouse.
Since it is difficult for humans to provide absolute softness values

Figure 2: Data collection: (a) Two examples of images with an-
swers chosen by us given as part of the instructions for Amazon Me-
chanical Turk HITs. Text instructions were given to users: “Imag-
ine the object as a real-world object and physically pressing into it
at points A and B with your finger, in the direction of the small line
and towards the object. Choose whether point A or B is softer, or
that they have the same softness. Please choose what you believe to
be the best answer in each case.” (b) Two example HIT images we
used. (c) Screenshot of software where user directly selects pairs of
vertices and specify which is softer (or same).

(e.g. to provide a real number to a single surface point), the key
to the data collection is to ask humans to compare the softness be-
tween pairs of points. This is similar to [Garces et al. 2014] where
humans compare relative styles of 2D clip art.

We used two methods to collect data. For the first method, we gen-
erated images of pairs of points on the virtual 3D models and asked
humans to label them using Amazon Mechanical Turk. For each
model, we randomly selected two vertices and we chose a camera
viewpoint such that both points can be seen. A human rater is ini-
tially given instructions and example images with responses (Fig-
ure 2a). Each HIT (a set of tests on Amazon Mechanical Turk) then
consists of 50 images (see Figure 2b for some examples). For each
image, the human selects either “A” or “B” if one of the labeled
points is softer, or “same” if he/she thinks that both points have the
same softness. The crowdsourced data may be unreliable. Before
a user can work on the HITs, he/she needs to pass a “qualification”
test by correctly answering at least 4 of 5 images. In addition, for
each HIT, we have 5 control images and if the user incorrectly an-
swers more than 2 of them, we reject the data for that HIT (we
rejected 7.3% of HITs). We paid $0.20 for each HIT, and we had
112 users and 6080 samples of data (each sample is one image).

The second method is a software tool we provide to users to select
pairs of vertices. The user visualizes a model in 3D space and di-
rectly clicks on a vertex with the mouse to select it (Figure 2c). The
user then provides the label (i.e. which vertex is softer or same)
with keyboard presses. This method provides more reliable data as
we can give more guidance to the users from the start, and hence we
do not reject any data collected with this method. For this method,
we had 15 users and collected 7000 samples.

From the data collection, we have a set of training data X =
{x1, . . . ,xh} and the corresponding label sets I and E each con-
taining pairs of (xi,xj). Each pair of vertices labeled as having
one vertex being softer is in the inequality set I. Each pair labeled
as having the same softness is in the equality set E .

2.3 Learning Softness Measure
We learn a softness measure with the feature vector and crowd-
sourced data. We use a learning-to-rank method known as
RankSVM [Chapelle and Keerthi 2010]. This method takes as in-



Figure 3: Results: Input 3D models and corresponding softness maps (front and back/bottom views). Left chair is m813 (Princeton Shape
Benchmark), top bed is m944, top shoe is m1746, and bottom left shoe is m1741. The others are from Trimble 3D Warehouse.

put X , I, and E , and returns the weight vector w. For a given
feature vector x, we assume that the corresponding softness f(x)
is an output of a linear function: f(x) = w>x. The weight vector
w is learned by minimizing the rank cost functional:

L(w) =
1

2
‖w‖2

+ C
∑

(i,j)∈I

l1(d(xi,xj)) + C
∑

(i,j)∈E

l2(d(xi,xj)) (1)

where the first term is a standard regularizer to prevent over-fitting,
C is a hyper-parameter, l1(t) = max(0, 1 − t)2 and l2(t) = t2

are suitable loss functions, and d(xi,xj) = f(xi) − f(xj). If
(xi,xj) ∈ I, vertex i should be softer than vertex j, and f(xi)
should be greater than f(xj). Similarly (xi,xj) ∈ E implies equal
softness: f(xi) should be equal to f(xj). The ranking loss function
l1(t) enforces prescribed inequalities in I with a standard margin
of 1, while the equality loss function l2(t) measures the standard
squared deviations from the equality constraints in E .

The energy function L is minimized using the primal Newton
method as originally developed by Chapelle [2010] for inequal-
ity constraints and subsequently adapted by Parikh and Grauman
[2011] for equality constraints. Since the data and method are
ranking-based, the learned measure provides relative softness val-
ues and they make more sense when compared to each other.

3 Results
Relevance of Features. The L2 regularizer (‖w‖2 term in Equa-
tion 1) leads to small weights in the learned w vector. Comparing
the weight values from the learned w provides information about
the relevance of the features. The 2D Light Field Descriptors are
the most relevant. The Gaussian curvature, Mean curvature, and
Sobel operators have small weights and are the least relevant.

Computing Softness Maps for Whole Shape. We show results
of input 3D shapes and computed softness maps (Figures 1 and 3).
We generate the results by computing the softness values for each
vertex, and then mapping them (while maintaining the ranking) to
[0, 1] so each vertex can be assigned a color for visualization pur-
poses. Since our results provide a relative ranking, a single vertex
labeled red for example may not necessarily be soft on its own. We
also tested our method with new 3D models not used during the
data collection (bottom couch and bottom right shoe in Figure 3).
It takes a few seconds to generate each result in MATLAB.

4 User Evaluation
We perform a user study to show that the learned softness measure
is comparable to the human perception of virtual objects.

Task. Participants observe virtual shapes with two selected points
and choose the softer point (or same). They are given the same
instructions as in the crowdsourced HITs, except the shapes are not
provided to them on Mechanical Turk but we provide them with a
program. We collected a new test set of 10 3D models. Each user
was given 5 of the 10 models picked randomly beforehand. We
provide the user with a program that randomly selects 16 pairs of
vertices for each of the 5 models. The user can see each pair of
vertices by rotating the 3D model if needed (the rotation is only
for visualizing vertices if they are occluded and does not provide
additional information). One pair of vertices for each model is a
control sample to check for quality. There are 5 of these and if a
user provides 2 or more responses that do not match ours, we reject
that user’s responses.

Apparatus and Participants. The participants completed the task
using a laptop we provided. We recruited 15 participants (6 female)
with online and poster advertisements from our university. Partici-
pants were between 21 and 45 years old (Mean=31.2, Std=6.2).

Study Results. We have 15 users x 5 models x 15 responses.
No user responses were rejected based on the control samples. For
each “A” or “B” response (305 and 395 of each respectively), we
compute the softness of the vertex pair with our learned measure
and see if it matches with the user response. All the results from
our learned measure is either “A” or “B” as the measure gives real
values. The accuracy of our measure is 91.43%.

For each user response labeled “same” (425 of these), we compute
the absolute difference of the softness values from our measure be-
tween the two vertices. The mean of these absolute differences is
0.083 (Std=0.096). For comparison purposes, we also compute the
differences for the “A” and “B” responses. In this case, if the re-
sponse is “A”, we compute the softness for vertex “A” minus the
softness of vertex “B”, which can be negative if our measure is in-
correct. The mean of these is 0.260 (Std=0.194). We perform a
two-sample t-test assuming unequal variances and find a significant
effect (t=-5.595; p <0.001) between “same” and “A/B” responses.

5 Application: Fabrication Example
We can fabricate a virtual shape into a real object according to the
computed non-uniform human-perceived softness. There are many
ways to construct a physical prototype object. Inspired by meth-
ods to layer materials to fabricate soft objects [Hudson 2014], we
choose to experiment with a layering-based technique with felt ma-
terial for a simple example of the bottom part of a sandal. Figure
4a shows the model and the softness map. We discretize the soft-



Figure 4: Application: Fabrication Example. (a) An input 3D
model of the bottom part of a sandal, the softness map computed
by our method, and the softness values discretized into three types
for fabrication purposes. (b) The sandal fabricated with layers of
felt material. We also show (small inset images) some simple ways
we experimented with to adjust the softness (e.g. adding a harder
card piece, cutting a hole, or stripes of holes) if we were to press
top-down into the object to match the values our method computed.

ness values into three types to simplify the fabrication process. To
approximate the object shape, we voxelize the 3D shape to create
layers of 2D profiles and cut them with felt material (Figure 4b). To
approximate the softness, we converted the computed softness to a
top-down 2D grid of discretized softness if a human were to press
top-down into the real object.

6 Conclusion, Limitations, and Future Work
We have presented a framework for computing a human-perceived
softness measure for virtual 3D shapes. Our framework is flexible
since we can add more training data or more shape features at any
time and then re-learn the weight vector.

Physically-based simulation methods can be used to compute defor-
mation information of 3D shapes. However, our focus is on human
perception of virtual shapes which may not match with the defor-
mations computed by physically-based methods. There also exists
devices for measuring material stiffness or Young’s modulus, but
we do not use such devices as we explore the softness of virtual
shapes which cannot be directly measured with physical devices.

For many 3D models, humans can perceive softness information
well from the geometry alone. A limitation of our method is that
there are some models where it can be ambiguous to decide if the
object is soft or not soft. For example, a virtual bottle with smooth
surfaces may be soft if it is made of plastic or not soft if it is made
of metal. One possible future work direction is to add an estimate of
reliability to the computed softness map. Another possible direction
is to combine our method with other methods for understanding the
materials of shapes [Jain et al. 2012].
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