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Abstract—We analyze retransmission schemes for multicast
communications in random (ad hoc) wireless networks, where
up to T retransmissions are utilized to reliably deliver each data
packet to a set of destination receivers. To capture the effect of
T on the network performance, we defineeffective throughputas
a function of the multicast data rate, the percentage of receivers
that have successfully decoded the multicast packet duringT
retransmissions, andT γ (T to power γ). For a given scenario,
γ > 0 indicates the corresponding performance requirements.
For instance, when reliability is more important than the system
capacity, γ is assigned a larger value, than scenarios in which
higher energy-efficiency but moderate multicast coverage is
required. We then investigate effective throughput under blunt
retransmission (BR), chase combining (CC), and incremental
redundancy (IR) schemes. To this aim, analytical tools from
stochastic geometry and Poisson point processes are used. Our
simulations confirm the accuracy of our analytical findings. The
simulation results reveal interesting behaviors of retransmission
schemes. For instance in a typical setting, the IR scheme is shown
to improve the effective throughput by 200-400% (50-100%)
over the BR scheme (CC scheme), without incurring additional
signaling overhead.

I. I NTRODUCTION

There are numerous applications of multicast communica-
tion in random (ad hoc) wireless networks, such as machine-to-
machine (M2M) and device-to-device (D2D) communications
[1]. In such networks, gateways require to periodically multi-
cast information to facilitate the formation of machine clusters
in applications such as automation and smart grid. It is also
used as a tool for efficient utilization of network resource, e.g.,
improving energy-efficiency in D2D through proximity-aware
social networking and media sharing [2].

Multicasting in random networks is however very chal-
lenging due to excessive interference among multicast ses-
sions resulting in high packet error rate. In contrast to the
infrastructures-based systems, random networks commonly
lack centralized protocols and entities, and hence distributed
mechanisms are usually required for managing multicast com-
munications and effectively dealing with high packet error
rates. To be fully implementable in random networks, multicast
mechanisms need to (i) demonstrate a certain level of robust-
ness against lack or inaccuracy of the channel state information
at the transmitters (CSIT), (ii ) keep the signaling overhead
at a manageable level, (iii ) be able to guarantee successful
delivery of multicast packets to all destination nodes, and (iv)

be energy-efficient so as not to drain the device batteries. At
the same time, as major efficiency metrics, multicast protocols
need to provide an acceptable level of network transmission
capacity and multicast delay. Nevertheless, many proposed
multicast schemes and protocols are designed solely for, and
tested against isolated scenarios such as a single multicast clus-
ter. Ignoring the effects of interference amongst the multicast
sessions in distributed networks result in inaccuracies and thus
practical performance problems.

Our objective of this paper is to investigate the performance
of multicasting schemes in random wireless networks; in
particular, we focus on chase combining (CC), and incremental
redundancy (IR) [6], [7], [10] schemes. As a benchmark for
our performance analysis, we compare the performance of
these two schemes against that of blunt retransmission (BR)
[5]. To the best of our knowledge, this is the first performance
analysis of CC and IR.

The BR scheme, also referred to asrepetitive transmis-
sion multicast, retransmits packets multiple times within a
permissible decoding interval,T ≥ 1, time slots. BR is,
in fact, an extension of the well-known automatic repeat
request (ARQ) to the multicast paradigm (e.g., [6], [7]) and is
shown in [5] to be an effective way to improve the network’s
transmission capacity defined as the accumulated network’s
throughput subject to the multicast outage constraint. In [8],
we have extended the approach in [5] to analyze the associated
delay performance of the BR scheme, showing its rather
poor performance. The extended multicast delay also degrades
energy-inefficiency which is of critical importance in many of
M2M/D2D applications. To address this issue, the authors of
[9] proposed a scheme based on occasional communication
infrastructure assistance for efficient delivery of multicast
packets. Although very effective in enhancing the multicast
performance in D2D networks, such schemes impose extra
signaling overheads on both the infrastructure and devices.
The need for intervention by an infrastructure-based network
might also not be achievable in many practical systems and
scenarios such as ad hoc networks and disaster management
systems. The CC and IR techniques are, on the other hand,
entirely distributed and impose no extra signaling overheads,
thus being suitable for multicasting in random networks.

To study the multicast performance, we introduce a new
performance metric calledeffective throughputwhich is pro-



portional to the multicast data rate multiplied by the percentage
of receivers that can successfully decode the multicast packet
during T retransmissions. The thus-defined effective through-
put is also inversely proportional toT γ , andγ > 0. We then
show that by adjustingγ, one can balance various performance
metric such as multicast delay and energy-efficiency. We adopt
tools in stochastic geometry (e.g., [3], [4]) to evaluate the
performance of CC and IR schemes, as they are shown to be
capable of analyzing the performance aspects of multicasting
in random networks [5]. Our analysis considers low-mobility
random wireless networks as in [11], [12] which is shown
capable of characterizing most of practical M2M systems.
Thus, our analysis in this paper is different from that of
[10] that focused on high-mobility scenarios in broadcasting
networks.

We also study the accuracy of our analysis through simu-
lations. Our simulation results show a significant performance
improvement over the BR scheme even when the available
number of retransmissions are as small as 5–10. For a typical
setting, IR improves the effective throughput by 200-400%,
and CC by 50-100% over BR.

II. M ULTICAST NETWORKS

The source nodesXi in our multicast communication model
share the same radio spectrum. In this model, the source nodes
belong to a Poisson Point Process (PPP) set,Φ, with density
λ. EachXi transmits packets to a set of destination/receiver
nodes in its coverage area which is referred to ascluster
i. We define a diskRi of radius s > 1 associated with
Xi. Destination nodes are randomly placed in each cluster
i according to homogeneous marked PPP,Φr

i , with intensity
measureλr. For any two clustersi and i′, Φr

i and Φr
i′ are

independent. This model allows clusters to overlap, and thus
some clusters may contain other active sources and unintended
destination nodes. In this model, spatial distribution of the
source nodes forms a homogeneous marked PPP,Φ, with
spatial densityλ.

The network is then modeled with setZ =
⋃

Xi∈Φ

(Φr
i ∪Xi),

which is a Poisson Cluster Process (PCP) with densityΞ =
πs2λrλ, whereΞ is the average number of destination nodes
in each cluster. Stationarity makes it sufficient to measure the
network performance in a typical cluster,R0, associated with
a source nodeX0 located at the origin.

Set Φr
0 = {(Yj ,Hj), Yj ∈ R0,Hj ≥ 0, j ∈ N+} is a

collection of 2-tuples each including destination node,Yj , and
a corresponding fading mark,Hj , that represents the wireless
channel power gain betweenX0 and Yj . Fading is location-
independent with a unit-mean exponential probability density
function (pdf). Transmitters/sources inΦ = {(Xi, H̃ij), Xi ∈
R2, H̃ij ≥ 0, i ∈ N+, j ∈ N+} are drawn from the same
pdf unit-mean exponential fading, wherẽHij is the interfering
channel power gain between transmitteri and receiverj at the
clusterR0 H̃ij , and independent ofHj .

The quality of link j ∈ Φr
0 is determined by Signal-to-

Interference Ratio (SIR) defined as

SIRj [t] =
‖Yj‖−αHj [t]∑

i∈Φ/X0

‖Xi − Yj‖−αH̃ij [t]
, (1)

where t represents time slot. In (1),‖Yj‖ is the Euclidian
distance between transmitterX0 and receiverXj , α > 2 is
the path-loss exponent, and‖Yj‖−α is the distance-dependent
path-loss attenuation. For brevity, we assume that all source
nodes use the same transmit power. An outage will occur
if SIRj < β, where β is the receiver SIR threshold. In
this setting, an outage incident is equivalent to unsuccessful
decoding of a multicast packet. By following the same line of
argument as in [5] and [9], one can show that it suffices to
focus on the statistics of the aggregated interference measured
at the origin, I0, for the purpose of studying the system
performance.

In this model, time is slotted and packets must be success-
fully decoded by all the receiver nodes in each cluster, so
each multicast packet may be required to be retransmitted up
to T times. This (T ) parameter also represents the permissible
decoding delay. Note that in our setting, the fading coefficients
change randomly from one time slot to another. Furthermore,
in case of low mobility, the positions of both transmitter and
receiver nodes remain unchanged during the decoding interval,
T , see, e.g., [11].

Let δj be a random variable associated to receiver nodeYj :

δj =
T∑

t=1

1 {SIRj [t] ≥ β} , (2)

where1{x} = 1 if x is true and0 otherwise. Eq. (2) indicates
the number of times a multicast packet is successfully decoded
at Yj . If δj = 0, receiverj is unable to decode the packet
after T retransmissions, and thus experiences a multicast
outage. Specifically, we are interested in the average number
of receiver nodes,Ξcov, that will not experience multicast
outages, where

Ξcov = E
∑

j∈Φr
0

1(δj > 0). (3)

It is thus desirable to haveΞcov as close toΞ as possible,
whereΞ is the average number of receiver nodes in a cluster.

It is shown in [5], [8] that by increasingT , Ξcov → Ξ.
The costs for this, however, are a large decoding delay, low
effective transmission rate, and low energy-efficiency — these
performance metrics are in fact interrelated and often conflict
with each other. Different multicast schemes also behave
differently in different scenarios.

A. Effective Throughput

To incorporate the number of retransmissions in the perfor-
mance analysis and manage the impact of different realistic
scenarios on the above mentioned trade-offs, we introduce
effective throughput(ET) as a performance metric:

ηγ =
log(1 + β)

T γ

Ξcov

Ξ
. (4)



As shown in (4), by changingγ > 0, one may manipulate
the effect of number of retransmission attempts,T , on the
multicast communication performance so that levels of trade-
offs among various performance metrics (according to the
underlying network application) be preserved. For instance,
if energy-efficiency has a high-priority design requirement, a
high γ value will be considered. A smallγ value, on the other
hand, encourages a larger number of retransmissions, which
might be necessary when delivering packets to receiver nodes
has a higher priority than the network capacity, e.g., disaster
management systems.

III. PERFORMANCEANALYSIS

In this section we investigate the ET performance of three
well-known retransmission schemes in wireless networks: (i)
blunt retransmission (BR), (ii ) chase-combining (CR), and (iii )
incremental-redundancy (IR).

A. Blunt Retransmission

In the BR scheme, the source node retransmits the multicast
packet up toT times. In each time slott, the receiver nodes
focus solely on decoding of the latest copy of the received
packet, and discard the old copies [5], [6], [9]. The following
proposition provides the ET of the BR scheme.

Proposition 1: ET of the BR scheme is

ηBR
γ =

log(1 + β)
s2T γ

T∑
t=1

(−1)t+1

(
T

t

)
1− e−C(α)λtα̌βα̌s2

C(α)λtα̌βα̌
,

(5)
whereC(α) = πΓ(1 + α̌)Γ(1− α̌) and α̌ = 2/α.

Proof: Applying Campbell’s Theorem [3] to (3), we get

Ξcov = 2πλr

s∫

0

P {δy > 0} ydy. (6)

We also note that

P{δy > 0} = EΦP

{
T∑

t=1

1 (SIRy[t] ≥ β) > 0|Φ
}

=
T∑

t=1

(−1)t+1

(
T

t

)
EΦ (P {SIRy ≥ β|Φ})t

, (7)

where that last equation is due to [13] and independence of
fading fluctuations across time slots. Note that our focus is on
low-mobility scenarios, and thus conditioned on the position
of interferers, the eventSIRy ≥ β is independent and identical
across time slots. Since fading is assumed to be Rayleigh, it
is straightforward to show that

EΦ (P {SIRy ≥ β|Φ})t = EΦe
−tβyα ∑

Xi∈Φ/X0

H̃i
‖Xi‖α

= e−C(α)λtα̌βα̌y2
. (8)

Combining (8), (7), and (6), we obtain

Ξcov = πλr

T∑
t=1

(−1)t+1

(
T

t

)
1− e−C(α)λtα̌βα̌s2

C(α)λtα̌βα̌
. (9)

Substituting (9) into (4) leads to (17) and completes the proof.
¤

B. Incremental Redundancy

The IR scheme is based on the concept of code combining,
where the transmitter adds parity redundancy to the packet
in each time slott. Receiver nodej then applies a code
combining technique to decode the packet by jointly decoding
the information as well as parity information received untilt.
The achievable data rate of destination nodej is shown to be
T∑

t=1
log(1 + SIRj [t]) [7]. Therefore, for nodej

δIR
j = 1

(
T∑

t=1

log(1 + SIRj [t]) ≥ log(1 + β)

)
. (10)

Therefore, the average number of receivers within the coverage
is

ΞIR
cov = E

∑

j∈Φr
0

1(δIR
j > 0). (11)

The energy efficency of IR is then obtained as

ηIR
γ =

log(1 + β)
T γ

ΞIR
cov

Ξ
. (12)

Evaluating (12) is a challenging task due mainly to
the difficulty of evaluating multicast coverage probability,

P{
T∑

t=1
log(1 + SIRj [t]) ≥ log(1 + β)}. In the following

proposition we provide an upper bound on the ET of the IR
technique.

Proposition 2: An upper bound on the ET of the IR scheme
with T allowable retransmission attempts is

ηIR
γ ≥ log(1 + β)

s2T γ

1− e−C̃(α)s2∆

C̃(α)λ∆
, (13)

where

∆ =

∞∫

0

. . .

∞∫

0

e
−

T∑
t=1

ht×




T∑
t=1


(1 + β)

1
T

∏

t′ 6=t

h
1
T

t′ − ht


 1{ ∏

t′ 6=t

h
t′

ht
> 1

1+β }




α̌
T∏

t=1

dht.

(14)
Proof: See the Appendix.¤

C. Chase-Combining Retransmission

The CC scheme is a time-diversity technique in which
the receiver nodes softly combineT copies of the multicast
packet by applying maximum ration combining (MRC) in
time, e.g., [6], [7], [10]. AssumingT retransmission attempts,
by following the same lines of argument as in [10], it is
straightforward to show that the SIR for decoding the packet
at destination nodej is

SINRCC
j [T ] =

‖Yj‖−α‖hj [T ]‖2∑
i∈Φ/X0

‖Xi − Yj‖−αH̃ij [T ]
, (15)



where ‖hj [T ]‖2 is a Chi-squared random variable with2T
degrees-of-freedom (DoF), and̃Hij [T ]s are independent and
identically distributed (i.i.d.) exponential random variables
independent of‖hj [T ]‖2. The j-th receiver is in multicast
outage, if δCC

j = 1 (SIRj [T ] ≥ β). Therefore, the average
number of receivers in coverage is

ΞCC
cov = E

∑

j∈Φr
0

1(δCC
j > 0). (16)

The following proposition provides the ET of the CC scheme.
Proposition 3: With the CC scheme andT retransmission

attempts, ET is

ηCC
γ =

log(1 + β)
s2T γ

T−1∑
t=0

(−1)t

t!
dt

dwt

1− e−wα̌βα̌s2C(α)λ

wα̌βα̌C(α)λ

∣∣
w=1

.

(17)
Proof: To obtainΞCC

cov in , we the multicast coverage of a
typical receiver node which is

P{δCC
y > 0} = EΦP

{
SINRCC

y ≥ β|Φ}
. (18)

By noticing (15), (18) is then extended as

P{δCC
y > 0} = EΦP





y−α‖h[T ]‖2∑
i∈Φ/X0

‖Xi‖−αH̃i[T ]
≥ β|Φ





= EΦ

∞∫

0

L−1
F̄‖h[T ]‖2

(w)e
−sβyα ∑

Xi∈Φ/X0

H̃i
‖Xi‖α

dw

=

∞∫

0

L
F̄−1
‖h[T ]‖2

(w)EΦ

∏

Xi∈Φ/X0

EH̃i
e
−wβyα H̃i

‖Xi‖α dw

=

∞∫

0

L−1
F̄‖h[T ]‖2

(w)e−wα̌βα̌y2C(α)λdw, (19)

where LF̄−1
‖h[T ]‖2

(w) is the inverse Laplace transform of

F̄‖h[T ]‖2 and is equal to
T−1∑
t=0

1
t!δ

(t)(w − 1), and δ(t)(w) is

the t-th derivative of Dirac delta function [10]. Utilizing (19),
we then write

s∫

0

∞∫

0

L−1
F̄‖h[T ]‖2

(w)e−wα̌βα̌y2C(α)λdwydy

=

∞∫

0

L−1
F̄‖h[T ]‖2

(w)

s∫

0

e−wα̌βα̌y2C(α)λydydw

=

∞∫

0

T−1∑
t=0

1

t!
δ(t)(w − 1)

s∫

0

e−wα̌βα̌y2C(α)λydydw

=

T−1∑
t=0

(−1)t

t!

dt

dwt

1− e−wα̌βα̌s2C(α)λ

wα̌βα̌C(α)λ

∣∣
w=1

. (20)

Substituting (20) in (4) completes the proof.¤

D. Simulation Results

We now investigate the accuracy of our analytical results.
We further compare the performance of BR, CC, and IR
schemes. The Monte Carlo simulation method is adopted
with large enough snapshots. In each snapshot, we randomly
distribute transmitters within a disk of radius 5000 units.
Receivers associated with each transmitter are distributed in
the multicast clusters. We also setλt = 0.01, λr = 0.02,
s = 10 units, β = 20, andα = 4.

Fig. 1, 2, and 3 show comparisons between our analysis and
simulation results for differentγ values. Each figure provides
ET vs. T , the number of retransmission attempts. For both
cases of BR and CC, the simulation results are shown to
closely follow the analysis. For the IR scheme, Proposition 2
provides also a reasonably accurate upper bound that follows
the trends observed in the simulation results. The IR scheme,
and the analysis results are are shown to be more accurate for
smallerγ values, i.e., when delay is not a main concern.

By comparing the results in Figs. 1–3, we also find that
BR, CC, and IR schemes behave differently in response to
the changes inT for different γ values. For example, Fig. 1
indicates that increasingT is in general beneficial for smallγ
values, i.e., when delay is not a main concern. Nevertheless,
the IR’s ET is shown to increase substantially while the
ET improvement for CC is rather moderate. IncreasingT ,
however, does not result in a significant change of the BR’s
ET. This figure also shows that forT = 10 retransmission
attempts, the IR (CC) scheme achieves almost 400% (100%)
higher ET than the BR scheme. Note that forT > 10,
increasingT in the IR scheme does not improve ET, thus
becoming not beneficial.

For γ = 0.75, however, Fig. 2 shows that increasingT
is not necessarily beneficial even in the IR scheme. In fact,
the best performance in this case is achieved whenT = 5.
For this number of retransmissions, a200% improvement in
the ET performance is seen over the BR scheme. Any further
increase ofT causes reduction of ET for both CC and BR
schemes, but the CC scheme still demonstrates50% higher
ET than the BR scheme. Finally, forγ = 1, Fig. 3 shows that
increasingT results in a significant reduction of ET for both
BR and and CC schemes. In fact, 10x growth ofT causes
about 100% reduction of ET in the BR scheme. In contrast,
increasingT is shown to be beneficial in the IR scheme. The
best performance is achieved for the BR scheme whenT = 4.
For this number of retransmission attempts IR makes a150%
ET enhancement over BR.

Comparing the results in these figures, we conclude that
the IR scheme outperforms the CC and BR schemes. Also,
by increasingγ, the number of retransmission attempts that
reduces the maximum ET as well as the ET gain compared to
the BR scheme.

IV. CONCLUSIONS

We studied the performance of multicast retransmission
schemes including bunt retransmission (BR), chase combining
(CC), and incremental redundancy (IR) in random wireless
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Fig. 1. ET of the BR, CC and IR schemesvs. the number of retransmissions,
T , for γ = 0.25.
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Fig. 2. ET of the BR, CC and IR schemesvs. number of retransmissions,
T , for γ = 0.75.

networks. We introduced effective throughput (ET) as a per-
formance metric to represent the performance requirements
in a given multicasting scenario, and also evaluated ET for
the above retransmission schemes using analytical tools in
stochastic geometry. Our simulations confirmed the accuracy
of our analysis. The simulation results have also shown sub-
stantial benefits of IR and CC schemes in improving multicast
performance. We have further observed that up to150−400%
performance enhancement is achieved with the IR scheme
whenT is carefully selected.
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APPENDIX: PROOF OFPROPOSITION2

According to (10), the coverage probability associated with
receiver nodej is

P{δIR
j > 0} = P

{
T∑

t=1

log(1 + SINRj [t]) ≥ log(1 + β)

}
.

(21)
To obtain the coverage probability in (21), we need to eval-

uate the distributed function of random variable,
T∑

t=1
log(1 +

SINRj [t]), which is very complicated and unknown to the
related literature. To address this issue, we introduce an
auxiliary parametersRt ≥ 0, wherelog(1+β) =

∑
t Rt, i.e.,

the required transmitted data rate,log(1 + β), is split across
T time slots, each with rateRt. For now, assuming thatRts
are known, the coverage probability (21) is reduced to

P{δIR
j > 0} = EΦP

{
SINRj [t] ≥ eRt − 1,∀t|Φ}

= EΦ

T∏
t=1

P
{
SINRj [t] ≥ eRt − 1|Φ}

= EΦ

T∏
t=1

EH̃i[t]
e
−(eRt−1)yα ∑

Xi∈Φ/X0

H̃i[t]
‖Xi‖α



= EΦ

∏

Xi∈Φ/X0

E{H̃i[t]}t
e
−yα

T∑
t=1

(eRt−1)H̃i[t]

‖Xi‖α

= e−C̃(α)y2λ∆, (22)

where the last step is obtained using the Laplace transform of
the shot noise processes (see [4]) and∆ is

∆ = E

[
(

T∑
t=1

(eRt − 1)H̃[t])α̌

]
. (23)

Using (22) the average number of receivers in the coverage is

Ξcov = 2πλr

s∫

0

e−C̃(α)y2λ∆ydy.

= πλr
1− e

−C̃(α)s2λE
[
(

T∑
t=1

(eRt−1)H̃[t])α̌

]

C̃(α)λ∆
.

Consequently,

Ξout

Ξ
=

1
s2

1− e−C̃(α)s2λ∆

C̃(α)λ∆
(24)

=
∞∑

n=1

(−1)n+1(C̃(α)s2λ)n

n!
∆n, (25)

where in the last step we have simply substituted the series
representation of the exponential function. Now, let’s derive
the values forRt so that (25) is maximized as follows.

max
∞∑

n=1

(−1)n+1(C̃(α)s2λ)n

n!
∆n

s.t.
∑

t

Rt = log(1 + β). (26)

This results in an upper bound of the corresponding ET
performance.

Introducing Lagrange multiplierµ ≥ 0, the Lagrange
problem associated with the optimization problem (26) is

L = max
Rt≥0

∞∑
n=1

(−1)n+1(C̃(α)s2λ)n

n!
∆n − µ

∑
t

Rt.

By taking derivatives ofL with respect toRt′ ∀t′, and setting
the result to zero, we obtain

µ =
∞∑

n=1

(−1)n+1(C̃(α)s2λ)n

(n− 1)!
(E(

T∑
t=1

(eRt − 1)H̃[t])α̌)n−1

∞∫

0

. . .

∞∫

0

α̌(
T∑

t=1

(eRt − 1)ht)α̌−1ht′e
Rt′

T∏
t=1

fH̃[t](ht)dht

∀t′ = 1, . . . , T.

Therefore,∀t′ 6= t

∞∫

0

. . .

∞∫

0

ht′e
Rt′ − ht′′e

Rt′′

(
T∑

t=1
(eRt − 1)ht)−α̌+1

T∏
t=1

fH̃[t](ht)dht = 0,

or equivalently,

hte
Rt = ht′e

Rt′ , t′ 6= t. (27)

Solving (27) forRt, we obtain

Rt = Rt′ + log
ht′

ht
, t′ 6= t. (28)

Summation of both sides in (28)∀t′ 6= t′′ yields:

(T − 1)Rt =
∑

t′ 6=t

Rt′ + log


∏

t′ 6=t

ht′

ht


 . (29)

Recalling that
∑
t

Rt = log(1 + β), (29) is simplified to

Rt = T−1 log(1 + β) + T−1 log


∏

t′ 6=t

ht′

ht


 . (30)

Using (30) and notingRt ≥ 0, (23) is

∆ = E




∑

t:
∏

t′ 6=t

H̃[t′]
H̃[t]

> 1
1+β

(1 + β)
1
T

∏

t′ 6=t

H̃
1
T [t′]− H̃[t]




α̌

.

(31)
Assuming an independent exponential distribution for interfer-
ing channels, (31) is further extended to

∆ =

∞∫

0

. . .

∞∫

0

e
−

T∑
t=1

ht
T∏

t=1

dht×




T∑
t=1


(1 + β)

1
T

∏

t′ 6=t

h
1
T

t′ − ht


 1{ ∏

t′ 6=t

h
t′

ht
> 1

1+β }




α̌

. (32)

Substituting (32) into (24) completes the proof.


