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Abstract 

This thesis consists of four empirical essays on option-implied information and 

asset pricing in the US market. 

The first essay examines the predictive ability of option-implied volatility 

measures proposed by previous studies by using firm-level option and stock data. This 

essay documents significant non-zero returns on long-short portfolios formed on 

call-put implied volatility spread, and implied volatility skew. Cross-sectional 

regressions show that the call-put implied volatility spread is the most important factor 

in predicting one-month ahead stock returns. For two-month and three-month ahead 

stock returns, “out-minus-at” of calls has stronger predictive ability. 

The second essay constructs pricing factors by using at-the-money 

option-implied volatilities and their first differences, and tests whether these pricing 

factors have significant risk premiums. However, results about significant risk 

premiums are limited. 

The third essay focuses on the relationship between an asset’s return and its 

sensitivity to aggregate volatility risk. First, to separate different market conditions, 

this study focuses on how VIX spot, VIX futures, and their basis perform different 

roles in asset pricing. Secondly, this essay decomposes the VIX index into two parts: 

volatility calculated from out-of-the-money call options and volatility calculated from 

out-of-the-money put options. The analysis shows that out-of-the-money put options 

capture more useful information in predicting future stock returns. 

The fourth essay concentrates on systematic standard deviation (i.e., beta) and 

skewness (i.e., gamma) by incorporating option-implied information. Portfolio level 

analysis shows that option-implied gamma performs better than historical gamma in 
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explaining portfolio returns at longer horizons (five-month or longer). In addition, 

firm size plays an important role in explaining returns on constituents of the S&P500 

index. Finally, cross-sectional regression results confirm the existence of risk 

premiums on option-implied components for systematic standard deviation and 

systematic skewness calculation. 

  



 

iii 

Acknowledgement 

I would like to express my gratitude to my supervisor Prof. Mark Shackleton for 

giving me the opportunity to work with him in the PhD programme as well as for his 

guidance and encouragement throughout the whole process. I am also grateful to Dr. 

Eser Arisoy and Dr. Mehmet Umutlu for valuable guidance on the third and fourth 

chapters, to Dr. Matteo Sandri for helpful comments on the fifth chapter, and to Dr. 

Yaqiong Yao for beneficial assistance on the sixth chapter. 

I would like to thank my parents, Shihong Fu and Wenxiu Zou, and my boyfriend, 

Qiang Fu, for their unconditional support over the years. Their encouragement and 

understanding have had a significant impact on my studies and a large part of my 

motivation stems from them. 

 

 

  



 

iv 

Declaration 

I hereby declare that this thesis is completed by myself, and has not been 

submitted in substantially the same form for the award of a higher degree elsewhere.  

Parts of this thesis have been accepted for publication in research journals or 

presented in conferences. A working paper based on Chapter 3, entitled as 

“Option-Implied Volatility Measures and Stock Return Predictability” (with Eser 

Arisoy, Mehemt Umutlu, and Mark Shackleton), was presented in ESRC NWDTC 

AccFin Pathway Event: PhD Student Workshop in Finance and Accounting in the UK, 

2014 Paris Financial Management Conference in France, and The New Financial 

Reality Seminar at University of Kent. 

A paper based on Chapter 5, with the title “Asymmetric Effects of Volatility Risk 

on Stock Returns: Evidence from VIX and VIX Futures” (with Matteo Sandri, and 

Mark Shackleton), was accepted by the Journal of Futures Markets (Asymmetric 

Effects of Volatility Risk on Stock Returns: Evidence from VIX and VIX Futures, Fu, 

X., Sandri, M., and Shackleton, M. B., The Journal of Futures Markets, forthcoming, 

DOI: 10.1002/fut.21772, Copyright © 2016 Wiley Periodicals, Inc. Jrl Fut Mark, John 

Wiley & Sons, Inc). This paper was presented in 1st KoLa Workshop on Finance and 

Econometrics in the UK, 2014 FEBS International Conference in the UK, EFMA 

2014 Conference in Italy, SoFiE Financial Econometrics Spring School 2015 in 

Belgium, and 7th International IFABS Conference in China. 

A working paper based on Chapter 6, entitled as “Risk-Neutral Systematic Risk 

and Asset Returns”, was presented in 2nd KoLa Workshop on Finance and 

Econometrics in Germany, and EFMA 2015 Conference in Netherlands. 

Xi Fu 

June 2016  



 

v 

Table of Content 

 

Abstract ........................................................................................................................... i 

Acknowledgement ........................................................................................................ iii 

Declaration .................................................................................................................... iv 

Table of Content ............................................................................................................ v 

Frequently Used Notation .............................................................................................. x 

List of Figures .............................................................................................................. xii 

List of Tables .............................................................................................................. xiii 

Chapter 1 Introduction ................................................................................................... 1 

1.1 Introduction .......................................................................................................... 1 

1.2 The Structure of the Thesis .................................................................................. 4 

Chapter 2 Literature Review .......................................................................................... 8 

2.1 The Capital Asset Pricing Model ......................................................................... 8 

2.2 Pricing Anomalies in Asset Markets .................................................................. 10 

2.2.1 Trading Strategies Generating Excess Returns............................................ 10 

2.2.2 Pricing Anomalies about Firm Operation or Finance Information .............. 11 

2.2.3 The Idiosyncratic Risk ................................................................................. 13 

2.3 Multi-Factor Asset Pricing Models .................................................................... 14 

2.3.1 The Intertemporal Capital Asset Pricing Model .......................................... 14 

2.3.2 The Arbitrage Pricing Theory ...................................................................... 15 

2.3.3 The Conditional Capital Asset Pricing Model ............................................. 15 

2.3.4 Other Multi-Factor Asset Pricing Models ................................................... 17 

2.4 Asset Pricing Models with Higher Moments ..................................................... 18 

2.4.1 Models Incorporating Systematic Skewness ............................................... 18 

2.4.2 Models Incorporating Systematic Kurtosis ................................................. 20 

2.5 Volatility Estimation .......................................................................................... 21 

2.5.1 The ARCH and GARCH models ................................................................. 21 

2.5.2 The Option-Implied Volatility ..................................................................... 23 

2.5.3 The Stochastic Volatility ............................................................................. 23 

2.5.4 The Model-Free Volatility ........................................................................... 24 

2.5.5 The High-Frequency Volatility.................................................................... 25 

2.6 Higher Moments Estimation .............................................................................. 26 



 

vi 

2.7 The Performance of Option-Implied Measures .................................................. 28 

2.7.1 Comparison between Option-Implied Volatility and Historical Volatility . 28 

2.7.2 Comparison between Option-Implied Beta and Historical Beta ................. 31 

Chapter 3 Option-Implied Volatility Measures and Stock Return Predictability ........ 34 

3.1 Introduction ........................................................................................................ 34 

3.2 Related Literature ............................................................................................... 36 

3.3 Data .................................................................................................................... 39 

3.4 Option-Implied Volatility Measures and Firm-Specific Factors ........................ 41 

3.4.1 Call-Put Implied Volatility Spread .............................................................. 41 

3.4.2 Implied Volatility Skew ............................................................................... 42 

3.4.3 Above-Minus-Below ................................................................................... 43 

3.4.4 Out-Minus-At .............................................................................................. 44 

3.4.5 Realized-Implied Volatility Spread ............................................................. 44 

3.4.6 Discussion on Option-Implied Volatility Measures .................................... 45 

3.4.7 Firm-Specific Variables ............................................................................... 48 

3.5 Methodology ...................................................................................................... 49 

3.5.1 Portfolio Level Analysis .............................................................................. 49 

3.5.2 Firm-Level Cross-Sectional Regressions .................................................... 50 

3.6 Results for Portfolio Level Analysis .................................................................. 52 

3.6.1 Descriptive Results for Option-Implied Volatility Measures ...................... 52 

3.6.2 Option-Implied Volatility Measures and Quintile Portfolios ...................... 59 

3.6.3 Discussion .................................................................................................... 65 

3.7 Firm-Level Cross-Sectional Regressions ........................................................... 66 

3.7.1 Cross-Sectional Regressions for Full Sample over One-Month Holding 

Period .................................................................................................................... 67 

3.7.2 Cross-Sectional Regressions for Intersection Sample over One-Month 

Holding Period ...................................................................................................... 70 

3.8 Tests for Longer Holding Periods ...................................................................... 77 

3.8.1 Cross-Sectional Regressions for Intersection Sample over Two-Month 

Holding Period ...................................................................................................... 77 

3.8.2 Cross-Sectional Regressions for Intersection Sample over Three-Month 

Holding Period ...................................................................................................... 81 

3.9 Conclusions ........................................................................................................ 85 

Chapter 4 Option-Implied Factors and Stocks Returns: Indications from At-the-Money 

Options ......................................................................................................................... 88 



 

vii 

4.1 Introduction ........................................................................................................ 88 

4.2 Related Literature ............................................................................................... 89 

4.3 Data .................................................................................................................... 90 

4.4 Methodology ...................................................................................................... 91 

4.4.1 Implied Volatility Factors Construction ...................................................... 91 

4.4.2 Portfolios Formation in Cross-Sectional Regressions ................................. 93 

4.4.3 Fama-MacBeth Cross-Sectional Regressions .............................................. 94 

4.5 Results ................................................................................................................ 94 

4.5.1 Descriptive Summary .................................................................................. 94 

4.5.2 Cross-Sectional Regression Results .......................................................... 100 

4.5.2.1 Cross-Sectional Regression Results Using Full-Window Method ......... 100 

4.5.2.2 Cross-Sectional Regression Results Using 60-Month Rolling-Window 

Method ................................................................................................................ 104 

4.5.2.3 Cross-Sectional Regression Results Using 36-Month Rolling-Window 

Method ................................................................................................................ 109 

4.6 Conclusions ...................................................................................................... 113 

Chapter 5 Asymmetric Effects of Volatility Risk on Stock Returns: Evidence from 

VIX and VIX Futures ................................................................................................. 116 

5.1 Introduction ...................................................................................................... 116 

5.2 Related Literature ............................................................................................. 121 

5.3 Data .................................................................................................................. 123 

5.3.1 Data Resources .......................................................................................... 123 

5.3.2 Data Description ........................................................................................ 124 

5.4 Methodology .................................................................................................... 131 

5.4.1 Volatility Factor Construction ................................................................... 132 

5.4.2 Quintile Portfolio Level Analysis .............................................................. 133 

5.4.3 Asymmetric Quintile Portfolio Level Analysis ......................................... 136 

5.4.4 Decomposition of the VIX Index .............................................................. 141 

5.5 Results for Portfolio Level Analysis Using  2VIX  and  2VXF  .......... 144 

5.5.1 Results for Portfolio Level Analysis Using  2VIX  and  2VXF  ... 145 

5.5.2 Results for Asymmetric Portfolio Level Analysis Using  2VIX  ......... 148 

5.5.3 Results for Asymmetric Portfolio Level Analysis Using  2VXF  ........ 151 



 

viii 

5.5.4 Discussions for Asymmetric Portfolio Analysis Using  2VIX  or 

 2VXF  ............................................................................................................ 152 

5.6 Results for Portfolio Level Analysis Using  2VXC  and  2VXP  .......... 155 

5.6.1 Results for Quintile Portfolio Level Analysis ........................................... 155 

5.6.2 Discussions for Asymmetric Portfolio Analysis Using Ex Ante Information

 ............................................................................................................................ 163 

5.7 Conclusions ...................................................................................................... 164 

Chapter 6 Risk-Neutral Systematic Risk and Asset Returns ..................................... 166 

6.1 Introduction ...................................................................................................... 166 

6.2 Related Literature ............................................................................................. 169 

6.3 Data .................................................................................................................. 173 

6.4 Methodology .................................................................................................... 174 

6.4.1 A Two-Factor Model in Kraus and Litzenberger (1976) ........................... 174 

6.4.2 Decomposition of Aggregate Skewness .................................................... 176 

6.4.3 Beta and Gamma Calculation by Using Option Data ................................ 178 

6.4.4 Central Moments Calculation under Risk-Neutral Measure ..................... 179 

6.4.5 Discussion on Option-Implied Gamma ..................................................... 180 

6.5 Results for Portfolios Constructed by Using Historical Data .......................... 181 

6.5.1 Quintile Portfolios Analysis on Historical Beta ........................................ 182 

6.5.2 Quintile Portfolio Analysis on Historical Gamma..................................... 185 

6.6 Results for Portfolios Constructed by Using Option Data ............................... 185 

6.6.1 Description of Model-Free Moments ........................................................ 186 

6.6.2 Quintile Portfolio Analysis on Option-Implied Beta ................................. 188 

6.6.3 Quintile Portfolio Analysis on Option-Implied Gamma ........................... 188 

6.7 Discussions ....................................................................................................... 191 

6.7.1 Discussions on Systematic Standard Deviation Risk ................................ 191 

6.7.2 Discussions on Systematic Skewness Risk................................................ 192 

6.7.3 Discussions on Size Effect ........................................................................ 193 

6.8 Results for Portfolio Level Analysis by Double Sorting .................................. 194 

6.8.1 Double-Sorting Portfolio Analysis on Option-implied Beta ..................... 194 

6.8.2 Double-Sorting Portfolio Analysis on Option-implied Gamma ................ 197 

6.8.3 Double-Sorting Portfolio Analysis on Firm Size ...................................... 200 

6.9 Results for Cross-Sectional Regressions .......................................................... 203 



 

ix 

6.9.1 Results for Firm-Level Cross-Sectional Regressions ................................ 204 

6.9.2 Results for Two-Stage Fama-MacBeth Cross-Sectional Regressions ....... 207 

6.10 Conclusions .................................................................................................... 213 

Chapter 7 Conclusions ............................................................................................... 215 

Reference ................................................................................................................... 219 

 

  



 

x 

Frequently Used Notation 

 

ir  Return on individual asset i  

fr  Risk-free rate 

mr  Return on market portfolio m   

0r  Return on the zero-beta portfolio 

5-1r  Return on the “5-1” long-short portfolio 

 E  Expected value 

i  Standard deviation of individual asset i  
2

i  Variance of individual asset i  
3

im  Third central moment of individual asset i  
4

ik  Fourth central moment of individual asset i  

ij  Covariance between asset i  and asset j  

ij  Correlation between asset i  and asset j  

i  Market beta of individual asset i  

i  Market gamma of individual asset i  

i  Market delta of individual asset i  

i  Risk premium on risk factor i  

tI  Information set available in period t  

MKT  Market excess return 

SMB  
Small-minus-big (i.e., the average return on the three small portfolios 

minus the average return on the three big portfolios) 

HML  
High-minus-low (i.e., the average return on the two value portfolios 

minus the average return on the two growth portfolios) 

UMD  

Winner-minus-loser (Up-minus-down) (i.e., the average return on the two 

high prior return portfolios minus the average return on the two low prior 

return portfolios) 
  Mean 

th  Conditional variance 

K  Strike price of the option 

( , )C T K  Price of call option with time-to-expiration of T  and strike price of K  

( , )P T K  Price of put option with time-to-expiration of T  and strike price of K  

( , )V T K  Price of the volatility contract with time-to-expiration of T  at time t  

( , )W T K  Price of the cubic contract with time-to-expiration of T  at time t  

( , )X T K  Price of the quartic contract with time-to-expiration of T  at time t  

MFIV  Model-free implied volatility 

MFIS  Model-free implied skewness 

MFIK  Model-free implied kurtosis 
P

 Real-world measure 
Q

 Risk-neutral measure 



 

xi 

CPIV  Call-put implied volatility spread 

IVSKEW  Implied volatility skew 

AMB  Above-minus-below 

COMA  “Out-minus-at” of calls 

POMA  “Out-minus-at” of puts 

RVIV  Realized-implied volatility spread 

SPX  The S&P500 index 

VF  Volatility risk factor 

VIX  
The VIX index, which measures the market's expectation of stock market 

volatility based on the S&P500 index over the next 30-day period 

VXO  
The old VIX index, which measures the market's expectation of stock 

market volatility based on the S&P100 index over the next 30-day period 

VXF  The VIX index futures 

VXC  
The volatility index calculated using near-term and next-term 

out-of-the-money S&P500 call options 

VXP  
The volatility index calculated using near-term and next-term 

out-of-the-money S&P500 put options 

 ,Q K T  
The midpoint of the bid-ask spread for each out-of-the-money call or put 

option with strike price of K  and time-to-expiry of T  

2

,C T  
Variance calculated by using only out-of-money call options with 

time-to-expiration of T  

2

,P T  
Variance calculated by using only out-of-money put options with 

time-to-expiration of T  

CAPM Capital Asset Pricing Model 

ICAPM Intertemporal Capital Asset Pricing Model 

APT Arbitrage Pricing Theory 

P/E Price-to-earnings ratio 

B/M Book-to-market ratio 

GMM Generalized method of moments 

ARCH Autoregressive conditional heteroskedasticity 

GARCH Generalized autoregressive conditional heteroskedasticity 

 

  



 

xii 

List of Figures 

Figure 3.1: Implied Volatility Curve ........................................................................... 46 

Figure 5.1: VIX Index (VIX ), VIX Index Futures (VXF ), S&P500 Index ( SPX ), and 

Market Excess Returns ( MKT ) ................................................................................. 125 

Figure 5.2: VIX Index (VIX ), Call VIX Index (VXC ), Put VIX Index (VXP ), 

S&P500 Index ( SPX ), and Market Excess Returns ( MKT ) .................................... 130 

Figure 5.3: Relationship between VIX Futures Basis and the VIX index (VIX ) ...... 138 

Figure 5.4: Relationship between VIX Futures Basis and S&P500 Index ( SPX ) .... 140 

Figure 5.5: Prices of Out-of-the-Money Options ( , )Q K T  and Implied Volatilities on 

October 22, 2008 (31 Day-to-Maturity) ..................................................................... 142 

Figure 6.1: Risk-Neutral Central Moments of The S&P500 Index ........................... 187 

 

  



 

xiii 

List of Tables 

Table 3.1: Summary Statistics (January, 1996 - September, 2011) ............................. 56 

Table 3.2: Results for Quintile Portfolios Sorted on Option-Implied Volatility 

Measures ...................................................................................................................... 60 

Table 3.3: Firm-Level Cross-Sectional Regression Results by Using the Full Sample

 ...................................................................................................................................... 68 

Table 3.4: Firm-Level Cross-Sectional Regression Results by Using the Intersection 

Sample for One-Month Holding Period ....................................................................... 71 

Table 3.5: Firm-Level Cross-Sectional Regression Results by Using the Intersection 

Sample for Two-Month Holding Period ...................................................................... 78 

Table 3.6: Firm-Level Cross-Sectional Regression Results by Using the Intersection 

Sample for Three-Month Holding Period .................................................................... 82 

Table 4.1: Quintile Portfolios Sorted on the Implied Volatility .................................. 96 

Table 4.2: Quintile Portfolios Sorted on the Change in Implied Volatility ................. 97 

Table 4.3: Cross-Sectional Regression Results Using Full-Window Method ........... 101 

Table 4.4: Cross-Sectional Regression Results Using 60-Month Rolling-Window 

Method ....................................................................................................................... 105 

Table 4.5: Cross-Sectional Regression Results Using 36-Month Rolling-Window 

Method ....................................................................................................................... 110 

Table 5.1: Descriptive Statistics ................................................................................ 127 

Table 5.2: Results for Quintile Portfolio Level Analysis by Using  2VIX  ........ 146 

Table 5.3: Results for Quintile Portfolio Level Analysis by Using  2VXF  ........ 147 

Table 5.4: Results for Asymmetric Quintile Portfolio Level Analysis by Using 

 2VIX  ................................................................................................................... 149 



 

xiv 

Table 5.5: Results for Asymmetric Quintile Portfolio Level Analysis by Using 

 2VXF  ................................................................................................................... 153 

Table 5.6: Results for Two-Month Quintile Portfolio Level Analysis ...................... 157 

Table 5.7: Results for One-Month Quintile Portfolio Level Analysis ....................... 159 

Table 6.1: Changes in the S&P500 Index Constituents ............................................. 175 

Table 6.2: Results for Quintile Portfolio Analysis among Constituents of the S&P500 

Index (Historical Beta) ............................................................................................... 183 

Table 6.3: Results for Quintile Portfolio Analysis on Constituents of the S&P500 

Index (Historical Gamma) ......................................................................................... 184 

Table 6.4: Results for Quintile Portfolio Analysis on Constituents of the S&P500 

Index (Option-Implied Beta) ...................................................................................... 189 

Table 6.5: Results for Quintile Portfolio Analysis on Constituents of the S&P500 

Index (Option-Implied Gamma) ................................................................................ 190 

Table 6.6: Results for Quintile Portfolios Constructed on Option-Implied Beta While 

Controlling for Option-Implied Gamma .................................................................... 195 

Table 6.7: Results for Quintile Portfolios Constructed on Option-Implied Beta While 

Controlling for Firm Size ........................................................................................... 196 

Table 6.8: Results for Quintile Portfolios Constructed on Option-Implied Gamma 

While Controlling for Option-Implied Beta............................................................... 198 

Table 6.9: Results for Quintile Portfolios Constructed on Option-Implied Gamma 

While Controlling for Firm Size ................................................................................ 199 

Table 6.10: Results for Quintile Portfolios Constructed on Firm Size While 

Controlling for Option-Implied Beta ......................................................................... 201 

Table 6.11: Results for Quintile Portfolios Constructed on Firm Size While 

Controlling for Option-Implied Gamma .................................................................... 202 

Table 6.12: Firm-Level Cross-Sectional Regression Results .................................... 205 



 

xv 

Table 6.13: Two-Stage Fama-MacBeth Cross-Sectional Regression Results Using 25 

Size Portfolios ............................................................................................................ 209 

Table 6.14: Two-Stage Fama-MacBeth Cross-Sectional Regression Results Using 25 

Book-to-Market Portfolios ......................................................................................... 211 

 

 



 

1 

Chapter 1 Introduction 

1.1 Introduction 

The Capital Asset Pricing Model (CAPM) developed by Sharpe (1964), Lintner 

(1965), and Mossin (1966) is one of the most influential theories in finance. The 

popularity of the CAPM mainly stems from its parsimony and elegance. Based on the 

CAPM, an asset’s expected return can be explained by its systematic risk (i.e., beta), 

which is equal to the covariance between returns on this asset and returns on the 

market portfolio divided by the variance of returns on the market portfolio. 

However, the CAPM fails to explain many of the time-series and cross-sectional 

properties of asset returns. Some studies present empirical evidence which is 

inconsistent with the CAPM. For example, Blume (1970), Blume and Friend (1973), 

and Fama and MacBeth (1973) suggest that the regression intercept should be higher 

and the slope should be lower than the CAPM predictions. Also, there are seasonal 

patterns in financial markets, such as the January effect, and the Weekend effect.1 

Previous literature documents different pricing anomalies related to firm-specific 

information, as well. Basu (1977) documents a negative relationship between a firm’s 

stock return and its price-to-earnings ratio (i.e., the P/E anomaly). Banz (1981) finds 

that small firms outperform large firms (i.e., the size effect). Rosenberg, Reid, and 

Lanstein (1985) present that an asset’s return is positively related to its 

book-to-market ratio (i.e., the value effect). 

                                                 

1 The January effect indicates that stock prices increase more in January than in any other month. The 

weekend effect implies that the average return on Mondays is significantly lower than average returns 

on other four trading days. 
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Because of the existence of pricing anomalies documented in previous literature 

and differences between CAPM-predicted prices and empirical observations, it is 

natural to ask how to improve the asset pricing model in order to capture more 

relevant information about future market conditions. Thus, after the establishment of 

the CAPM, a vast number of studies engage in developing asset pricing models from 

different perspectives. 

Some studies try to derive asset pricing models from theoretical perspectives. 

The CAPM is derived based on Markowitz (1959) mean-variance efficient framework 

and assumes that investors have a trade-off between mean (i.e., a proxy for expected 

return) and variance (i.e., a proxy for risk). However, investors’ utility functions do 

not necessarily depend on mean and variance. The failure of the CAPM could be due 

to omission of other higher moments of stock returns (e.g., skewness or kurtosis). 

Kraus and Litzenberger (1976), Sears and Wei (1985; 1988), Fang and Lai (1997), 

Dittmar (2002), and Kostakis, Muhammad and Siganos (2012) introduce factors 

related to higher moments of return distribution into the asset pricing model and 

confirm that higher moments are related to asset returns. 

Some other studies try to improve asset pricing models by including more pricing 

factors from empirical perspectives. In order to capture information indicated by 

different pricing anomalies, Fama and French (1993) introduce two additional 

return-based factors, Small-Minus-Big ( SMB ) and High-Minus-Low ( HML ), into the 

asset pricing model.2 Based on Fama-French three-factor model, Carhart (1997) 

further includes a momentum factor, Winners-Minus-Losers (UMD ), into the model.3 

                                                 

2 Small-Minus-Big ( SMB ) is the average return on the three small portfolios minus the average return 

on the three big portfolios. High-Minus-Low ( HML ) is the average return on the two value portfolios 

minus the average return on the two growth portfolios. 
3 Winners-Minus-Losers (UMD ) is the average return on the two high prior return portfolios minus the 

average return on the two low prior return portfolios. 
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Although these two models outperform the CAPM in explaining asset returns, they 

have no theoretical backup.  

On the other hand, using historical information to predict expected returns 

implicitly implies that situations in the future should be quite similar to situations in 

the past (i.e., returns are drawn from the same distribution). However, if economic 

conditions change over time, historical data might fail to reflect future market 

conditions and cause error-in-variables and biased estimation problems. As a remedy 

to this problem, some empirical studies (Christensen and Prabhala, 1998; Szakmary, 

Ors, Kim and Davidson, 2003; Poon and Granger, 2005; Kang, Kim and Yoon, 2010; 

Taylor, Yadav and Zhang, 2010; Yu, Lui and Wang, 2010; and Muzzioli, 2011) use 

option-implied information in predicting future volatilities. Empirical evidence shows 

that option-implied information incorporates more useful information in volatility 

forecasting than historical information does. Some studies (French, Groth and Kolari, 

1983; Siegel, 1995; Buss, Schlag and Vilkov, 2009; Buss and Vilkov, 2012; and 

Chang, Christoffersen, Jacobs and Vainberg, 2012) use forward-looking methods to 

calculate beta instead of the backward-looking one using historical data. Empirical 

results confirm that the relationship between an asset’s return and its option-implied 

beta is stronger. 

Thus, due to the outperformance of option-implied measures, this thesis aims to 

improve the asset pricing model in explaining or even predicting asset returns by 

incorporating option-implied information (i.e., option-implied volatility, skewness and 

kurtosis) from different perspectives.  
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1.2 The Structure of the Thesis 

The thesis is organized as follows. Chapter 2 reviews the relevant literature. First, 

this chapter discusses the traditional CAPM in detail. Then, different pricing 

anomalies, which cannot be explained by the CAPM, documented in previous 

literature are presented. Chapter 2 also takes a look at different multi-factor asset 

pricing models, including theoretical pricing models other than the CAPM, pricing 

models with return-based factors, and pricing models with higher moments. Next, this 

chapter presents how to estimate volatility and higher moments in various ways, by 

using historical information or forward-looking option-implied information. The final 

part of Chapter 2 compares the performance of option-implied measures with the 

performance of historical measures. 

Chapter 3, “Option-Implied Volatility Measures and Stock Return Predictability”, 

investigates the relationship between stock return and option-implied volatility 

measures at firm-level. This chapter constructs six different volatility measures 

proposed in previous literature. The analysis helps to clarify whether these measures 

contain different information on volatility curve. This chapter runs analysis among all 

six volatility measures, and the results give us some hints about the predictive power 

of each volatility measure. Furthermore, this chapter looks at predictability of 

volatility measures for different investment horizons.  

In Chapter 3, portfolio level analysis confirms a significant and positive 

relationship between portfolio return and CPIV . The analysis also shows that 

IVSKEW  is negatively related to portfolio return. Then, from firm-level 

cross-sectional regressions, for one-month predictive horizon, CPIV  has the most 

significant predictive power. When extending the predictive horizon to two-month or 

three-month, the predictive power of CPIV  still persists. Meanwhile, COMA  gains 
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significant predictive ability. Findings presented in this chapter could provide 

investors with useful information about how to improve their trading strategies based 

on the length of their investment horizons in order to boost profits. 

Chapter 4, “Option-Implied Factors and Stocks Returns: Indications from 

At-the-Money Options”, focuses on at-the-money call and put options. Previous 

studies, such as Ang, Hodrick, Xing and Zhang (2006), construct return-based pricing 

factors using information at aggregate-level. To contribute beyond previous literature, 

this chapter extracts useful information from options on individual stocks. This 

chapter constructs different pricing factors by using implied volatilities extracted from 

at-the-money call or put options, and then tests whether these factors help to explain 

time-series and cross-sectional properties of stock returns. However, empirical results 

provide limited evidence about significant premiums on implied volatility factors 

constructed in this chapter. 

Due to the negative relationship between market index and volatility index and 

the existence of the market risk premium, Chapter 5, entitled “Asymmetric Effects of 

Volatility Risk on Stock Returns: Evidence from VIX and VIX Futures”, focuses on 

the relationship between an asset’s return and its sensitivity to aggregate volatility risk. 

To measure the aggregate volatility risk, this chapter uses the VIX index, as well as 

VIX index futures. In addition to the unconditional relationship tested in previous 

literature (Ang, Hodrick, Xing and Zhang, 2006; Chang, Christoffersen and Jacobs, 

2013), this chapter investigates whether the aggregate volatility risk plays different 

roles in different market scenarios. To separate different market conditions, this 

chapter uses a dummy variable defined on VIX futures basis (i.e., the difference 

between VIX spot and VIX futures). Furthermore, the VIX index is decomposed into 

two parts: volatility calculated by using out-of-money call options and volatility 
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calculated by using out-of-money put options. Such a decomposition helps to shed 

light on whether the asymmetric effect of volatility risk exists when using ex ante 

information and whether different kinds of options capture different information about 

future market conditions.  

The empirical analysis in Chapter 5 reveals that there is no significant 

unconditional relationship between an asset’s return and its sensitivity to volatility risk. 

Nevertheless, by distinguishing different market conditions, it is obvious that an 

asset’s return is significantly and negatively related to its sensitivity to volatility risk 

in fearful markets. Such a negative relationship does not hold in calm markets. Then, 

after decomposing the VIX index into two components, results show that put options 

contain more relevant and useful information in predicting future returns compared 

with call options. Such results confirm the asymmetric effect of volatility risk by using 

ex ante information. 

Based on the traditional CAPM, in order to explain dynamics of asset returns 

more adequately, a lot of studies introduce other factors into asset pricing models. 

Kraus and Litzenberger (1976) propose that higher moments should be taken into 

consideration in asset pricing. In addition to market beta measuring the systematic 

standard deviation, market gamma measuring systematic skewness is an important 

pricing factor. Chapter 6, “Risk-Neutral Systematic Risk and Asset Returns”, 

examines how market beta and market gamma affect asset future returns. In addition 

to using historical data for beta and gamma estimation, this chapter incorporates 

option-implied model-free moments. It is expected that options contain 

forward-looking information which is more relevant to future market conditions. This 

chapter provides a comparison between beta and gamma calculated using daily 

historical data and beta and gamma calculated using forward-looking information. 
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Furthermore, this chapter also tests whether option-implied measures gain significant 

risk premiums in explaining cross-section of asset returns. 

The empirical results in Chapter 6 show that option-implied gamma outperforms 

historical gamma in explaining portfolio returns over five-month or longer horizons. 

The analysis also confirm that, compared with beta and gamma, size is a more 

important pricing factor in explaining returns on components of the S&P500 index. In 

addition, through Fama-MacBeth cross-sectional regressions, this chapter finds that 

option-implied components for beta and gamma calculation have significant risk 

premiums in some cases. 

Finally, Chapter 7 summarizes all findings and concludes this thesis. Implications 

and limitations of the thesis are also discussed. 
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Chapter 2 Literature Review 

This thesis is motivated by the failure of the CAPM in explaining asset returns. 

Due to the poor performance of the CAPM, previous literature engages in improving 

asset pricing models. For example, some studies establish multi-factor asset pricing 

models from different perspectives. In addition, the development of financial markets 

makes it possible to extract forward-looking information from different kinds of 

derivatives (e.g., options and futures).  

This chapter provides a detailed literature review. First of all, the CAPM is 

discussed in detail in section 2.1, followed by a discussion about pricing anomalies 

that cannot be explained in section 2.2. Then, this chapter reviews some multi-factor 

asset pricing models derived in previous literature in sections 2.3 and 2.4. After that, 

sections 2.5 and 2.6 review studies about volatility and higher moments (i.e., 

skewness and kurtosis) estimation, respectively. The final part of this chapter, section 

2.7, discusses studies about the comparison between performance of option-implied 

measures and performance of historical measures. 

2.1 The Capital Asset Pricing Model 

The CAPM is one of the most influential financial theories. It establishes a linear 

relationship between an asset’s return and its corresponding systematic risk. Investors 

want to get compensation for bearing systematic risk and the CAPM establishes a 

simple yet effective framework for this relationship between risk and return. Due to its 

simplicity, the CAPM is widely used in applications. First of all, some details about 

the derivation of the CAPM are presented in this section. 

The most important foundation of the CAPM is the mean-variance approach 

proposed by Markowitz (1959). This approach claims that mean and variance of 
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returns can be treated as proxies for return and risk, respectively. If two assets yield 

the same return, investors will prefer the asset with less risk. If two assets have the 

same degree of risk, investors will prefer the asset with higher return. In other words, 

investors prefer more positive first moments (i.e., mean) and are averse to higher 

second moments (i.e., variance). 

Based on the mean-variance approach, Sharpe (1964), Lintner (1965) and Mossin 

(1966) find a linear relationship between an asset’s expected return and its systematic 

risk. This relationship is later on acknowledged as the Capital Asset Pricing Model 

(CAPM). On the basis of the mean-variance approach, the CAPM can be written as: 

   ( )i f i m fE r r E r r        (2.1) 

where  iE r  stands for the expected return on asset i , fr  represents the risk-free 

rate,  mE r  measures the expected return on market portfolio m , and i  is the 

beta of asset i , which represents the portion of risk that investors care (i.e., 

undiversifiable risk or systematic risk). More specifically, beta is calculated using the 

following formula: 

 
2

im im i
i

m m

  


 
    (2.2) 

where im  is the correlation between returns on individual asset i  and returns on 

market portfolio m , i  represents the standard deviation of returns on individual 

asset i , and m  stands for the standard deviation of returns on market portfolio m .  

The CAPM is derived based on a set of strong assumptions about capital markets. 

Thus, if all assumptions hold in capital markets, the CAPM would hold period by 

period. However, most of these assumptions are fragile. One of the most challenged 

assumptions is that investors aim to maximize their expected utility functions, which 
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only depend on the first moment (i.e., mean) and the second moment (i.e., variance) of 

returns on their portfolios. Furthermore, some other assumptions do not hold as well. 

Transaction costs and personal income taxes do exist in capital markets, and there are 

indeed restrictions on short sales and limits on the amount of money that can be 

borrowed or lent. These invalid assumptions of the CAPM could be potential reasons 

for the failure of the CAPM. The existence of the idiosyncratic risk empirically 

documented is also a big issue for the CAPM.4 Due to these real-life frictions, 

whether the CAPM adequately describes behaviours of stock returns is subject to 

severe criticism. The next section reviews some studies documenting different pricing 

anomalies. 

2.2 Pricing Anomalies in Asset Markets 

A vast number of studies focus on empirical tests of the CAPM and many of 

them document the failure of the CAPM in explaining stock returns. Subsection 2.2.1 

discusses some trading strategies generating significant returns. Subsection 2.2.2 looks 

at anomalies related to firm operation or finance information. The final Subsection 

2.2.3 reviews the pricing anomaly about idiosyncratic risk found in recent studies.  

2.2.1 Trading Strategies Generating Excess Returns 

The most famous pricing anomalies about time-series properties of stock returns 

are the January effect (Rozeff and Kinney, 1976; Keim, 1983) and the Weekend effect 

(French, 1980).5 Some other anomalies are related to cross-sectional properties of 

stock returns, such as P/E effect (Basu, 1977), the size effect (Banz, 1981), and the 

                                                 

4 See Ang, Hodrick, Xing and Zhang (2006) and Bali and Cakici (2008) for the existence of the 

idiosyncratic risk. 
5 Keim (1983) maintains that the January effect can be due to the abnormal returns during the first 

trading week, especially the first trading day. 
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value effect (Rosenberg, Reid, and Lanstein 1985; Fama and French, 1992).6 In 

addition to these well-known pricing anomalies, some trading strategies, which cannot 

be justified by the CAPM, enable investors to get excess returns. 

De Bondt and Thaler (1985 and 1987) claim that past losers outperform past 

winners during the following 36-month period. Empirical results reveal that, during 

the period from 1933 to 1980, returns on past losers are 25% higher than returns on 

past winners even though past winners suffer from more risk than past losers do. Thus, 

investors can get excess returns if they invest in past losers and sell past winners short 

at the same time. This zero-cost strategy is known as the contrarian strategy.  

More interestingly, the momentum strategy makes investors earn excess returns 

for shorter future periods. Jegadeesh and Titman (1993) document the existence of the 

momentum effect in the stock market. According to their results, the momentum 

strategy which buys past winners and sells past losers can generate significantly 

positive returns over three-month to 12-month holding periods. Furthermore, they also 

distinguish that neither the systematic risk nor the lead-lag effect is the potential 

reason for profits from the momentum strategy.7 

2.2.2 Pricing Anomalies about Firm Operation or Finance Information 

Some recent papers document pricing anomalies related to firm operation or 

finance information. 

First of all, Loughran and Ritter (1995) document the existence of the new issues 

puzzle. Empirical results show that companies issuing stock during 1970 to 1990 (no 

matter whether it is an initial public offering or a seasoned equity offering) perform 

                                                 

6 However, Schwert (2003) documents that some anomalies cannot be detected when using different 

sample periods, such as the January effect, the weekend effect, the size effect and the value effect. 
7 The lead-lag effect means that one variable (i.e., the leading variable) is closely related to the value of 

another variable (i.e., the lagging variable) at later times. 
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poorly during the five-year period after the issue. To be more specific, the average 

return on companies with an initial public offering is only 5% p.a. and the average 

return on companies with a seasoned equity offering is only 7% p.a.. In addition, such 

a puzzle cannot be explained by the value effect. 

Diether, Malloy and Scherbina (2002) present empirical evidence about the 

relationship between dispersion in analysts’ earnings forecasts and cross section of 

future stock returns. The empirical evidence presents that stocks with lower dispersion 

outperform stocks with higher dispersion significantly, especially for small stocks and 

stocks that performed badly in the past year. 

Titman, Wei and Xie (2004) document a negative relationship between abnormal 

capital investments and stock returns, especially for firms with greater investment 

discretion (i.e., the abnormal capital investment anomaly). They find that such a 

negative relationship is independent of long-term return reversal and secondary equity 

issue anomalies. 

When Petkova and Zhang (2005) investigate the value premium by using the 

conditional CAPM, they find that the direction of time-varying risk is consistent with 

a value premium (i.e., value betas tend to covary positively while growth betas tend to 

covary negatively with the expected market risk premium). However, the evidence 

also presents that the covariance between value-minus-growth betas and the expected 

market risk premium is not enough to explain the value premium. Thus, there should 

be other factors driving the value anomaly. 

Daniel and Titman (2006) explore the book-to-market effect. They find that past 

accounting-based performance cannot help to explain a stock’s future return. However, 

a stock’s future return is negatively related to the “intangible” return (i.e., the 

component of its past return that is orthogonal to the firm’s past performance). So they 
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claim that the book-to-market ratio forecasts returns because it is a good proxy for the 

intangible return. Daniel and Titman (2006) also document that composite stock 

issuance predicts returns independently (i.e., the composite stock issuance anomaly). 

Lyandres, Sun and Zhang (2008) document the evidence of the 

investment-to-asset ratio anomaly. They show that, if the investment factor is added 

into the asset pricing model, some anomalies can be explained to some extent. For 

example, about 40% of the composite issuance effect documented by Daniel and 

Titman (2006) can be explained after the inclusion of an investment factor into the 

regression model.  

Then, the total asset growth anomaly is documented by Cooper, Gulen and Schill 

(2008). They find a negative correlation between the total asset growth and the annual 

return. In addition, they claim that total asset growth even dominates other commonly 

used pricing factors (e.g., book-to-market ratios, firm capitalization, lagged returns, 

accruals, and other growth measures). 

2.2.3 The Idiosyncratic Risk 

The CAPM only captures the systematic risk, however, the idiosyncratic risk, 

which is specific for each asset, is also related to asset returns. Ang, Hodrick, Xing 

and Zhang (2006) document the existence of the idiosyncratic volatility anomaly. 

Their paper focuses on the relationship between the idiosyncratic volatility and the 

asset return. To check whether asset returns are related to the idiosyncratic volatility, 

they analyze returns on portfolios sorted on idiosyncratic volatility relative to Fama 

and French three-factor model (1993). The empirical results present that stocks with 

high idiosyncratic volatility underperform stocks with low idiosyncratic volatility. 

They also find that many factors, such as size, book-to-market ratio, momentum, and 
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even the dispersion in analysts’ earnings forecasts mentioned above, cannot explain 

low (high) returns on stocks with high (low) idiosyncratic volatility. 

In summary, previous studies point out that the CAPM cannot explain time-series 

and cross-sectional properties of asset returns. After the establishment of the CAPM, 

many studies aim at improving asset pricing models from different perspectives. Next 

section reviews some papers deriving multi-factor asset pricing models. 

2.3 Multi-Factor Asset Pricing Models 

This section reviews some classic asset pricing models other than the CAPM, 

such as the intertemporal CAPM, the Arbitrage Pricing Theory, and the conditional 

CAPM. Then, this section also discusses empirical studies introducing return-based 

pricing factors, such as SMB , HML  and UMD . 

2.3.1 The Intertemporal Capital Asset Pricing Model 

Adding to the CAPM, Merton (1973) establishes another asset pricing model, the 

Intertemporal Capital Asset Pricing Model (ICAPM). First of all, Merton (1973) 

points out that the CAPM is a one-horizon model and it cannot be used for infinite 

horizons. He points out that, for continuous time, the choice of the portfolio not only 

depends on the mean-variance approach but also relates to the uncertainty of the 

investment opportunity set. So in the ICAPM, there are two pricing factors: the 

systematic risk and changes in the investment opportunity set. The ICAPM can be 

written as: 

      0i f i m f i fE r r E r r E r r              (2.3) 

where  0E r  is the expected return on the zero-beta portfolio, i  measures how 

expected return changes for bearing the risk of changes in the investment opportunity 
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set. In this multi-horizon model, investors are able to rebalance their portfolios. Thus, 

changes in the investment opportunity set affect investors’ choices, and investors need 

to take other risk factors, in addition to beta, into consideration. Furthermore, 

variables included in models which will be reviewed in later subsections, such as 

SMB  and HML , are also related to changes in the investment opportunity set. 

2.3.2 The Arbitrage Pricing Theory 

Another famous multi-factor model is the Arbitrage Pricing Theory (APT) 

proposed by Ross (1976). The main difference between the CAPM and the APT is 

that the APT does not require an assumption about the utility function. Ross (1976) 

proposes that the expected return on an asset should be a linear function of the asset’s 

sensitivities to many different risk factors. The APT can be expressed by the following 

formula: 

  
1

J

i f ij j

j

E r r  


    (2.4) 

where 
ij  measures the sensitivity of stock i ’s return to risk factor j , 

j  stands 

for the expected risk premium on risk factor j . The relationship between the APT 

and the CAPM is that the CAPM can be treated as a special case of the APT, which 

has only one risk factor, beta. However, the shortcoming of the APT is obvious. Ross 

(1976) does not identify what exact pricing factors should be used. Which risk factors 

should be included in the APT remains an open question. 

2.3.3 The Conditional Capital Asset Pricing Model 

Furthermore, previous studies also document that beta and/or the risk premium 

are not constant, and they vary significantly over time. These variations offer an 

alternative explanation to the failure of the static CAPM (discussed in section 2.1): the 
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static CAPM is a single-period static model. More particularly, the conditional CAPM 

establishes the following relationship for each asset i  and each period t : 

  , 1 0, 1 , 1 , 1i t t t m t i tE r I          (2.5) 

where 
0, 1t  stands for the conditional expected return on a zero-beta portfolio, 

, 1m t  

is the conditional market risk premium, and 
, 1i t  means the conditional beta of asset 

i , which can be obtained from 
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
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If we take unconditional expectations on both sides of the conditional CAPM: 

    , 0 , 1vari t m i m t iE r          (2.7) 

where 0 0, 1tE  
     and it is the unconditional expected return on zero-beta 

portfolio, , 1m m tE  
     and it is the expected market risk premium, , 1i i tE  

     

and it is the expected beta, and i  is the beta-premium sensitivity, which can be 

calculated by 
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  (2.8) 

Thus, in the conditional CAPM, i  captures the impact of time-varying betas on 

expected returns. By using the conditional CAPM, Ferson and Harvey (1991) claim 

that time variation in the stock market risk premium is very important in predicting 

expected returns, and it is even more important than changes in betas. Then, 

Jagannathan and Wang (1996) are the first to test the performance of the conditional 

CAPM in explaining the cross-section of stock returns. They find that the size effect 

and statistical rejections of model specifications become weaker under the assumption 

that betas and expected returns are time-varying. Empirical results in their paper show 
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that the conditional CAPM outperforms the static CAPM in explaining cross-sectional 

variations in expected returns. 

2.3.4 Other Multi-Factor Asset Pricing Models 

There is a continuous search for factors with the aim to better explain pricing 

anomalies and asset returns. First, Fama and French (1993) test whether the model 

including three return-based factors, which are market excess return ( MKT ), 

Small-Minus-Big ( SMB ) and High-Minus-Low ( HML ), captures risks borne by 

stocks. The Fama-French three-factor model is as follows:  

 +i f i i i ir r MKT s SMB h HML       (2.9) 

where is  and ih  are sensitivities of returns on asset i  to SMB  and HML , 

respectively. By using time-series regressions, they claim that both firm size and 

book-to-market ratio are indeed quite important for asset pricing. This three-factor 

asset pricing model explains the cross-section of average stock returns better than the 

CAPM does (i.e., two new factors are significant explanatory variables). Furthermore, 

SMB  and HML  can be treated as proxies for the investment opportunity set which 

is the additional factor in the ICAPM. Thus, Fama-French three-factor model is 

consistent with the ICAPM. 

In addition, because of the well-documented momentum effect, Carhart (1997) 

introduces a momentum factor into the three-factor model established by Fama and 

French (1993). Thus, four explanatory variables in Carhart’s model are MKT , SMB  

and HML , and one-year momentum in stock returns (UMD ). The Carhart four-factor 

model can be written as: 

 
i f i i i i ir r MKT s SMB h HML mUMD         (2.10) 
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where im  measures the sensitivity of returns on stock i  to the momentum risk 

factor. The empirical findings show that the Carhart four-factor model can well 

describe both time-series variation and cross-sectional variation in stock returns, and it 

leads to lower pricing errors than the Fama-French three-factor model does. 

Berk, Green and Naik (1999) model asset returns from another perspective. They 

establish an asset pricing model on the basis of a firm’s risk through time. They claim 

that changes in conditional expected returns are due to the valuation of cash flow from 

investment decisions and the firm’s options to grow in the future time. Thus, a firm’s 

return can be obtained from the sum of the cash flow and the future price divided by 

the current price. Because the number of ongoing projects is closely related to the 

firm’s life cycle and the interest rate, this model can capture such changes. The 

simulation results in their paper show that their model helps to explain several 

time-series and cross-sectional anomalies to some extent, such as the value effect, the 

size effect, the contrarian effect and the momentum effect.  

From previous studies mentioned above, it is obvious that multi-factor asset 

pricing models perform better in terms of explaining time-series and cross-sectional 

properties of asset returns.  

2.4 Asset Pricing Models with Higher Moments 

In addition to literature reviewed in the previous section, another strand of 

studies improves asset pricing models by breaking the assumption of the 

mean-variance framework.  

2.4.1 Models Incorporating Systematic Skewness 

Kraus and Litzenberger (1976) derive an asset pricing model by incorporating the 

third moment of return distribution (i.e., skewness). For investors with 
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non-polynomial utility functions (e.g., cubic utility functions), they are averse to 

standard deviation and they prefer positive skewness. So, in equilibrium, by assuming 

that the return on the market portfolio is asymmetrically distributed, their study 

derives a two-factor model (i.e., a three-moment model). In their model, there are two 

pricing factors, market beta (measuring systematic standard deviation of an asset) and 

market gamma (measuring systematic skewness of an asset):  

   1 2i f i iE r r b b      (2.11) 

where 2

i im m   , 3

i imm mm m ,  1 W mb dW d  , and  2 W mb dW dm m  

for all investors.  
22 ( )m m mE r E r  

 
 ,  

33 ( )m m mm E r E r  
 

, and 

 
44 ( )m m mk E r E r  

 
 are the second, third, and fourth central moments of the return 

on the market portfolio. 1b  and 2b  can be interpreted as risk premiums on market 

beta and market gamma, respectively. Empirical findings in Kraus and Litzenberger 

(1976) confirm a significant premium on systematic skewness. 

After Kraus and Litzenberger (1976), many studies investigate investors’ 

preference to systematic skewness risk. Friend and Westerfield (1980) provide a more 

comprehensive test for the Kraus and Litzenberger (1976) model.8 Compared to 

previous studies, their study includes bonds as well as stocks into the portfolio. 

However, they cannot find conclusive evidence about the risk premium related to 

systematic skewness. Furthermore, they point out that the significance of systematic 

skewness is sensitive to different market indices and testing and estimation 

procedures.  

                                                 

8 Friend and Westerfield’s (1980) paper is also the first using “coskewness” to denote the systematic 

skewness (measured by market gamma). 
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Sears and Wei (1985 and 1988) figure out why previous studies have mixed 

results about the risk premium on systematic skewness. They claim that the potential 

reason is the nonlinearity in the market risk premium. They incorporate such a 

nonlinearity in their theoretical framework. Empirical results then provide evidence 

about investors’ preference to higher systematic skewness. 

Later, Lim (1989) tests the Kraus and Litzenberger’s (1976) model by using 

Hansen’s (1982) generalized method of moments (GMM) and using stock returns at 

monthly basis. Empirical results confirm the importance of systematic skewness risk 

in explaining stock returns. 

Instead of unconditional systematic skewness used in previous literature, 

conditional systematic skewness is incorporated in Harvey and Siddique (2000). They 

find that including systematic skewness into the asset pricing model improves the 

performance of the model. Investors require higher returns on assets with negative 

systematic skewness. Furthermore, they find that skewness helps to explain the 

momentum effect (i.e., skewness of past loser is higher than that of past winner). 

2.4.2 Models Incorporating Systematic Kurtosis 

While confirming the importance of systematic skewness in asset pricing, some 

studies concentrate on the fourth moment, kurtosis. In order to incorporate the effect 

of kurtosis into the asset pricing model, Fang and Lai (1997) construct a three-factor 

model (i.e., a four-moment model): 

   1 2 3i f i i iE r r b b b        (2.12) 

where 4

i immm mk k  is the systematic kurtosis of asset i , and 3b  is the market 

premium on systematic kurtosis. According to the theory, 1b  and 3b  should be 

positive, while 2b  should have the opposite sign of the market skewness. Empirical 
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results are consistent with theoretical expectations. Fang and Lai (1997) confirm that 

beta is not the only pricing factor related to asset returns. Systematic skewness and 

kurtosis affect asset returns as well. Investors are averse to systematic variance and 

kurtosis, and they require higher expected returns for bearing these two kinds of risks. 

However, investors are willing to accept lower returns for taking the benefit of 

increasing the systematic skewness. 

Christie-David and Chaudhry (2001) test the four-moment model by looking at 

28 futures contracts and nine market proxies. The empirical evidence shows that 

including systematic skewness and kurtosis improves the performance of asset pricing 

model in explaining asset returns. This conclusion is robust no matter how the market 

proxy is constructed.  

In summary, previous studies show that the pricing factor proposed in the CAPM 

(i.e., beta) does not capture enough information related to asset return distribution. In 

addition to systematic standard deviation risk, higher moments of return distribution 

are of great importance. Systematic skewness and kurtosis risks should be taken into 

consideration in asset pricing. 

2.5 Volatility Estimation 

In addition to improving asset pricing models by introducing more factors, some 

empirical studies estimate risk factors by using more advanced methods. The most 

widely-tested factor is the volatility factor.  

2.5.1 The ARCH and GARCH models 

Engle (1982) introduces the Autoregressive Conditional Heteroskedasticity 

(ARCH) model to formulate the time-varying conditional variance of stock returns. 

First, Engle (1982) defines the conditional distribution of returns as: 
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  1 2 3, , ,t t t t tr r r r N h  
  (2.13) 

where   is a constant, and th  is the time-varying conditional variance which can 

be expressed as:  
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where   should be positive and 
j  should be non-negative in order to ensure that 

the variance is larger than zero. Thus, from the  ARCH q  model in Equation (2.14), 

the conditional variance th  is known at time 1t  . The unconditional variance of 

asset returns can also be obtained: 
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Thus, if 
1

1
q

jj



 , the process of asset returns should be covariance stationary. 

Later on, Bollerslev (1986) and Taylor (1986) come up with the Generalised 

ARCH (GARCH) model simultaneously. In the  GARCH ,p q  model, the 

conditional variance depends on not only lag differences between returns and the 

mean but also lag conditional variances: 
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where 0  , the constraints on 
j  and i  are quite complex. For  GARCH 1,1 , 

in order to make the conditional variance non-negative, constraints on 
j  and i  

are quite clear: 0j   and 0i  . The unconditional variance is: 
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The  GARCH ,p q  model is covariance stationary when 
1 1

1
p q

i ji j
 

 
   . 
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2.5.2 The Option-Implied Volatility 

ARCH and GARCH models are popular because they are compatible with 

stylized facts for asset returns, namely, volatility clustering. 9  However, implied 

volatility has become a more and more popular rival.  

Capital markets developed tremendously in the past 40 years, and more complex 

financial instruments such as options are now traded actively. One important property 

of options is that option prices reflect investors’ expectations about the evolution of 

several parameters that investors deem as important in determining their risk and 

return trade-offs. So, option prices may reveal important information about dynamics 

of those parameters. 

Implied volatility is incorporated in option prices, and it can be obtained by 

setting market price of an option equal to the price indicated by the option pricing 

model. Options are forward-looking instruments and they contain more relevant 

information about future market conditions. Empirical studies document the 

outperformance of option-implied volatility in forecasting future volatility. Relevant 

studies are discussed in detail in section 2.7. 

2.5.3 The Stochastic Volatility 

To resolve a shortcoming of the Black–Scholes (1973) model (i.e., the 

assumption that the underlying volatility is constant over the life of a derivative, and 

unaffected by changes in the price level of the underlying asset), Heston (1993) 

proposes the stochastic volatility model. He defines that  logt tY S  and 2

t tV  , 

                                                 

9 According to Taylor (2005), stylized facts for asset returns are: 1. The distribution of returns is not 

normal; 2. There is almost no correlation between returns for different days; 3. There is positive 

dependence between absolute returns on nearby days, and likewise for squared returns. 
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then if there is no dividend paid during the period, risk-neutral dynamics for an 

individual asset and its volatility are: 

 
1

2
dY r V dt V dW

 
   
 

  (2.18) 

  dV a bV dt V dZ     (2.19) 

where two Wiener processes W  and Z  are correlated and the correlation between 

these two processes is  . The stochastic volatility makes it possible to model 

derivatives more accurately. However, it does not capture some features of the implied 

volatility surface such as volatility smile and skew. 

2.5.4 The Model-Free Volatility 

Even though the stochastic volatility has been developed, option pricing models 

using the stochastic volatility cannot explain option prices adequately. Britten-Jones 

and Neuberger (2000) derive a model-free method to adjust the volatility process to fit 

current option prices exactly. Their study proposes that the risk-neutral forecast of 

squared volatility only depends on market prices of a continuum of options without 

depending on an option pricing model. A forecast of squared volatility during time 0 

to T  can be expressed as: 
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where  ,C T K  is the price of an European call option with time-to-maturity of T  

and strike price of K , and 0S  is the price of the underlying asset at time 0. Based on 

this framework, Bakshi, Kapadia and Madan (2003) derive how to estimate 

model-free moments (i.e., variance, skewness and kurtosis) by using out-of-the-money 

call and put options (as discussed in section 2.6). 
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2.5.5 The High-Frequency Volatility 

In addition to volatility estimations discussed in previous subsections, some 

studies use high-frequency data for volatility estimation. By summing sufficiently 

finely sampled high-frequency returns, it is possible to construct ex post realized 

volatility measures. The realized variance for day t  is defined as: 

  2 2

, , ,

1

N

t N t j N

j

RV r


   (2.21) 

where N  denotes for the total number of observations for high-frequency return data 

within one trading day.  

Andersen, Bollerslev, Diebold and Ebens (2001) claim that realized volatility 

measures calculated by using high-frequency data are asymptotically free of 

measurement error. By focusing on components of DJIA, their paper also investigates 

the distribution of realized volatility. Empirical findings indicate that the distribution 

of realized variance is right-skewed. In addition, the realized volatility shows strong 

temporal dependence and appears to be well described by long-memory processes. 

By using high-frequency data, Barndorff-Nielsen and Shephard (2004) claim that 

realized variance can be separated into two parts, the diffusion risk and the jump risk. 

In addition to power variation, they define the bipower variance as: 

 
2

, , 1, , ,

22

N

t N t j N t j N

j

BV r r






    (2.22) 

The realized variance and the realized bipower converge to the same limit for 

continuous stochastic volatility semi-martingales process. For stochastic volatility 
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process with jumps, the difference between realized variance and bipower variance 

can capture the jump risk.10  

On the basis of stochastic volatility models, Woerner (2005) examines the 

estimation of the integrated volatility. This study infers the integrated volatility from 

the power variation by using the high-frequency data. The results give some 

information about the confidence interval of the integrated volatility. Furthermore, the 

method in Woerner (2005) allows additions of some processes, such as jump 

components, into the model without affecting the estimation result of the integrated 

volatility. Given the possibility of introducing processes into the stochastic volatility 

model, Woerner’s model is more flexible and robust.  

Thus, in addition to calculating volatility by using historical data, recent studies 

develop more advanced methods for volatility estimation. These methods enable us to 

estimate future volatility more efficiently and more precisely. 

2.6 Higher Moments Estimation 

In addition to volatility estimation, higher moments, such as skewness and 

kurtosis, receive particular attention. Instead of calculating higher moments using 

historical data, some studies calculate skewness and kurtosis by incorporating 

forward-looking information.  

Bakshi, Kapadia and Madan (2003) make a great contribution to estimating 

higher moments and co-moments. In their paper, risk-neutral model-free skewness and 

kurtosis could be calculated from market prices of out-of-the-money European call 

and put options: 

                                                 

10 Huang and Tauchen (2005) use realized variance and bipower variance to construct jump measures, 

and provide evidence that jumps account for 7% of stock market price variance. 



 

27 

  
       

   

3

3 2
2

, 3 , , 2 ,
,

, ,

r r

r

e W t e t V t t
SKEW t

e V t t

 



     


  

 


 
 

  (2.23) 

 
           

   

2 4

2
2

, 4 , , 6 , , 3 ,
,

, ,

r r r

r

e X t e t W t e t V t t
KURT t

e V t t

  



        


  

  


 
 

  (2.24) 

where 
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 ,V t  ,  ,W t  ,  and  ,X t   are prices of volatility, cubic, and quartic contracts:  
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This method for higher moments estimation derived in Bakshi, Kapadia and 

Madan (2003) are widely applied in later studies. Conrad, Dittmar and Ghysels (2013) 

test the relationship between asset future returns and risk-neutral model-free volatility, 

skewness or kurtosis of individual assets. The empirical results show that stocks with 

higher volatilities have lower returns in the following month than those with lower 

volatilities. With respective to skewness, it is negatively related to future returns. That 
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is, stocks with less negative or positive skewness have lower returns. In addition, 

empirical results confirm a positive relation between asset returns and kurtosis. 

2.7 The Performance of Option-Implied Measures 

Due to the existence of different methods for volatility estimation, it is natural to 

ask whether these methods perform similarly in predicting future volatility. In recent 

years, some empirical studies compare the performance of different methods in 

estimating/forecasting future volatility. 

2.7.1 Comparison between Option-Implied Volatility and Historical Volatility 

Christensen and Prabhala (1998) investigate the comparison between implied 

volatility and realized volatility by focusing on the S&P100 index. The results show 

that implied volatility incorporated in call options outperforms realized volatility (i.e., 

the annualized ex post daily return volatility) in forecasting future volatility. 

Blair, Poon and Taylor (2001) compare the information content of implied 

volatility, ARCH models using daily returns and sums of squares of intraday returns.11 

The in-sample analysis indicates that ARCH models using daily returns have no 

incremental information beyond that provided by the VIX index of implied volatilities. 

Information content of historical high-frequency (five-minute) returns is almost 

subsumed by implied volatilities. Meanwhile, the out-of-the-sample analysis further 

provides evidence on the outperformance of implied volatility. The VIX index 

generally performs better than both daily returns and high-frequency returns in 

forecasting realized volatility. 

                                                 

11 In Blair, Poon and Taylor (2001), the old VIX index (VXO ) is used as a proxy of implied volatility 

of S&P100 index. 
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Poon and Granger (2005) compare four different methods for volatility 

estimation, historical volatility, ARCH models, stochastic volatility, and 

option-implied volatility by looking at the S&P500 index. Empirical results provide 

evidence that option-implied volatility dominates time-series models, while stochastic 

volatility underperforms all other three measures. The outperformance of 

option-implied volatility could be due to the fact that the option market price fully 

incorporates current information and future volatility expectations. 

Focusing on the S&P500 index options, Kang, Kim and Yoon (2010) derive a 

new method to forecast future volatility by incorporating risk-neutral higher moments. 

Empirical results support that historical volatility and risk-neutral implied volatility 

are not unbiased estimators of future volatility. However, the adjusted implied 

volatility is unbiased and it outperforms other measures in terms of forecasting errors.  

Then, Taylor, Yadav and Zhang (2010) compare performance of different 

volatility measures at different time horizons in the US market. The performance of 

different measures is sensitive to the length of time horizons. Empirical results show 

that a historical ARCH model performs the best for one-day-ahead estimation, while 

option forecasts are more efficient than historical volatility if the prediction horizon is 

extended until the expiry date of options. Furthermore, Taylor, Yadav and Zhang 

(2010) show that at-the-money implied volatility generally outperforms the 

model-free volatility in forecasting future volatility. 

Szakmary, Ors, Kim and Davidson (2003) focus on a broad range of futures 

markets (including stocks, bonds, money market securities, currencies, agricultural 

commodities, industrial commodities, metals, etc.). The results show that, even though 

implied volatility is not a completely unbiased predictor of future volatility, it 

outperforms historical volatility as a predictor of subsequent realized volatility in the 
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underlying futures prices over the remaining life of the option no matter how 

historical volatility is modelled. 

Other than the US market, some studies examine whether the outperformance of 

option-implied volatility can be found in markets in other countries. 

By investigating the DAX index options market, Muzzioli (2011) finds that, 

among implied volatilities captured by different kinds of options (in-the-money, 

at-the-money, and out-of-the-money call or put options), at-the-money put implied 

volatility is an unbiased and efficient forecast, and it subsumes all the information 

contained in historical volatility. 

Yu, Lui and Wang (2010) compare the performance of option-implied volatility 

with historical volatility and GARCH volatility in Hong Kong and Japanese markets. 

By investigating options traded in the over-the-counter market, Yu, Lui and Wang 

(2010) confirm the outperformance of option-implied volatility. 

Different volatility estimations have been investigated in foreign exchange 

markets, as well. Pong, Shackleton, Taylor and Xu (2004) forecast volatility using 

different measures in foreign exchange markets (GBP/USD, DEM/USD, and 

JPY/USD) over different horizons from one-day to three-month. Methods used for 

volatility estimation used in this study are: ARMA and ARFIMA volatility forecasts 

calculated from high-frequency returns, GARCH volatility forecasts calculated from 

daily returns, and implied volatilities extracted from option prices. The empirical 

results in this study show that historical volatility from high-frequency data performs 

best for one-day and one-week horizons, whereas implied volatilities are at least as 

accurate as historical forecasts for one-month and three-month horizons. 

Thus, previous studies provide supportive evidence about the outperformance of 

option-implied information in forecasting future volatility. 
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2.7.2 Comparison between Option-Implied Beta and Historical Beta 

In addition to volatility estimation, recent studies estimate other factors by using 

forward-looking information. Even though the CAPM cannot adequately explain asset 

returns, market beta is still an important risk factor in asset pricing. Several studies 

improve the method for market beta estimation.  

French, Groth and Kolari (1983) incorporate option-implied volatility in beta 

calculation. 
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where ,

P

im t  is the historical correlation between individual asset i  and the market 

portfolio, ,

Q

i t  is the option-implied volatility of asset i , and ,

Q

m t  is the 

option-implied volatility of the market portfolio. Thus, the beta in French, Groth and 

Kolari (1983) is a combination of historical and option-implied information. 

Siegel (1995) proposes another way for beta estimation incorporating 

option-implied information. 
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where ,

Q

i t  is the instantaneous variance of the return on asset i , ,

Q

m t  is the 

instantaneous variance of the return on the market index, and 2

t  is the instantaneous 

variance of the return on /i m . To obtain 2

t , an option that allows the exchange of 

the firm’s stock for shares of a market index is required for calculation. However, 

such an exchange option is not traded in markets. So, this method cannot be applied. 

Chang, Christoffersen, Jacobs and Vainberg (2012) derive a method for beta 

estimation incorporating higher moments. To be more specific, without using 

historical correlation, Chang, Christoffersen, Jacobs and Vainberg (2012) calculate 



 

32 

correlation between an asset i  and the market portfolio by using risk-neutral 

model-free skewness. 
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However, this formula only holds under the assumption of zero skewness of the 

market return residual. 

Buss and Vilkov (2012) calculate the option-implied correlation by adjusting the 

historical correlation and further calculate option-implied beta. 
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Furthermore, Buss and Vilkov (2012) provide comprehensive analysis about the 

performance of historical and option-implied betas (i.e., ,

FGK

i t , ,

CCJV

i t  and ,

BV

i t ) by 

using data for constituents of the S&P500 index. The empirical results show that, 

compared to historical beta, two option-implied betas, ,

CCJV

i t  and ,

BV

i t , perform 

better in explaining risk-return relation. Option-implied beta constructed in their study 

(i.e., ,

BV

i t ) performs the best in predicting the realized beta. 

Thus, empirical studies provide supportive evidence that, compared to historical 

information, option-implied information incorporates more useful information about 

future market conditions. 



 

33 

Based on studies reviewed in this chapter, this thesis uses pricing factors other 

than market beta in asset pricing models. In addition, this thesis investigates how to 

extract useful information from options and other derivatives, and how to use the 

forward-looking information to explain or predict asset returns. 
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Chapter 3 Option-Implied Volatility Measures and Stock Return 

Predictability 

3.1 Introduction 

Options are forward-looking instruments and option-implied measures contain 

valuable information regarding investors’ expectations about return process of the 

underlying asset. Option-implied volatility has received particular attention due to the 

time-varying property of volatility and volatility being a widely used parameter in 

asset pricing. It is now well-documented that implied volatility extracted from option 

prices is a good forecast of future volatility.12 Recent studies (Bali and Hovakimian, 

2009; Cremers and Weinbaum, 2010; Doran and Krieger, 2010; Xing, Zhang and 

Zhao, 2010; etc.) propose different option-implied volatility measures and also 

examine the predictive ability of these volatility measures in the cross-section of stock 

returns. However, there is no clear understanding of i) whether different 

option-implied volatility measures capture the same or different information contained 

in the whole volatility curve, ii) which measures are important for investors in 

predicting stock returns, and iii) which would outperform as predictive variables in a 

dynamically managed portfolio. By comparing the predictive ability of alternative 

option-implied volatility measures proposed in the literature, this chapter highlights 

whether the proposed option-implied volatility measures are fundamentally different 

from each other in the context of return predictability over different investment 

                                                 

12 See Christensen and Prabhala (1998), Blair, Poon and Taylor (2001), Szakmary, Ors, Kim and 

Davidson (2003), Pong, Shackleton, Taylor and Xu (2004), Poon and Granger (2005), Kang, Kim and 

Yoon (2010), Taylor, Yadav and Zhang (2010), Yu, Lui and Wang (2010), and Muzzioli (2011) for 

studies on the predictive ability of option-implied volatility on future volatility. 
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horizons.13 If these measures perform differently in predicting asset returns, this 

chapter sheds light on which measures are better at predicting one-month ahead equity 

returns and whether their predictive abilities differ by investment horizon. 

For tests of predictive ability, this chapter first forms quintile portfolios by 

sorting stocks with respect to six option-implied volatility measures (i.e., the call-put 

implied volatility spread ( CPIV ), the implied volatility skew ( IVSKEW ), the 

“above-minus-below” ( AMB ), the “out-minus-at” of calls ( COMA ), the 

“out-minus-at” of puts ( POMA ), and the realized-implied volatility spread ( RVIV )). 

Then, this chapter constructs long-short portfolios by taking a long position in 

portfolios that contain stocks with the highest implied volatility measures and a short 

position in portfolios that contain stocks with the lowest implied volatility measures. 

Such long-short portfolios enable investors to construct a zero-cost arbitrage strategy. 

The long-short portfolio will have significantly non-zero average return if there is a 

statistically significant relationship between stock returns and corresponding 

option-implied volatility measure. However, portfolio level analysis does not control 

for effects of other option-implied volatility measures and firm-specific effects 

simultaneously. Consequently, this chapter performs firm-level cross-sectional 

regressions to assess the predictive power of all six option-implied volatility measures.  

This chapter contributes to the literature in several aspects. Firstly, this chapter 

compares the predictive ability of six different option-implied volatility measures. To 

the best of my knowledge, this is the most comprehensive study that compares the 

predictive power of option-implied volatility measures proposed in the literature. 

Secondly, this chapter tests the predictive power of different option-implied volatility 

                                                 

13 The option-implied volatility measures used in this chapter are: the call-put implied volatility spread 

( CPIV ), the implied volatility skew ( IVSKEW ), the “above-minus-below” ( AMB ), the “out-minus-at” 

of calls ( COMA ), the “out-minus-at” of puts ( POMA ), and the realized-implied volatility spread 

( RVIV ). Details about these measures can be found in section 3.4. 
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measures on stock returns over various horizons. This helps investors better 

understand the informational content captured by different option-implied volatility 

measures. Finally, the sample period, from 1996 until 2011, is longer than those used 

in previous studies. This enables us to analyze whether the predictive power of 

option-implied volatility measures documented previously is still significant for recent 

history. 

This chapter is organized as follows. Section 3.2 reviews relevant literature. 

Sections 3.3 and 3.4 discuss data and option-implied volatility measures, respectively. 

Details about methodology used in this chapter are presented in Section 3.5. Section 

3.6 examines the relationship between option-implied volatility measures and 

one-month ahead stock returns through portfolio level analysis. Section 3.7 presents 

results for firm-level cross-sectional regressions for one-month holding period. 

Results for cross-sectional regressions for longer horizons (i.e., two months and three 

months) are discussed in Section 3.8. Section 3.9 concludes this chapter. 

3.2 Related Literature 

The relationship between option-implied volatility and stock return predictability 

is of recent interest due to the outperformance of option-implied volatility in 

predicting future volatility. A vast number of empirical studies use option-implied 

volatility measures to explain asset returns.14 

Ang, Hodrick, Xing and Zhang (2006) investigate the relationship between the 

innovation in aggregate volatility and individual stock returns. In their empirical work, 

                                                 

14 For example, Arisoy (2014) uses returns on crash-neutral ATM straddles of the S&P500 index as a 

proxy for the volatility risk, and returns on OTM puts of the S&P500 index as a proxy for the jump risk, 

and finds that the sensitivity of stock returns to innovations in aggregate volatility and market jump risk 

can explain the differences between returns on small and value stocks and returns on big and growth 

stocks. Doran, Peterson and Tarrant (2007) find supportive evidence that there is predictive information 

content within the volatility skew for short-term horizon.  



 

37 

in addition to market excess return, the daily change in VXO index is used as the other 

explanatory variable. The results show that stocks with higher sensitivity to 

innovations in aggregate volatility have lower average returns. Thus, the sensitivity to 

option-implied aggregate volatility is a significant explanatory factor in asset pricing, 

and it is negatively correlated with asset returns.  

Rather than using option-implied aggregate volatility, An, Ang, Bali and Cakici 

(2014) focus on the implied volatility of individual options and they document the 

significant predictive power of implied volatility in predicting the cross-section of 

stock returns. More specifically, large increases in call (put) implied volatilities are 

followed by increases (decreases) in one-month ahead stock returns. This indicates 

that call and put options capture different information about future market conditions. 

In order to better understand the information captured by different kinds of 

options, some studies propose different ways to construct factors by using information 

captured by different options (i.e., call or put options; out-of-the-money, at-the-money, 

or in-the-money options).  

Bali and Hovakimian (2009) investigate whether realized and implied volatilities 

can explain the cross-section of monthly stock returns. They construct two volatility 

measures. The first measure is the difference between at-the-money call implied 

volatility and at-the-money put implied volatility (i.e., call-put implied volatility 

spread), and the second measure is the difference between historical realized volatility 

and at-the-money implied volatility (i.e., realized-implied volatility spread). Empirical 

results provide evidence that call-put implied volatility spread is positively related to 

monthly stock returns, while realized-implied volatility spread is negatively related to 

monthly stock returns. 
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Cremers and Weinbaum (2010) focus on the predictive power of call-put implied 

volatility spread at a different time horizon (i.e., one-week). The non-zero call-put 

implied volatility spread can reflect the deviation from put-call parity. Results provide 

evidence that the call-put implied volatility spread predicts weekly returns to a greater 

extent for firms facing a more asymmetric informational environment.  

On the other hand, it has been widely documented that option-implied volatility 

varies across different moneyness levels, also known as the “volatility smile” or 

“volatility smirk”. So, in addition to at-the-money options, out-of-the-money and 

in-the-money options also capture useful information about future market conditions. 

Xing, Zhang and Zhao (2010) look at the implied volatility skew, which is the 

difference between out-of-the-money put and at-the-money call implied volatilities. 

They show that a coefficient on the implied volatility skew in firm-level 

cross-sectional regressions is significantly negative. Furthermore, they find that the 

predictive power of implied volatility skew persists for at least six months.  

Baltussen, Grient, Groot, Hennink and Zhou (2012) include four different 

implied volatility measures in their study, out-of-the-money volatility skew (the same 

as the implied volatility skew in Xing, Zhang and Zhao, 2010), realized-implied 

volatility spread, at-the-money volatility skew (i.e., the difference between the 

at-the-money put and call implied volatilities), and weekly changes in at-the-money 

volatility skew. By analysing weekly stock returns, they find negative relationships 

between weekly returns and all four option-implied measures.  

In addition to two common factors used in previous studies (i.e., at-the-money 

call-put implied volatility spread and out-of-the-money implied volatility skew), 

Doran and Krieger (2010) construct three other measures based on implied volatilities 

extracted from call and put options. These three measures are “above-minus-below”, 
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“out-minus-at” of calls, and “out-minus-at” of puts. “Above-minus-below” is the 

difference between the mean implied volatility of in-the-money puts and 

out-of-the-money calls and the mean implied volatility of in-the-money calls and 

out-of-the-money puts. “Out-minus-at” of calls (puts) is the difference between the 

mean implied volatility of out-of-the-money calls (puts) and the mean implied 

volatility of at-the-money calls (puts). Results in their study show that the difference 

between at-the-money call and put implied volatilities and the difference between 

out-of-the-money and at-the-money put implied volatilities both capture relevant 

information about future equity returns. 

From these studies, it is not clear whether separately constructed option-implied 

volatility measures capture fundamentally different information in the context of 

return predictability. In the presence of others, some of these volatility measures may 

be redundant in predicting stock returns. Building on the literature, this chapter 

compares the ability of various option-implied volatility measures to predict one- to 

three-month ahead returns. Addressing questions of which option-implied volatility 

measure(s) outperforms alternative measures in predicting stock returns and whether 

their predictive abilities persist over different investment horizons is crucial as it has 

implications for portfolio managers and market participants. These groups can adjust 

their trading strategies and form portfolios based on option-implied volatility 

measures that have the strongest predictive power and thus earn returns. 

3.3 Data 

Data used in this chapter come from several different sources. Financial 

statement data are downloaded from Compustat. Monthly and daily stock return data 
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are from CRSP. Option-implied volatility data are from OptionMetrics.15 The factors 

in Fama-French (1993) three-factor model (i.e., MKT , SMB , and HML ) are 

obtained from Kenneth French’s online data library.16 

Following Bali and Hovakimian (2009), only stock data for ordinary common 

shares (CRSP share codes 10 and 11) are retained. Furthermore, closed-end funds and 

REITs (SIC codes 6720-6730 and 6798) are excluded. Based on monthly returns, 

compounded returns for two-month and three-month holding periods are calculated. 

In terms of option data, this chapter focuses on the last trading day of each 

calendar month. This chapter only retains stock options with day-to-maturity greater 

than 30 but less than 91 days. After deleting options with zero open interest or zero 

best bid prices and those with missing implied volatility, this chapter further excludes 

options whose bid-ask spread exceeds 50% of the average of bid and ask prices. To 

distinguish at-the-money options, this chapter also follows criteria in Bali and 

Hovakimian (2009). That is, if the absolute value of the natural logarithm of the ratio 

of the stock price to the exercise price is smaller than 0.1, an option is denoted 

at-the-money. This chapter denotes options with the natural logarithm of the ratio of 

the stock price to the exercise price smaller than -0.1 as out-of-the-money call 

(in-the-money put) options. Options with the natural logarithm of the ratio of the stock 

price to the exercise price larger than 0.1 are denoted in-the-money call 

(out-of-the-money put) options. Then, this chapter calculates average implied 

volatilities across all eligible options and matches the results to stock returns for the 

following one-month, two-month and three-month periods.17 Within OptionMetrics, 

                                                 

15 Option-implied volatilities are calculated by setting the theoretical option price equal to the market 

price, which is the midpoint of the option’s best closing bid and best closing offer prices. 
16 Available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
17 ln( ) 0.1S K   can be translated to 0.9048 1.1052S K  . The corresponding range in Doran and 

Krieger (2010) is [0.95, 1.05]. So moneyness criteria used in Bali and Hovakimian (2009) can expand 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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data are available from January 1996, so this chapter examines stock returns from 

February, 1996 to December, 2011 (191 months), but for a sample of 189 months.18 

3.4 Option-Implied Volatility Measures and Firm-Specific Factors 

3.4.1 Call-Put Implied Volatility Spread 

Drawing upon the method documented in Bali and Hovakimian (2009), this 

chapter constructs the following CPIV : 

 
, ,ATM call ATM putCPIV IV IV    (3.1) 

where CPIV  is the call-put implied volatility spread, 
,ATM callIV  is the average of 

implied volatilities extracted from all at-the-money call options, and 
,ATM putIV  is the 

average of implied volatilities extracted from all at-the-money put options available 

on the last trading day of each calendar month. 

According to the put-call parity, implied volatilities of call and put options with 

the same strike price and time-to-maturity should be equal. Thus, CPIV  should be 

zero theoretically. However, a non-zero CPIV  does not necessarily indicate the 

existence of an arbitrage opportunity due to transaction costs, constraints on short-sale, 

or informed trading. For example, if insider traders get information about decreases in 

underlying asset price in the near future, they will choose to buy put options and sell 

call options. In this case, prices of put options will increase while prices of call 

                                                                                                                                    

the sample for at-the-money options. Unlike criteria used in Doran and Krieger (2010) for determining 

the out-of-the money and in-the-money options, criteria used in Bali and Hovakimian (2009) enable to 

include deep out-of-the money and in-the-money options in the sample. If many deep out-of-the money 

and in-the-money options exist, criteria in Bali and Hovakimian (2009) can expand the sample for 

out-of-the-money and in-the-money options as well. That is why this chapter follows moneyness 

criteria used in Bali and Hovakimian (2009). 
18 The first observation of the implied volatility is available at the end of January, 1996. So the sample 

for stock returns starts from February, 1996. The last observation of monthly stock returns is the return 

in December, 2011. Since this chapter uses three-month holding period return in the analysis, the last 

observation for three-month return should be the return during the period from October, 2011 to 

December, 2011. So the sample consists of 189 months. 
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options will decrease. Volatilities implied in put options will be higher than those 

implied in call options. A more negative CPIV  predicts decreases in underlying 

asset prices (i.e., more negative returns), and vice versa. Thus, it is expected that 

CPIV  should be positively correlated with asset returns. Cremers and Weinbaum 

(2010) show that the deviation from put-call parity is more likely when the measure of 

probability of informed trading of Easley, O’Hara and Srinivas (1998) is high, 

supporting the view that CPIV  contains information about future prices of underlying 

stocks. 

3.4.2 Implied Volatility Skew 

To construct IVSKEW  proposed by Xing, Zhang and Zhao (2010), this chapter 

calculates the difference between the average of implied volatilities extracted from 

out-of-the-money put options and the average of implied volatilities extracted from 

at-the-money call options:  

 , ,OTM put ATM callIVSKEW IV IV    (3.2) 

where IVSKEW  is the implied volatility skew, 
,OTM putIV  is the average of implied 

volatilities extracted from out-of-the-money put options at the end of each calendar 

month.  

If investors expect that there will be a downward movement in underlying asset 

price, they will choose to buy out-of-the-money put options. Increases in demand of 

out-of-the-money put options further lead to increases in prices of these options. In 

this case, the spread between out-of-the-money put implied volatilities and 

at-the-money call implied volatilities will become larger. IVSKEW  actually reflects 

investors’ concern about future downward movements in underlying asset prices. A 

higher IVSKEW  indicates a higher probability of large negative jumps in underlying 
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asset prices. So, IVSKEW  is expected to be negatively related to future returns on 

underlying assets. 

3.4.3 Above-Minus-Below 

AMB  represents the difference between average implied volatility of options 

whose strike prices are above current underlying price and average implied volatility 

of options whose strike prices are below current underlying price. Following Doran 

and Krieger (2010), this chapter defines AMB  as: 

 
   , , , ,

2

ITM put OTM call ITM call OTM putIV IV IV IV
AMB

  
   (3.3) 

where 
,ITM putIV , 

,OTM callIV , 
,ITM callIV , and 

,OTM putIV  are average implied volatilities 

of all in-the-money put options, all out-of-the-money call options, all in-the-money 

call options, and all out-of-the-money put options, respectively.  

For equity options, it is common to find a “volatility skew”.19 The variable 

AMB  captures the difference between the average implied volatilities of 

low-strike-price options and the average implied volatilities of high-strike-price options. 

Thus, AMB  captures how skewed the volatility curve is by investigating both tails of 

the implied volatility curve. More (less) negative values of AMB  are indications of 

more trading of pessimistic (optimistic) investors and thus lower (higher) future stock 

returns are expected. This suggests a positive relation between AMB  and subsequent 

stock returns. 

                                                 

19 The phenomenon that the implied volatility of equity options with low strike prices (such as deep 

out-of-the-money puts or deep in-the-money calls) is higher than that of equity options with high strike 

prices (such as deep in-the-money puts or deep out-of-the-money calls) is known as volatility skew 

(Hull, 2012). 
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3.4.4 Out-Minus-At 

Doran and Krieger (2010) also introduce two other measures, which capture the 

difference between out-of-the-money and at-the-money implied volatilities of call/put 

options.  

 
, ,OTM call ATM callCOMA IV IV    (3.4) 

 
, ,OTM put ATM putPOMA IV IV    (3.5) 

All measures in these two equations have the same meanings as in the previous 

equations (3.1) – (3.3).  

In contrast to AMB , COMA  ( POMA ) uses only out-of-the-money and 

at-the-money call (put) options to capture the volatility curve asymmetry. In the option 

market, it is observed that out-of-the-money and at-the-money call and put options are 

the most liquid and heavily traded whereas in-the-money options are not traded much 

(Bates, 2000). It is also reported that bullish traders generally buy out-of-the-money 

calls while bearish traders buy out-of-the-money puts (Gemmill, 1996). To follow a 

trading strategy based on the volatility curve asymmetry, it is more convenient to 

construct a measure from the most traded options for which data availability is not a 

concern. A positive COMA  is associated with bullish expectations, indicating an 

increase in the trading of optimistic investors. However, a positive POMA  reflects 

the overpricing of out-of-the-money puts relative to at-the-money puts due to 

increased demand for out-of-the-money puts that avoid negative jump risk. 

3.4.5 Realized-Implied Volatility Spread 

In the spirit of Bali and Hovakimian (2009), this chapter calculates realized 

volatility ( RV ), which is the annualized standard deviation of daily returns over the 
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previous month, and then constructs a realized-implied volatility spread, RVIV , from 

it:  

 ATMRVIV RV IV    (3.6) 

where ATMIV  is the average implied volatility of at-the-money call and put options. 

The variable RVIV  is related to the volatility risk, which has been widely tested 

in empirical papers. When testing the volatility risk premium, previous literature 

focuses on the difference between realized volatility and implied volatility (measured 

by a variance swap rate). However, rather than using a variance swap rate (which is 

calculated by using options with different moneyness levels), this chapter focuses on 

at-the-money implied volatility (a standard deviation measure). Due to the shape of 

volatility curve, at-the-money implied volatility could be different from the standard 

deviation calculated from variance swap rate. This chapter uses at-the-money implied 

volatility instead of variance swap rate for two reasons: (1) at-the-money implied 

volatility is easy for calculation; (2) Taylor, Yadav and Zhang (2010) show that 

at-the-money implied volatility generally outperforms model-free implied volatility, 

and Muzzioli (2011) shows that at-the-money implied volatility is unbiased estimation 

for future volatility. 

3.4.6 Discussion on Option-Implied Volatility Measures 

To better show that different option-implied volatility measures (discussed 

previously) capture different information about the volatility curve, Figure 3.1 plots 

call and put implied volatilities of Adobe System Inc on December 29, 2000. Options 

included in this Figure have expiration date of February 17, 2001.  

From this Figure, it is clear that CPIV  captures the middle of the volatility 

curve, which reflects small deviations from put-call parity. IVSKEW  reflects the left   
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Figure 3.1: Implied Volatility Curve  
Notes: This figure plots implied volatility extracted from each call or put option on Adobe Systems Inc 

on December 29, 2000. To get this figure, only options with expiration date of February 17, 2001 are 

retained. The closing price for Adobe Systems Inc on December 29, 2000 is 58.1875. 
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of the put volatility curve and the middle of the call volatility curve. This AMB  

measure captures the tails of the volatility curve. COMA  captures the right side and 

middle of the volatility curve for call options, while POMA  captures the left side and 

middle of the volatility curve for put options. 

From call and put options with the same strike price and time-to-expiration, it is 

easy to observe deviations from put-call parity. That is, small differences between 

paired call and put implied volatilities are apparent. 

Variables IVSKEW , AMB , COMA  and POMA  provide some indications 

about the shape of the implied volatility curve. Lower AMB  and COMA  indicate 

more negatively skewed implied volatility curves. Lower IVSKEW  and POMA  

indicate less negatively skewed implied volatility curves.20 Thus, it is expected to 

observe a positive relationship between AMB  or COMA  and stock returns, but a 

negative relationship between IVSKEW  or POMA  and stock returns. 

From these points, it is obvious that CPIV , IVSKEW , AMB , COMA  and 

POMA  capture different parts of the volatility curve. Therefore, it is interesting to 

test whether they possess different predictive powers about asset returns.  

Variables CPIV , IVSKEW , AMB , COMA  and POMA  are constructed at 

firm-level. Taken together, all five option-implied volatility measures capture much of 

the information contained in the cross-section of implied volatilities (Doran and 

Krieger, 2010). They are of course interdependent, e.g., IVSKEW POMA CPIV  . 

So, all these three measures cannot be included in the same model as independent 

factors. In addition to these measures, this chapter further includes another volatility 

                                                 

20 Compared to POMA , IVSKEW  uses at-the-money call options, which are more liquid than 

at-the-money put options and are seen as the investors’ consensus on the firm’s uncertainty (Xing, 

Zhang and Zhao, 2010). 



 

48 

measure used in Bali and Hovakimian (2009), RVIV , which is discussed in previous 

Subsection 3.4.5. 

3.4.7 Firm-Specific Variables 

In order to see whether option-implied volatility measures can predict stock 

returns after controlling for known firm-specific effects, the empirical analysis also 

includes several firm-level control variables. To control for the size effect documented 

by Banz (1981), this chapter uses the natural logarithm of a company’s market 

capitalization (in 1,000,000s) on the last trading day of each month. As suggested by 

Fama and French (1992), this chapter also uses the book-to-market ratio as another 

firm-level control variable. Jegadeesh and Titman (1993) document the existence of a 

momentum effect (i.e., past winners, on average, outperform past losers in short future 

periods). This chapter uses past one-month return to capture the momentum effect. 

Stock trading volumes are included as another variable (measured in 100,000,000s of 

shares traded in the previous month). The market beta reflects the historical systematic 

risk and is calculated by using daily returns available in the previous month with 

respect to the CAPM. The bid-ask spread is used to control for liquidity risk. It is 

defined as the mean daily bid-ask spread over the previous month where the bid-ask 

spread is the difference between ask and bid prices scaled by the mean of the bid and 

ask prices. Pan and Poteshman (2006) find strong evidence that option trading volume 

contains information about future stock prices. Doran, Peterson and Tarrant (2007) 

incorporate option trading volume when analyzing whether the shape of implied 

volatility skew can predict the probability of market crash or spike. Thus, controlling 

for option volume could also be important. This chapter uses the total option trading 

volume (in 100,000s) in the previous month as another control variable.  
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3.5 Methodology 

3.5.1 Portfolio Level Analysis 

First, this chapter examines the relation between quintile portfolio returns and 

each option-implied volatility measure. To be more specific, from the data universe, 

this chapter sorts stocks into quintiles by each volatility measure and then calculates 

both equally- and value-weighted average returns on each quintile portfolio for the 

following month. By assuming that investors rebalance these portfolios on the last 

trading day of each month, this chapter constructs a “5-1” long-short portfolio by 

taking a long position in the portfolio with the highest volatility measure and a short 

position in the portfolio with the lowest volatility measure. Thus, such a long-short 

trading strategy enables investors to construct a zero-cost investment. If stock returns 

are sensitive to different option-implied volatility measures, quintile portfolios with 

different option-implied volatility measures are expected to have different returns. So, 

the long-short portfolio is expected to have a non-zero mean return if there is a 

significant relationship between stock returns and an option-implied volatility 

measure.  

Having formed portfolios based on different option-implied measure, this chapter 

then calculates monthly raw returns and Jensen’s alphas with respect to the 

Fama-French three-factor model for the quintile portfolios as well as the long-short 

portfolio. Raw returns represent returns which are not adjusted for any risk factors. 

Jensen’s alphas are the returns on quintile portfolios adjusted for Fama-French three 

factors, and they are obtained from the following model:  

 
, , ,+i t f t i i t i t i t i tr r MKT s SMB h HML         (3.7) 
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where the intercept, i , is the Jensen’s alpha for asset i . However, for the “5-1” 

long-short portfolio, Jensen’s alpha calculation is as follows: 

 
5 1, 5 1 5 1 5 1 5 1 5 1,t t t t tr MKT s SMB h HML              (3.8) 

If raw return or Jensen’s alpha on the long-short portfolio is significantly non-zero, it 

means that investors can earn excess returns from the long-short trading strategy 

without or with controlling for Fama-French risk factors. 

3.5.2 Firm-Level Cross-Sectional Regressions 

Though portfolio level analysis helps us to understand the relation between 

quintile portfolio returns and each option-implied volatility measure, such analysis 

does not allow controlling for effects of other option-implied volatility measures and 

firm-specific control variables simultaneously. In order to examine the relationship 

between monthly stock returns and option-implied volatility measures in more detail 

and to avoid potential problems with the aggregation process at the portfolio level, this 

chapter performs cross-sectional regressions at firm-level for one-month holding 

period. First, this chapter estimates coefficients on option-implied volatility measures 

cross-sectionally for each calendar month. Furthermore, the analysis also includes 

several firm-level control variables in regression models: size, book-to-market ratio, 

past one-month return, stock trading volume, historical market beta, bid-ask spread, 

and option trading volume. The model can be written as follows: 

 
i i j ij k ik i

j k

r a + b IVmeasure + c controlvar      (3.9) 

where IVmeasure  includes CPIV , IVSKEW , AMB , COMA , POMA , and 

RVIV , and IVmeasure  is the j th measure in all six volatility measures for stock i . 

controlvar  includes size, book-to-market ratio, past one-month return, stock trading 
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volume, market beta, bid-ask spread, and option trading volume, and ikcontrolvar  is 

the k th variable in all seven control variables for stock i . 

To be more specific, this chapter runs both univariate and multivariate 

cross-sectional regressions in later sections. If CPIV  is the only explanatory variable 

in the model, the model can be written as:  

 CPIV

i i i i ir a b CPIV     (3.10) 

This model is Model I in tables 3.3 to 3.6. With respect to multivariate models, to 

avoid the multicollinearity problem (discussed in detail in later sections), IVSKEW  

and AMB  are excluded from the model. So, the full model including all control 

variables is written as: 

 

+

CPIV COMA POMA RVIV

i i i i i i i i i i

size B M mom stockvol beta

i i i i i i i i ii

bid askspread optionvol

i i i i i

r a b CPIV b COMA b POMA b RVIV

c size c B M c mom c stockvol c beta

c bid askspread c optionvol

    

    

   

  (3.11) 

This model refers to Model XX in tables 3.4 to 3.6. Details about these two models are 

presented in sections 3.7 and 3.8. 

From monthly regressions, there are 189 estimations for each coefficient. Then, 

this chapter tests the null hypothesis that the average slope on each option-implied 

volatility measure is equal to zero in order to shed light on the relationship between 

stock returns and each option-implied volatility measure. 

This chapter also extends the holding period to two months and three months in 

order to see whether these volatility measures still have significant predictability in 

stock returns for longer horizons and to clarify which measure can best predict 

cross-section of stock returns at firm-level for longer horizons. Under the assumption 

of one-month holding period, dependent variables used in firm-level cross-sectional 

regressions are one-month ahead stock returns. If the holding period is extended to 
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two or three months, dependent variables in firm-level cross-sectional regressions are 

two- or three-month ahead compounded returns.  

Next section presents results for the quintile portfolio level analysis. 

3.6 Results for Portfolio Level Analysis 

3.6.1 Descriptive Results for Option-Implied Volatility Measures 

Table 3.1 presents some summary statistics, such as mean, standard deviation, 

minimum, percentiles, median, and maximum of each volatility measure, sample size 

available for each measure, as well as pairwise correlations.21 

Panel A of Table 3.1 reports descriptive statistics for each option-implied 

volatility measure on the basis of all available observations on the last trading day of 

each month during the sample period. It is observed that CPIV , AMB , COMA  and 

RVIV  have negative means (-0.0083, -0.0787, -0.0178 and -0.0161, respectively), 

while IVSKEW  and POMA  have positive means (0.0669 and 0.0563, respectively). 

The last column of Panel A shows that, the sample size for CPIV  is the largest (i.e., 

201,842), while the sample size for AMB  is the smallest (i.e., 65,919). CPIV  is 

constructed by using near-the-money call and put options, while AMB  is constructed 

by using deep out-of-the-money and in-the-money call and put options. It is known 

that the number of available near-the-money options is larger than that of deep 

out-of-the-money and in-the-money options. So the larger sample size for CPIV  and 

the much smaller sample size for AMB  are reasonable. 

                                                 

21 The numbers for volatility measures presented in Table 3.1 are decimal numbers not percentage 

numbers. In this table, there are some extreme numbers for minimum and maximum values of each 

volatility measure. This could be due to the effect of some outliers, since 5th percentile and 95th 

percentile of each option-implied volatility measure are acceptable. These descriptive statistics in Table 

3.1 are comparable to summary statistics presented in Table 1 of Doran and Krieger (2010), who 

present option-implied volatility measures in percentage. Also, the inclusion of deep in-the-money and 

out-of-money options in the sample and the wide rage to distinguish at-the-money options could affect 

the summary statistics.  
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The minima and maxima of different volatility measures in Panel A are driven by 

extreme outliers. The maximum of CPIV  is obtained in July, 2000 and the 

corresponding firm is Techne Corp. For Techne Corp, at the end of July, 2000, 

at-the-money call implied volatility was 3.6439, and at-the-money put implied 

volatility was 0.3700. Such a large difference between at-the-money call and put 

implied volatilities could be due to the increase in company's share price from $30 to 

$160 in 10-month period. Prior to this period, the company’s chairman, CEO, and 

president avoided media attention. In late 1999, investors discovered this company 

and pushed share price up. Positive information about the firm’s prospects made the 

at-the-money call implied volatility high and the at-the-money put implied volatility 

low, and further drove up the call-put implied volatility spread.  

For Sterling Software Inc, in August 1996, the out-of-the-money put implied 

volatility was 2.4253, the at-the-money call implied volatility was 0.3921, and the 

at-the-money put implied volatility was 0.3809. The high out-of-the-money put 

implied volatility of Sterling Software Inc led to the high value of IVSKEW  and 

POMA  (i.e., 2.0332 and 2.0444, respectively). The high out-of-the-money put 

implied volatility could be driven by negative jumps in underlying asset prices. 

For Microcom Inc, in August 1996, the out-of-the-money call implied volatility 

was 1.0098, the in-the-money put implied volatility was 2.0705, the out-of-the-money 

put implied volatility was 0.8936, and the in-the-money call implied volatility was 

0.8718. These implied volatilities of different kinds of options led to the maximum 

value of AMB  in the sample (i.e., 0.6575). As discussed in section 3.4, higher 

implied volatilities for options with high strike prices and lower implied volatilities for 

options with lower strike prices could be due to more trading of optimistic investors. 
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With respect to COMA , the maximum value is the observation for Cytec Inds 

Inc in May 1996. The out-of-the-money call implied volatility was 2.7738 and the 

at-the-money call implied volatility was 0.2495. The extremely high out-of-the-money 

call implied volatility was driven by the positive information that the company began 

to shed businesses and properties, discarding assets that no longer matched its 

priorities in May 1996. 

The maximum of RVIV  is the observation for Vanda Pharmaceuticals Inc in 

May 2009. This extreme value was driven by the announcement of the approval of 

FanaptTM by the US Food and Drug Administration (FDA) on May 7th, 2009. The 

daily return on May 7th, 2009 was extremely high, which drove the realized volatility 

up sharply, and further increased the value of RVIV . 

The minima of different volatility measures are also driven by outliers. The 

minimum value of CPIV  is the CPIV  for Secure Computing Corp in November, 

2004. The corresponding at-the-money call implied volatility was 0.5573, and the 

at-the-money put implied volatility was 2.9817. The high at-the-money put implied 

volatility yielded a more negative value of CPIV . 

The minimum value of IVSKEW  is driven by the extremely high value of the 

at-the-money call implied volatility of Techne Corp in July, 2000 (i.e., 3.6439). 

Meanwhile, out-of-the-money put implied volatility was 0.5907. As discussed before, 

the outperformance of the company’s share resulted in such a high at-the-money call 

implied volatility, and further led to an extremely small value of IVSKEW . 

Then, for Savient Pharmaceuticals Inc, in November, 2007, the out-of-the-money 

call implied volatility was 1.3590, the in-the-money put implied volatility was 1.4149, 

the out-of-the-money put implied volatility was 2.5122, and the in-the-money call 
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implied volatility was 2.3816. Higher values of out-of-the-money put and 

in-the-money call implied volatilities made the AMB  of the company more negative. 

In April 1996, for Johns Manville Corp, the out-of-the-money call implied 

volatility was 1.9033, and the at-the-money call implied volatility was very high, 

3.6645. The high at-the-money call implied volatility yielded the minimum value of 

COMA  during the sample period. The company changed its name to Schuller 

Corporation in 1996. Such a name can be easily recognized by fewer people. So, in 

1997, the company changed its name back. The change of name made investors 

expect better performance of the company’s share. 

The minimum value of POMA  is POMA  for Samsonite Corp in May 1998. 

The out-of-the-money put implied volatility was 2.6787, and the at-the-money put 

implied volatility was 3.5953. In May 1998, Samsonite Corp announced a 

recapitalization plan, which positively affected the performance of the company’s 

share, and further affected the implied volatility indicated by options. 

For RVIV , the minimum value of the realized-implied volatility spread is the 

RVIV  for AtheroGenics Inc in February 2007. In that month, the at-the-money call 

implied volatility was 3.1533, the at-the-money put implied volatility was 3.8719, 

whereas the realized volatility was only 0.4900. In February 2007, Investors were 

waiting for the upcoming trial data on its heart drug in the following month. The 

future volatility of the underlying asset, which is captured by option data, should be 

relatively high. This explains why RVIV  had a more negative value here. 

Panel B reports descriptive statistics of the intersection sample. The intersection 

sample consists of stocks with all the six option-implied volatility measures available 

and has 61,331 stock-month observations. The intersection sample in Doran and 

Krieger (2010) consists of 62076 company months during the period from January  
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Table 3.1: Summary Statistics (January, 1996 - September, 2011) 
Notes: Table 3.1 shows the descriptive statistics for the full sample in Panel A. Panel B is for the intersection sample, in which all observations have available data to 

construct each measure. Panel C presents the pairwise correlation for one-month holding period. 

 

 

 

  

Panel A: Full Sample 

 Mean Std Min 5th Pct 25th Pct Median 75th Pct 95th Pct Max Sample Size 

CPIV  -0.0083 0.0540 -2.4244 -0.0731 -0.0205 -0.0055 0.0079 0.0499 3.2740 201842 

IVSKEW  0.0669 0.0709 -3.0532 -0.0090 0.0317 0.0564 0.0887 0.1755 2.0332 113466 

AMB  -0.0787 0.0947 -1.0599 -0.2381 -0.1252 -0.0699 -0.0246 0.0513 0.6575 65919 

COMA  -0.0178 0.0493 -1.7611 -0.0771 -0.0367 -0.0185 -0.0008 0.0424 2.5243 111839 

POMA  0.0563 0.0537 -0.8965 -0.0060 0.0259 0.0482 0.0764 0.1464 2.0444 108146 

RVIV  -0.0161 0.1936 -3.0225 -0.2386 -0.1036 -0.0379 0.0413 0.2791 21.0411 201842 

Panel B: Intersection Sample (Sample Size=61331) 

 Mean Std Min 5th Pct 25th Pct Median 75th Pct 95th Pct Max 

CPIV  -0.0108 0.0466 -1.5332 -0.0720 -0.0181 -0.0054 0.0052 0.0335 0.6255 

IVSKEW  0.0724 0.0709 -0.5534 -0.0074 0.0343 0.0608 0.0965 0.1886 1.9825 

AMB  -0.0814 0.0940 -1.0599 -0.2411 -0.1276 -0.0721 -0.0270 0.0467 0.6312 

COMA  -0.0235 0.0368 -0.5469 -0.0804 -0.0397 -0.0219 -0.0055 0.0280 0.8764 

POMA  0.0616 0.0550 -0.2875 -0.0047 0.0285 0.0525 0.0834 0.1585 1.1071 

RVIV  0.0003 0.2250 -2.0498 -0.2486 -0.1052 -0.0310 0.0694 0.3540 11.1502 
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(Continued) 

 

 

Panel C: Correlation Table for the Intersection Sample 

 
CPIV  IVSKEW  AMB  COMA  POMA  RVIV  

IVSKEW  -0.6189 
    

 

AMB  -0.3256 -0.2492 
   

 

COMA  -0.2390 -0.0548 0.5786 
  

 

POMA  0.0808 0.7079 -0.6124 -0.2887 
 

 

RVIV  0.0393 -0.0355 0.0465 0.0851 -0.0118  

ln(size) 0.1127 0.0323 -0.0978 -0.0166 0.1401 0.0673 

B/M Ratio 0.0111 0.0033 0.0410 0.0487 0.0177 0.0054 

Momentum -0.0538 0.0695 -0.0653 -0.0114 0.0389 0.1145 

Stock Volume 0.0490 0.0659 -0.0484 0.0210 0.1304 0.1118 

Market Beta -0.0023 0.0560 -0.0664 -0.0934 0.0672 0.2907 

Bid-Ask Spread -0.1424 0.0631 0.0837 0.0684 -0.0410 -0.0373 

Option Volume 0.0200 0.1217 -0.0745 0.0130 0.1751 0.0640 
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1996 to September 2008. Thus, the size of our intersection sample is smaller than that 

of Doran and Krieger (2010). This can be due to different moneyness criteria and 

more control variables used in this chapter. Averages of CPIV , AMB , and COMA  

are still negative (-0.0108, -0.0814, and -0.0235, respectively), while averages of 

IVSKEW , POMA , and RVIV  are positive (0.0724, 0.0616 and 0.0003, 

respectively). Signs of means of CPIV , IVSKEW , AMB , COMA , and POMA  

are consistent with the results in Doran and Krieger (2010). The negative average of 

CPIV  shows that put options of individual stocks tend to have higher average 

implied volatility than that of call options. Individual firms tend to have negative 

implied volatility smirks as seen by the positive average of POMA  and IVSKEW  

and negative averages of AMB  and COMA . IVSKEW  is the difference between 

POMA  and CPIV . So 14.92 percent of the value of the negative smirk stems from 

the difference between at-the-money implied volatility of puts and at-the-money 

implied volatility of calls (CPIV ), and the other 85.08 percent can be due to the 

difference between out-of-the-money implied volatility and at-the-money implied 

volatility of puts ( POMA ). Given the positive relationship between stock returns and 

CPIV  and the negative relationship between stock returns and IVSKEW  

documented in previous studies (Bali and Hovakimian, 2009; Cremers and Weinbaum, 

2010; Doran and Krieger, 2010; and Xing, Zhang and Zhao, 2010), it is able to infer 

whether POMA  (which represents the right-hand side of the put implied volatility 

skew), plays a significant role in predicting stock returns. If there is no empirical 

evidence in favour of significant predictive ability of POMA , the predictive power of 

IVSKEW  should be driven by the difference between the at-the-money put implied 

volatilities and the at-the-money call implied volatilities (i.e., CPIV ). 
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Panel C presents pairwise correlations. There are four high average correlations. 

The correlation between CPIV  and IVSKEW  is -0.6189, the correlation between 

IVSKEW  and POMA  is 0.7079, the correlation between AMB  and COMA  is 

0.5786, and the correlation between AMB  and POMA  is -0.6124. Other pairwise 

correlations are small, all between -0.35 and 0.35. These high correlations indicate 

that there might be some information overlap in option-implied volatility measures. 

Thus, this chapter takes into account potential multicollinearity problem when 

conducting multivariate firm-level cross-sectional regressions by minimizing these 

intersections.  

3.6.2 Option-Implied Volatility Measures and Quintile Portfolios 

As mentioned before, this chapter forms quintile portfolios on the basis of each 

option-implied volatility measure, and further constructs a long-short portfolio in 

order to examine the relationship between quintile portfolio returns and each volatility 

measure. This subsection presents results for quintile portfolio level analysis. 

In order to form quintile portfolios, all stocks are sorted into quintiles based on 

each volatility measure on the last trading day of the previous month. Quintile 1 

consists of stocks with the lowest option-implied volatility measure and quintile 5 

consists of stocks with the highest option-implied volatility measure. Then, equally- 

and value-weighted returns are calculated for the following one-month holding period. 

Table 3.2 reports the results for portfolio level analysis. Panel A shows the results for 

equally-weighted portfolios, while Panel B documents results for value-weighted 

portfolios. The column “5-1” refers to results for long-short portfolio consisting of a 

long position in portfolio 5 and a short position in portfolio 1. Rows “Return” include 

data about raw returns on different portfolios, and rows “Alpha” present Jensen’s 

alphas with respect to Fama-French three-factor model for different portfolios. 



 

60 

Table 3.2: Results for Quintile Portfolios Sorted on Option-Implied Volatility 
Measures 
Notes: Quintile portfolios are formed every month by sorting stocks on each option-implied volatility 

measure at the end of the previous month. Quintile 1 (5) denotes the portfolio of stocks with the lowest 

(highest) volatility measure. The column “5-1” refers to long-short portfolio with a long position in 

portfolio 5 and a short position in portfolio 1. Rows “Return” document raw returns on portfolios, and 

rows “Alpha” show Jensen’s alpha with respect to Fama-French three-factor model. The sample 

consists of all stocks with available data and covers the February 1996 – October 2011 period. *, **, 

and *** denote for significance at 10%, 5% and 1% levels, respectively. 

 

 

Panel A: Equally-Weighted Portfolios 

  1 2 3 4 5 5-1 p-value 

CPIV  Return 0.0012 0.0057 0.0083 0.0086 0.0139 0.0127*** (0.0000) 

 Alpha -0.0085 -0.0029 0.0000 0.0002 0.0046 0.0131*** (0.0000) 

IVSKEW  Return 0.0100 0.0076 0.0052 0.0045 -0.0007 -0.0107*** (0.0000) 

 Alpha 0.0011 -0.0008 -0.0031 -0.0044 -0.0104 -0.0116*** (0.0000) 

AMB  Return 0.0039 0.0084 0.0070 0.0046 0.0009 -0.0030 (0.2803) 

 Alpha -0.0050 -0.0009 -0.0021 -0.0046 -0.0087 -0.0036 (0.1933) 

COMA  Return 0.0052 0.0094 0.0092 0.0066 0.0060 0.0008 (0.7456) 

 Alpha -0.0047 0.0004 0.0002 -0.0022 -0.0034 0.0014 (0.5660) 

POMA  Return 0.0034 0.0090 0.0068 0.0061 0.0037 0.0003 (0.9077) 

 Alpha -0.0056 0.0007 -0.0018 -0.0024 -0.0057 -0.0001 (0.9806) 
RVIV  Return 0.0095 0.0095 0.0067 0.0072 0.0047 -0.0048* (0.0986) 

 Alpha 0.0002 0.0010 -0.0014 -0.0014 -0.0051 -0.0053* (0.0536) 

Panel B: Value-Weighted Portfolios 

  1 2 3 4 5 5-1 p-value 

CPIV  Return 0.0004 0.0037 0.0077 0.0079 0.0118 0.0114*** (0.0000) 

 Alpha -0.0072 -0.0028 0.0018 0.0018 0.0053 0.0125*** (0.0000) 

IVSKEW  Return 0.0115 0.0107 0.0061 0.0039 0.0039 -0.0076*** (0.0050) 

 Alpha 0.0052 0.0043 0.0002 -0.0023 -0.0026 -0.0078*** (0.0037) 

AMB  Return 0.0067 0.0059 0.0056 0.0068 0.0010 -0.0057 (0.1309) 

 Alpha 0.0006 -0.0006 -0.0011 0.0003 -0.0065 -0.0071* (0.0535) 

COMA  Return 0.0053 0.0100 0.0066 0.0078 0.0023 -0.0029 (0.4167) 

 Alpha -0.0021 0.0035 0.0000 0.0019 -0.0039 -0.0018 (0.5824) 

POMA  Return 0.0052 0.0096 0.0062 0.0070 0.0042 -0.0009 (0.7394) 

 Alpha -0.0020 0.0031 0.0000 0.0009 -0.0018 0.0002 (0.9271) 

RVIV  Return 0.0096 0.0096 0.0065 0.0053 0.0031 -0.0064 (0.1120) 

 Alpha 0.0022 0.0031 0.0009 -0.0008 -0.0040 -0.0062 (0.1184) 
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This subsection starts with analyzing the effect of CPIV  on stock returns. In 

the first two rows in Panel A of Table 3.2, where the results for equally-weighted 

returns are presented, it can be seen that the equally-weighted average monthly return 

increases monotonically from quintile portfolio 1 (0.12%) to quintile portfolio 5 

(1.39%). Investors can earn positive excess returns on the long-short portfolio no 

matter whether Fama-French three factors are controlled for or not. The long-short 

portfolio generates an average raw return of 1.27% per month with a p-value of 
410
 

and a Jensen’s alpha with respect to Fama-French three-factor model of 1.31% with a 

p-value of 
410
. The first two rows in Panel B show that, for one-month holding 

period, the same pattern can be observed. The value-weighted average monthly return 

increases monotonically from quintile portfolio 1 (0.04%) to quintile portfolio 5 

(1.18%). The average return on “5-1” long-short portfolio is 1.14% per month and it is 

significantly different from zero with a p-value of 
410

. After controlling for 

Fama-French three factors, the average risk-adjusted return on “5-1” long-short 

portfolio increases to 1.25% per month, and it is significantly different from zero with 

a p-value of 
410
. Thus, the trading strategy of holding a long position in the portfolio 

with the highest CPIV  and a short position in the portfolio with the lowest CPIV  

generates significantly positive returns. So portfolio level analysis on CPIV  

confirms a positive relation between quintile portfolio returns and CPIV . Results 

from equally-weighted and value-weighted average returns for one-month holding 

period in Table 3.2 are compatible with results in Bali and Hovakimian (2009), who 

document that the equally-weighted (value-weighted) raw returns on the long-short 

portfolio are 1.425% (1.045%) with a t-statistic of 7.9 (4.2) and the equally-weighted 

(value-weighted) Jensen’s alpha on the long-short portfolio is 1.486% (1.140%) with a 

t-statistic of 8.6 (4.5). 



 

62 

Next, this subsection forms quintile portfolios by sorting stocks on IVSKEW  at 

the end of the each month. The third and fourth rows in Panel A of Table 3.2 present 

results for equally-weighted portfolios. Equally-weighted returns on quintile portfolios 

decrease monotonically, and the average return on quintile portfolio 5 (-0.07%) is 

significantly smaller than the average return on quintile portfolio 1 (1.00%). More 

specifically, the average monthly return on the long-short portfolio is significantly 

negative (-1.07% with a p-value of 
410
). After controlling for three Fama-French 

factors, the average risk-adjusted return on the long-short portfolio is still significantly 

negative (-1.16% with a p-value of 
410

). Similar results are found for 

value-weighted portfolios (the third and fourth rows in Panel B of Table 3.2). The 

average monthly return and the Jensen’s alpha on the value-weighted long-short 

portfolio are both significantly negative (-0.76% with a p-value of 0.0050, and -0.78% 

with a p-value of 0.0037, respectively). So, the significantly negative average return 

on the long-short portfolio suggests that quintile portfolio returns are negatively 

related to IVSKEW . The negative relationship is significant even after controlling for 

market excess returns ( MKT ), size ( SMB ) and book-to-market ratio ( HML ). 

Next, this subsection sorts stocks on three measures documented in Doran and 

Krieger (2010) and form quintile portfolios accordingly. First, the relationship 

between quintile portfolio returns and AMB  is examined. Equally-weighted and 

value-weighted average returns on quintile portfolios are presented in the fifth and 

sixth rows in Panel A and Panel B of Table 3.2, respectively. Equally-weighted and 

value-weighted returns yield very similar results. Average returns on quintile portfolio 

1 to quintile portfolio 4 are higher than the average return on quintile portfolio 5 in 

fifth and sixth rows in both Panel A and Panel B of Table 3.2. The average monthly 

return on the “5-1” long-short portfolio is not significantly different from zero (-0.30% 
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with a p-value of 0.2803 for the equally-weighted return and -0.57% with a p-value of 

0.1309 for the value-weighted return). Controlling for Fama-French three factors 

exacerbates the equally-weighted 5-1 spread to -0.36% with a p-value of 0.1933 and 

the value-weighted 5-1 spread to -0.71% with a p-value of 0.0535. That is, the 

Jensen’s alpha for the value-weighted long-short portfolio is marginally significant at 

a 10% significance level. Holding a long position in the value-weighted quintile 

portfolio with the highest AMB  and a short position in the value-weighted quintile 

portfolio with the lowest AMB  generates marginally significant risk-adjusted returns 

with respect to the Fama-French three-factor model. For Doran and Krieger’s (2010) 

long-short portfolio constructed on AMB , the Jensen’s alpha with respect to 

Fama-French three-factor model is -0.77% (statistically significant at a 1% 

significance level). In order to check for consistency, a subsample from January 1996 

to September 2008 is used to calculate the Jensen’s alpha on the long-short portfolio. 

Results show that the Jensen’s alpha is -0.92% with a p-value of 0.0364. Thus, 

subsample results are comparable to results in Doran and Krieger (2010). This 

indicates that the predictability of AMB  becomes weaker after extending sample 

period to include more recent data. 

Then, Table 3.2 presents results about the relationship between quintile portfolio 

returns and COMA . The seventh and eighth rows in Panel A show that the raw 

average one-month return on the equally-weighted “5-1” long-short portfolio is 

negative but not significantly different from zero (0.08% with a p-value of 0.7456). 

Controlling for Fama-French three factors increases Jensen’s alpha to 0.14% with a 

p-value of 0.5660. So, returns on extreme portfolios are not significantly different 

from each other. Using value-weighted returns does not change results qualitatively 

(raw monthly return of -0.29% with a p-value of 0.4167 and Jensen’s alpha of -0.18% 
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with a p-value of 0.5824, respectively). Results indicate no evidence that the return on 

the value-weighted long-short portfolio is significantly different from zero. Thus, 

there is no evidence in favour of a significant relationship between quintile portfolio 

returns and COMA . 

This subsection also forms quintile portfolios by sorting stocks on POMA . As 

evident in the ninth and tenth rows in Panel A and B of Table 3.2, regardless of the 

weighting scheme, the average one-month return on the long-short portfolio is not 

significantly different from zero. After controlling for Fama-French three factors, 

Jensen’s alpha is still not significant (-0.01% with a p-value of 0.9806 for the 

equally-weighted long-short portfolio, and 0.02% with a p-value of 0.9271 for the 

value-weighted long-short portfolio). Thus, empirical results indicate that investing in 

a long-short portfolio based on POMA  cannot produce significantly non-zero 

returns. 

Finally, quintile portfolios are formed based on RVIV . The information about 

these quintile portfolios can be found in the last two rows in Panel A and Panel B of 

Table 3.2. When using the equally-weighted scheme, the raw return on the long-short 

portfolio is -0.48% per month with a p-value of 0.0986, and the Jensen’s alpha on the 

long-short portfolio is -0.53% with a p-value of 0.0536 (marginally significant). So, 

after controlling for Fama-French three factors, investors can earn marginally 

significant positive returns if they hold a short position in portfolio 5 and a long 

position in portfolio 1 constructed based on RVIV . For value-weighted portfolios, 

even though the average monthly return decreases from quintile portfolio 1 to quintile 

portfolio 5, the average monthly return on the long-short portfolio is insignificantly 

negative (-0.64% with a p-value of 0.1120). Meanwhile, the Jensen’s alpha on the 

“5-1” long-short portfolio is also insignificantly negative (-0.62% with a p-value of 
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0.1184). Thus, results about risk-adjusted returns in this subsection are comparable to 

results in Bali and Hovakimian (2009). Bali and Hovakimian (2009) document that 

Jensen’s alpha for the long-short portfolio constructed on RVIV  is -0.587% with a 

significant t-statistic of -2.5 when using the equally-weighted scheme, and -0.642% 

with a significant t-statistic of -2.2 when using the value-weighted scheme. 

3.6.3 Discussion 

To summarize, results in Table 3.2 confirm the existence of a positive relation 

between quintile portfolio returns and CPIV , and a negative relation between 

quintile portfolio returns and IVSKEW . Also, there is weak evidence about a 

negative relationship between portfolio returns and AMB  or RVIV . These findings 

are consistent with the findings of previous studies. However, results for AMB  are 

different from our expectations. This indicates that in-the-money options may not 

capture information as expected due to infrequent trading activities. The results 

suggest that some of the option-implied volatility measures are helpful in explaining 

future returns. However, there is no significant relation between quintile portfolio 

returns and COMA  or POMA . This can be due to different moneyness criteria used 

in this chapter. The range of S K  for determining at-the-money options in this 

chapter is the same as that used in Bali and Hovakimian (2009) but it is wider than 

that used in Doran and Krieger (2010). So, more options are recognized as 

at-the-money options in this chapter as compared to Doran and Krieger (2010).  

Although portfolio level analysis helps to determine potential candidates among 

several option-implied volatility measures in predicting stock returns, it does not allow 

us to control for firm-specific effects. There may be important size or book-to-market 

ratio differences between extreme portfolios. The relationship between portfolio 

returns and volatility measures could be affected by size or book-to-market ratio. For 
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example, if portfolios are constructed on IVSKEW , the firm size increases from 

quintile portfolio 1 to quintile portfolio 4, while firm size of quintile portfolio 5 is a bit 

smaller than that of quintile portfolio 4. Thus, the negative relationship between 

quintile portfolio returns and IVSKEW  can be driven by the size effect. In addition, 

for portfolios constructed on AMB , the firm size decreases from quintile portfolio 1 

to quintile portfolio 5, and the book-to-market ratio is highest for quintile portfolio 5 

and lowest for quintile portfolio 2. There are size differences between quintiles, but 

the extreme portfolios have similar book-to-market ratios. These results suggest that 

size, but not book-to-market ratio, may drive the relation between future returns and 

AMB . For portfolios constructed on RVIV , size exhibits a U shape across quintiles. 

The book-to-market ratio decreases monotonically from quintile portfolio 1 to quintile 

portfolio 5. These results suggest that book-to-market ratio, not size, may drive the 

relation between future returns and RVIV . 

The analysis for size or book-to-market ratio suggests that these two factors may 

drive some of observed relationships. Some other firm-specific effects may also play a 

role in explaining stock returns. To check, this chapter performs firm-level 

cross-sectional regressions in the following section. 

3.7 Firm-Level Cross-Sectional Regressions 

As mentioned above, portfolio level analysis does not allow controlling for 

firm-specific variables (i.e., size, book-to-market ratio, momentum, stock trading 

volume, market beta, bid-ask spread, and option trading volume) simultaneously. 

However, firm-level cross-sectional regressions enable us to cope with this issue; 

these regressions allow including all option-implied volatility measures in the same 

model, and further allow comparing the predictive power of different measures. 
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This section first performs univariate cross-sectional regressions at firm-level by 

using the full sample. The univariate cross-sectional regressions include each of 

several option-implied volatility measures, such as CPIV , IVSKEW , AMB , 

COMA , POMA , and RVIV . Then, this section conducts univariate cross-sectional 

regressions at firm-level by using the intersection sample to examine whether findings 

obtained by using the full sample still hold. Moreover, several option-implied 

volatility measures are included in the same model (i.e., multivariate regressions) in 

order to compare the predictive power of each measure. Such an analysis sheds light 

on which measure is the most useful in predicting individual stock returns. 

Findings in this section can help us to understand which option-implied volatility 

measure has the strongest predictive power when competing with other measures. 

3.7.1 Cross-Sectional Regressions for Full Sample over One-Month Holding Period 

First, this subsection uses firm-level cross-sectional regressions to shed light on 

the relationship between one-month ahead stock returns and each volatility measure 

using the full sample. The results can be found in Table 3.3. 

Model I and Model II in Table 3.3 present firm-level cross-sectional regression 

results for CPIV . These two models show that CPIV  has significantly positive 

average slopes (around 0.10 with extremely small p-values) no matter whether models 

control for size, book-to-market ratio, momentum, volume, market beta and bid-ask 

spread or not. These results are consistent with the findings in Bali and Hovakimian 

(2009). So, empirical results confirm a significant and positive relation between stock 

returns and CPIV . Also, in Panel A of Table 3.1, the average of CPIV  is equal to 

-0.83%. Thus, the coefficient of 0.1084 (0.0935 after controlling for firm-specific 

effects) on CPIV  translates to a future monthly return of -9.00 (-7.76) bps for the 

average value of CPIV . 
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Table 3.3: Firm-Level Cross-Sectional Regression Results by Using the Full Sample 
Notes: Table 3.3 presents the firm-level cross-sectional regression results for the full sample for the period from Feb 1996 to Oct 2011. P-values are reported in parentheses. *, 

**, and *** denote for significance at 10%, 5% and 1% levels, respectively. 

 
I II III IV V VI VII VIII IX X XI XII 

Intercept 0.0085* 0.0131 0.0100* 0.0077 0.0050 0.0036 0.0076 0.0075 0.0069 0.0077 0.0083* 0.0123 

 
(0.0875) (0.2567) (0.0547) (0.5369) (0.4117) (0.7887) (0.1681) (0.5556) (0.1824) (0.5495) (0.0834) (0.2817) 

CPIV  0.1084*** 0.0935*** 
  

        

 
(0.0000) (0.0000) 

  
        

IVSKEW  
  

-0.0750*** -0.0626***         

   
(0.0000) (0.0000)         

AMB  
    

-0.0038 0.0024       

     
(0.7659) (0.8401)       

COMA  
    

  0.0239 0.0392     

     
  (0.3819) (0.1011)     

POMA  
    

    -0.0243 -0.0208   

     
    (0.1556) (0.1686)   

RVIV  
    

      -0.0052 -0.0028 

     
      (0.2839) (0.4759) 

ln(size) 
 

-0.0006 
 

0.0003  0.0009  0.0004  0.0002  -0.0006 

  
(0.6279) 

 
(0.7682)  (0.4972)  (0.7594)  (0.8859)  (0.6196) 

B/M Ratio 
 

0.0024 
 

0.0025  0.0020  0.0025  0.0021  0.0025 

  
(0.2427) 

 
(0.4087)  (0.5399)  (0.3262)  (0.5081)  (0.2131) 

Momentum 
 

-0.0079 
 

-0.0043  -0.0009  -0.0068  -0.0040  -0.0081 

  
(0.3080) 

 
(0.6122)  (0.9208)  (0.4142)  (0.6301)  (0.2951) 

Stock Volume 
 

0.0000 
 

-0.0022  -0.0044  -0.0019  -0.0025  0.0016 

  
(0.9866) 

 
(0.3764)  (0.1110)  (0.4998)  (0.3044)  (0.5614) 

Market Beta 
 

0.0007 
 

0.0015  0.0012  0.0009  0.0015  0.0009 

  
(0.7383) 

 
(0.4944)  (0.6020)  (0.6730)  (0.5099)  (0.7006) 

Bid-Ask Spread 
 

-1.1091** 
 

-1.5720**  -2.6772***  -2.3906***  -2.2973***  -1.3993*** 

  
(0.0221) 

 
(0.0417)  (0.0088)  (0.0070)  (0.0069)  (0.0057) 

Option Volume 
 

0.0000 
 

0.0031  0.0008  -0.0016  0.0023  -0.0018 

  
(0.9842) 

 
(0.1718)  (0.7813)  (0.5285)  (0.3085)  (0.4352) 
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Then, this subsection analyzes the relation between cross-section of stock returns 

and IVSKEW  at firm level (Model III and Model IV). The average slope on 

IVSKEW  is significantly negative (-0.0750 with a p-value of 
-410  excluding control 

variables, and -0.0626 with a p-value of 
-410  including control variables, 

respectively). Our findings about IVSKEW  are consistent with previous studies (e.g., 

Xing, Zhang and Zhao, 2010; and Doran and Krieger, 2010). Results are economically 

significant as well. Without controlling for firm-specific effects, a coefficient of 

-0.0750 on IVSKEW  indicates that, if a stock has an average IVSKEW  of 6.69 

percent, its future monthly return should be 50.18 bps lower. After including control 

variables in the model, a coefficient of -0.0626 on IVSKEW  leads to a future 

monthly return of -41.88 bps for the average value of IVSKEW . 

Next, three measures introduced by Doran and Krieger (2010), AMB , COMA , 

and POMA  (Models V to X), are investigated. There is an insignificant average slope 

on AMB . The average slope on COMA  is positive but insignificant, and the average 

slope on POMA  is insignificantly negative. 

Finally, RVIV  is included in cross-sectional regressions. The results in Model 

XI and Model XII present negative average slopes on RVIV . However, the average 

slope is not significant no matter whether control variables are included in the 

regression model or not. This subsection also uses the subsample for the period from 

February 1996 to January 2005. The subsample analysis by using the full sample 

yields a significantly negative average slope for the realized-implied volatility spread 

without including any control variables (-0.0135 with a p-value of 0.0410). The results 

for the subsample analysis are consistent with the finding in Bali and Hovakimian 

(2009). Thus, the significance of the negative average slope on RVIV  disappears 

when using a longer sample period with more recent data. 
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To sum up, firm-level cross-sectional regression results show that the average 

slope on CPIV  is significantly positive (around 0.10) and the average slope on 

IVSKEW  is significantly negative (around -0.07). These average slopes confirm the 

positive relation between stock returns and CPIV  and the negative relation between 

stock returns and IVSKEW . Additionally, there is no significant average slope for 

AMB , COMA , POMA , or RVIV . Thus, based on the full sample, there is no 

significant relation between stock returns and AMB , COMA , POMA , or RVIV . 

3.7.2 Cross-Sectional Regressions for Intersection Sample over One-Month Holding 

Period 

After the analysis using the full sample, this subsection conducts firm-level 

cross-sectional regressions by using the intersection sample. As mentioned previously, 

POMA  is equal to the sum of IVSKEW  and CPIV , so these three measures 

cannot be included in the same model. In Panel C of Table 3.1, a highly negative 

correlation between CPIV  and IVSKEW , a highly positive correlation between 

IVSKEW  and POMA , a highly positive correlation between AMB  and COMA , 

and a highly negative correlation between AMB  and POMA  are documented. So, 

in multivariate cross-sectional regressions, the potential multicollinearity problem 

should be eliminated. In the first multivariate cross-sectional regression model, 

POMA  is excluded. Then, in the second model, IVSKEW  is excluded. In the third 

multivariate regression model, AMB  and POMA  are excluded. Finally, in the 

fourth model, both IVSKEW  and AMB  are excluded. Thus, in the fourth model, 

correlations between any two explanatory variables are low, and results obtained from 

the fourth model are less affected by a multicollinearity problem. 

Under the assumption of one-month holding period, this subsection performs 

univariate and multivariate cross-sectional regressions at firm-level by using the  
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Table 3.4: Firm-Level Cross-Sectional Regression Results by Using the Intersection Sample for One-Month Holding Period 
Notes: Table 3.4 presents the firm-level cross-sectional regression results for the intersection sample (N=61331) for the period from Feb 1996 to Oct 2011. P-values are 

reported in parentheses. *, **, and *** denote for significance at 10%, 5% and 1% levels, respectively. 

Panel A: Univariate Firm-Level Cross-Sectional Regression Models 

 
I II III IV V VI VII VIII IX X XI XII 

Intercept 0.0064 0.0074 0.0110* 0.0074 0.0056 0.0071 0.0056 0.0072 0.0079 0.0064 0.0067 0.0047 

 
(0.2874) (0.5910) (0.0613) (0.5874) (0.3433) (0.6071) (0.3324) (0.6007) (0.1712) (0.6408) (0.2467) (0.7292) 

CPIV  0.1234*** 0.1000*** 
  

        

 
(0.0000) (0.0008) 

  
        

IVSKEW  
  

-0.0926*** -0.0740***         

   
(0.0000) (0.0000)         

AMB  
    

0.0001 0.0062       

     
(0.9969) (0.6255)       

COMA  
    

  0.0248 0.0340     

     
  (0.5207) (0.3421)     

POMA  
    

    -0.0573** -0.0481**   

     
    (0.0127) (0.0311)   

RVIV  
    

      0.0010 0.0037 

     
      (0.8881) (0.5704) 

ln(size) 
 

0.0005 
 

0.0008  0.0006  0.0006  0.0008  0.0007 

  
(0.6908) 

 
(0.5178)  (0.6603)  (0.6568)  (0.5544)  (0.5785) 

B/M Ratio 
 

0.0016 
 

0.0020  0.0017  0.0021  0.0020  0.0015 

  
(0.6798) 

 
(0.6206)  (0.6706)  (0.5987)  (0.6146)  (0.6971) 

Momentum 
 

0.0019 
 

0.0026  0.0012  0.0018  0.0010  0.0010 

  
(0.8433) 

 
(0.7895)  (0.9026)  (0.8472)  (0.9129)  (0.9158) 

Stock Volume 
 

-0.0054** 
 

-0.0053**  -0.0048*  -0.0051**  -0.0051**  -0.0047* 

  
(0.0320) 

 
(0.0376)  (0.0651)  (0.0479)  (0.0431)  (0.0552) 

Market Beta 
 

0.0008 
 

0.0011  0.0011  0.0010  0.0012  0.0017 

  
(0.7528) 

 
(0.6497)  (0.6489)  (0.6800)  (0.6252)  (0.5116) 

Bid-Ask Spread 
 

-1.6331 
 

-1.5474  -2.7998***  -3.0435***  -2.5439**  -2.1081** 

  
(0.1117) 

 
(0.1253)  (0.0096)  (0.0056)  (0.0205)  (0.0429) 

Option Volume 
 

0.0027 
 

0.0032  0.0015  0.0022  0.0022  0.0010 

  
(0.3484) 

 
(0.2705)  (0.6096)  (0.4500)  (0.4404)  (0.7216) 
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(Continued) 

 
Panel B: Multivariate Firm-Level Cross-Sectional Regression Models 

 XIII XIV XV XVI XVII XVIII XIX XX 

Intercept 0.0110** 0.0092 0.0110** 0.0092 0.0108** 0.0084 0.0108** 0.0084 

 (0.0455) (0.4979) (0.0455) (0.4979) (0.0480) (0.5360) (0.0480) (0.5360) 

CPIV  0.0844* 0.0885* 0.1412*** 0.1205*** 0.0914*** 0.0768** 0.1424*** 0.1172*** 

 (0.0689) (0.0624) (0.0000) (0.0002) (0.0091) (0.0325) (0.0000) (0.0001) 

IVSKEW  -0.0568** -0.0320   -0.0510** -0.0404*   

 (0.0430) (0.2527)   (0.0204) (0.0669)   

AMB  -0.0120 0.0053 -0.0120 0.0053     

 (0.5420) (0.7779) (0.5420) (0.7779)     

COMA  0.0479 0.0438 0.0479 0.0438 0.0394 0.0499 0.0394 0.0499 

 (0.2795) (0.2798) (0.2795) (0.2798) (0.3135) (0.1686) (0.3135) (0.1686) 

POMA    -0.0568** -0.0320   -0.0510** -0.0404* 

   (0.0430) (0.2527)   (0.0204) (0.0669) 

RVIV  -0.0029 -0.0010 -0.0029 -0.0010 -0.0028 -0.0011 -0.0028 -0.0011 

 (0.6744) (0.8724) (0.6744) (0.8724) (0.6871) (0.8612) (0.6871) (0.8612) 

ln(size)  0.0005  0.0005  0.0005  0.0005 

  (0.7014)  (0.7014)  (0.6736)  (0.6736) 

B/M Ratio  0.0022  0.0022  0.0023  0.0023 

  (0.5837)  (0.5837)  (0.5594)  (0.5594) 

Momentum  0.0051  0.0051  0.0050  0.0050 

  (0.5990)  (0.5990)  (0.6099)  (0.6099) 

Stock Volume  -0.0052**  -0.0052**  -0.0049**  -0.0049** 

  (0.0238)  (0.0238)  (0.0305)  (0.0305) 

Market Beta  0.0020  0.0020  0.0021  0.0021 

  (0.4319)  (0.4319)  (0.4149)  (0.4149) 

Bid-Ask Spread  -1.7040*  -1.7040*  -1.6002  -1.6002 

  (0.0820)  (0.0820)  (0.1046)  (0.1046) 

Option Volume  0.0022  0.0022  0.0018  0.0018 

  (0.4234)  (0.4234)  (0.4872)  (0.4872) 
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intersection sample. The regression results are presented in Table 3.4. 

Model I and Model II present firm-level cross-sectional regression results for 

CPIV . The coefficient on CPIV  is 0.1000 with a p-value of 
410
 after controlling 

for size, book-to-market ratio, momentum, stock trading volume, market beta, bid-ask 

spread, and option trading volume. That is, if a stock has an average difference 

between the call and put volatilities of -1.08 percent, then on average the month-ahead 

return will be 10.8 bps lower. Model III and Model IV present significantly negative 

average slopes on IVSKEW . The average slope is -0.0926 with a p-value of 
410
 

without including control variables, and it is -0.0740 with a p-value of 
410
 after 

controlling for control variables mentioned before. The interpretation of the economic 

significance is that a coefficient of -0.0926 (-0.0740) on IVSKEW  translates to a 

future monthly return of -67.04 (-53.58) bps for the average value of IVSKEW  (7.24 

percent). Models V to VIII show that average slopes on AMB  and COMA  are 

positive but not significant, while average slopes on POMA  are significantly 

negative (-0.0481 with p-value of 0.0311 after including control variables in 

regression Model X). The final two univariate regression models (Model XI and 

Model XII) yield insignificant average slopes for RVIV . Thus, the results are 

consistent with those obtained in the previous section by using the full sample (except 

the results for POMA ).  

Panel B presents the results of eight models used in multivariate firm-level 

cross-sectional regressions. If POMA  is excluded (Model XIII and Model XIV), 

average slopes on CPIV  and IVSKEW  remain significant. Without including 

control variables, the average slope for CPIV  is 0.0844 with a p-value of 0.0689, 

and the average slope for IVSKEW  is -0.0568 with a p-value of 0.0430. After 

controlling for size, book-to-market ratio, momentum, stock trading volume, market 
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beta, bid-ask spread and option trading volume, the significance of the average slope 

for IVSKEW  disappears. Only the average slope on CPIV  is still marginally 

significant (0.0885 with a p-value of 0.0624). Other volatility measures do not have 

significant average slopes. In these two models, the average slope on CPIV  is 

marginally significant at a 10% significance level. The significant average slope on 

CPIV  in Model XIV indicates that, if a stock has an average CPIV  of -1.08 percent, 

the return will, on average, be 9.56 bps lower in the following month. From Panel C of 

Table 3.1, the correlation between CPIV  and IVSKEW  is -0.6189. These two 

variables are highly correlated, so results could be driven by this high correlation.  

If IVSKEW  is excluded instead of POMA  (Model XV and Model XVI), there 

is a significantly positive average slope on CPIV  no matter whether control 

variables are included in regression models or not. The average slope on CPIV  is 

0.1205 with a p-value of 0.0002 after controlling for several firm-specific effects (in 

Model XVI). With respect to the economic significance, from Model XVI, if the 

average difference between at-the-money call and put implied volatilities is -1.08 

percent, the return in the following month is expected to be 13.01 bps lower. These 

two models include AMB , COMA  and POMA  in the model. Panel C of Table 3.1 

documents that the correlation between AMB  and COMA  is 0.5786, and the 

correlation between AMB  and POMA  is -0.6124. Thus, the multicollinearity issue 

could affect the accuracy of results. 

Then, both AMB  and POMA  are excluded in the next two models (Model 

XVII and Model XVIII). Results of these two models show that CPIV  has a 

significantly positive average slope while IVSKEW  has a significantly negative 

average slope no matter whether control variables are included or not. Without 

including control variables, the average slope on CPIV  is 0.0914 with a p-value of 



 

75 

0.0091, and the average slope on IVSKEW  is -0.0510 with a p-value of 0.0204. 

After including control variables, the average slope on CPIV  is 0.0768 with a 

p-value of 0.0325, and the average slope on IVSKEW  is -0.0404 with a p-value of 

0.0669. In these two models, the predictive power of CPIV  is stronger than that of 

IVSKEW . When it comes to economic significance, after controlling for 

firm-specific effects, if CPIV  increases by 1%, one-month ahead return is expected 

to increase by 7.68 bps, which corresponds to 0.92% per annum. If IVSKEW  

increases by 1%, one-month ahead return is expected to decrease by 4.04 bps, which 

corresponds to -0.48% per annum. Again, these two multivariate regression models 

may suffer from the multicollinearity problem because of the high correlation between 

CPIV  and IVSKEW .  

It is seen that the results for six models above may be affected by the 

multicollinearity issue, so the final two sets of models try to eliminate this problem. In 

these two models (Model XIX and Model XX), both IVSKEW  and AMB  are 

excluded so that pairwise correlations in these models are not very high. From the last 

two sets of models, there is a significantly positive average slope on CPIV  (0.1172 

with a p-value of 0.0001 after controlling for firm-specific effects) and a marginally 

significant negative average slope for POMA  (-0.0404 with a p-value of 0.0669 after 

including control variables). With respect to the economic significance, if a stock has 

an average CPIV  ( POMA ) of 1.08 (6.16) percent, one-month ahead return will, on 

average, be 12.66 (24.89) bps lower with other variables remaining the same. So, 

results from these two models confirm a significant positive relation between stock 

returns and CPIV . The negative relationship between stock returns and POMA  is 

marginally significant at a 10% significance level. 
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IVSKEW  can capture both CPIV  and POMA . In multivariate regression 

models of XIV and XVI, the only difference is that Model XIV contains IVSKEW  

whereas Model XVI contains POMA . The coefficient on IVSKEW  in Model XIV 

and that on POMA  in Model XVI are the same. The coefficient on CPIV  in Model 

XVI is equal to the difference between the coefficient on CPIV  and the coefficient 

on IVSKEW  in Model XIV. So, the influence of IVSKEW  can be split into two 

parts, the influence of CPIV  and the influence of POMA . Similar results are found 

when comparing Model XVIII and Model XX. Furthermore, if the average slope on 

POMA  is significant/insignificant (Model XVI/XX), the coefficient on IVSKEW  is 

also significant/insignificant in the paired model (Model XIV/XVIII). For the 

intersection sample, the significance of the average slope on IVSKEW  is affected by 

POMA . Furthermore, Model XX shows that differences between at-the-money call 

implied volatilities and at-the-money put implied volatilities (CPIV ) and between the 

out-of-the-money put implied volatilities and at-the-money put implied volatilities 

( POMA ) both capture valuable information about future equity returns. The 

predictive power of CPIV  has stronger statistical significance, while the predictive 

power of POMA  has stronger economic significance.  

Thus, among all option-implied volatility measures, the predictive power of 

CPIV  is stronger than those of other measures over one-month holding period. 

Empirical results in this subsection confirm a positive relationship between monthly 

stock returns and CPIV , a negative relationship between monthly stock returns and 

IVSKEW , and a weak negative relationship between monthly stock returns and 

POMA . Moreover, empirical results indicate that, among all six option-implied 

volatility measures, CPIV  has stronger predictive power than any other volatility 

measure over one-month investment horizon. 
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Section 3.8 performs additional tests by extending the holding period to two 

months and three months in order to investigate whether the predictive power of each 

option-implied volatility measure persists for longer horizons. 

3.8 Tests for Longer Holding Periods 

3.8.1 Cross-Sectional Regressions for Intersection Sample over Two-Month Holding 

Period 

This subsection extends the holding period to two months, and then performs 

univariate and multivariate cross-sectional regressions at firm-level by using the 

intersection sample. The regression results for two-month holding period are 

documented in Table 3.5. 

Model I and Model II show a significantly positive average slope on CPIV  

(0.0970 with a p-value of 0.0169 after controlling for size, book-to-market ratio, 

momentum, stock trading volume, beta, bid-ask spread and option trading volume in 

Model II). That is, if a stock has an average CPIV  of -1.08 percent, then the 

following two-month return will be 10.48 bps lower on average. Also, there is a 

significantly negative slope on IVSKEW . After including control variables, the 

average slope on IVSKEW  is -0.0951 with a p-value of 0.0002 in Model IV, 

implying economic significance as well. If IVSKEW  increases by 1%, the 

two-month ahead return is expected to decrease by 9.51 bps, which corresponds to 

-0.57% per annum. Then, this subsection investigates three measures documented in 

Doran and Krieger (2010). The average slope on AMB  is insignificant in Model V 

and Model VI. However, the average slope on COMA  is significantly positive at a 10% 

significance level after including control variables in Model VIII (0.0867 with a 

p-value of 0.0703). That is, if a stock has an average COMA  of -2.35 percent, the  
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Table 3.5: Firm-Level Cross-Sectional Regression Results by Using the Intersection Sample for Two-Month Holding Period 
Notes: Table 3.5 presents the firm-level cross-sectional regression results for the intersection sample (N=61197) for the period from Feb 1996 to Oct 2011. P-values are 

reported in parentheses. *, **, and *** denote for significance at 10%, 5% and 1% levels, respectively. 

Panel A: Univariate Firm-Level Cross-Sectional Regression Models 

 
I II III IV V VI VII VIII IX X XI XII 

Intercept 0.0102 0.0071 0.0160* 0.0081 0.0086 0.0087 0.0095 0.0092 0.0121 0.0087 0.0111 0.0052 

 
(0.2310) (0.7344) (0.0532) (0.6962) (0.2976) (0.6767) (0.2429) (0.6571) (0.1411) (0.6781) (0.1848) (0.8014) 

CPIV  0.1218*** 0.0970** 
  

        

 
(0.0029) (0.0169) 

  
        

IVSKEW  
  

-0.1090*** -0.0951***         

   
(0.0001) (0.0002)         

AMB  
    

-0.0052 0.0078       

     
(0.7932) (0.6647)       

COMA  
    

  0.0690 0.0867*     

     
  (0.2107) (0.0703)     

POMA  
    

    -0.0685* -0.0680*   

     
    (0.0602) (0.0548)   

RVIV  
    

      -0.0040 -0.0011 

     
      (0.6548) (0.8994) 

ln(size) 
 

0.0016 
 

0.0020  0.0015  0.0016  0.0017  0.0017 

  
(0.3791) 

 
(0.2846)  (0.4309)  (0.3997)  (0.3617)  (0.3461) 

B/M Ratio 
 

0.0037 
 

0.0037  0.0036  0.0033  0.0038  0.0034 

  
(0.5084) 

 
(0.5101)  (0.5270)  (0.5576)  (0.5002)  (0.5414) 

Momentum 
 

-0.0022 
 

-0.0006  -0.0030  -0.0030  -0.0027  -0.0003 

  
(0.8664) 

 
(0.9596)  (0.8172)  (0.8101)  (0.8320)  (0.9797) 

Stock Volume 
 

-0.0060 
 

-0.0064  -0.0057  -0.0066*  -0.0065  -0.0059 

  
(0.1189) 

 
(0.1024)  (0.1520)  (0.0962)  (0.1002)  (0.1380) 

Market Beta 
 

0.0007 
 

0.0013  0.0011  0.0011  0.0013  0.0028 

  
(0.8067) 

 
(0.6522)  (0.7201)  (0.7134)  (0.6674)  (0.3812) 

Bid-Ask Spread 
 

-3.4628** 
 

-3.5728**  -5.2132***  -5.4727***  -5.1568***  -4.7496*** 

  
(0.0161) 

 
(0.0138)  (0.0005)  (0.0003)  (0.0008)  (0.0011) 

Option Volume 
 

0.0090* 
 

0.0099**  0.0082  0.0092*  0.0096**  0.0082* 

  
(0.0667) 

 
(0.0403)  (0.1095)  (0.0644)  (0.0442)  (0.0934) 
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(Continued) 

 
Panel B: Multivariate Firm-Level Cross-Sectional Regression Models 

 XIII XIV XV XVI XVII XVIII XIX XX 

Intercept 0.0146* 0.0096 0.0146* 0.0096 0.0148* 0.0089 0.0148* 0.0089 

 (0.0607) (0.6398) (0.0607) (0.6398) (0.0576) (0.6637) (0.0576) (0.6637) 

CPIV  0.0556 0.0608 0.1396*** 0.1269*** 0.0999** 0.0802 0.1457*** 0.1282*** 

 (0.3951) (0.3506) (0.0013) (0.0023) (0.0434) (0.1150) (0.0002) (0.0007) 

IVSKEW  -0.0840* -0.0661   -0.0458 -0.0481   

 (0.0620) (0.1285)   (0.1961) (0.1756)   

AMB  -0.0522* -0.0281 -0.0522* -0.0281     

 (0.0615) (0.2702) (0.0615) (0.2702)     

COMA  0.1214** 0.1240** 0.1214** 0.1240** 0.0787 0.1033** 0.0787 0.1033** 

 (0.0432) (0.0221) (0.0432) (0.0221) (0.1592) (0.0339) (0.1592) (0.0339) 

POMA    -0.0840* -0.0661   -0.0458 -0.0481 

   (0.0620) (0.1285)   (0.1961) (0.1756) 

RVIV  -0.0091 -0.0084 -0.0091 -0.0084 -0.0090 -0.0085 -0.0090 -0.0085 

 (0.2937) (0.3017) (0.2937) (0.3017) (0.3017) (0.3007) (0.3017) (0.3007) 

ln(size)  0.0015  0.0015  0.0016  0.0016 

  (0.4403)  (0.4403)  (0.4050)  (0.4050) 

B/M Ratio  0.0040  0.0040  0.0038  0.0038 

  (0.4733)  (0.4733)  (0.4949)  (0.4949) 

Momentum  0.0047  0.0047  0.0049  0.0049 

  (0.7143)  (0.7143)  (0.7023)  (0.7023) 

Stock Volume  -0.0068  -0.0068  -0.0067*  -0.0067* 

  (0.1010)  (0.1010)  (0.0899)  (0.0899) 

Market Beta  0.0033  0.0033  0.0033  0.0033 

  (0.2828)  (0.2828)  (0.2830)  (0.2830) 

Bid-Ask Spread  -3.6126**  -3.6126**  -3.5948**  -3.5948** 

  (0.0123)  (0.0123)  (0.0129)  (0.0129) 

Option Volume  0.0098*  0.0098*  0.0096**  0.0096** 

  (0.0516)  (0.0516)  (0.0412)  (0.0412) 



 

80 

following two-month return will be 20.37 bps lower on average. The marginal 

significance of negative average slope on POMA  remains a bit lower than 0.07 as 

shown in Model IX and Model X. If the average difference between out-of-the-money 

and at-the-money put implied volatilities is 6.16 percent, the two-month ahead return 

will be 41.89 bps lower. RVIV  has an insignificantly negative average slope in 

Model XI and Model XII. Thus, results for the univariate firm-level cross-sectional 

regression models indicate that two-month ahead returns are positively correlated with 

CPIV , and they are negatively correlated with IVSKEW . COMA  and POMA  are 

weakly related to two-month ahead stock returns, as well. The difference between 

results for one-month holding period and results for two-month holding period is the 

marginal significance of relationship between two-month stock returns and COMA . 

This subsection proceeds with multivariate cross-sectional regressions to see 

whether the predictive power of COMA  is strong when competing with other 

variables. Results for multivariate firm-level cross-sectional regressions for 

two-month holding period are slightly different compared to those for one-month 

holding period. In addition to the significantly positive average slope on CPIV  

presented in models XV to XX (the average slope is around 0.10 with very small 

p-value), there is a significantly positive average slope on COMA .22 The average 

slope on COMA  is higher than 0.10 with a p-value smaller than 5% after controlling 

for several firm-specific effects (models XIV, XVI, XVIII and XX). Model XX shows 

that a coefficient of 0.1033 on COMA  indicates a two-month ahead return of -24.28 

bps for the average COMA . Also, without including control variables, there is a 

marginally significant and negative average slope on AMB  in Model XIII and Model 

                                                 

22 There is no significant average slope for CPIV  in Model XIII and Model XIV. This could be due to 

the high correlation between CPIV  and IVSKEW  presented in Panel C of Table 3.1. 
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XV at a 10% significance level (-0.0522 with a p-value of 0.0615 in both models), 

implying a future two-month return of 42.49 bps for the average value of AMB .  

Thus, the predictive power of CPIV  is strong for two-month holding period as 

well. However, compared with the results for one-month holding period, COMA  

becomes an important measure in predicting two-month ahead stock returns. 

3.8.2 Cross-Sectional Regressions for Intersection Sample over Three-Month 

Holding Period 

This subsection performs cross-sectional regressions at firm-level by using the 

intersection sample for three-month holding period. Table 3.6 documents regression 

results. 

In univariate firm-level cross-sectional regression models, the average slope on 

CPIV , IVSKEW , COMA  or POMA  remains statistically significant (0.0932 with 

a p-value of 0.0281, -0.1149 with a p-value of 0.0001, 0.1667 with a p-value of 0.0026, 

and -0.0958 with a p-value of 0.0244 after including control variables, respectively). 

With respect to the economic significance, the average slope on 

/ / /CPIV IVSKEW COMA POMA  translates to future three-month returns of 

-10.07/-83.19/-39.17/-59.01 bps for the average value of the option-implied volatility 

measures, respectively. There is no significant average slope on AMB  or RVIV  

again. So, results for three-month holding period still document a positive relationship 

between stock returns and CPIV  or COMA , and a negative relationship between 

stock returns and IVSKEW  or POMA . These findings are consistent with findings 

for two-month holding period in previous subsection.  

In multivariate firm-level cross-sectional regression models, results for 

three-month holding period are very similar to the results obtained for two-month  
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Table 3.6: Firm-Level Cross-Sectional Regression Results by Using the Intersection Sample for Three-Month Holding Period 
Notes: Table 3.6 presents the firm-level cross-sectional regression results for the intersection sample (N=61020) for the period from Feb 1996 to Oct 2011. P-values are 

reported in parentheses. *, **, and *** denote for significance at 10%, 5% and 1% levels, respectively. 

Panel A: Univariate Firm-Level Cross-Sectional Regression Models 

 
I II III IV V VI VII VIII IX X XI XII 

Intercept 0.0161 0.0035 0.0237** 0.0045 0.0151 0.0048 0.0170* 0.0065 0.0196* 0.0052 0.0175* 0.0066 

 
(0.1278) (0.8909) (0.0205) (0.8597) (0.1417

) 
(0.8542) (0.0938) (0.8003) (0.0570) (0.8416) (0.0959

) 
(0.7993) 

CPIV  0.1285**

* 
0.0932** 

  
        

 
(0.0036) (0.0281) 

  
        

IVSKEW  
  

-0.1386**

* 

-0.1149**

* 
        

   
(0.0000) (0.0001)         

AMB  
    

0.0012 0.0158       

     
(0.9607

) 
(0.4694)       

COMA  
    

  0.1428*

* 
0.1667***     

     
  (0.0310) (0.0026)     

POMA  
    

    -0.1029*

* 
-0.0958**   

     
    (0.0217) (0.0244)   

RVIV  
    

      0.0114 0.0138 

     
      (0.2881

) 
(0.1875) 

ln(size) 
 

0.0029 
 

0.0034  0.0029  0.0029  0.0031  0.0027 

  
(0.2084) 

 
(0.1425)  (0.2109)  (0.2002)  (0.1797)  (0.2414) 

B/M Ratio 
 

0.0032 
 

0.0031  0.0036  0.0027  0.0034  0.0031 

  
(0.6507) 

 
(0.6565)  (0.6071)  (0.7036)  (0.6236)  (0.6635) 

Momentum 
 

0.0081 
 

0.0094  0.0078  0.0069  0.0074  0.0089 

  
(0.5886) 

 
(0.5264)  (0.6030)  (0.6438)  (0.6175)  (0.5592) 

Stock Volume 
 

-0.0070* 
 

-0.0074*  -0.0072*  -0.0078*  -0.0075*  -0.0089** 

  
(0.0997) 

 
(0.0866)  (0.0984)  (0.0737)  (0.0798)  (0.0472) 

Market Beta 
 

0.0037 
 

0.0044  0.0043  0.0046  0.0045  0.0053 

  
(0.3217) 

 
(0.2313)  (0.2390)  (0.2073)  (0.2136)  (0.1670) 

Bid-Ask 

Spread 
 

-6.0853**

* 
 

-6.1184**

* 
 -8.1657**

* 
 -8.5077**

* 
 -8.1403**

* 
 -8.0511**

* 
  

(0.0014) 
 

(0.0018)  (0.0000)  (0.0000)  (0.0001)  (0.0001) 

Option Volume 
 

0.0109* 
 

0.0115**  0.0103*  0.0113**  0.0114**  0.0121** 

  
(0.0626) 

 
(0.0438)  (0.0916)  (0.0572)  (0.0466)  (0.0348) 
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(Continued) 

 
Panel B: Multivariate Firm-Level Cross-Sectional Regression Models 

 XIII XIV XV XVI XVII XVIII XIX XX 

Intercept 0.0228** 0.0104 0.0228** 0.0104 0.0234** 0.0102 0.0234** 0.0102 

 (0.0194) (0.6838) (0.0194) (0.6838) (0.0171) (0.6920) (0.0171) (0.6920) 

CPIV  0.0383 0.0460 0.1545*** 0.1290*** 0.0883 0.0655 0.1580*** 0.1289*** 

 (0.6162) (0.5257) (0.0016) (0.0035) (0.1382) (0.2647) (0.0004) (0.0017) 

IVSKEW  -0.1162** -0.0830*   -0.0698 -0.0634   

 (0.0234) (0.0938)   (0.1024) (0.1317)   

AMB  -0.0681** -0.0366 -0.0681** -0.0366     

 (0.0256) (0.1949) (0.0256) (0.1949)     

COMA  0.1849** 0.1822*** 0.1849** 0.1822*** 0.1321* 0.1596*** 0.1321* 0.1596*** 

 (0.0104) (0.0039) (0.0104) (0.0039) (0.0539) 0.0056) (0.0539) (0.0056) 

POMA    -0.1162** -0.0830*   -0.0698 -0.0634 

   (0.0234) (0.0938)   (0.1024) (0.1317) 

RVIV  0.0048 0.0038 0.0048 0.0038 0.0050 0.0040 0.0050 0.0040 

 (0.6452) (0.6984) (0.6452) (0.6984) (0.6315) (0.6934) (0.6315) (0.6934) 

ln(size)  0.0026  0.0026  0.0027  0.0027 

  (0.2708)  (0.2708)  (0.2467)  (0.2467) 

B/M Ratio  0.0031  0.0031  0.0024  0.0024 

  (0.6581)  (0.6581)  (0.7318)  (0.7318) 

Momentum  0.0121  0.0121  0.0129  0.0129 

  (0.4193)  (0.4193)  (0.3939)  (0.3939) 

Stock Volume  -0.0095**  -0.0095**  -0.0095**  -0.0095** 

  (0.0409)  (0.0409)  (0.0355)  (0.0355) 

Market Beta  0.0063*  0.0063*  0.0063*  0.0063* 

  (0.0879)  (0.0879)  (0.0906)  (0.0906) 

Bid-Ask Spread  -6.2884***  -6.2884***  -6.3008***  -6.3008*** 

  (0.0013)  (0.0013)  (0.0013)  (0.0013) 

Option Volume  0.0124**  0.0124**  0.0126**  0.0126** 

  (0.0310)  (0.0310)  (0.0236)  (0.0236) 
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holding period.23 If CPIV  and IVSKEW  are not included in the same model, 

there is a significantly positive average slope on CPIV  in models XV, XVI, XIX and 

XX (higher than 0.15 without control variables and higher than 0.12 with control 

variables). The average slope on AMB  remains significant without including control 

variables in Model XIII and Model XV at a 5% significance level (-0.0681 with a 

p-value of 0.0256). Finally, average slopes for COMA  are statistically significant 

and positive in all multivariate cross-sectional regressions. These average slopes are 

higher than 0.13 and significant at a 5% significance level, and some of them are even 

significant at a 1% significance level. As mentioned in the previous section, Model XX 

yields stronger results. For this model, if a stock has an average CPIV  of -1.08 

percent, the following three-month ahead return should be -13.92 bps lower on 

average. If a stock has an average COMA  of -2.35 percent, the three-month ahead 

return will, on average, be 37.51 bps lower. Thus, average slopes on these two 

variables are not only statistically significant but also economically significant. 

The results for three-month holding period indicate that the predictive power of 

CPIV  is still strong when the holding period is extended to three months, as well as 

the predictive power of COMA . Furthermore, in some models, the average slope on 

CPIV  is not significant while the average slope on COMA  is highly significant. 

The predictive power of COMA  seems to be the strongest when competing with 

other option-implied volatility measures in explaining three-month ahead holding 

period returns. 

As the length of holding period increases, COMA  becomes more and more 

important in predicting stock returns. It is known that the intrinsic value of the 

                                                 

23 The main different result for the three-month holding period is that the average slope on the 

realized-implied volatility spread becomes positive. However, the average slope is still insignificant. So, 

there is no significant relationship between stock returns and realized-implied volatility spread for all 

three holding periods. 
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out-of-the-money call option is zero. The out-of-the-money call option only has 

extrinsic or time value. Because there is only a small chance that the stock price will 

increase by a significant amount, out-of-the-money call options tend to trade at 

significantly low prices. If an out-of-the-money call option becomes in-the-money on 

the expiration date, the out-of-the-money call option will be exercised; if not, the 

option expires worthless and the investor loses the premium. This chapter includes the 

deep out-of-the-money call options to calculate COMA . In a short holding period (i.e., 

one-month), there is a very small probability that the out-of-the-money call option 

becomes in-the-money, making it a very risky strategy when the option is 

close-to-expiry. However, in a longer holding period (i.e., two-month or three-month), 

it is more likely that the out-of-the-money call will be in-the-money. The significant 

predictive power of COMA  for longer horizons is an indication of this difference and 

implies that the left hand side of the call volatility skew plays an important role in 

predicting stock returns over two- and three-month holding periods.  

In summary, previous two subsections show that, if the holding period is 

extended to two months or even three months, the significance of the average slope on 

CPIV  persists. Meanwhile, COMA  becomes an important factor in predicting stock 

returns because it always has a significantly positive average slope.  

3.9 Conclusions 

This chapter focuses on the relationship between stock returns and six 

option-implied volatility measures. First, this chapter performs portfolio level analysis, 

which sheds light on whether the long-short portfolio constructed by holding a long 

position in the quintile portfolio with the highest volatility measure and a short 

position in the quintile portfolio with the lowest volatility measure can earn 
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significantly non-zero monthly raw or risk-adjusted returns. The portfolio level 

analysis confirms a positive relation between one-month ahead stock returns and 

CPIV  and a negative relation between one-month ahead stock returns and 

IVSKEW . The results also confirm a marginally significant and negative relation 

between one-month ahead stock returns and AMB  or RVIV . However, there is no 

significant relationship between one-month ahead stock returns and COMA  or 

POMA  in portfolio level analysis.  

Portfolio level analysis does not control for firm-specific effects and other 

option-implied volatility measures simultaneously. This chapter performs firm-level 

cross-sectional regressions over one-month holding period. The firm-level 

cross-sectional regression results indicate that CPIV  has a significantly positive 

average slope while IVSKEW  and POMA  have significantly negative average 

slopes. However, in the multivariate cross-sectional regressions, over one-month 

holding period, CPIV  has a significantly positive average slope after controlling for 

size, book-to-market ratio, momentum, volume, beta and bid-ask spread.  

Finally, this chapter extends investors’ holding period to two months and three 

months in order to investigate whether the predictive power of CPIV  persists and 

whether other variables are significantly correlated with stock returns over longer 

horizons. In these tests, the significance of the average slope on CPIV  persists. 

Furthermore, COMA  has a significantly positive average slope. Thus, the predictive 

power of CPIV  is still strong over longer horizons, and the predictive power of 

COMA  becomes stronger when the holding period is extended. This chapter also 

probes into more detailed reason for the predictive power of COMA . If the holding 

period is longer, out-of-the-money call options are more likely to become 

in-the-money. Investors will take the out-of-the-money call implied volatility into 
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consideration when forming their trading strategies over longer investment horizons. 

This can explain why the predictive ability of COMA  is stronger over longer holding 

periods.  
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Chapter 4 Option-Implied Factors and Stocks Returns: Indications from 

At-the-Money Options 

4.1 Introduction 

The CAPM establishes a parsimonious relationship between risk and return. 

However, it fails to explain the time-series and cross-sectional properties of asset 

returns. Many previous studies document the existence of pricing anomalies (as 

discussed in section 2.2). In order to better explain asset returns, theoretical and 

empirical studies are continuously looking for improvements on asset pricing models 

from different aspects.  

For example, Ang, Hodrick, Xing and Zhang (2006) investigate whether the 

aggregate implied volatility can help to explain time-series and cross-section of stock 

returns, while An, Ang, Bali and Cakici (2014) focus on the predictive power of 

implied volatility in cross-section of stock returns at firm-level. Thus, whether the 

option-implied volatility can help explain time-series and cross-sectional properties of 

expected asset returns is worth to be studied. The goal of this chapter is to shed light 

on this issue.  

This chapter applies the method documented in Ang, Hodrick, Xing and Zhang 

(2006) to construct return-based implied volatility factors ( sIVF ). To differentiate this 

chapter from previous studies, rather than using information at aggregate index level, 

this chapter uses option-implied information at individual firm level. The analysis also 

follows the way in Ang, Hodrick, Xing and Zhang (2006) to form 25 portfolios in 

cross-sectional regressions. To be more specific, this chapter employs firm-level 

implied volatility measures by using implied volatilities extracted from at-the-money 

call and put options. This chapter uses the cross-sectional regression documented in 
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Fama and MacBeth (1973) to test the significance of the risk premium on each IVF . 

This sheds light on whether investors are willing to pay compensation or buy 

insurance for sIVF . However, results in this chapter provide limited evidence that 

sIVF  have significant risk premiums.  

This chapter is organised as follows. Section 4.2 gives a detailed review of the 

relevant literature. Section 4.3 and 4.4 discuss data and methodology, respectively. 

Empirical results are presented in Section 4.5, followed by concluding remarks in 

Section 4.6. 

4.2 Related Literature 

Studies so far focus on pricing implications of aggregate volatility risk in 

cross-section of stock returns. Ang, Hodrick, Xing and Zhang (2006) document that 

first difference of the VXO index, which is used as a proxy for aggregate volatility 

risk, is an important factor in explaining the cross section of stock returns even after 

controlling for size, value, momentum, and liquidity effects. Their study constructs a 

return-based factor which can capture the aggregate volatility risk and find supportive 

evidence that aggregate volatility risk has a significantly negative risk premium. 

Furthermore, Ang, Hodrick, Xing and Zhang (2006) document that the cross-sectional 

price for aggregate volatility risk is about -1% per annum.  

Recently, An, Ang, Bali and Cakici (2014) focus on the implied volatility of 

individual options and document the significant predictive power of the implied 

volatility in cross-section of stock returns at firm-level. More specifically, large 

increases in call (put) implied volatilities are followed by increases (decreases) in 

next-month stock returns. These results are robust to the inclusion of control variables, 
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such as beta, size, book-to-market ratio, momentum and illiquidity, in regression 

models for asset pricing tests. 

Compared with studies discussed above in this field, the innovation of this 

chapter lies in the fact that return-based factors are constructed by using firm-level 

implied volatility. These factors can be used as common risk factors (similar as MKT , 

SMB , and HML ) and they can capture the influence of the option-implied volatility. 

This chapter sheds light on whether investors are willing to pay risk premiums on 

sIVF  and expand the literature about the predictive power of sIVF . The following 

two sections introduce data and methodology used in this chapter in detail. 

4.3 Data 

The data used in this chapter are obtained from different sources. Stock return 

data are downloaded from CRSP. Fama-French three factors are available from 

Kenneth French’s online data library. 

Option data are obtained from “Volatility Surface” file in OptionMetrics.24 This 

chapter investigates whether at-the-money implied volatilities contain useful 

information in explaining stock returns. Rather than using non-standardized historical 

option price data (from which it is difficult to get exactly at-the-money options with 

fixed day-to-maturities), this chapter uses standardized at-the-money option data (with 

delta equal to 0.5 for call options and -0.5 for put options) from “Volatility Surface” 

file. To construct return-based risk factors, “5-1” long-short portfolios are formed 

                                                 

24 The “Volatility Surface” file contains the interpolated volatility surface for each security on each day, 

using a methodology based on a kernel smoothing algorithm. In order to get the volatility surface 

through interpolation, three factors are included in the kernel function: time-to-maturity of the option, 

“call-equivalent delta” of the option (delta for a call, one plus delta for a put), and the call/put identifier 

of the option. A standardized option is only included if there exists enough option price data on that 

date to accurately interpolate the required values. After the interpolation, OptionMetrics provides data 

for standardized options with expirations of 30, 60, 91, 122, 152, 182, 273, 365, 547, and 730 calendar 

days and deltas of 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, and 0.80 

(negative deltas for puts). 
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based on implied volatility and first difference in implied volatility at end of each 

calendar month. Furthermore, following Ang, Hodrick, Xing and Zhang (2006), this 

chapter constructs return-based risk factors by using monthly stock returns after 

portfolio formation. To ensure that the predictive period indicated by standardized 

option data (i.e., day-to-maturity of options) matches the period used for return-based 

risk factors calculation, this chapter focuses on option data with 30 day-to-maturity. 

Thus, this chapter uses implied volatility data extracted from standardized 

at-the-money call and put options with 30 day-to-maturity.  

The sample period starts from January 1996 and ends in December 2010. During 

the sample period, this chapter examines whether information extracted from 

at-the-money options helps to explain stock returns. 

4.4 Methodology 

By assuming that investors can rebalance their portfolios without any transaction 

cost, this chapter aims to analyze whether factors constructed by using at-the-money 

option-implied volatility have significant risk premiums in explaining cross-section of 

monthly stock returns. 

4.4.1 Implied Volatility Factors Construction 

First, under the assumption that investors rebalance their portfolios every month, 

the implied volatilities of at-the-money call or put options with 30 day-to-maturity are 

extracted on the last trading day of each calendar month. Then, on that day, the 

information of the market capitalization for each stock is obtained. This chapter 

excludes stocks which do not have data available in all previous 36 months, and then 

sorts remaining stocks based on implied volatility and forms quintile portfolios. The 

analysis calculates both equally-weighted and value-weighted average return on each 



 

92 

quintile portfolio during the following one-month period. After obtaining quintile 

portfolios, this chapter calculates the difference between the return on the portfolio 

with the highest implied volatility (i.e., portfolio 5) and the return on the portfolio 

with the lowest implied volatility (i.e., portfolio 1). This difference (return on “5-1” 

long-short portfolio) is used as the IVF  in this chapter. 

Furthermore, this chapter also uses change in implied volatility for IVF  

construction. After obtaining the implied volatility on the last trading day before 

portfolio construction, this chapter gets the implied volatility on the last trading day 

one month ago, which facilitates the calculation of change in implied volatility in the 

previous one month. This chapter sorts stocks on the change in implied volatility 

during previous one month, and forms quintile portfolios. Equally-weighted average 

return for each quintile portfolio is calculated, as well as value-weighted average 

return. The difference between the return on the portfolio with the highest change in 

implied volatility (i.e., portfolio 5) and the return on the portfolio with the lowest 

change in implied volatility (i.e., portfolio 1) is also used as the IVF  in later 

cross-sectional regressions. 

Given portfolio formation process discussed above, there are eight sIVF .25  

                                                 

25 There are four sIVF  constructed from at-the-money call options: (1) the difference between the 

equally-weighted average return on the portfolio with the highest implied volatility and the 

equally-weighted average return on the portfolio with the lowest implied volatility; (2) the difference 

between the value-weighted average return on the portfolio with the highest implied volatility and the 

value-weighted average return on the portfolio with the lowest implied volatility; (3) the difference 

between the equally-weighted average return on the portfolio with the highest change in implied 

volatility and the equally-weighted average return on the portfolio with the lowest change in implied 

volatility; (4) the difference between the value-weighted average return on the portfolio with the highest 

change in implied volatility and the value-weighted average return on the portfolio with the lowest 

change in implied volatility. Furthermore, there are other four sIVF  constructed from at-the-money 

put options by using the same process. These sIVF  are available from March, 1999 to December, 

2010. 
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4.4.2 Portfolios Formation in Cross-Sectional Regressions 

Fama-MacBeth cross-sectional regressions can shed light on whether sIVF  

constructed in this chapter have significant risk premiums in explaining cross-section 

of stock returns. Constructing portfolios before the analysis is quite important and 

how to construct these portfolios has implications in asset pricing tests. Here, this 

chapter follows the way documented in Ang, Hodrick, Xing and Zhang (2006) and 

forms 25 portfolios for later cross-sectional regressions. 

First of all, at the end of each month, this chapter estimates the following 

univariate regression for each individual stock which has monthly data available in all 

previous 36 months: 

  , , , , ,+m

i t f t i i m t f t i tr r r r        (4.1) 

where 
,i tr  is the monthly return on each stock, 

,m tr  is the value-weight monthly 

return on all NYSE, AMEX, and NASDAQ stocks, and 
,f tr  is the monthly risk-free 

rate. After estimating the coefficient on the market excess return, m

i , all individual 

stocks are sorted into five quintiles by m

i . Then, the following bivariate regression is 

estimated for each individual stock during previous 36 months: 

  , , , , ,

m IVF

i t f t i i m t f t i t i tr r r r IVF           (4.2) 

where tIVF  stands for implied volatility factors discussed in Subsection 4.4.1. Then, 

within each m

i  quintile, stocks are sorted into five quintiles by the coefficient on 

tIVF  ( IVF

i ). Thus, there are 25 portfolios in total.26 Both equally-weighted average 

returns and value-weighted average returns on these 25 portfolios are calculated for 

later cross-sectional regressions. 

                                                 

26 These 25 portfolios are available from March, 2002 to December, 2010.  
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4.4.3 Fama-MacBeth Cross-Sectional Regressions 

This subsection discusses how to use cross-sectional regressions in empirical 

analysis. This chapter uses both full-window and rolling-window methods.  

For the full-window method, in the first step, time-series regression for each 

portfolio among 25 portfolios is estimated for the whole period from March, 2002 to 

December, 2010. Factor loadings obtained in the first step will be used as explanatory 

variables in the second-step regressions for risk premium estimation.  

Then, this chapter allows time variation in factor loadings in first-step regressions, 

(i.e., 60-month rolling-window and 36-month rolling-window methods). In each 

calendar month, first-step time-series regression is estimated for each portfolio during 

previous 60 or 36 months. This enables us to take into account the time-variation in 

betas. Then, second-step cross-sectional regressions help to make sure whether risk 

premiums on different factors are statistically significant.  

4.5 Results 

Following the process illustrated in section 4.4, this chapter constructs sIVF  

and uses these factors for portfolio formation. Then, this chapter uses these portfolios 

in cross-sectional regressions. The results are presented in this section. 

4.5.1 Descriptive Summary 

As introduced in Subsection 4.4.1, there are eight different sIVF  constructed on 

the basis of either at-the-money call or put options. Details with regard to quintile 

portfolios and sIVF  are presented in this subsection. 

Table 4.1 reports summary statistics for quintile portfolios sorted on implied 

volatilities on the last trading day of the previous month. To be more specific, in Panel 

A, quintile portfolios are sorted on implied volatility extracted from at-the-money call 
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options and formed by using equally-weighted scheme. Panel B presents details of 

value-weighted quintile portfolios sorted on implied volatility extracted from 

at-the-money call options. The remaining two panels (Panels C and D) report the 

information for equally-weighted and value-weighted quintile portfolios sorted on 

implied volatility extracted from at-the-money put options, respectively. 

From Table 4.1, it is clear that portfolios with higher implied volatilities always 

bring higher returns to investors, while portfolios with lower implied volatilities 

always obtain lower returns (except for the second portfolio in Panel B and the fourth 

portfolio in Panel D). The standard deviation of returns increases among five quintile 

portfolios in all four panels. With regard to CAPM alphas, portfolios with higher 

implied volatilities normally have higher CAPM alphas than those with lower implied 

volatilities, even though there are several exceptions in Panels B, C, and D. That is, 

based on the CAPM, risk-adjusted returns on portfolios with higher implied 

volatilities are normally higher than risk-adjusted returns on portfolios with lower 

implied volatilities. However, for Fama-French three-factor (FF3F) alphas, there is no 

trend. That is, FF3F alphas fluctuate among these quintile portfolios in all panels. 

Even though it is easy to find that, in all panels, portfolios with higher implied 

volatilities always have higher returns, differences between returns on portfolios with 

the highest implied volatility and returns on portfolios with the lowest implied 

volatility (average returns on “5-1” long-short portfolios) are not significantly 

different from zero (0.82%, 0.62%, 0.51%, and 0.27% in Panels A, B, C and D).27 So 

the mean return on the portfolio with the highest implied volatility is not significantly 

higher than that on the portfolio with the lowest implied volatility. For CAPM and 

FF3F alphas on “5-1” long-short portfolios, in Panels A, B and C, controlling for the   

                                                 

27 These four kinds of “5-1” long-short returns represent four sIVF  for later cross-sectional analysis. 
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Table 4.1: Quintile Portfolios Sorted on the Implied Volatility 
Notes: This table reports details about quintile portfolios and implied volatility factors. Panel A and 

Panel B report summary statistics for quintile portfolios sorted on implied volatility extracted from 

at-the-money call options. Panel C and Panel D report summary statistics for quintile portfolios sorted 

on implied volatility extracted from at-the-money put options. The row “5-1” refers to the difference in 

monthly returns between the portfolio with the highest implied volatility and the portfolio with the 

lowest implied volatility, and the “5-1” return is used as sIVF  in later analysis. The Alpha columns 

report alpha with respect to the CAPM or the Fama-French (1993) three-factor model which are 

estimated by using previous 36-month monthly data. Hereafter, *, **, and *** denote for statistical 

significance at 10%, 5% and 1% significance levels, respectively. The figures in the parentheses present 

p-values for the t-test with the null hypothesis that the mean is significantly different from zero. 

 

Rank Mean Std CAPM   FF3F   

Panel A: Portfolios Sorted on ATM Call Implied Volatility (Equally-Weighted) 

1 0.0062 0.0376 0.0050 0.0038 

2 0.0089 0.0486 0.0072 0.0049 

3 0.0105 0.0588 0.0084 0.0050 

4 0.0121 0.0788 0.0092 0.0053 

5 0.0144 0.1155 0.0105 0.0047 

5-1 0.0082 0.0997 0.0055 0.0010 

p-value (0.3280) 
 

(0.3614) (0.8180) 

Panel B: Portfolios Sorted on ATM Call Implied Volatility (Value-Weighted) 

1 0.0023 0.0354 0.0012 0.0019 

2 0.0056 0.0513 0.0037 0.0042 

3 0.0050 0.0661 0.0026 0.0026 

4 0.0078 0.0908 0.0046 0.0055 

5 0.0085 0.1220 0.0044 0.0021 

5-1 0.0062 0.1097 0.0031 0.0002 

p-value (0.5015)  (0.6287) (0.9671) 

Panel C: Portfolios Sorted on ATM Put Implied Volatility (Equally-Weighted) 

1 0.0070 0.0377 0.0058 0.0048 

2 0.0088 0.0497 0.0071 0.0049 

3 0.0103 0.0589 0.0082 0.0051 

4 0.0110 0.0803 0.0080 0.0048 

5 0.0121 0.1153 0.0082 0.0027 

5-1 0.0051 0.1000 0.0023 -0.0021 

p-value (0.5433)  (0.6944) (0.6290) 

Panel D: Portfolios Sorted on ATM Put Implied Volatility (Value-Weighted) 

1 0.0032 0.0355 0.0021 0.0029 

2 0.0043 0.0517 0.0025 0.0030 

3 0.0049 0.0673 0.0024 0.0022 

4 0.0066 0.0908 0.0034 0.0050 

5 0.0059 0.1221 0.0017 -0.0009 

5-1 0.0027 0.1103 -0.0004 -0.0038 

p-value (0.7740)  (0.9546) (0.4534) 
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Table 4.2: Quintile Portfolios Sorted on the Change in Implied Volatility 
Notes: This table reports details about quintile portfolios and implied volatility factors. Panel A and 

Panel B report summary statistics for quintile portfolios sorted on the change in implied volatility 

extracted from at-the-money call options. Panel C and Panel D report summary statistics for quintile 

portfolios sorted on the change in implied volatility extracted from at-the-money put options. The row 

“5-1” refers to the difference in monthly returns between the portfolio with the highest change in 

implied volatility and the portfolio with the lowest change in implied volatility, and the “5-1” return is 

used as sIVF  in later analysis. The Alpha columns report alpha with respect to the CAPM or the 

Fama-French (1993) three-factor model which are run by using previous 36-month monthly data. 

 

Rank Mean Std CAPM   FF3F   

Panel A: Portfolios Sorted on Change in ATM Call Implied Volatility (Equally-Weighted) 

1 0.0073 0.0726 0.0047 0.0011 

2 0.0087 0.0569 0.0066 0.0038 

3 0.0094 0.0547 0.0074 0.0049 

4 0.0113 0.0585 0.0092 0.0061 

5 0.0148 0.0808 0.0120 0.0072 

5-1 0.0075*** 0.0324 0.0073*** 0.0061** 

p-value (0.0065) 
 

(0.0075) (0.0267) 

Panel B: Portfolios Sorted on Change in ATM Call Implied Volatility (Value-Weighted) 

1 0.0000 0.0657 -0.0023 -0.0023 

2 0.0033 0.0487 0.0015 0.0025 

3 0.0054 0.0439 0.0038 0.0043 

4 0.0057 0.0489 0.0040 0.0046 

5 0.0072 0.0685 0.0048 0.0027 

5-1 0.0072* 0.0504 0.0071* 0.0050 

p-value (0.0932)  (0.0969) (0.2335) 

Panel C: Portfolios Sorted on Change in ATM Put Implied Volatility (Equally-Weighted) 

1 0.0093 0.0732 0.0067 0.0036 

2 0.0102 0.0573 0.0081 0.0057 

3 0.0105 0.0556 0.0085 0.0061 

4 0.0089 0.0591 0.0068 0.0039 

5 0.0097 0.0808 0.0069 0.0026 

5-1 0.0004 0.0313 0.0002 -0.0011 

p-value (0.8805)  (0.9371) (0.6828) 

Panel D: Portfolios Sorted on Change in ATM Put Implied Volatility (Value-Weighted) 

1 0.0034 0.0657 0.0011 0.0022 

2 0.0057 0.0492 0.0040 0.0047 

3 0.0044 0.0442 0.0028 0.0036 

4 0.0038 0.0499 0.0021 0.0025 

5 0.0037 0.0692 0.0013 0.0000 

5-1 0.0003 0.0505 0.0001 -0.0022 

p-value (0.9480)  (0.9776) (0.5971) 
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market factor decreases “5-1” spreads to 0.55%, 0.31%, and 0.23% per month, while 

controlling for the Fama-French three factors decreases “5-1” spreads to 0.10%, 

0.02%, and -0.21% per month, respectively. In Panel D, controlling for the market 

factor decreases the “5-1” spread to -0.04% per month, while controlling for 

Fama-French three factors exacerbates the “5-1” spread to -0.38% per month. 

In addition to quintile portfolios sorted on the implied volatility, this chapter also 

forms quintile portfolios by sorting stocks on the change in implied volatility during 

previous one month. Thus, following the same method mentioned above, there are 

other four sIVF .  

Table 4.2 shows summary statistics for quintile portfolios sorted on the change in 

implied volatility during the previous month before portfolio construction. Panel A 

reports information of equally-weighted quintile portfolios sorted on the change in 

at-the-money call implied volatility. In Panel B, quintile portfolios are formed by 

using value-weighted scheme and by sorting on the change in at-the-money call 

implied volatility. The remaining two panels report the information for 

equally-weighted and value-weighted quintile portfolios sorted on the change in 

at-the-money put implied volatility. 

In the first two panels in Table 4.2, returns on quintile portfolios increase with 

the increasing change in implied volatility. That is, portfolios with lower changes in 

implied volatility also have lower returns than those with higher changes in implied 

volatility. Furthermore, in these two panels, CAPM alphas and FF3F alphas also 

always increase with the change in implied volatility, except for the FF3F alpha for 

quintile portfolio 5 in Panel B. However, in Panels C and D, returns on quintile 

portfolios do not change monotonically. Meanwhile, there is no trend in CAPM alphas 

and FF3F alphas in these two panels. When it comes to the standard deviation, in all 
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these four panels, the standard deviation performs a U-shape. The third quintile 

portfolio has the smallest standard deviation while portfolios with extremely high or 

low change in implied volatility have higher standard deviations.  

In Table 4.2, for “5-1” long-short portfolios, statistical significance of returns, 

CAPM alphas and FF3F alphas are quite different from Table 4.1. In Panel A and 

Panel B of Table 4.2, the average return on “5-1” long-short portfolio is different from 

zero (0.75% with a p-value of 0.0065 and 0.72% with a marginally significant p-value 

of 0.0932, respectively). So portfolios with the highest change in at-the-money call 

implied volatility earn significantly higher monthly returns than those with the lowest 

change in implied volatility. Furthermore, in Panel A, CAPM alpha and FF3F alpha 

on the “5-1” long-short portfolio are also significantly positive. In Panel A, controlling 

the MKT  decreases the “5-1” spread to 0.73% per month, and controlling for 

Fama-French three factors decreases the “5-1” spread to 0.61% per month. In Panel B, 

controlling for the MKT  decreases the “5-1” spread to 0.71% per month, and 

controlling for Fama-French three factors makes the “5-1” spread insignificant and 

decreases it to 0.50% per month. Meanwhile, in Panel C and Panel D, average returns, 

CAPM alphas and FF3F alphas of “5-1” portfolios are all insignificantly different 

from zero. In Panel C and Panel D, controlling the MKT  decreases the “5-1” spread 

to 0.02% and 0.01% per month, respectively, while controlling MKT , SMB , and 

HML  exacerbates the “5-1” spread to -0.11% and -0.22% per month, respectively. 

Returns on “5-1” long-short portfolios are used as sIVF  in cross-sectional 

regressions. Later analysis discusses whether these factors have significant risk 

premiums and whether investors are willing to pay compensation or buy insurance for 

these factors. 
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4.5.2 Cross-Sectional Regression Results 

To shed light on whether implied volatility is priced by investors, this chapter 

uses the mimicking volatility factor, sIVF , to run cross-sectional regressions. This 

chapter first constructs a set of test portfolios whose factor loadings on volatility risk 

are sufficiently disperse in order to make sure that cross-sectional regressions have 

reasonable power (see details about portfolio construction in previous Subsection 

4.4.2).  

This section runs cross-sectional regressions following the method documented 

in Fama and MacBeth (1973), and forms six models for cross-sectional regressions. 

Model I and II are univariate models which include sIVF  or MKT , respectively. 

Model III includes two variables, which are sIVF  and MKT . Model IV, V and VI 

take SMB  and HML  into consideration. Model IV includes the sIVF , SMB  and 

HML , Model V includes MKT , SMB  and HML , and Model VI incorporates all 

four variables. 

As introduced above, cross-sectional analysis uses the full-window method, the 

60-month rolling-window method and the 36-month rolling-window method. 

Following three subsections present regression results obtained by using these three 

methods, respectively. 

4.5.2.1 Cross-Sectional Regression Results Using Full-Window Method 

Table 4.3 presents cross-sectional regression results obtained using the 

full-window method under the assumption that there is no time variation in beta 

estimation in first-step time-series regressions. Thus, there are 106 lambda estimations 

(risk premiums on different explanatory factors). The sample period for 

cross-sectional regressions using the full-window method is from March, 2002 to 

December, 2010.  
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Table 4.3: Cross-Sectional Regression Results Using Full-Window Method 
Notes: This table reports cross-sectional regression results by using the full-window method. Panel A 

(B) shows results when using IVF  obtained by using equally-weighted (value-weighted) quintile 

portfolios sorted on the implied volatility extracted from at-the-money call options. Panel C (D) 

presents results obtained by using IVF  constructed by using equally-weighted (value-weighted) 

quintile portfolios sorted on the implied volatility extracted from at-the-money put options. Panel E (F) 

shows results when using IVF  obtained by using equally-weighted (value-weighted) quintile 

portfolios sorted on the change in implied volatility extracted from at-the-money call options. Panel G 

(H) presents results got by using IVF  constructed by using equally-weighted (value-weighted) 

quintile portfolios sorted on the change in implied volatility extracted from at-the-money put options. 

Six models including different variables ( IVF , MKT , SMB  and HML ) in different combinations 

are estimated to test whether risk premiums on relative factors are significantly different from zero.  

 

 
I II III IV V VI 

Panel A: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Equally-Weighted) 

Intercept  0.0038 0.0038 0.0017 0.0052 0.0021 0.0011 

p-value (0.2899) (0.2899) (0.6938) (0.1134) (0.5841) (0.8185) 

IVF  0.0059  0.0055 0.0051  0.0035 

p-value (0.4800) 
 

(0.5158) (0.5323) 
 

(0.6797) 

MKT  
 0.0059 0.0048  0.0063 0.0074 

p-value 
 

(0.4800) (0.4839) 
 

(0.3592) (0.3560) 

SMB  
   -0.0020 -0.0031 -0.0030 

p-value 
   

(0.6680) (0.5679) (0.5700) 

HML  
   -0.0009 -0.0014 -0.0019 

p-value 
   

(0.8469) (0.7584) (0.7100) 

Panel B: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call options (Value-Weighted) 

Intercept  0.0018 0.0001 0.0002 0.0016 0.0005 0.0001 

p-value (0.6078) (0.9816) (0.9691) (0.6001) (0.8896) (0.9740) 

IVF  0.0056  0.0055 0.0057  0.0051 

p-value (0.5353) 
 

(0.5470) (0.5183) 
 

(0.5671) 

MKT  
 0.0041 0.0041  0.0037 0.0041 

p-value 
 

(0.5199) (0.5410) 
 

(0.5413) (0.5331) 

SMB  
   0.0018 0.0014 0.0015 

p-value 
   

(0.6641) (0.7499) (0.7196) 

HML  
   0.0008 0.0004 0.0003 

p-value 
   

(0.8609) (0.9193) (0.9489) 

  



 

102 

(Continued) 

 

Panel C: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Equally-Weighted) 

Intercept  0.0037 0.0020 0.0031 0.0041 0.0002 0.0030 

p-value (0.3069) (0.6619) (0.4623) (0.2553) (0.9515) (0.4635) 

IVF  0.0058 
 

0.0057 0.0052 
 

0.0049 

p-value (0.4872) 
 

(0.4947) (0.5279) 
 

(0.5605) 

MKT  
 

0.0044 0.0032 
 

0.0082 0.0055 

p-value 
 

(0.4856) (0.6225) 
 

(0.2138) (0.4448) 

SMB  
   

-0.0050 -0.0046 -0.0052 

p-value 
   

(0.2871) (0.3704) (0.2998) 

HML  
   

0.0024 0.0011 0.0022 

p-value 
   

(0.6329) (0.8168) (0.6789) 

Panel D: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Value-Weighted) 

Intercept  0.0008 -0.0012 0.0010 0.0002 0.0001 0.0017 

p-value (0.8249) (0.7941) (0.8219) (0.9528) (0.9870) (0.6842) 

IVF  0.0069 
 

0.0069 0.0077 
 

0.0084 

p-value (0.4439) 
 

(0.4451) (0.3897) 
 

(0.3533) 

MKT  
 

0.0051 0.0029 
 

0.0039 0.0023 

p-value 
 

(0.4422) (0.6617) 
 

(0.5169) (0.7166) 

SMB  
   

0.0041 0.0046 0.0040 

p-value 
   

(0.3263) (0.2572) (0.3367) 

HML  
   

0.0018 0.0016 0.0024 

p-value 
   

(0.7091) (0.7366) (0.6252) 

Panel E: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Equally-Weighted) 

Intercept  0.0000 0.0021 -0.0006 -0.0012 -0.0014 -0.0021 

p-value (0.9939) (0.6471) (0.8927) (0.7603) (0.7721) (0.6537) 

IVF  0.0123  0.0078* 0.0056  0.0055 

p-value (0.2581)  (0.0674) (0.1610)  (0.1706) 

MKT   0.0044 0.0056  0.0062 0.0066 

p-value  (0.4833) (0.3708)  (0.3530) (0.3157) 

SMB     0.0046 0.0030 0.0032 

p-value    (0.3563) (0.4353) (0.4160) 

HML     0.0055 0.0071 0.0062 

p-value    (0.2858) (0.1482) (0.2189) 
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(Continued) 

 

Panel F: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Value-Weighted) 

Intercept  0.0055 -0.0004 0.0018 0.0014 -0.0026 -0.0018 

p-value (0.3593) (0.9346) (0.6745) (0.7054) (0.5442) (0.6797) 

IVF  -0.0122  -0.0065 -0.0060  -0.0076 

p-value (0.3567)  (0.3033) (0.3724)  (0.2610) 

MKT   0.0046 0.0024  0.0068 0.0059 

p-value  (0.4764) (0.7041)  (0.2844) (0.3580) 

SMB     0.0028 0.0017 -0.0019 

p-value    (0.6317) (0.7212) (0.6935) 

HML     0.0041 0.0052 0.0046 

p-value    (0.3995) (0.2854) (0.3425) 

Panel G: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Equally-Weighted) 

Intercept  0.0024 0.0018 0.0021 0.0028 0.0010 0.0015 

p-value (0.5637) (0.6899) (0.6290) (0.4785) (0.8351) (0.7520) 

IVF  0.0064  -0.0017 -0.0021  -0.0027 

p-value (0.5049)  (0.6873) (0.6181)  (0.5229) 

MKT   0.0044 0.0046  0.0045 0.0043 

p-value  (0.4791) (0.4660)  (0.4988) (0.5178) 

SMB     0.0040 0.0021 0.0019 

p-value    (0.4324) (0.6211) (0.6474) 

HML     0.0016 0.0024 0.0030 

p-value    (0.8076) (0.6945) (0.6262) 

Panel H: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Value-Weighted) 

Intercept  0.0065 -0.0005 0.0013 0.0015 -0.0021 -0.0005 

p-value (0.3082) (0.9053) (0.7642) (0.6923) (0.6438) (0.9074) 

IVF  -0.0096  -0.0063 -0.0050  -0.0057 

p-value (0.2327)  (0.2896) (0.3951)  (0.3453) 

MKT   0.0046 0.0027  0.0062 0.0045 

p-value  (0.4765) (0.6654)  (0.3460) (0.4726) 

SMB     0.0037 0.0029 0.0011 

p-value    (0.4888) (0.5226) (0.8064) 

HML     0.0035 0.0046 0.0043 

p-value    (0.5430) (0.4156) (0.4505) 
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From Table 4.3, it can be seen that there is only one marginally significant risk 

premium. That is, risk premium on IVF  in Model III in Panel E is significantly 

positive at the 10% significance level. The risk premium is 0.78% per month with a 

p-value of 0.0674. Furthermore, when Fama-French three factors are included in 

Model VI, the significance of the risk premium on IVF  disappears. 

sIVF  used in Panel A to Panel D are always highly correlated with MKT  and 

SMB  (correlations are around 0.5). This high correlation may affect the significance 

of results obtained in cross-sectional regressions. However, in Panel E to Panel H, 

factors used in regressions are not highly correlated (all correlations are smaller than 

0.35). Thus, the disappearance of the significance of the risk premium on IVF  in 

Model VI of Panel E cannot be due to the collinearity problem. 

So, under the assumption that factor loadings are constant from March, 2002 to 

December, 2010, the evidence that investors are willing to pay compensation or buy 

insurance for implied volatility factors constructed in this chapter is very limited. 

4.5.2.2 Cross-Sectional Regression Results Using 60-Month Rolling-Window Method 

Since results from cross-sectional regressions by using the full-window method 

do not provide any strong evidence about risk premiums on sIVF , this chapter 

further assumes that factor loadings from time-series regressions could be 

time-varying. Thus, this subsection estimates factor loadings every month by using 

previous 60-month data. That is, this subsection runs the first-step time-series 

regression every month by using previous 60-month data. Thus, there are only 47 

lambda estimations in total, from February, 2007 to December, 2010. Table 4.4 

documents results from cross-sectional regressions when using the 60-month 

rolling-window method.  
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Table 4.4: Cross-Sectional Regression Results Using 60-Month Rolling-Window 
Method 
Notes: This table reports cross-sectional regression results by using 60-month rolling-window method. 

Panel A (B) shows results when using IVF  obtained by using equally-weighted (value-weighted) 

quintile portfolios sorted on the implied volatility extracted from at-the-money call options. Panel C (D) 

presents results obtained by using IVF  constructed by using equally-weighted (value-weighted) 

quintile portfolios sorted on the implied volatility extracted from at-the-money put options. Panel E (F) 

shows results when using IVF  obtained by using equally-weighted (value-weighted) quintile 

portfolios sorted on the change in implied volatility extracted from at-the-money call options. Panel G 

(H) presents results got by using IVF  constructed by using equally-weighted (value-weighted) 

quintile portfolios sorted on the change in implied volatility extracted from at-the-money put options. 

Six models including different variables ( IVF , MKT , SMB  and HML ) in different combinations 

are estimated to test whether risk premiums on relative factors are significantly different from zero.  

 

 
I II III IV V VI 

Panel A: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Equally-Weighted) 

Intercept  -0.0068 -0.0100 0.0030 0.0008 0.0033 0.0049 

p-value (0.2173) (0.1476) (0.6585) (0.8876) (0.6430) (0.3783) 

IVF  0.0153 
 

0.0151 0.0112 
 

0.0119 

p-value (0.2290) 
 

(0.2225) (0.4206) 
 

(0.3723) 

MKT  
 

0.0114 -0.0025 
 

-0.0023 -0.0040 

p-value 
 

(0.3335) (0.8362) 
 

(0.8674) (0.7495) 

SMB  
   

0.0047 0.0066 0.0059 

p-value 
   

(0.4209) (0.3099) (0.3334) 

HML  
   

-0.0039 -0.0037 -0.0029 

p-value 
   

(0.6030) (0.6073) (0.6909) 

Panel B: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call options (Value-Weighted) 

Intercept  -0.0050 -0.0039 0.0079 0.0020 0.0123* 0.0101 

p-value (0.3974) (0.5607) (0.2080) (0.6959) (0.0652) (0.1259) 

IVF  0.0111 
 

0.0122 -0.0002 
 

0.0010 

p-value (0.4189) 
 

(0.3649) (0.9913) 
 

(0.9443) 

MKT  
 

0.0060 -0.0061 
 

-0.0105 -0.0084 

p-value 
 

(0.5956) (0.6207) 
 

(0.4033) (0.4633) 

SMB  
   

0.0128*** 0.0123** 0.0138*** 

p-value 
   

(0.0088) (0.0107) (0.0066) 

HML  
   

-0.0102* -0.0057 -0.0091 

p-value 
   

(0.0876) (0.3342) (0.1153) 
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(Continued) 

 

Panel C: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Equally-Weighted) 

Intercept  -0.0063 -0.0088 0.0051 0.0028 0.0050 0.0077 

p-value (0.2438) (0.2065) (0.4132) (0.6379) (0.4394) (0.1904) 

IVF  0.0144 
 

0.0149 0.0105 
 

0.0110 

p-value (0.2599) 
 

(0.2374) (0.4513) 
 

(0.4205) 

MKT  
 

0.0102 -0.0049 
 

-0.0041 -0.0058 

p-value 
 

(0.3891) (0.6640) 
 

(0.7400) (0.6206) 

SMB  
   

0.0014 0.0065 0.0022 

p-value 
   

(0.8296) (0.3255) (0.7158) 

HML  
   

-0.0042 -0.0036 -0.0038 

p-value 
   

(0.6065) (0.6421) (0.6310) 

Panel D: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Value-Weighted) 

Intercept  -0.0068 -0.0076 0.0027 0.0005 0.0066 0.0035 

p-value (0.2650) (0.3154) (0.5769) (0.9287) (0.3412) (0.5123) 

IVF  0.0138 
 

0.0155 0.0031 
 

0.0040 

p-value (0.3390) 
 

(0.2661) (0.8481) 
 

(0.7948) 

MKT  
 

0.0091 -0.0013 
 

-0.0049 -0.0019 

p-value 
 

(0.4420) (0.9098) 
 

(0.7011) (0.8694) 

SMB  
   

0.0132*** 0.0131** 0.0137*** 

p-value 
   

(0.0088) (0.0141) (0.0067) 

HML  
   

-0.0068 -0.0025 -0.0059 

p-value 
   

(0.3158) (0.6923) (0.3799) 

Panel E: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Equally-Weighted) 

Intercept  -0.0080 -0.0108 -0.0087 -0.0048 -0.0068 -0.0029 

p-value (0.1632) (0.1331) (0.1984) (0.4242) (0.2962) (0.6504) 

IVF  0.0098  0.0037 0.0030  0.0038 

p-value (0.2879)  (0.5619) (0.5988)  (0.4754) 

MKT   0.0118 0.0096  0.0079 0.0042 

p-value  (0.3136) (0.3917)  (0.5190) (0.7328) 

SMB     0.0080 0.0032 0.0033 

p-value    (0.2410) (0.6044) (0.5925) 

HML     0.0001 0.0009 -0.0004 

p-value    (0.9858) (0.8990) (0.9592) 
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(Continued) 

 

Panel F: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Value-Weighted) 

Intercept  0.0013 -0.0055 -0.0046 -0.0008 0.0064 0.0059 

p-value (0.8960) (0.4433) (0.5298) (0.8939) (0.3457) (0.3871) 

IVF  0.0025  0.0023 -0.0021  0.0002 

p-value (0.8989)  (0.8120) (0.8419)  (0.9839) 

MKT   0.0071 0.0063  -0.0050 -0.0044 

p-value  (0.5445) (0.5908)  (0.7163) (0.7423) 

SMB     0.0049 0.0039 0.0038 

p-value    (0.5257) (0.4794) (0.4871) 

HML     -0.0001 -0.0029 -0.0022 

p-value    (0.9942) (0.7152) (0.7692) 

Panel G: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Equally-Weighted) 

Intercept  -0.0080 -0.0108 -0.0099 -0.0029 -0.0015 -0.0032 

p-value (0.2040) (0.1493) (0.1662) (0.6030) (0.8275) (0.6249) 

IVF  0.0118  0.0038 0.0060  0.0039 

p-value (0.2025)  (0.5126) (0.3244)  (0.4791) 

MKT   0.0116 0.0112  0.0030 0.0048 

p-value  (0.3313) (0.3694)  (0.8197) (0.7109) 

SMB     0.0087 0.0029 0.0040 

p-value    (0.1840) (0.5898) (0.4449) 

HML     -0.0025 -0.0024 -0.0026 

p-value    (0.7318) (0.7354) (0.6988) 

Panel H: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Value-Weighted) 

Intercept  0.0068 -0.0058 -0.0035 -0.0029 0.0002 0.0012 

p-value (0.4292) (0.4130) (0.5634) (0.5834) (0.9724) (0.8196) 

IVF  -0.0027  0.0032 0.0029  0.0018 

p-value (0.8603)  (0.7909) (0.7929)  (0.8729) 

MKT   0.0072 0.0049  0.0011 0.0001 

p-value  (0.5412) (0.6433)  (0.9327) (0.9922) 

SMB     0.0103 0.0062 0.0044 

p-value    (0.1618) (0.2845) (0.3966) 

HML     0.0018 0.0000 -0.0029 

p-value    (0.7864) (0.9991) (0.6699) 
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In Table 4.4, there is no significant risk premium on sIVF  in all eight panels. 

However, in Panel B and Panel D, SMB  has a significant risk premium in models IV, 

V and VI. In both panels, the risk premium on SMB  is significantly positive at a 5% 

significance level (in models IV and VI, the risk premium is even significantly positive 

at a 1% significance level). Furthermore, the risk premium on SMB  in these six 

models is quite persistent, around 1.3% per month. Meanwhile, in other panels, there 

is no significant result for these factors.  

Pairwise correlations show that correlations between sIVF  in Panels A to D and 

other three factors (all higher than 0.45) are higher than those between sIVF  in 

Panels E to H and other three factors (all lower than 0.42). Furthermore, correlations 

between sIVF  and other factors are higher in this period than those in the period 

from March, 2002 to December, 2010. In addition, correlations between any two 

variables among MKT , SMB  and HML  are also higher in the period from 

February, 2007 to December, 2010 than those correlations in the period from March, 

2002 to December, 2010. Thus, insignificant cross-sectional results in Table 4.4 are 

probably caused by high correlations between any two explanatory variables. 

Discussion above indicates that, during the period from February, 2007 to 

December, 2010, SMB  is the only factor which has a significant risk premium. The 

significant risk premium is found when value-weighted portfolios are formed by using 

the implied volatility extracted from both the at-the-money call option and the 

at-the-money put option. Forming value-weighted portfolios takes the market 

capitalization of each firm into consideration. SMB  is a factor which can be seen as 

a proxy for risk captured by firm size. Thus, value-weighted portfolios can enhance 

the significance of the risk premium on SMB  in cross-sectional regressions. 
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4.5.2.3 Cross-Sectional Regression Results Using 36-Month Rolling-Window Method 

From the previous subsection, sIVF  do not have significant risk premiums 

when using the 60-month rolling-window method in cross-sectional regressions. It is 

natural to ask whether these results are sensitive to the selection of window length. So, 

in this subsection, the time-series regression (i.e., the first step of the Fama-MacBeth 

regression) is estimated at monthly frequency by using previous 36 months’ monthly 

data. There are 71 lambda estimations to test whether the relative risk premium is 

significantly positive or negative. Thus, the sample period is from February, 2005 to 

December, 2010. Results obtained from cross-sectional regressions using the 

36-month rolling-window method are documented in Table 4.5.  

In Table 4.5, marginally significant risk premium on IVF  at a 10% significance 

level is documented in Panel E. The risk premium on IVF  is 0.61% per month, 

while the corresponding average of this IVF  is 0.19% per month. In addition, Panel 

D shows that risk premium on  (around 0.60% per month) is significantly 

positive at a 10% significance level in model V and VI. The average of SMB  during 

the period from February, 2005 to December, 2010 is 0.30% per month. Furthermore, 

different from cross-sectional regression results in Table 4.3 and Table 4.4, in Panels 

B, C, D, F and G in Table 4.5, cross-sectional regressions yield significantly positive 

intercepts. That is, there should be other factors which can help to explain 

cross-section of portfolio returns under the assumption that factor loadings from 

time-series regressions change every 36 months. 

Similarly, correlations between sIVF  in Panels A to D and other three factors 

are higher than those between sIVF  in Panels E to H and other three factors. 

Furthermore, correlations between sIVF  and other factors are higher in this period 

than those in the period from February, 2007 to December, 2010, but they are lower   

SMB
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Table 4.5: Cross-Sectional Regression Results Using 36-Month Rolling-Window 
Method 
Notes: This table reports cross-sectional regression results by using 36-Month Rolling-Window method. 

Panel A (B) shows results when using IVF  obtained by using equally-weighted (value-weighted) 

quintile portfolios sorted on the implied volatility extracted from at-the-money call options. Panel C (D) 

presents results obtained by using IVF  constructed by using equally-weighted (value-weighted) 

quintile portfolios sorted on the implied volatility extracted from at-the-money put options. Panel E (F) 

shows results when using IVF  obtained by using equally-weighted (value-weighted) quintile 

portfolios sorted on the change in implied volatility extracted from at-the-money call options. Panel G 

(H) presents results got by using IVF  constructed by using equally-weighted (value-weighted) 

quintile portfolios sorted on the change in implied volatility extracted from at-the-money put options. 

Six models including different variables ( IVF , MKT , SMB  and HML ) in different combinations 

are estimated to test whether risk premiums on relative factors are significantly different from zero. 

 

 
I II III IV V VI 

Panel A: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Equally-Weighted) 
 0.0007 -0.0017 0.0030 0.0036 0.0036 0.0035 

p-value (0.8513) (0.7221) (0.5281) (0.2908) (0.4022) (0.3140) 

IVF  0.0088 
 

0.0114 0.0072 
 

0.0080 

p-value (0.3391) 
 

(0.1996) (0.4451) 
 

(0.3818) 

MKT  

 
0.0061 -0.0005 

 
-0.0006 -0.0004 

p-value 
 

(0.4803) (0.9503) 
 

(0.9469) (0.9587) 

SMB  

   
0.0034 0.0035 0.0036 

p-value 
   

(0.3841) (0.4031) (0.3457) 

HML  

   
0.0016 0.0015 0.0016 

p-value 
   

(0.7356) (0.7447) (0.7285) 

Panel B: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call options (Value-Weighted) 
 0.0003 0.0018 0.0076* 0.0050 0.0090*** 0.0081** 

p-value (0.9324) (0.6978) (0.0831) (0.1178) (0.0074) (0.0188) 

IVF  0.0058 
 

0.0072 -0.0016 
 

-0.0010 

p-value (0.5432) 
 

(0.4331) (0.8646) 
 

(0.9130) 

MKT  

 
0.0023 -0.0037 

 
-0.0054 -0.0044 

p-value 
 

(0.7802) (0.6397) 
 

(0.4875) (0.5202) 

SMB  

   
0.0041 0.0041 0.0038 

p-value 
   

(0.2235) (0.2068) (0.2472) 

HML  

   
-0.0042 -0.0040 -0.0043 

p-value 
   

(0.2851) (0.3193) (0.2663) 

 

  

Intercept

Intercept
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(Continued) 

 

Panel C: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Equally-Weighted) 
 0.0008 -0.0011 0.0045 0.0044 0.0045 0.0067** 

p-value (0.8248) (0.8146) (0.2554) (0.2082) (0.2211) (0.0455) 

IVF  0.0085 
 

0.0110 0.0067 
 

0.0079 

p-value (0.3474) 
 

(0.2105) (0.4812) 
 

(0.3940) 

MKT  

 
0.0055 -0.0021 

 
-0.0013 -0.0030 

p-value 
 

(0.5273) (0.7925) 
 

(0.8733) (0.6914) 

SMB  

   
0.0021 0.0033 0.0018 

p-value 
   

(0.5787) (0.4080) (0.6317) 

HML  

   
0.0011 0.0012 0.0011 

p-value 
   

(0.8256) (0.8032) (0.8218) 

Panel D: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Value-Weighted) 
 -0.0009 -0.0003 0.0044 0.0048 0.0087** 0.0083*** 

p-value (0.8116) (0.9521) (0.2051) (0.1429) (0.0232) (0.0045) 

IVF  0.0074 
 

0.0098 -0.0028 
 

-0.0017 

p-value (0.4659) 
 

(0.3184) (0.7859) 
 

(0.8680) 

MKT  

 
0.0041 -0.0005 

 
-0.0050 -0.0045 

p-value 
 

(0.6223) (0.9369) 
 

(0.5440) (0.5268) 

SMB  

   
0.0055 0.0064* 0.0060* 

p-value 
   

(0.1232) (0.0739) (0.0898) 

HML  

   
-0.0034 -0.0028 -0.0034 

p-value 
   

(0.4395) (0.5009) (0.4219) 

Panel E: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Equally-Weighted) 
 -0.0006 -0.0030 -0.0023 0.0011 0.0001 0.0024 

p-value (0.8876) (0.5534) (0.6242) (0.7807) (0.9824) (0.5439) 

IVF  0.0078  0.0065 0.0054  0.0061* 

p-value (0.2054)  (0.1136) (0.1591)  (0.0950) 

MKT   0.0070 0.0059  0.0040 0.0014 

p-value  (0.4082) (0.4479)  (0.6150) (0.8564) 

SMB     0.0039 0.0014 0.0017 

p-value    (0.3852) (0.7245) (0.6588) 

HML     0.0033 0.0018 0.0021 

p-value    (0.4622) (0.6970) (0.6327) 

 

  

Intercept

Intercept

Intercept
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(Continued) 

 

Panel F: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Call Options (Value-Weighted) 
 0.0047 0.0006 0.0031 0.0063 0.0056 0.0069* 

p-value (0.5062) (0.8974) (0.5238) (0.1638) (0.1769) (0.0901) 

IVF  -0.0026  -0.0018 -0.0073  -0.0048 

p-value (0.8280)  (0.7620) (0.2421)  (0.3889) 

MKT   0.0032 0.0007  -0.0020 -0.0032 

p-value  (0.6980) (0.9270)  (0.8249) (0.6983) 

SMB     0.0016 0.0016 0.0005 

p-value    (0.7051) (0.6585) (0.8796) 

HML     -0.0014 0.0002 -0.0009 

p-value    (0.7543) (0.9591) (0.8400) 

Panel G: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Equally-Weighted) 
 -0.0028 -0.0032 -0.0013 0.0015 0.0072* 0.0074* 

p-value (0.5403) (0.5536) (0.7922) (0.6729) (0.0730) (0.0746) 

IVF  0.0078  0.0044 0.0044  0.0030 

p-value (0.1714)  (0.2273) (0.2307)  (0.3840) 

MKT   0.0070 0.0052  -0.0032 -0.0033 

p-value  (0.4173) (0.5586)  (0.7101) (0.7014) 

SMB     0.0022 0.0028 0.0034 

p-value    (0.5935) (0.4577) (0.3565) 

HML     0.0000 -0.0015 -0.0026 

p-value    (0.9924) (0.7672) (0.5702) 

Panel H: Cross-Sectional Regression Results by Using IVF  Constructed by Using 

Portfolios Sorted on IV  Extracted from ATM Put Options (Value-Weighted) 
 0.0086 0.0000 0.0020 0.0029 0.0037 0.0038 

p-value (0.1794) (0.9961) (0.6271) (0.3939) (0.3207) (0.2508) 

IVF  -0.0098  -0.0029 -0.0018  -0.0029 

p-value (0.2104)  (0.6484) (0.7842)  (0.6310) 

MKT   0.0036 0.0014  -0.0002 -0.0004 

p-value  (0.6570) (0.8528)  (0.9837) (0.9548) 

SMB     0.0039 0.0019 0.0001 

p-value    (0.3766) (0.6198) (0.9807) 

HML     0.0023 -0.0004 -0.0012 

p-value    (0.5611) (0.9254) (0.7523) 

 

  

Intercept

Intercept

Intercept
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than those in the period from March, 2002 to December, 2010. In addition, 

correlations between any two variables among MKT ,  and HML  are also 

higher in the period from February, 2005 to December, 2010 than those correlations in 

the period from February, 2007 to December, 2010. Thus, insignificant cross-sectional 

results in Table 4.5 can probably be due to high correlations between any two 

explanatory variables. 

Based on results discussed in this subsection, there is very limited evidence about 

the significant risk premium on sIVF . SMB  is the factor which has a marginally 

significant risk premium in some cases. Furthermore, during the sample period from 

February, 2005 to December, 2010, there should be other factors which can help to 

explain cross-section of portfolio returns under the assumption that factor loadings 

from time-series regressions change every 36 months. 

4.6 Conclusions 

It is well acknowledged that the CAPM cannot explain asset returns adequately. 

Theoretical and empirical studies try to improve asset pricing models from different 

aspects. One aspect to improve these models is to find an alternative to realized 

volatility, which is often used in asset pricing tests. This chapter focuses on an 

alternative to realized volatility, the implied volatility extracted from options. This 

chapter aims to check whether sIVF  constructed by using firm-level information 

help to explain time-series and cross-sectional properties of stock returns.  

This chapter follows the method in Ang, Hodrick, Xing and Zhang (2006) to 

construct eight different sIVF  and form 25 portfolios. This chapter uses three 

methods to run cross-sectional regressions for asset pricing tests, the full-window 

method, the 60-month rolling-window method and the 36-month rolling-window 

SMB
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method. Furthermore, cross-sectional regressions include sIVF , MKT ,  and 

HML . 

Results in this chapter indicate that, among eight sIVF  constructed in this 

chapter, only two factors have significantly positive mean during the period from 

March, 1999 to December, 2010. One is the difference between the return on 

equally-weighted quintile portfolio with the highest change in at-the-money call 

implied volatility and the return on equally-weighted quintile portfolio with the lowest 

change in at-the-money call implied volatility. The other one is constructed by 

calculating the difference between these two extreme portfolios but using 

value-weighted scheme (but only marginally significant at a 10% significance level). 

These two positive mean values of sIVF  indicate that two corresponding “5-1” 

long-short portfolios can bring weakly positive return to investors during the 11-year 

period from March, 1999 to December, 2010.  

However, the evidence that sIVF  have significant risk premiums is quite 

limited. That is, this chapter does not find strong evidence that investors are willing to 

pay compensation or buy insurance for sIVF . There is some weak evidence about a 

significant risk premium on SMB  by using the 60-month rolling-window method 

and the 36-month rolling-window method to run cross-sectional regressions. To be 

more specific, using the 60-month or 36-month rolling-window method, the risk 

premium on SMB  is around 1.3% per month or 0.6% per month. Since SMB  is a 

proxy for risk captured by firm size, these results indicate that investors are willing to 

pay compensation for risk related to market capitalization. 

However, this chapter still has some constraints. Because of the limitation of data, 

data available for this chapter starts from 1996. The sample period in this chapter is 

not very long. This period also covers two crises, the dot-com bubble and the 

SMB
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2008-2010 crisis. It is not sure whether insignificant risk premiums are due to 

dynamic market conditions during the sample period. Furthermore, this chapter uses 

monthly data. If daily data are used to construct implied-volatility factors, results 

could be different. 
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Chapter 5 Asymmetric Effects of Volatility Risk on Stock Returns: 

Evidence from VIX and VIX Futures28 

5.1 Introduction 

Since the introduction of the Capital Asset Pricing Model (CAPM) by Sharpe 

(1964), Lintner (1965) and Mossin (1966), the market risk premium, defined as the 

compensation required by investors to bear market risk, has been investigated. In 

addition to the market risk premium, various empirical studies (Arisoy, Salih and 

Akdeniz, 2007; Bakshi and Kapadia, 2003; Bollerslev, Gibson and Zhou, 2011; 

Bollerslev, Tauchen and Zhou, 2009; Carr and Wu, 2009; Mo and Wu, 2007) 

document the existence of a premium for bearing volatility risk; this supports the 

hypothesis that volatility is another important pricing factor in equity markets. Ang, 

Hodrick, Xing and Zhang (2006) and Chang, Christoffersen and Jacobs (2013) show 

that the aggregate volatility risk (measured by changes in volatility indices) is 

important in explaining the cross-section of returns: stocks that fall less as volatility 

rises have low average returns because they provide protection against crisis 

movements in financial markets. 

                                                 

28 As stated in the Declaration, a paper based on this chapter was accepted for publication by the 

Journal of Futures Markets. Compared to the published version, some changes are made: (1) In the 

published version, the “Introduction” section provides literature review, whereas in this Chapter 5, a 

more detailed literature review is provided in section 5.2. Ammann and Buesser (2013), and Hung, 

Shackleton and Xu (2004) are included in section 5.2. (2) Footnote 1 in the published version is not 

included in this chapter, since similar discussions have been included in previous chapters. (3) In the 

published version, data and methodology are discussed in the section 2 of the article, “DATA AND 

METHODOLOGY”, whereas in this chapter, data and methodology are presented in two separate 

sections, sections 5.3 and 5.4, respectively. (4) Footnote 23 in the published version is moved to the 

main text in this chapter (Subsection 5.4.3). This chapter includes discussions about the cost of carry 

relationship between the VIX index and VIX futures, and more detailed discussions about “contango” 

and “backwardation” compared to footnote 23 in the published version. Also, a figure about the 

relationship between VIX futures basis and the VIX index (Figure 5.3) is included in this chapter to 

make the discussions more clear. (5) For consistency, the format of tables in this chapter is different 

from the format used in the published version. 
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Additionally, many empirical studies also reveal that the influence of market risk 

is not symmetric. Given that the market risk has an asymmetric effect on equity 

returns, it is interesting to ask whether the influence of volatility risk on equity returns 

is also asymmetric. 

This chapter first concentrates on the unconditional relationship between an 

asset’s return and its sensitivity to volatility risk through a quintile portfolio level 

analysis. This chapter uses the VIX index itself to construct a volatility factor, that is, 

innovations in the squared VIX index. In addition, this chapter introduces VIX index 

futures into asset pricing models. Thus, this chapter uses innovations in squares of the 

VIX index or VIX futures to measure changes in the volatility risk, and further tests 

the unconditional relationship between portfolio returns and sensitivity to volatility 

risk factors.  

This chapter also focuses on the asymmetric effect of volatility risk. In order to 

do so, the empirical analysis follows the method used in DeLisle, Doran and Peterson 

(2011) and defines a dummy variable to distinguish different situations. To contribute 

beyond previous studies, this chapter defines a dummy variable based on the VIX 

futures basis (i.e., the difference between the VIX spot and VIX futures) instead of 

daily changes in the VIX index. Daily innovations in the VIX index reflect how it 

changes from its level on the previous trading day. However, the VIX futures basis 

reflects how the spot VIX index deviates from its risk-neutral market expectation; the 

VIX futures basis captures more relevant ex ante information and is better at 

predicting future trends in volatility than time series models. To test whether volatility 

risk plays the same role in explaining asset returns under different scenarios, this 

chapter investigates the relationship between an asset’s return and sensitivity to 

volatility risk in each market scenario.  
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Furthermore, this chapter also decomposes the aggregate volatility index into two 

components: volatility calculated either from out-of-the-money call options only or 

from out-of-the-money puts. The innovations in squares of volatility terms are used as 

separate volatility factors in the analysis. Such a decomposition enables us to test for 

an asymmetric effect of volatility risk from using ex ante information, and to highlight 

whether investors treat information captured by different kinds of options in different 

ways. 

This chapter contributes to previous literature in several areas. First, this chapter 

introduces VIX futures into asset pricing models. Previous literature (Ang, Hodrick, 

Xing and Zhang, 2006; Chang, Christoffersen and Jacobs, 2013; DeLisle, Doran and 

Peterson, 2011) uses VIX index to construct a proxy for volatility risk.29 However, 

the new VIX index is a model-free aggregate implied volatility index, and is a spot 

index. In order to replicate the VIX index, investors need to trade out-of-the-money 

options. However, such a replication is costly. Instead, VIX futures are tradable in 

derivative markets, and they reflect the market expectation of this volatility index at a 

future date. Few studies have used VIX futures in asset pricing and they only focus on 

theoretical pricing, the existence of a term structure, or causality between VIX spot 

and VIX futures.30 Trading on the VIX futures provides investors with an expectation 

of the VIX index itself at a future expiration; so movements in the square of VIX 

futures reflect changes in market expectations of variance (i.e., implied volatility 

squared) at expiration. Rather than changes in the squared VIX spot index, introducing 

                                                 

29 Here, the VIX index refers to both old VXO index and new VIX index. The old VXO index is 

CBOE S&P100 volatility index, and is an average of the Black-Scholes implied volatilities on eight 

near-the-money S&P100 options at the two nearest maturities. The new VIX index is CBOE S&P500 

volatility index, and is a weighted sum of a broader range of strike prices on out-of-the-money S&P500 

options at the two nearest maturities. 
30 For example, Lin (2007) and Zhang and Zhu (2006) focus on the pricing of the VIX index futures. 

Huskaj and Nossman (2013) and Lu and Zhu (2010) both investigate the term structure of VIX index 

futures. Shu and Zhang (2012) and Karagiannis (2014) look at the causal relationship between the VIX 

index and its futures. 
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factors constructed from VIX futures into asset pricing models is expected to help 

improve a model’s ability to forecast returns through a volatility premium. Such an 

analysis also highlights the importance of VIX futures in asset pricing. 

Secondly, this chapter contributes to the use of risk-neutral volatility measures in 

empirical tests of volatility risk premium. Historical data show a negative relationship 

between the market and the volatility index. An increase in the market index is often 

accompanied by a decrease in the volatility index, whereas a downward movement of 

the market frequently comes together with a sharp increase in the volatility index. 

Additionally, such a relationship is time-varying, and is stronger during periods of 

financial turmoil (Campbell, Forbes, Koedijk and Kofman, 2008). In light of this, 

Jackwerth and Vilkov (2015) find the existence of a negative risk premium on the 

index-to-volatility correlation. 31  Thus, in addition to the market risk premium, 

volatility or variance risk premiums are commonly tested empirically. 

Thirdly, this chapter takes an asymmetric effect of the volatility risk into 

consideration. Although small increments in the market index and consequent 

reductions in the volatility index are consistent with investors’ expectations, decreases 

in the market or increases in the volatility indices are perceived as shocks with 

negative news for investors. Separating these different cases through dummy variables 

enables us to analyze the role of volatility risk in asset pricing under different 

scenarios. Furthermore, the way to separate different scenarios used in this chapter is 

new compared to previous literature. In DeLisle, Doran and Peterson (2011), dummy 

variables are defined based on innovations in the VIX spot (they define dummy 

variables based on a lagged variable). This chapter separates different scenarios based 

                                                 

31  Jackwerth and Vilkov (2015) estimate the implied index-to-volatility correlation from the 

out-of-the-money option on S&P500 index and VIX index. By comparing the implied correlation with 

its realized counterpart, they find a significantly negative and time-varying risk premium on the 

correlation risk. 
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on the sign of the VIX futures basis, which is an ex ante measure. Such a definition 

captures information about ex ante market conditions. Then this chapter investigates 

the effect of volatility risk in different situations. 

Fourthly, this chapter decomposes the VIX index and distinguishes two different 

components of aggregate volatility. Volatility calculated by using out-of-the-money 

call options captures information conditional on increases in price of the underlying 

asset, whereas volatility calculated by using out-of-the-money put options captures 

information conditional on decreases in price of the underlying asset. By using these 

two components to construct separate volatility factors, this chapter investigates the 

asymmetric effect of volatility risk by using ex ante information. Such an analysis also 

sheds light on whether investors treat information captured by out-of-the-money call 

and put options (i.e., up and down market conditions) differently. If investors think 

one kind of option is more informative or more influential than the other, they can 

seek higher premiums by constructing trading strategies based on this kind of options 

alone. Thus, empirical results in this chapter give investors an indication of how to 

improve their trading strategies and capture premiums from their portfolios. 

The rest of this chapter is organized as follows. Section 5.2 reviews literature in 

details. Sections 5.3 and 5.4 discuss details of data and methodology, respectively. 

Results for portfolio level analysis using VIX spot and VIX futures are presented in 

section 5.5. Section 5.6 documents results obtained by using two components of 

aggregate volatility (i.e., volatility terms calculated by using out-of-the-money call or 

put options). Finally, section 5.7 concludes. 



 

121 

5.2 Related Literature 

Various empirical studies document the existence of a premium for bearing 

volatility risk; this supports the hypothesis that volatility is another important pricing 

factor in equity markets. For instance, by using delta-hedged option portfolios, Bakshi 

and Kapadia (2003) provide evidence in supportive of a negative volatility risk 

premium. Arisoy, Salih and Akdeniz (2007) use zero-beta at-the-money straddle 

returns on the S&P500 index to capture volatility risk. Empirical results in their study 

show that volatility risk helps to explain size and book-to-market anomalies. By 

investigating three countries (the US, the UK, and Japan), Mo and Wu (2007) find that 

investors are willing to forgo positive premiums in order to avoid increases in 

volatility. Carr and Wu (2009) use the difference between realized and implied 

variances to quantify the variance risk premium, and they find that the average 

variance risk premium is strongly negative for the S&P500, the S&P100, and the 

DJIA. Bollerslev, Tauchen and Zhou (2009) use the difference between model-free 

implied and realized variances to estimate the volatility risk premium and show that 

such a difference helps to explain the variation of quarterly stock market returns. 

Using the same definition, Bollerslev, Gibson and Zhou (2011) also document that the 

volatility risk premium is relevant in predicting the return on the S&P500 index. 

Ammann and Buesser (2013) follow the same approach in order to investigate the 

importance of the variance risk premium in foreign exchange markets. These 

empirical studies show that volatility risk could be an important pricing factor in 

equity markets. 

Furthermore, the only pricing factor considered in the CAPM setup (i.e., the beta) 

is assumed to be constant and not dependent on upward or downward movements of 

the market. In contrast, some studies reveal that the influence of the market’s 
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realization is not symmetric. Hung, Shackleton and Xu (2004) find that, after 

controlling for different realized risk premiums in up and down markets, beta has 

highly significant power in explaining the cross-section of UK stock returns and it 

remains significant even when the Fama-French factors are included in the analysis. 

Ang, Chen and Xing (2006) show the existence of a downside risk premium 

(approximately 6% per annum), where stocks with higher market covariance during 

recession periods provide higher average returns compared to those that exhibit lower 

covariance with the market.32 Some studies investigate whether volatility risk plays 

different roles under different market conditions. By using delta-hedged option 

portfolios, Bakshi and Kapadia (2003) provide evidence in support of an overall 

negative volatility risk premium. These empirical results also reveal time-variation of 

the volatility risk premium (i.e., the underperformance of delta-hedged strategies is 

greater during times of high volatilities). DeLisle, Doran and Peterson (2011) use 

innovations in the VIX index to measure volatility risk and focus on its asymmetric 

effect. To be more specific, their study shows that sensitivity to VIX innovations is 

negatively related to stock returns when volatility is expected to increase, but it is 

unrelated when volatility is expected to decrease. Based on the ICAPM (Merton, 

1973), Campbell (1993 and 1996) and Chen (2003) argue that an increment in 

aggregate volatility can be interpreted as a worsening of the investment opportunity 

set. More recently, Farago and Tédongap (2015) claim that investors’ disappointment 

aversion is relevant to asset pricing theory, conjecturing that a worsening opportunity 

set may result either from a decrease in the market index or from an increase in the 

volatility index. Empirical results in their study show that these undesirable changes 

                                                 

32 The measure of downside risk used in Ang, Chen and Xing (2006) was originally introduced by 

Bawa and Lindenberg (1977). 
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(decreases in market and increases in volatility indices) motivate significant premiums 

in the cross-section of stock returns. In order to understand the asymmetric effect due 

to market or volatility risks, it is important to distinguish between different cases: 

positive or negative market returns, and increments or reductions in the aggregate 

volatility, especially by using forward-looking measures of volatility. 

On the other hand, after the introduction of VIX futures contracts in March 26th, 

2004, many studies investigate in VIX futures (as discussed in footnote 30). However, 

most of them focus on theoretical pricing, the existence of a term structure, or 

causality relationship between VIX spot and VIX futures. So, this chapter introduces 

VIX futures into asset pricing and compares VIX spot and VIX futures in predicting 

asset returns. 

5.3 Data 

5.3.1 Data Resources 

This chapter focuses on the effect of aggregate volatility risk factors on 

individual stock returns in the US markets. Daily individual stock returns for ordinary 

common shares (share codes of 10, 11 and 12) are downloaded from CRSP.33 When 

forming volatility factors, this chapter uses the VIX spot (VIX ) and VIX futures 

(VXF ), which are obtained from the CBOE official website.34 Furthermore, in order 

to decompose the aggregate volatility index, this chapter uses data for options written 

on the S&P500 index ( SPX ), which are available from OptionMetrics. The analysis 

also needs other factors, such as the market excess return ( MKT ), the size factor 

                                                 

33 Following DeLisle, Doran and Peterson (2011), this chapter only keeps stocks with CRSP share 

codes 10, 11 and 12 in the sample. 

34 This chapter converts the VIX index and VIX futures from percentage to decimal numbers, that is, 

20%=0.20. In later equations, volatility terms, VIX , VXF , VXC , and VXP , are all decimal numbers 

too not percentage numbers. 
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( SMB ), the book-to-market factor ( HML ), and the momentum factor (UMD ). Data 

for these factors are all available from Kenneth French’s data library.35 

5.3.2 Data Description 

The first part of this chapter separates different market scenarios based on a 

dummy variable defined from the VIX futures basis (i.e., periods with positive or 

negative VIX futures basis). The VIX futures basis is defined as the difference 

between VIX spot (VIX ) and VIX futures (VXF ). The VXF  started trading on the 

CBOE in March 26, 2004; however, only after October 2005, did VIX futures 

contracts expiring in each calendar month appear. So the sample period used in the 

first part of the empirical analysis in this chapter runs from October 2005 until 

December 2014. Figure 5.1 plots levels of VIX , VXF , SPX , and MKT  during the 

period from March 26, 2004 to December 31, 2014.36 

In Panel A of Figure 5.1, it is clear that VIX  and VXF  are very close, and they 

increase or decrease together.37 There is a negative relationship between SPX  and 

VIX  or VXF . When the SPX  increases, VIX  and VXF  decrease, and vice versa. 

This phenomenon is even stronger during the financial crisis: for instance, from the 

beginning of September 2008 to the end of October 2008, the SPX  decreased 

                                                 

35  See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html for more details. 

MKT  is the excess return on the market, value-weighted return of all CRSP firms incorporated in the 

US and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11 at the 

beginning of month t , good shares and price data at the beginning of t , and good return data for t  

minus the one-month Treasury bill rate (from Ibbotson Associates). SMB  (small-minus-big) is the 

average return on the three small portfolios minus the average return on the three big portfolios. HML  

(high-minus-low) is the average return on the two value portfolios minus the average return on the two 

growth portfolios. UMD  (winners-minus-losers) is the average return on the two high prior return 

portfolios minus the average return on the two low prior return portfolio. 
36 March 26, 2004 is the first trading day with VIX futures data available, whereas December 31, 2014 

is the last trading day of the sample period. In order to draw the figure and get the summary statistics 

for VIX index futures, Figure 5.1 and Table 5.1 use the settlement price of futures contract with 

near-term expiration. 
37 The lead-lag relationship between spot and futures markets is an important topic. However, this 

chapter is not looking at the causal relationship between VIX spot and VIX futures. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 5.1: VIX Index (VIX ), VIX Index Futures (VXF ), S&P500 Index ( SPX ), and Market Excess Returns (MKT )  
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dramatically from 1277.58 to 968.75, whereas the VIX  (VXF ) increased from 

0.2199 (0.2208) to 0.5989 (0.5457). Then, in Panel B, it is clear that both VIX  and 

VXF  are good forward-looking proxies for measuring aggregate volatility of the 

market.38 Levels of VIX  and VXF  are higher when the market becomes more 

volatile. 

In addition, it can be easily seen that VIX  spot is less stable than its futures, 

VXF . The minimum value for VIX  (0.0989) is slightly smaller than the minimum 

value for VXF  (0.0995), whereas the maximum value for VIX  (0.8086) is much 

larger than the maximum value for VXF  (0.6795). The range of VIX  is wider than 

that of VXF .39 Correlations in Panel B of Table 5.1 indicate that VIX  and VXF  

are highly correlated (with the correlation of 0.9846). There is a negative relationship 

between the market excess returns and the aggregate volatility risk. 

By using ex ante information, the second part of this chapter investigates whether 

volatility risk has an asymmetric effect. This part also answers whether call or put 

options capture different information concerning future market conditions. This part 

replicates the VIX index and decomposes it into two components, that is, volatility 

calculated from out-of-the-money call options (VXC ) or volatility calculated from 

out-of-the-money put options (VXP ).40 In the second part, the sample period covers 

the period from January 1996 to September 2014.41 

                                                 

38 Panel B of Figure 5.1 plots the market factor ( MKT ) together with VIX  and VXF . This chapter 

also calculates the daily simple returns and logarithmic returns on the S&P500 index. The data indicate 

that daily simple returns and logarithmic returns on the S&P500 index are highly correlated with 

MKT  (with correlations of 0.9917 and 0.9918, respectively). This chapter concentrates on 

market-based pricing factors. So, rather than using return on S&P500 index, this chapter uses the 

market excess return provided by French’s online data library. 
39 The descriptive statistics of different variables presented in Table 5.1 are all calculated at daily 

frequency. For example, the mean of daily market excess returns is 0.04% (Panel A of Table 5.1), 

which translates to around 13.65% p.a. using continuous compounding. 
40 Details about the decomposition are discussed in section 5.4.4. 
41 The regression model in equation (5.1) is estimated until the end of August 2014. Then, quintile 

portfolios are constructed by using monthly returns in September 2014. 
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Table 5.1: Descriptive Statistics 

Panel A: Summary Statistics during the Period from March 26, 2004 to December 31, 2014 

 
SPX  MKT  (Daily) VIX   2 VIX  VXF   2 VXF  

Mean 1336.5 0.0004 0.1969 0.0000 0.2012 -0.0000 

Median 1294.0 0.0009 0.1660 -0.0002 0.1727 -0.0002 

Standard Deviation 274.4 0.0126 0.0971 0.0155 0.0894 0.0098 

Minimum 676.5 -0.0895 0.0989 -0.2140 0.0995 -0.1472 

Maximum 2090.6 0.1135 0.8086 0.2030 0.6795 0.1186 

Panel B: Pairwise Correlations during the Period from March 26, 2004 to December 31, 2014 

 
SPX  MKT  VIX   2 VIX  VXF   2 VXF  

SPX  
1      

MKT  0.0329 1     

VIX  
-0.5367 -0.1222 1    

 2 VIX  -0.0080 -0.7528 0.0841 1   

VXF  
-0.5550 -0.0812 0.9846 0.0390 1  

 2 VXF  -0.0069 -0.6768 0.0888 0.8173 0.0660 1 

Panel C: Summary Statistics during the Period from January 1996 to August 2014 

 
SPX  MKT  (Daily) VIX   2 VIX  VXC   2 VXC  VXC   2 VXP  

Mean 1206.3 0.0003 0.2131 0.0000 0.1252 -0.0000 0.1646 -0.0000 

Median 1204.5 0.0008 0.1984 -0.0002 0.1180 -0.0000 0.1502 -0.0001 

Standard Deviation 274.3 0.0125 0.0845 0.0130 0.0506 0.0065 0.0686 0.0099 

Minimum 598.5 -0.0895 0.0989 -0.2140 0.0209 -0.1018 0.0486 -0.1357 

Maximum 2003.4 0.1135 0.8086 0.2030 0.4635 0.1159 0.6600 0.1507 
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Panel D: Pairwise Correlations during the Period from January 1996 to August 2014 

 
SPX  MKT  VIX   2 VIX  VXC   2 VXC  VXC   2 VXP  

SPX  
1        

MKT  0.0234 1       

VIX  

-0.3845 -0.1249 1      

 2VIX  -0.0107 -0.7267 0.0886 1     

VXC  
-0.4217 -0.1199 0.9611 0.0768 1    

 2VXC  -0.0067 -0.4613 0.0554 0.6006 0.1463 1   

VXP  

-0.3483 -0.1266 0.9840 0.0924 0.9116 0.0209 1  

 2VXP  -0.0090 -0.6215 0.0730 0.8522 0.0261 0.2706 0.1139 1 
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Panel E: Augmented Dickey-Fuller Unit Root Tests (H0: there is a unit root in time series data) 

 p-value T-statistic 

Sample Period: March 26, 2004 to December 31, 2014   

VIX  (0.0128) (-3.3518) 

VXF  (0.0326) (-3.0269) 

 2VIX  (0.0000) (-18.3054) 

 2VXF  (0.0000) (-32.8952) 

Sample Period: January 1996 to August 2014   

VIX  (0.0001) (-4.7915) 

VXC  (0.0001) (-4.6040) 

VXP  (0.0000) (-4.8263) 

 2VIX  (0.0000) (-23.9694) 

 2VXC  (0.0000) (-38.1739) 

 2VXP  (0.0000) (-15.4873) 
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Figure 5.2: VIX Index (VIX ), Call VIX Index (VXC ), Put VIX Index (VXP ), S&P500 Index ( SPX ), and Market Excess Returns (MKT ) 
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In Panel A and Panel B of Figure 5.2, VXC  and VXP  have similar trends to 

VIX . VXC  and VXP  are both negatively related to SPX  (they are both risk 

neutral parts of the aggregate volatility).42 Panel C of Table 5.1 presents summary 

statistics of VIX , VXC  and VXP . It is clear that VXP  is always higher than VXC . 

Then, in Panel D, both VXC  and VXP  are highly correlated with VIX  (with 

correlation of 0.9611 and 0.9840, respectively). Meanwhile, VXC  and VXP  are 

both negatively correlated with the market. 

5.4 Methodology 

In order to investigate the relationship between asset returns and sensitivity to 

aggregate volatility risk, this chapter uses a quintile portfolio level analysis among 

individual stock returns. Such an analysis enables us to test whether stocks with more 

negative correlations between returns and volatility changes outperform those with 

less negative correlations.  

To test whether there is an asymmetric effect of volatility risk on asset returns, 

this chapter uses two different methods. First, this chapter separates different market 

conditions by defining a dummy variable and analyzes the relationship under two 

different situations. Secondly, this chapter decomposes  into two parts and uses 

forward-looking information to capture future market conditions. Then, this chapter 

examines whether the asymmetric effect of volatility risk exists if ex ante information 

is used. Details about methodologies are discussed in the following subsections. 

                                                 

42 Due to the existence of volatility risk premium, there is a bias when using risk-neutral volatility. 

VIX
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5.4.1 Volatility Factor Construction 

First, it should be highlighted that this chapter focuses on market-based pricing 

factors. That is, this chapter concentrates on pricing factors constructed at aggregate 

level, and uses pricing factors which are common for all individual assets in the 

market rather than firm-specific factors.  

From existing literature, in addition to systematic market risk captured by beta, 

coskewness (or systematic skewness) is also an important pricing factor in asset 

pricing (Fang and Lai, 1997; Harvey and Siddique, 2000; Kraus and Litzenberger, 

1976; Scott and Horvath, 1980; Sears and Wei, 1985 and 1988). Coskewness refers to 

how an individual asset’s return co-moves with the second moment of the market 

return.43 By using historical data, previous papers calculate ex post estimates of 

systematic market risk and coskewness risk, and document that coskewness helps to 

explain asset returns.  

Rather than using historical data, recent studies use option-implied information to 

measure the risk-neutral expected second moment of the market return, and further 

calculate coskewness for individual stocks. In empirical studies, due to potential 

non-stationarity issue, the first difference of the volatility index, instead of the level of 

the volatility index, is commonly used to measure the volatility risk.44 For example, 

                                                 

43 For example, according to Kraus and Litzenberger (1976), the relation between returns and risk is 

given by: 

  1 2i f i iE r r b b     

where ir  is the return on the thi  asset, 2

i im m    is the market beta or systematic standard 

deviation of the thi  asset, 3

i imm mm m   is the market gamma or systematic skewness of the thi  

asset ( m  and mm  are the standard deviation and the cube root of third moment, respectively). Factor 

loading 1b  can be interpreted as the risk premium on beta, and 2b  can be interpreted as the risk 

premium on gamma. 
44 Panel E of Table 5.1 present results for Augmented Dickey-Fuller unit root tests for both levels of 

each volatility index ( VIX , VXF , VXC  and VXP ) and changes in variance terms (  2VIX , 

 2VXF ,  2VXC  and  2VXP ). The results indicate that by using first differences in variance 

terms to measure the volatility risk, the autocorrelation in variables of interest could be controlled. 
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in order to measure the second moment of market returns, Ang, Hodrick, Xing and 

Zhang (2006) use daily innovations in the old volatility index (VXO ), and Chang, 

Christoffersen and Jacobs (2013) use daily changes in the VIX index (the replacement 

for VXO ). Rather than using change in aggregate volatility, this chapter uses changes 

in aggregate variance (i.e., changes in the square of volatility). 

The first part of this chapter separates different market scenarios by defining a 

dummy variable and investigates the asymmetric effect of aggregate volatility risk. 

This part uses  2VIX  and  2VXF  as factors that capture variance changes.45 

Then, the second part of this chapter uses forward-looking information to check an 

asymmetric effect, and concentrates on whether out-of-the-money call or put options 

capture different information about future return prediction. This chapter decomposes 

the VIX index into two parts and then uses innovations in each variance term (i.e., 

 2VXC  and  2VXP ) as risk factors. The construction of  2VXC  and 

 2VXP  and the relationship between VXC , VXP  and VIX  are discussed in 

Subsection 5.4.4 in detail. 

5.4.2 Quintile Portfolio Level Analysis 

In order to test if there is a significant relationship between an asset’s return and 

its sensitivity to volatility factors, this chapter uses a quintile portfolio level analysis 

                                                 

45 The VIX index measures market index volatility at 30-day horizon.  2VIX  is the daily change in 

the square of VIX . Thus,  2VIX  measures the daily change in the aggregate variance on each 

trading day. If  2 > 0VIX , aggregate variance increases compared to the closing level on the 

previous trading day, and vice versa. For VIX index futures, this chapter uses the settlement price of the 

futures contract. VXF  reflects the expectation of VIX  at expiration.  2VXF  is the daily change 

in the square of VXF . So,  2VXF  reflects the daily change in expectation of aggregate variance 

during the 30-day period after expiration. If  2 > 0VXF , the settlement price of VXF  increases 

compared to the previous trading day, and vice versa. 
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for individual stocks. To be more specific, this chapter first estimates the following 

time-series regressions using daily data for each individual stock i : 

 
, , ,       MKT VF

i t f t i i t i t i tr r MKT VF   (5.1) 

       2 2 2 2, , ,VF VIX VXF VXC VXP     
   

where 
,i tr  stands for daily returns on each individual stock, 

,f tr  is the daily risk-free 

rate, MKT  denotes daily market excess returns, and VF  is one proxy for the 

volatility risk (i.e.,  2VIX ,  2VXF ,  2VXC  or  2VXP ).46  

As the first part of this chapter compares  to , the volatility factors 

( tVF ) are defined in different ways:  2VIX  (daily changes in square of VIX spot), 

and  2VXF  (daily changes in square of VIX futures). As the final settlement date 

of VIX futures contracts is normally the third Wednesday in each month, the period 

used for the above regression model (equation (5.1)) starts from the next trading day 

with data available for the VIX future contracts expiring two months later and ends on 

the final settlement date of the corresponding VIX futures contract (i.e., around 40 

observations for each time-series regression). For example, the third Wednesday in 

January 2008 is January 16, 2008, and the third Wednesday in March 2008 is March 

19, 2008. To run a regression model during the period from January 2008 to March 

2008, daily settlement prices of VIX futures contracts expiring in March 2008 are 

used. Such contracts started trading from January 17, 2008. In order to form quintile 

portfolios in March 2008, the empirical analysis uses the data of VIX futures contracts 

expiring in March 2008, during the period from January 17, 2008 to March 19, 2008. 

                                                 

46 In addition to two explanatory variables in equation (5.1) (i.e., MKT  and VF ), SMB , HML , or 

other factors could be included. However, this chapter principally uses forward looking information 

about volatility not historical regressors. So, only MKT  and VF  are included in one regression 

model. 

VIX VXF
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The second part of our analysis distinguishes information captured by 

out-of-the-money call and put options. Two components of VIX squared,  2VXC  

and  2VXP , are used to represent VF , the volatility factor. To be consistent with 

the first part of this chapter, the second part estimates equation (5.1) at firm level at 

the end of each calendar month by using previous two-month daily data. Then, to 

avoid data overlaps for time-series regressions in different calendar months, this part 

also uses previous one-month daily data for regression model presented in equation 

(5.1) at the end of each month. 

After estimating equation (5.1) and obtaining beta coefficients on MKT  and 

VF  ( MKT

i
and VF

i
) for each individual stock, among all stocks available, 

equally-weighted or value-weighted quintile portfolios are formed based on VF

i
.47 

Portfolio 1 consists of the 20% of stocks with the lowest VF

i
, whereas portfolio 5 

consists of the 20% of stocks with the highest VF

i
; that is, stocks in portfolio 1 have 

the lowest sensitivity to aggregate volatility risk, whereas stocks in portfolio 5 have 

the highest sensitivity. The “5-1” long-short portfolio is constructed by holding a long 

position in portfolio 5 and a short position in portfolio 1. The first part of this chapter 

assumes that investors hold portfolios for 10-day, 20-day and 30-day horizons after 

construction, and calculates the return on each portfolio during these holding 

periods.48 The second part of this chapter calculates portfolio returns in the following 

one calendar month. The empirical analysis calculates whether the “5-1” long-short 

                                                 

47 For equally-weighted portfolios, the weight for each constituent is determined by the total number of 

stocks included in the portfolio, whereas for value-weighted portfolios, the weight of each constituent 

depends on the market capitalization of stocks in the portfolio. 
48 It is known that VIX  reflects the market's expectation of stock market volatility over the next 

30-day period. VIX  is calculated by using near-term and next-term options with maturities longer 

than 7 days. Here, “10-day”, “20-day”, and “30-day” refer to trading days, and correspond to 2-, 4-, and 

6-week periods. So lengths of holding periods used in this chapter are consistent with predictive periods 

indicated by options used for VIX  calculations. 
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portfolio has a significant non-zero mean return or Jensen’s alpha with respect to the 

market-factor model, the Fama-French three-factor model, or the Carhart four-factor 

model (i.e., risk-adjusted return after controlling for MKT , SMB , HML  and 

UMD ).49 If the “5-1” long-short portfolio has a significant and negative mean return, 

overall asset sensitivity to volatility factors is negatively related to returns. 

However, if the realization of MKT  or VF  is close to zero, it is difficult to 

find significant non-zero average return on any portfolio. Thus, by distinguishing 

periods with different market conditions, it is possible to detect statistically significant 

mean returns on the “5-1” long-short portfolio. Also, such an analysis sheds light on 

whether the volatility risk plays different roles under different market conditions. 

5.4.3 Asymmetric Quintile Portfolio Level Analysis 

By using  2VIX  and  2VXF  to capture volatility risk, although previous 

models (equation (5.1)) detail relationships between asset returns and sensitivities to 

volatility factors, these models ignore asymmetric effects of volatility risk. Financial 

markets may react differently to positive or negative volatility shocks, thus, this 

chapter incorporates an asymmetric effect of volatility risk. 

In order to separate different cases, this chapter follows the method used in 

DeLisle, Doran and Peterson (2011) and includes dummy variables into the 

time-series regression model. DeLisle, Doran and Peterson (2011) define dummy 

variables based on daily innovations in VIX . However, VIX  is a lagged variable 

and it reflects how aggregate volatility changes from its level on the previous trading 

day. It does not capture expectations in aggregate volatility. So instead of using the 

                                                 

49 In empirical analysis of this chapter, p-values reported in Tables 5.2 to 5.7 are calculated after 

controlling for autocorrelation (i.e., adjusted by using the Newey-West method).  
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innovation in VIX index or VIX futures, this chapter uses the difference between 

VIX  and VXF  (i.e., the VIX futures basis), VIX VXF . Both VIX  and VXF  are 

forward looking and capture information about aggregate volatility levels in the near 

future but VXF  represents an expectation as to the level of volatility at future expiry.  

As highlighted in CBOE official website, VIX futures are contracts on forward 

30-day “model-free” implied volatilities. The price of a VIX futures contract can be 

lower, equal to or higher than VIX index, depending on whether the market expects 

volatility to be lower, equal to or higher in the 30-day forward period covered by the 

VIX futures contract than in the 30-day spot period covered by VIX index. The VIX 

index is a volatility forecast, not an individual asset. Hence, it is very expensive for 

investors to create a position equivalent to one in VIX futures by buying a portfolio of 

options to replicate VIX index and holding the position to futures expiration date 

while financing the transaction. VIX futures are not tied by the usual cost of carry 

relationship that connects other indices and index futures (Lin, 2007; Shu and Zhang, 

2012). In this chapter, a positive VIX futures basis refers to “backwardation”, whereas 

a negative VIX futures basis refers to “contango”. Within the sample, there are more 

observations of “contango”. However, when the VIX index becomes higher, there are 

more observations of “backwardation” (as shown in Panel A of Figure 5.3). This 

chapter also divides all available daily observations of VIX futures basis into 20 

groups based on the VIX index on each day. Panel B of Figure 5.3 shows that, within 

each group, there are observations of both “backwardation” and “contango”. In less 

volatile groups, there are more observations of “contango”, whereas in more volatile 

groups, there are more observations of “backwardation”. Thus, “backwardation” 

reflects highly volatile periods. For example, in the most volatile 2% trading days 

during the period from March 26, 2004 to December 31, 2014,  92.59% of 
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Figure 5.3: Relationship between VIX Futures Basis and the VIX index (VIX ) 
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observations refer to “backwardation”, whereas 7.41% of them refer to “contango”. 

When VIX  is higher than 0.5676, VIX VXF  is positive in all cases. 

If VIX  is lower than VXF  (i.e., a negative futures basis), it indicates that the 

current aggregate volatility index is below what is expected by the market in the future. 

Risk-averse investors would prefer such conditions since they present less risk. For 

example, as shown in Panel A of Figure 5.4, during the period from March 22, 2007 to 

May 16, 2007, the SPX  increases from 1434.54 to 1514.14. During this period, in 

28 out of 39 trading days, VXF  was higher than VIX . If VIX  is higher than VXF  

(i.e., positive futures basis), it means that the current aggregate volatility index is 

higher than its market expectation. In this case, the current period is relatively more 

volatile for investors compared to future prospects. In Panel B of Figure 5.4, it is clear 

that VIX  was higher than VXF  in 31 out of 44 trading days during the period from 

August 21, 2008 to October 22, 2008. During this highly volatile period, SPX  

dropped sharply from 1277.72 to 896.78.  

Thus, a negative futures basis captures attractiveness to investors, whereas a 

positive futures basis indicates bad current conditions. In this chapter, the dummy 

variable tD  is defined to be 1 if the futures basis is positive and 0 otherwise. The 

regression model incorporating an asymmetric effect is specified as follows: 

 
, , ,         MKT VF D

i t f t i i t i t i t t i tr r MKT VF DVF   (5.2) 

where VF  is either  2VIX  or  2 VXF . After running the regression shown in 

equation (5.2) by using previous approximately 40-day daily data points at the final 

settlement date in each month, quintile portfolios and “5-1” long-short portfolios are 

formed separately in two different situations ( 0tD  and 1tD  ).50 In other words, 

                                                 

50 A small fraction of observations is omitted because the dummy variable does not change value. 
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Figure 5.4: Relationship between VIX Futures Basis and S&P500 Index ( SPX ) 
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this chapter forms portfolios on VF

i
 when 0tD  (i.e., only considering 

information about the volatility risk during the period with negative VIX futures basis), 

whereas this chapter forms portfolios on  VF D

i i   when 1tD   (i.e., only 

considering information about volatility risk during period with positive VIX futures 

basis). Furthermore, for the “5-1” long-short portfolios, Jensen’s alphas with respect 

to the market-factor model, the Fama-French three-factor model or the Carhart 

four-factor model are calculated to see whether, in different scenarios, the 

relationships between an asset’s return and sensitivity to volatility factors are 

significant even after taking MKT , SMB , HML  and UMD  factors into 

consideration. This analysis enables us to verify whether the asymmetric effect of 

volatility risk on asset returns is determined by existing factors. 

5.4.4 Decomposition of the VIX Index 

The VIX index measures the market’s expectation of 30-day aggregate volatility 

implied by both out-of-the-money call and put options of S&P500 index. Nevertheless, 

out-of-the-money call and put options reflect information captured by different parts 

of the option cross section.  

Figure 5.5 indicates that out-of-the-money put options capture information 

conditional on future stock prices being lower than stock index forward, whereas 

out-of-the-money call options capture information conditional on future stock prices 

being higher. This chapter separates different market conditions based on ex ante 

information. Information contained in out-of-the-money put options reflects state 

prices from bad news conditions, whereas information contained in out-of-the-money 

call options reflects state prices from good news conditions. Decomposing 2VIX  into 

two parts (i.e., 2VXC  and 2VXP ) enables us to test whether information captured by 
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Figure 5.5: Prices of Out-of-the-Money Options Q K T( , )  and Implied Volatilities on October 22, 2008 (31 Day-to-Maturity) 
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different options affects asset returns in different ways and to test the asymmetric 

effect of volatility risk using ex ante information. If information captured by one kind 

of options is more important and relevant to asset returns, investors could improve 

their trading strategies by only incorporating such information and avoid bearing 

unnecessary risk. Details about the decomposition are presented as follows. 

According to the VIX Whitepaper from CBOE’s website,51 the “model-free” 

variance is calculated using the following formula: 

  
2

0,2

2

0

2 1
, 1

TrTi
T i

i i

FK
e Q K T

T K T K


 
   

 
   (5.3) 

where T  refers to time to expiration, 
0,TF  is the forward index level derived from 

index option prices, 0K  is the first strike below the forward index level, iK  is the 

strike price of the thi  out-of-the-money option,  ,iQ K T  is the midpoint of the 

bid-ask spread for each out-of-the-money call or put option with strike price of iK  

and time-to-expiry of T  (i.e.,       , = min , , ,i i iQ K T C K T P K T  where 

 ,iC K T  is the midpoint of the bid-ask spread for out-of-the-money call option, and 

 ,iP K T  is the midpoint of the bid-ask spread for out-of-the-money put option). This 

chapter decomposes 2

T  into 
2

,C T  and 
2

,P T , which separates information extracted 

from out-of-the-money call and put options, respectively. Variances 
2

,C T  and 
2

,P T  

can be written as: 

  
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 
   (5.4) 

                                                 

51 Available from: https://www.cboe.com/micro/vix/vixwhite.pdf. 

https://www.cboe.com/micro/vix/vixwhite.pdf
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The variance 
2

,C T  is calculated by using only out-of-the-money call options with 

time-to-expiration of T , and 
2

,P T  is calculated by using only out-of-the-money put 

options with time-to-expiration of T . Then, 2VXC  and 2VXP  are linear 

interpolation of near-term ( 1T ) and next term ( 2T ) variances. 
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  (5.6) 
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  (5.7) 

Hence, 2VXC  and 2VXP  sum up to 2VIX . After decomposing VIX  into two 

components (VXC  and VXP ), this chapter constructs VF  in equation (5.1) by using 

VXC  or VXP  (i.e.,  2VXC  or  2VXP ). 

5.5 Results for Portfolio Level Analysis Using  VIX 2  and  VXF 2  

The results obtained by using  2VIX  and  2VXF  are presented in this 

section in detail. First of all, this section shows results for portfolio level analysis 

obtained by using  2 VIX  and  2VXF  without incorporating an asymmetric 

effect. Then, this section incorporates the asymmetric effect into empirical analysis by 

including a dummy variable and checks whether volatility risk plays a significant role 

in explaining asset returns in different market conditions.  
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5.5.1 Results for Portfolio Level Analysis Using  VIX 2  and  VXF 2  

First of all, the results for quintile portfolio level analysis by using  2 VIX  

and  2VXF  without incorporating asymmetric effects are presented. This 

subsection first estimates equation (5.1) on the final settlement date in each calendar 

month by using previous two-month daily data on each individual stock.52 Then, 

quintile portfolios are constructed based on the beta coefficients of volatility factors 

(i.e., VF

i
). The “5-1” long-short portfolio is formed by holding a long position in 

quintile portfolio 5 and a short position in quintile portfolio 1. The corresponding 

results obtained when using  2 VIX  are found in Table 5.2. 

Panels A and B of Table 5.2 present results for equally- and value-weighted 

portfolios, respectively. In these two panels, no matter what holding period horizon is 

used after portfolio formation, there is no significant relationship between an asset’s 

sensitivity to  2 VIX  and its return. 

As well as using  2 VIX , the analysis uses  2VXF  as the volatility factor. 

The results are shown in Table 5.3. Two panels of Table 5.3 show that there is no 

significant relationship between an asset’s sensitivity to  2VXF  and its return.  

The insignificant relationship between an asset’s sensitivity to volatility factors 

and its return could be due to the fact that the sample period of this chapter is from 

October 2005 to December 2014. The sample period is relatively short but it covers 

the recent financial crisis, where asset markets were relatively volatile and dynamic. 

                                                 

52 When using  2VIX  in equation (5.1), the average adjusted R2 of the regression model among all 

individual stocks is 20.53%. Among all individual stocks, 7.75% of them have significant non-zero 

intercept at a 10% significance level. When switching to use  2 VXF  in equation (5.1), the average 

adjusted R2 is 20.45%. The percentage of individual stocks with significant non-zero intercept is 7.69%. 
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Table 5.2: Results for Quintile Portfolio Level Analysis by Using  VIX 2  

Notes: The following time-series regression is estimated on the final settlement date in each calendar month by using daily data: 

   
2

2

, , ,   


     
VIXMKT

i t f t i i t i i tt
r r MKT VIX  

Equally- and value-weighted quintile portfolios are constructed based on 
 2


 VIX

i . Portfolio 5 consists of stocks with the highest 
 2


 VIX

i , whereas portfolio 1 consists of 

stocks with the lowest 
 2


 VIX

i . The “5-1” long-short portfolio is constructed by holding a long position in portfolio 5 and a short position in portfolio 1. Then, this chapter 

calculates the return for each portfolio during the holding period (10-, 20-, and 30-day) after the portfolio formation. 

Panel A: Results for Equally-weighted Quintile Portfolios 

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0122 0.0053 0.0064 0.0063 0.0153 0.0070 0.0073 0.0074 0.0281 0.0101 0.0121 0.0145 

2 0.0089 0.0025 0.0032 0.0031 0.0106 0.0030 0.0033 0.0034 0.0204 0.0048 0.0062 0.0073 

3 0.0080 0.0016 0.0024 0.0023 0.0107 0.0032 0.0034 0.0035 0.0191 0.0037 0.0050 0.0060 

4 0.0092 0.0023 0.0031 0.0031 0.0113 0.0032 0.0035 0.0036 0.0204 0.0039 0.0055 0.0068 

5 0.0129 0.0051 0.0062 0.0061 0.0145 0.0057 0.0061 0.0062 0.0268 0.0080 0.0103 0.0126 

5-1 0.0007 -0.0001 -0.0002 -0.0002 -0.0007 -0.0013 -0.0012 -0.0012 -0.0013 -0.0021 -0.0018 -0.0019 

p-value (0.5259) (0.8689) (0.8734) (0.8622) (0.7143) (0.4539) (0.5090) (0.5129) (0.5239) (0.2784) (0.3829) (0.3621) 

Panel B: Results for Value-Weighted Quintile Portfolios 

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0058 -0.0010 -0.0004 -0.0004 0.0068 -0.0016 -0.0015 -0.0015 0.0160 -0.0002 0.0001 0.0005 

2 0.0047 -0.0007 -0.0007 -0.0007 0.0067 -0.0003 -0.0003 -0.0004 0.0127 -0.0001 -0.0002 -0.0003 

3 0.0062 0.0007 0.0006 0.0006 0.0076 0.0011 0.0011 0.0011 0.0136 0.0011 0.0010 0.0011 

4 0.0081 0.0019 0.0018 0.0018 0.0084 0.0011 0.0013 0.0013 0.0150 0.0006 0.0008 0.0013 

5 0.0087 0.0006 0.0009 0.0009 0.0072 -0.0016 -0.0011 -0.0010 0.0161 -0.0006 0.0002 0.0014 

5-1 0.0030 0.0016 0.0013 0.0013 0.0004 -0.0000 0.0004 0.0005 0.0001 -0.0004 0.0001 0.0009 

p-value (0.3777) (0.5499) (0.6147) (0.6152) (0.9137) (0.9959) (0.9154) (0.8948) (0.9718) (0.9184) (0.9776) (0.8266) 
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Table 5.3: Results for Quintile Portfolio Level Analysis by Using  VXF 2  

Notes: The following time-series regression is estimated on the final settlement date in each calendar month by using daily data: 

   
2

2

, , ,   


     
VXFMKT

i t f t i i t i i tt
r r MKT VXF  

Equally- and value-weighted quintile portfolios are constructed based on 
 2


 VXF

i . Portfolio 5 consists of stocks with the highest 
 2


 VXF

i , whereas portfolio 1 consists of 

stocks with the lowest 
 2


 VXF

i . The “5-1” long-short portfolio is constructed by holding a long position in portfolio 5 and a short position in portfolio 1. Then, this chapter 

calculates the return for each portfolio during the holding period (10-, 20-, and 30-day) after the portfolio formation. 

Panel A: Results for Equally-weighted Quintile Portfolios 

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0130 0.0056 0.0067 0.0065 0.0149 0.0064 0.0068 0.0070 0.0270 0.0085 0.0106 0.0129 

2 0.0093 0.0025 0.0033 0.0032 0.0110 0.0032 0.0035 0.0035 0.0205 0.0045 0.0061 0.0072 

3 0.0083 0.0020 0.0027 0.0026 0.0107 0.0032 0.0034 0.0035 0.0196 0.0046 0.0059 0.0068 

4 0.0088 0.0022 0.0030 0.0030 0.0104 0.0025 0.0028 0.0029 0.0201 0.0039 0.0054 0.0067 

5 0.0119 0.0046 0.0057 0.0056 0.0154 0.0067 0.0071 0.0073 0.0278 0.0091 0.0111 0.0138 

5-1 -0.0010 -0.0009 -0.0010 -0.0009 0.0004 0.0003 0.0003 0.0003 0.0009 0.0005 0.0006 0.0009 

p-value (0.5670) (0.6041) (0.5605) (0.5576) (0.8209) (0.8827) (0.8865) (0.8716) (0.7096) (0.8067) (0.7978) (0.6584) 

Panel B: Results for Value-Weighted Quintile Portfolios 

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0076 0.0002 0.0006 0.0006 0.0069 -0.0016 -0.0015 -0.0015 0.0149 -0.0017 -0.0012 -0.0008 

2 0.0062 0.0003 0.0003 0.0003 0.0068 -0.0003 -0.0002 -0.0002 0.0131 0.0001 -0.0001 -0.0002 

3 0.0060 0.0006 0.0004 0.0004 0.0069 0.0003 0.0003 0.0003 0.0131 0.0009 0.0008 0.0008 

4 0.0057 0.0001 0.0001 0.0001 0.0066 -0.0004 -0.0005 -0.0005 0.0136 -0.0000 0.0000 0.0002 

5 0.0084 0.0009 0.0013 0.0012 0.0092 0.0006 0.0008 0.0009 0.0187 0.0006 0.0014 0.0032 

5-1 0.0008 0.0006 0.0006 0.0007 0.0023 0.0022 0.0023 0.0024 0.0038 0.0024 0.0026 0.0040 

p-value (0.7628) (0.8009) (0.8072) (0.7915) (0.6080) (0.6209) (0.6075) (0.5546) (0.5309) (0.6670) (0.6250) (0.3949) 
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Insignificant relationships between quintile portfolio returns and sensitivity to 

 2 VIX  or  2VXF  may be due to crash factors. 

5.5.2 Results for Asymmetric Portfolio Level Analysis Using  VIX 2  

Without separating market scenarios, the previous subsection does not detect any 

significant relationship between an asset’s sensitivity to volatility risk and its return. 

So, this subsection includes a dummy variable in the time-series regression model to 

separate different market conditions (see equation (5.2)).53 Such an analysis enables 

us to investigate the asymmetric effect of the volatility risk. First, this subsection 

focuses on the asymmetric effect of  2 VIX ; the corresponding results are 

presented in Table 5.4. 

The results show the asymmetric effect of aggregate volatility risk reflected by 

 2 VIX . From Panels A and C, investors do not earn premiums from the “5-1” 

long-short portfolio if they only take into account the information during the periods 

with negative futures basis (i.e., 0tD  ). From Panels B and D of Table 5.4, it is 

shown that, if investors construct their trading strategies based on information during 

the period with positive futures basis, they lose money by holding a long position in 

portfolios with the highest beta on  2 VIX  and short selling portfolios with the 

                                                 

53 When using  in equation (5.2), the average adjusted R2 of the regression model among all 

individual stocks is 20.17%. After incorporating the asymmetric effect of volatility risk, at a 10% 

significance level, 7.27% of individual stocks have significant non-zero intercept, and 8.85% of 

individual stocks have significant factor loading on the dummy variable, D

i . When using  

in equation (5.2), similar results are obtained. The average adjusted R2 of the regression model is 

20.11%. 7.24% of individual stocks have significant non-zero intercept, and 9.06% have significant 
D

i . A significant intercept indicates the failure of the asset pricing model. Although incorporating the 

asymmetric effect does not increase the adjusted R2 of the model (compared with the results discussed 

in footnote 52), it does decrease cases with significant intercept. 

 2VIX

 2VXF



 

149 

Table 5.4: Results for Asymmetric Quintile Portfolio Level Analysis by Using  VIX 2  

Notes: The following time-series regression is estimated on the final settlement date in each calendar month by using daily data: 

     
2

2 2

, , ,

VIXMKT D

i t f t i i t i i t i tt t
r r MKT VIX D VIX    


         

where =1tD  if VIX future basis is positive and zero otherwise. Then, equally- and value-weighted quintile portfolios are constructed in two different situations, =0tD  and 

=1tD . Portfolio 5 consists of stocks with the highest 
 2


 VIX

i  or 
  

2VIX D

i i


  , whereas portfolio 1 consists of stocks with the lowest  or 

  
2VIX D

i i


  . The 

“5-1” long-short portfolio is constructed by holding a long position in portfolio 5 and a short position in portfolio 1. Then, this chapter calculates the return for each portfolio 

during the holding period (10-, 20-, and 30-day) after the portfolio formation. *, **, and *** denote for significance at 10%, 5% and 1% levels, respectively. 

Panel A: Results for Equally-weighted Quintile Portfolios Formed When  0tD  
 

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0084 0.0040 0.0055 0.0056 0.0118 0.0051 0.0057 0.0062 0.0226 0.0081 0.0098 0.0123 

2 0.0059 0.0017 0.0027 0.0029 0.0082 0.0019 0.0023 0.0026 0.0172 0.0043 0.0056 0.0067 

3 0.0053 0.0013 0.0023 0.0024 0.0083 0.0022 0.0027 0.0029 0.0159 0.0037 0.0049 0.0059 

4 0.0062 0.0020 0.0030 0.0032 0.0089 0.0025 0.0030 0.0032 0.0166 0.0033 0.0047 0.0062 

5 0.0086 0.0040 0.0053 0.0055 0.0116 0.0047 0.0054 0.0059 0.0220 0.0068 0.0086 0.0117 

5-1 0.0002 -0.0000 -0.0001 -0.0001 -0.0001 -0.0004 -0.0003 -0.0003 -0.0006 -0.0013 -0.0012 -0.0006 

p-value (0.8615) (0.9808) (0.9200) (0.9333) (0.9525) (0.8436) (0.8959) (0.8991) (0.8396) (0.6409) (0.6720) (0.8438) 

Panel B: Results for Equally-weighted Quintile Portfolios Formed When 1tD  

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0098 0.0055 0.0069 0.0071 0.0134 0.0066 0.0073 0.0078 0.0252 0.0104 0.0120 0.0148 

2 0.0060 0.0020 0.0029 0.0030 0.0088 0.0026 0.0030 0.0033 0.0171 0.0045 0.0058 0.0069 

3 0.0050 0.0010 0.0019 0.0020 0.0069 0.0009 0.0012 0.0015 0.0147 0.0024 0.0036 0.0045 

4 0.0056 0.0014 0.0025 0.0026 0.0085 0.0020 0.0026 0.0029 0.0159 0.0026 0.0040 0.0055 

5 0.0079 0.0032 0.0047 0.0049 0.0112 0.0041 0.0048 0.0053 0.0213 0.0063 0.0082 0.0110 

5-1 -0.0019* -0.0022** -0.0022** -0.0022** -0.0022 -0.0025* -0.0025 -0.0025 -0.0038** -0.0041** -0.0038** -0.0039* 

p-value (0.0776) (0.0191) (0.0187) (0.0256) (0.1601) (0.0958) (0.1099) (0.1158) (0.0348) (0.0254) (0.0430) (0.0544) 

 2


 VIX

i
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(Continued) 

 

Panel C: Results for Value-Weighted Quintile Portfolios Formed When  0
t

D  

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0031 -0.0013 -0.0009 -0.0008 0.0049 -0.0020 -0.0019 -0.0017 0.0126 -0.0017 -0.0015 -0.0006 

2 0.0038 -0.0000 -0.0000 -0.0000 0.0056 -0.0002 -0.0001 -0.0001 0.0122 0.0012 0.0011 0.0011 

3 0.0044 0.0010 0.0009 0.0008 0.0065 0.0010 0.0010 0.0009 0.0118 0.0016 0.0015 0.0014 

4 0.0045 0.0008 0.0008 0.0008 0.0062 0.0004 0.0005 0.0005 0.0112 0.0000 0.0002 0.0006 

5 0.0032 -0.0012 -0.0008 -0.0008 0.0049 -0.0019 -0.0017 -0.0017 0.0099 -0.0036 -0.0031 -0.0021 

5-1 0.0001 0.0001 0.0001 0.0000 -0.0000 0.0001 0.0002 -0.0000 -0.0027 -0.0018 -0.0016 -0.0015 

p-value (0.9527) (0.9572) (0.9546) (0.9987) (0.9969) (0.9822) (0.9453) (0.9986) (0.5349) (0.6889) (0.7348) (0.7404) 

Panel D: Results for Value-Weighted Quintile Portfolios Formed When  1
t

D  

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0054 0.0010 0.0016 0.0015 0.0085 0.0016 0.0018 0.0016 0.0176 0.0044 0.0045 0.0052 

2 0.0034 -0.0003 -0.0003 -0.0003 0.0065 0.0007 0.0007 0.0007 0.0118 0.0009 0.0008 0.0007 

3 0.0042 0.0007 0.0006 0.0006 0.0062 0.0008 0.0008 0.0007 0.0109 0.0006 0.0005 0.0004 

4 0.0048 0.0009 0.0009 0.0009 0.0053 -0.0005 -0.0005 -0.0004 0.0104 -0.0010 -0.0009 -0.0004 

5 0.0022 -0.0024 -0.0018 -0.0018 0.0008 -0.0061 -0.0058 -0.0054 0.0071 -0.0071 -0.0065 -0.0045 

5-1 -0.0032 -0.0034 -0.0034 -0.0033 -0.0076** -0.0077** -0.0075* -0.0071** -0.0105** -0.0115*** -0.0110*** -0.0096*** 

p-value (0.1806) (0.1600) (0.1284) (0.1365) (0.0469) (0.0418) (0.0505) (0.0360) (0.0148) (0.0042) (0.0067) (0.0093) 
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lowest beta on  2 VIX  for different investment horizons. If investors construct an 

equally-weighted “5-1” long-short portfolio and hold the portfolio for the following 

10 trading days, Jensen’s alpha with respect to the Carhart four-factor model 

(controlling for MKT , SMB , HML  or UMD ) is -0.22% (with a p-value of 

0.0256). If investors hold the “5-1” long-short portfolio for a longer period, 30 

trading-day, the risk-adjusted return with respect to Carhart four-factor model 

becomes -0.39% (with a p-value of 0.0544). For the value-weighted “5-1” long-short 

portfolio, the risk-adjusted return with respect to Carhart four-factor model is -0.71% 

(with a p-value of 0.0360) for a 20 trading-day period, and is -0.96% (with a p-value 

of 0.0093) for a 30 trading-day period. 

The asymmetric effect of the volatility risk constructed by using VIX  is also 

documented in DeLisle, Doran and Peterson (2011); findings in this subsection are 

consistent with their paper. 

5.5.3 Results for Asymmetric Portfolio Level Analysis Using  2VXF  

After confirming the existence of the asymmetric effect of volatility risk by using 

VIX , this subsection investigates whether the traded derivative, VIX index futures 

(VXF ), plays a similar role in separating the asymmetric effect of the volatility risk. 

Instead of using  2VIX , this subsection uses  2VXF  as a proxy for the 

volatility risk in the portfolio level analysis with the asymmetric effect incorporated. 

Table 5.5 shows corresponding results. 

In Panels A and C of Table 5.5, when only taking into consideration the 

information during the period with negative futures basis, there is no significant 

relationship between a stock’s sensitivity to  2VXF  and quintile portfolio return. 

However, from Panels B and D, it is easy to find that under the assumption of a 
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30-day holding period, there is a significant and negative relationship between an 

asset’s sensitivity to  2VXF  and its return considering the information during the 

period with positive futures basis. For example, under the assumption of a 30 

trading-day holding period after portfolio formation, for the equally-weighted “5-1” 

long-short portfolio, the risk-adjusted mean return with respect to Carhart four-factor 

model is -0.35% (with a p-value of 0.0637); for the value-weighted “5-1” long-short 

portfolio, the risk-adjusted mean return with respect to Carhart four-factor model is 

-0.85% (with a p-values of 0.0461). 

Thus, the asymmetric effect of the volatility risk still exists if  2VXF  is used 

to measure volatility risk. When only considering information about volatility risk in 

the period with positive futures basis (i.e., fearful markets), there is a negative 

relationship between an asset’s return and its sensitivity to . However, such 

a relationship is insignificant when only considering information about volatility risk 

in the period with negative futures basis (i.e., calm markets).  

5.5.4 Discussions for Asymmetric Portfolio Analysis Using  2VIX  or  2VXF  

From the above analysis, it is obvious that sensitivity to  2VIX  or 

 2VXF  is significantly and negatively correlated with quintile portfolio return 

when incorporating an asymmetric effect of the volatility risk into the empirical 

analysis (Panels B and D in Tables 5.4 and 5.5). During periods with positive futures 

basis, the market is relatively more volatile, and the return on the market portfolio is 

negative. If individual stock returns are highly correlated with volatility during such 

periods, investors will take into consideration the correlation between stock returns 

and volatility risk, and returns on these stocks will be lower over a short horizon.  

 2VXF
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Table 5.5: Results for Asymmetric Quintile Portfolio Level Analysis by Using  VXF 2  

Notes: The following time-series regression is estimated on the final settlement date in each calendar month by using daily data: 

 

where =1tD  if VIX future basis is positive and zero otherwise. Then, equally- and value-weighted quintile portfolios are constructed in two different situations, =0tD  and 

=1tD . Portfolio 5 consists of stocks with the highest 
 2


 VXF

i  or 
  

2

 



VXF D

i i , whereas portfolio 1 consists of stocks with the lowest 
 2


 VXF

i  or 
  

2

 



VXF D

i i . The 

“5-1” long-short portfolio is constructed by holding a long position in portfolio 5 and a short position in portfolio 1. Then, this chapter calculates the return for each portfolio 

during the holding period (10-, 20-, and 30-day) after the portfolio formation. *, **, and *** denote for significance at 10%, 5% and 1% levels, respectively. 

Panel A: Results for Equally-weighted Quintile Portfolios Formed When  0tD  

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0077 0.0032 0.0047 0.0049 0.0115 0.0046 0.0053 0.0058 0.0223 0.0076 0.0094 0.0119 

2 0.0058 0.0016 0.0027 0.0028 0.0084 0.0021 0.0026 0.0028 0.0172 0.0044 0.0057 0.0067 

3 0.0054 0.0014 0.0023 0.0024 0.0086 0.0026 0.0030 0.0032 0.0163 0.0040 0.0052 0.0060 

4 0.0064 0.0023 0.0034 0.0035 0.0086 0.0023 0.0028 0.0030 0.0167 0.0036 0.0050 0.0065 

5 0.0090 0.0045 0.0058 0.0059 0.0116 0.0047 0.0053 0.0059 0.0219 0.0067 0.0084 0.0116 

5-1 0.0013 0.0013 0.0010 0.0010 0.0001 0.0000 0.0000 0.0001 -0.0004 -0.0008 -0.0010 -0.0003 

p-value (0.2522) (0.2780) (0.3776) (0.3905) (0.9548) (0.9920) (0.9872) (0.9529) (0.8632) (0.6906) (0.6421) (0.8899) 

Panel B: Results for Equally-weighted Quintile Portfolios Formed When 1tD  

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0100 0.0056 0.0069 0.0071 0.0131 0.0064 0.0071 0.0075 0.0245 0.0100 0.0118 0.0145 

2 0.0064 0.0023 0.0034 0.0035 0.0093 0.0030 0.0035 0.0038 0.0182 0.0053 0.0065 0.0077 

3 0.0051 0.0011 0.0020 0.0021 0.0075 0.0014 0.0018 0.0020 0.0149 0.0027 0.0039 0.0048 

4 0.0050 0.0008 0.0019 0.0020 0.0074 0.0009 0.0014 0.0017 0.0154 0.0020 0.0033 0.0048 

5 0.0078 0.0033 0.0046 0.0048 0.0114 0.0044 0.0051 0.0057 0.0213 0.0062 0.0080 0.0110 

5-1 -0.0022 -0.0023 -0.0023 -0.0023 -0.0017 -0.0020 -0.0020 -0.0019 -0.0033* -0.0038** -0.0038** -0.0035* 

p-value (0.1690) (0.1417) (0.1480) (0.1397) (0.3297) (0.2297) (0.2387) (0.2536) (0.0866) (0.0389) (0.0444) (0.0637) 

     
2

2 2

, , ,

VXFMKT D

i t f t i i t i i t i tt t
r r MKT VXF D VXF    


       
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(Continued) 

 

Panel C: Results for Value-Weighted Quintile Portfolios Formed When  0tD  

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0025 -0.0020 -0.0015 -0.0013 0.0027 -0.0042 -0.0039 -0.0037 0.0115 -0.0021 -0.0016 -0.0008 

2 0.0039 0.0001 0.0001 0.0001 0.0067 0.0010 0.0011 0.0011 0.0136 0.0028 0.0028 0.0028 

3 0.0041 0.0007 0.0005 0.0005 0.0063 0.0010 0.0009 0.0009 0.0112 0.0010 0.0009 0.0008 

4 0.0038 0.0001 0.0000 -0.0001 0.0052 -0.0007 -0.0008 -0.0009 0.0098 -0.0018 -0.0016 -0.0015 

5 0.0044 0.0001 0.0006 0.0005 0.0049 -0.0018 -0.0017 -0.0016 0.0112 -0.0025 -0.0020 -0.0009 

5-1 0.0019 0.0021 0.0021 0.0019 0.0022 0.0024 0.0022 0.0021 -0.0003 -0.0004 -0.0004 -0.0001 

p-value (0.4707) (0.4480) (0.4260) (0.4615) (0.5779) (0.5539) (0.5830) (0.6197) (0.9390) (0.9305) (0.9223) (0.9726) 

Panel D: Results for Value-Weighted Quintile Portfolios Formed When 1tD  

 10-Day Holding Period 20-Day Holding Period 30-Day Holding Period 

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0055 0.0012 0.0016 0.0016 0.0076 0.0010 0.0012 0.0011 0.0167 0.0040 0.0044 0.0049 

2 0.0043 0.0005 0.0005 0.0005 0.0069 0.0010 0.0009 0.0009 0.0135 0.0026 0.0024 0.0022 

3 0.0037 0.0003 0.0001 0.0001 0.0065 0.0011 0.0011 0.0011 0.0115 0.0013 0.0012 0.0012 

4 0.0046 0.0008 0.0009 0.0009 0.0046 -0.0014 -0.0013 -0.0012 0.0097 -0.0020 -0.0019 -0.0015 

5 0.0040 -0.0006 -0.0003 -0.0002 0.0031 -0.0039 -0.0036 -0.0033 0.0085 -0.0062 -0.0056 -0.0036 

5-1 -0.0016 -0.0018 -0.0019 -0.0018 -0.0045 -0.0049 -0.0048 -0.0044 -0.0082 -0.0102** -0.0100** -0.0085** 

p-value (0.5336) (0.4637) (0.4500) (0.4583) (0.3119) (0.2397) (0.2495) (0.2445) (0.1209) (0.0317) (0.0345) (0.0461) 
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However, if stock returns are correlated with the volatility risk in calm markets, 

investors in the market will ignore such correlations and future stock returns will not 

be affected.  

Furthermore, profits from holding a long position in portfolio 1 and a short 

position in portfolio 5 constructed based on 
 2VXF D

i i 
  

 
 when 1tD   (around 

0.35% for equally-weighted portfolio and around 0.85% for value-weighted portfolio 

for a 30-day holding period) are comparable with those obtained from holding a long 

position in portfolio 1 and a short position in portfolio 5 based on 
 2VIX D

i i 
  

 
 

when 1tD   (around 0.40% for equally-weighted portfolio and around 0.95% for 

value-weighted portfolio for a 30-day holding period). The asymmetric effect found 

from using  2VXF  is also significant. So, from the comparison, this chapter 

confirms the importance of VXF  in stock pricing and returns.  

5.6 Results for Portfolio Level Analysis Using  2VXC  and  2VXP  

The full VIX index contains information captured by both out-of-the-money call 

and put options. This section separates information captured by each kind of options 

(i.e., decomposes 2VIX  into 2VXC  and 2VXP ) and investigates the asymmetric 

effect of volatility risk (  2VXC  and  2VXP ) by using ex ante information.  

5.6.1 Results for Quintile Portfolio Level Analysis 

At the end of each calendar month, this subsection regresses an individual asset’s 

return on market excess return ( MKT ) and volatility risk factors (  2VIX , 

 2VXC , and  2VXP ) by using previous two-month daily data (shown in 
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equation (5.1)) during the period from January 1996 to August 2014.54 Then, this 

subsection constructs quintile portfolios based on factor loadings of volatility risk 

factors (
 2VIX

i


, 
 2VXC

i


 and 
 2VXP

i


) in the following calendar month and uses a 

quintile portfolio level analysis to clarify the relationship between an asset’s 

sensitivity to volatility risk factors and its return. 

From columns 1 to 4 of Table 5.6, it is obvious that, by using  2VIX  as a 

proxy for aggregate volatility risk, there is a significant and negative relationship 

between quintile portfolio returns and sensitivity to volatility risk. After controlling 

for MKT , SMB , HML  and UMD , the average return on equally-weighted “5-1” 

long-short portfolio is -0.37% (with a p-value of 0.0345).  

The remaining eight columns of Table 5.6 give us indications of the negative 

drivers between an asset’s return and its sensitivity to volatility risk. From columns 5 

to 8, if  2VXC  is used as a proxy for aggregate volatility risk, there is no evidence 

that the “5-1” long-short portfolio has significant and non-zero mean return. 

However, if quintile portfolios are formed based on factor loading on  2VXP , 

there is a significant and negative relationship between an asset’s return and its 

sensitivity to  2VXP . To be more specific, by using the equally-weighted scheme, 

the mean return on the “5-1” long-short portfolio is -0.23% per month (with a p-value 

of 0.0796). After controlling for commonly used pricing factors, Jensen’s alpha with 

respect to the Carhart four-factor model is -0.37% per month (with a p-value of 0.0087) 

for equally-weighted “5-1” long-short portfolio, and it is -0.58% per month 

                                                 

54 When using  2VIX  in equation (5.1), the average adjusted R2 of the regression model among all 

individual stocks is 14.10%. Using  2VXC  or  2VXP  in equation (5.1) gives the average 

adjusted R2 of 14.10% and 14.07%, respectively. 
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Table 5.6: Results for Two-Month Quintile Portfolio Level Analysis 
Notes: The following time-series regressions are estimated at the end of each calendar month by using previous two-month daily data: 

 

 

 

Equally- and value-weighted quintile portfolios are constructed based on 
 2


 VIX

i , 
 2


 VXC

i , or 
 2


 VXP

i . Portfolio 5 consists of stocks with the highest 
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
 VIX

i , 
 2


 VXC

i , 

or 
 2


 VXP

i , whereas portfolio 1 consists of stocks with the lowest 
 2


 VIX

i , 
 2


 VXC

i , or 
 2


 VXP

i . The “5-1” long-short portfolio is constructed by holding a long position in 

portfolio 5 and a short position in portfolio 1. Then, this chapter calculates the return for each portfolio during the following one-month after the portfolio formation. *, **, 

and *** denote for significance at 10%, 5% and 1% levels, respectively. 

Panel A: Results for Equally-weighted Quintile Portfolios 

 
 2VIX   2VXC   2VXP  

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0124 0.0028 0.0021 0.0052 0.0109 0.0013 0.0005 0.0031 0.0130 0.0034 0.0027 0.0056 

2 0.0120 0.0039 0.0023 0.0037 0.0104 0.0022 0.0006 0.0018 0.0117 0.0034 0.0019 0.0034 

3 0.0112 0.0036 0.0019 0.0028 0.0116 0.0039 0.0023 0.0032 0.0110 0.0034 0.0017 0.0025 

4 0.0105 0.0023 0.0006 0.0015 0.0116 0.0034 0.0018 0.0029 0.0102 0.0019 0.0002 0.0013 

5 0.0103 0.0003 -0.0006 0.0016 0.0119 0.0020 0.0012 0.0038 0.0107 0.0007 -0.0002 0.0020 

5-1 -0.0021 -0.0025* -0.0027* -0.0037** 0.0009 0.0007 0.0007 0.0008 -0.0023* -0.0026** -0.0029** -0.0037*** 

p-value (0.1324) (0.0853) (0.0605) (0.0345) (0.3384) (0.4910) (0.5141) (0.4663) (0.0796) (0.0414) (0.0219) (0.0087) 

   
2

2

, , ,

VIXMKT

i t f t i i t i i tt
r r MKT VIX   


     

   
2

2

, , ,

VXCMKT

i t f t i i t i i tt
r r MKT VXC   


     

   
2

2

, , ,

VXPMKT

i t f t i i t i i tt
r r MKT VXP   


     



 

158 

(Continued) 

 

Panel B: Results for Value-weighted Quintile Portfolios 

 
 2VIX   2VXC   2VXP  

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0073 -0.0016 -0.0018 -0.0002 0.0053 -0.0040 -0.0039 -0.0032 0.0078 -0.0016 -0.0011 0.0010 

2 0.0081 0.0005 0.0005 0.0008 0.0083 0.0009 0.0009 0.0006 0.0092 0.0014 0.0011 0.0016 

3 0.0085 0.0010 0.0008 0.0006 0.0075 0.0001 -0.0002 -0.0004 0.0084 0.0011 0.0008 0.0005 

4 0.0075 -0.0005 -0.0007 -0.0009 0.0096 0.0016 0.0014 0.0016 0.0058 -0.0020 -0.0022 -0.0027 

5 0.0046 -0.0053 -0.0050 -0.0050 0.0073 -0.0028 -0.0024 -0.0015 0.0048 -0.0049 -0.0046 -0.0048 

5-1 -0.0027 -0.0038 -0.0033 -0.0048 0.0021 0.0012 0.0015 0.0017 -0.0030 -0.0033 -0.0035 -0.0058* 

p-value (0.4365) (0.2961) (0.3936) (0.1876) (0.4382) (0.6422) (0.5972) (0.5162) (0.3345) (0.3312) (0.2887) (0.0739) 
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Table 5.7: Results for One-Month Quintile Portfolio Level Analysis 
Notes: The following time-series regressions are estimated at the end of each calendar month by using previous one-month daily data: 

 

 

 

Equally- and value-weighted quintile portfolios are constructed based on 
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
 VIX
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 2


 VXC
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i . Portfolio 5 consists of stocks with the highest 
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 VIX
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i , whereas portfolio 1 consists of stocks with the lowest 
 2


 VIX

i , 
 2


 VXC

i , or 
 2


 VXP

i . The “5-1” long-short portfolio is constructed by holding 

a long position in portfolio 5 and a short position in portfolio 1. Then, this chapter calculates the return for each portfolio during the following one-month after the 

portfolio formation. *, **, and *** denote for significance at 10%, 5% and 1% levels, respectively. 

Panel A: Results for Equally-weighted Quintile Portfolios 

 
 2VIX   2VXC   2VXP  

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0132 0.0035 0.0026 0.0056 0.0111 0.0014 0.0005 0.0031 0.0130 0.0034 0.0026 0.0055 

2 0.0115 0.0034 0.0018 0.0033 0.0108 0.0026 0.0010 0.0020 0.0123 0.0041 0.0027 0.0040 

3 0.0108 0.0032 0.0014 0.0023 0.0117 0.0041 0.0025 0.0034 0.0113 0.0037 0.0020 0.0029 

4 0.0106 0.0023 0.0007 0.0016 0.0116 0.0032 0.0016 0.0028 0.0102 0.0019 0.0002 0.0012 

5 0.0108 0.0007 -0.0002 0.0019 0.0117 0.0017 0.0008 0.0035 0.0100 -0.0001 -0.0011 0.0011 

5-1 -0.0024 -0.0028* -0.0029* -0.0037** 0.0006 0.0003 0.0003 0.0003 -0.0031* -0.0034** -0.0037** -0.0044** 

p-value (0.1180) (0.0620) (0.0537) (0.0480) (0.6173) (0.8323) (0.7938) (0.7767) (0.0544) (0.0263) (0.0237) (0.0102) 
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(Continued) 

 

Panel B: Results for Value-weighted Quintile Portfolios 

 
 2VIX   2VXC   2VXP  

 
Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   Return MKT   FF3F   CH4F   

1 0.0082 -0.0010 -0.0008 0.0004 0.0051 -0.0044 -0.0042 -0.0041 0.0102 0.0008 0.0014 0.0031 

2 0.0083 0.0007 0.0006 0.0009 0.0079 0.0004 0.0003 0.0002 0.0103 0.0027 0.0025 0.0030 

3 0.0080 0.0007 0.0003 0.0002 0.0085 0.0012 0.0010 0.0008 0.0073 -0.0002 -0.0005 -0.0007 

4 0.0079 -0.0003 -0.0005 -0.0009 0.0088 0.0006 0.0005 0.0006 0.0062 -0.0017 -0.0020 -0.0025 

5 0.0055 -0.0046 -0.0044 -0.0040 0.0079 -0.0022 -0.0018 -0.0010 0.0030 -0.0068 -0.0067 -0.0068 

5-1 -0.0027 -0.0036 -0.0036 -0.0044 0.0027 0.0022 0.0024 0.0032 -0.0072** -0.0076** -0.0081** -0.0100*** 

p-value (0.3678) (0.2512) (0.2436) (0.1514) (0.2315) (0.3728) (0.3317) (0.1888) (0.0173) (0.0132) (0.0118) (0.0020) 
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(with a p-value of 0.0739) for value-weighted “5-1” long-short portfolio. 

In order to construct quintile portfolios, prior analysis uses previous two-month 

daily data for time-series regressions. Thus, there is some data overlap for time-series 

regressions in different calendar months. In order to avoid this issue, this subsection 

next uses previous one-month daily data for regression model presented in equation 

(5.1).55 

Table 5.7 documents similar results to those shown in Table 5.6. If  2VIX  is 

used to measure the volatility risk, after controlling for common-used pricing factors, 

there is a significant and negative relationship between an asset’s return and its 

sensitivity to  2VIX  (columns 1 to 4). The Jensen’s alpha with respect to Carhart 

four-factor model is -0.37% (with a p-value of 0.0480) for equally-weighted “5-1” 

long-short portfolio. 

The results obtained by using  2VXC  and  2VXP  in Table 5.7 confirm 

that out-of-the-money put options drive the negative relationship between an asset’s 

return and its sensitivity to volatility risk. To be more specific, if  2VXC  is used 

to measure volatility risk, there is no significant mean return or risk-adjust return on 

“5-1” long-short portfolios (columns 5 to 8).  

Nevertheless, if  2VXP  is used to measure volatility risk, the average return 

on equally-weighted “5-1” long-short portfolio is -0.31% (with a p-value of 0.0544). 

After controlling for MKT , SMB , HML  or UMD , greater significance and more 

negative premiums are obtained from the equally-weighted “5-1” long-short portfolio 

                                                 

55 When using previous one-month daily returns to estimate equation (5.1), the average adjusted R2 are 

almost the same. When using , the average adjusted R2 is 14.15%. When using , 

the average adjusted R2 is 14.24%. When using , the average adjusted R2 is 14.17%. 

 2VIX  2VXC

 2VXP



 

162 

(-0.34% with a p-value of 0.0263 for Jensen’s alpha with respect to the market-factor 

model, -0.37% with a p-value of 0.0237 for Jensen’s alpha with respect to the 

Fama-French three-factor model, and -0.44% with a p-value of 0.0102 with respect to 

the Carhart four-factor model). By switching to a value-weighted scheme, the average 

return and Jensen’s alpha on the “5-1” long-short portfolio become more negative. 

The average return without controlling factors on the value-weighted “5-1” long-short 

portfolio is -0.72% per month (with a p-value of 0.0173). Controlling for 

common-used pricing factors makes the Jensen’s alphas more negative. For example, 

the risk-adjusted return with respect to Carhart four-factor model on the “5-1” 

long-short portfolio is -1.00% per month (with a p-value of 0.0020). 

In summary, there is a significant and negative relationship between quintile 

portfolio return and sensitivity to volatility risk factors constructed from VIX . 

However, if separating the information captured by out-of-the-money call and put 

options, the negative relationship between quintile portfolio return and sensitivity to 

volatility risk becomes more statistically significant when using out-of-the-money put 

options only (i.e.,  2VXP ). When using  2VXC  to measure the volatility risk, 

there is no significant and negative relationship between portfolio return and 

sensitivity to volatility risk.56 

                                                 

56 This chapter follows the method documented in VIX Whitepaper from CBOE for VIX replication. 

To obtain the results presented in this subsection, this chapter uses equations (5.4) to (5.7) to construct 

 and  rather than using the method with interpolation across strike prices 

documented by Bakshi, Kapadia, and Madan (2003). This chapter also calculates  and 

 by using the method with interpolation. The results are different from what I find in this 

subsection. Thus, results presented here are sensitive to the method used for volatility factor 

calculation. 

 2VXC  2VXP

 2VXC

 2VXP
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5.6.2 Discussions for Asymmetric Portfolio Analysis Using Ex Ante Information 

As discussed in section 5.5, there is no evidence of a negative relationship 

between an asset’s return and its sensitivity to volatility risk during the period from 

October 2005 to December 2014. This could be due to the fact that the market is under 

stress during the relatively short sample period used in section 5.5. In Subsection 5.6.1, 

the sample period is longer, from January 1996 to September 2014. During this period, 

this chapter provides evidence on the negative relationship between an asset’s return 

and its sensitivity to aggregate volatility risk when using  2VIX  as a proxy. 

The comparison between results obtained by using  2VXC  and those results 

obtained from  2VXP  indicates that out-of-the-money put options capture more 

relevant information about future asset returns. Different results obtained from using 

 2VXC  and  2VXP  also reflect the asymmetric effect of aggregate volatility 

risk. Out-of-the-money put options capture information about the potential future 

market with downward movements in market index and upward movements in 

aggregate volatility, whereas out-of-the-money call options capture information about 

the potential future market with upward movements in market index and downward 

movements in aggregate volatility. Thus, information captured by put options 

represents negative shocks for investors, whereas information captured by call options 

is consistent with investors’ positive news. Results discussed in Subsection 5.6.1 

provide evidence of this asymmetric effect of aggregate volatility risk obtained by 

using forward-looking information. Holding a long position in portfolio 1 and a short 

position in portfolio 5 constructed on put options brings more statistically significant 

and higher premiums than the strategy using the VIX index does. 
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Furthermore, if investors use previous one-month daily data for portfolio 

construction rather than use previous two-month daily data, the average return and 

Jensen’s alphas on arbitrage portfolios are more statistically significant. This indicates 

that more immediate data captures relevant information about future market 

conditions. 

5.7 Conclusions 

From the analysis presented previously, during the period from October 2005 to 

December 2014, it is difficult to find any unconditional significant relationship 

between an asset’s sensitivity to volatility risk and its return by using innovations in 

square of VIX index or VIX futures (  2VIX  or  2VXF ) as a proxy for the 

volatility risk. This could be due to the fact that the sample period covers the recent 

financial crisis; during the sample period, asset markets were more stressed. 

Furthermore, the average return on the market portfolio and the average volatility 

change are close to zero. So, it is difficult to detect an unconditional relationship 

between an asset’s sensitivity to volatility risk and its return. 

However, this chapter tests whether volatility risk plays different roles in 

different market conditions. This chapter uses a dummy variable defined on the VIX 

futures basis to distinguish different expectations. The empirical results provide 

evidence supporting the asymmetric effect of volatility risk on asset returns. When 

only taking into consideration the information during the period with positive VIX 

futures basis (i.e., period with VIX spot higher than VIX futures), stocks with higher 

sensitivities to volatility risk have significantly lower returns than those with lower 

sensitivities to volatility risk. That is, an asset’s return is significantly and negatively 

related to its sensitivity to volatility risk measured by  2VIX  or  2VXF  but 
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only if quintile portfolios are formed on information during periods with positive VIX 

futures basis.  

Finally, this chapter decomposes the VIX index into two components. One 

component is the volatility calculated from out-of-the-money call options (VXC ), and 

the other component is the volatility calculated from out-of-the-money put options 

(VXP ). Such a decomposition enables us to test if information captured by one type of 

option is more important to investors in verifying the existence of the asymmetric 

effect by using ex ante information. Such an analysis reveals that the asymmetric 

negative relationship between an asset’s sensitivity to volatility risk and its return is 

more significant when using  2VXP . Information captured by out-of-the-money 

put options is the main driver of the negative relationship between asset return and 

sensitivity to aggregate volatility risk. Put options contain more useful information 

about negative news in future market conditions. Such findings are expected to give 

indications to investors about how to design their trading strategies to capture 

premiums.  
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Chapter 6 Risk-Neutral Systematic Risk and Asset Returns 

6.1 Introduction 

Previous empirical studies show the failure of the CAPM in explaining asset 

returns (as discussed in section 2.2). Brennan (1971) claims that the failure of the 

CAPM could be due to the divergent borrowing and lending rate.  

Kraus and Litzenberger (1976) find another potential reason for such a 

phenomenon. Starting with the assumption that investors’ utility functions are 

non-polynomial, they extend the traditional CAPM to a two-factor model 

incorporating the effect of systematic skewness. The empirical results confirm that, in 

addition to the systematic standard deviation risk (i.e., beta), the systematic skewness 

risk (i.e., gamma) is another important pricing factor. Stocks with higher systematic 

skewness risk have lower returns than those with lower systematic skewness risk. By 

using historical data, later studies also provide supportive evidence of a positive 

skewness preference and confirm that investors require higher returns on assets with 

negative systematic skewness (Scott and Horvath, 1980; Sears and Wei, 1985 and 

1988; Fang and Lai, 1997; Harvey and Siddique, 2000).  

In Kraus and Litzenberger (1976), the systematic skewness risk is measured as 

the comovement of an asset’s return with the return variance of the market portfolio. 

Given the importance of forward-looking instruments, empirical studies incorporate 

forward-looking information in explaining why systematic skewness risk is important 

and shedding light on the relationship between systematic skewness and asset returns. 

Some studies (Ang, Hodrick, Xing and Zhang, 2006; Chang, Christoffersen and 

Jacobs, 2013) use factors constructed by using risk-neutral aggregate volatility to 

measure the second moment of the market portfolio for gamma calculation.  
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Albuquerque (2012) interprets the information content captured by aggregate 

skewness. He decomposes aggregate skewness into three different components 

(details are discussed in section 6.4.2) and empirical results show that cross-sectional 

heterogeneity in firm announcement events is the main driver of the aggregate 

skewness. 

This chapter focuses on the systematic standard deviation risk (i.e., market beta) 

and the systematic skewness risk (i.e., market gamma) of individual stocks. In the 

theoretical part, this chapter decomposes skewness of the portfolio in a different way 

compared with the method used in Albuquerque (2012). This chapter sticks to the 

two-factor model proposed by Kraus and Litzenberger (1976), and calculates beta and 

gamma by using historical information or by partially incorporating option-implied 

information.  

Then, in the empirical part, this chapter calculates historical and option-implied 

beta and gamma for constituents of the S&P500 index, and investigates how beta and 

gamma help to explain future asset returns. This chapter examines the relationship 

between asset returns and beta or gamma through portfolio level analysis among 

constituents of the S&P500 index. The analysis also looks at different investment 

time-horizons to see whether predictive power of each factor (i.e., beta or gamma) 

changes over time. In portfolio level analysis, option-implied gamma performs better 

in predicting asset returns during longer periods than historical gamma does. 

Constructing portfolios on one factor does not allow us to control for effects of 

other risk factors. Option-implied beta and gamma used in this chapter are both 

calculated by using coefficients obtained from regressions using daily historical data 

(as discussed in Subsection 6.4.3). It is expected that option-implied beta and gamma 

should be highly correlated cross-sectionally. Thus, this chapter controls for the effect 
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of gamma/beta when investigating the relationship between option-implied 

beta/gamma and asset returns by using a double-sorting method. Also, this chapter 

investigates how firm size affects stock returns with option-implied beta/gamma 

controlled. 

After investigating the relationship between portfolio returns and option-implied 

beta or gamma through portfolio level analysis, this chapter uses cross-sectional 

regressions at firm-level to examine whether beta and gamma gain significant risk 

premiums in explaining cross-section of individual stock returns. Such an analysis 

also includes firm-specific control variables, such as size (market capitalization), 

value (book-to-market ratio), momentum (historical return in previous 12 to two 

months and historical return in previous one month), and liquidity (bid-ask spread and 

trading volume in previous one month). The inclusion of control variables enables us 

to ensure whether the predictive power of beta or gamma is significant after 

considering firm-specific risk factors.  

In addition, in order to make sure whether option-implied components of beta 

and gamma have significant risk premiums, this chapter uses 25 portfolios constructed 

on size or book-to-market ratio to run Fama-MacBeth cross-sectional regressions. 

This chapter contributes to existing literature in several aspects. First, this chapter 

decomposes the aggregate skewness by using a different approach compared with 

what has been done in Albuquerque (2012). The method used in this chapter links the 

aggregate skewness to systematic skewness risk of each individual asset, which is 

captured by gamma in Kraus and Litzenberger (1976). This helps readers to better 

understand why systematic skewness is important for asset returns.  

Second, based on Kraus and Litzenberger (1976), this chapter calculates pricing 

factors, beta and gamma, by incorporating forward-looking information extracted 
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from options. Compared with historical data, option-implied information performs 

better in predicting future market conditions (as discussed in Subsection 2.5.2 and 

Section 2.7). Thus, beta and gamma calculated by using option-implied information 

are expected to capture more relevant information about future asset returns.  

The remaining of this chapter is organized as follows. Section 6.2 reviews 

relevant literature. Section 6.3 discusses data used in this chapter, and Section 6.4 

presents methodology in detail. Section 6.5 documents results for portfolio level 

analysis obtained by using historical data, while Section 6.6 presents results for 

portfolio level analysis obtained by using option-implied information. Section 6.7 

discusses empirical results for quintile portfolio level analysis. The following section, 

Section 6.8, focuses on the portfolio level analysis by double sorting to control for the 

effect of the other pricing factor. Section 6.9 shows results for cross-sectional 

regressions. The final section, Section 6.10, offers some concluding remarks. 

6.2 Related Literature 

The CAPM is derived based on the mean-variance approach and the assumption 

of quadratic utility functions, so it focuses on the relationship between mean and 

standard deviation.  

Kraus and Litzenberger (1976) claim that investors’ utility functions could be 

cubic, and such utility functions result in a preference for positive skewness. By 

focusing on first three moments of return distribution, they derive a two-factor model. 

In such a model, two pricing factors are systematic standard deviation (i.e., market 

beta) and systematic skewness (i.e., market gamma). The empirical results confirm 

theoretical predictions. Stocks with higher market betas tend to have higher returns, 

while stocks with higher market gammas tend to have lower returns. Furthermore, by 
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using this two-factor model, the zero intercept for the security market line is not 

rejected. So, compared to the CAPM, the two-factor model proposed by Kraus and 

Litzenberger (1976) can better explain variation in asset returns. 

Scott and Horvath (1980) analyze investors’ preference for skewness from the 

theoretical perspective. By looking at the utility function, they confirm the findings of 

Kraus and Litzenberger (1976). They find that investors have positive (negative) 

preference for positive (negative) skewness. 

Friend and Westerfield (1980) test the model proposed by Kraus and 

Litzenberger (1976). In their analysis, they include bonds into the portfolio. However, 

they cannot find the existence of risk premium related to skewness. In addition, they 

claim that the significance of risk premium on systematic skewness risk is sensitive to 

different market indices and testing and estimation procedures. 

Sears and Wei (1985) claim that mixed results about the risk premium on 

systematic skewness risk may result from the nonlinearity in the market risk premium. 

This theoretical paper maintains that economic prices of systematic skewness risk can 

be decomposed into two parts, the market risk premium and an elasticity coefficient 

that is proportional to the marginal rate of substitution between skewness and 

expected return. Sears and Wei (1988) carry out empirical analysis based on the 

theoretical framework. The empirical results provide evidence about the preference 

for positive skewness.  

Fang and Lai (1997) propose a three-factor model incorporating systematic 

standard deviation risk, systematic skewness risk, and systematic kurtosis risk. The 

results show that investors are willing to accept lower returns on assets with positive 

systematic skewness, while they require that stocks with higher systematic standard 

deviation or systematic kurtosis should have higher returns. 
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Harvey and Siddique (2000) also confirm that investors require higher returns on 

assets with negative systematic skewness. Furthermore, the empirical results show that 

systematic skewness could help to explain the momentum effect. 

Hung, Shackleton and Xu (2004) investigate systematic skewness and systematic 

kurtosis in the UK market. Empirical results provide limited evidence about the 

predictive power of higher co-moments due to data limitation. 

Recently, after realizing the outperformance of option-implied information in 

predicting future volatility (see Subsection 2.7.1), some studies start incorporating 

forward-looking information in their empirical analysis.  

For example, Ang, Hodrick, Xing and Zhang (2006) and Chang, Christoffersen 

and Jacobs (2013) use daily innovations in aggregate volatility index (VXO index and 

VIX index, respectively) to measure the second moment of market returns. So the 

model has two pricing factors, the market beta and sensitivity to innovations in 

aggregate volatility risk. The results show a negative relationship between an asset’s 

sensitivity to innovations in aggregate volatility index and its return.  

Some studies also investigate how option-implied information performs in 

context of portfolio selection. For example, Kostakis, Panigirtzoglou and 

Skiadopoulos (2011) extract implied distribution from option prices and compare the 

performance of forward-looking approach and backward-looking one in asset 

allocation. Rather than focusing on particular moments of return distribution (what 

this chapter does), their study extracts option-implied probability density function of 

the S&P500 index. Empirical findings show that, compared to historical distribution, 

the risk-adjusted implied distribution makes investors better off. DeMiguel, Plyakha, 

Uppal and Vilkov (2013) concentrate on how option-implied information (i.e., 

volatility, correlation and skewness) helps to improve portfolio selection (in terms of 
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portfolio volatility, Sharpe ratio, and turnover).57 Empirical results confirm that using 

option-implied information does improve the portfolio performance. Kempf, Korn and 

Sassning (2015) develop a family of fully-implied estimators of the covariance matrix 

from current prices of plain-vanilla options. By applying this forward-looking method 

to 30 stocks included in the Dow Jones Industrial Average, they find that fully-implied 

strategies outperform historical strategies, partially-implied strategies, and strategies 

based on combinations of historical and implied estimators. 

These three studies concentrate on how to use option-implied information (e.g., 

option-implied information, volatility, correlation, skewness, and covariance matrix) 

to construct investment strategies and portfolios with superior performance, which is 

out of the scope of this chapter. Following three studies, which focus on how 

option-implied information explains stock returns, are more relevant. 

Rehman and Vilkov (2012) and Stilger, Kostakis, and Poon (2016) focus on the 

predictive power of individual stocks’ model-free implied skewness, which is 

calculated by using the method derived in Bakshi, Kapadia and Madan (2003). The 

empirical results show that model-free implied skewness calculated using option data 

at the end of each calendar month is positively related future one-month ahead stock 

returns. However, the positive relationship between model-free implied skewness and 

future stock returns conflicts with the findings in Conrad, Dittmar and Ghysels (2013), 

who documents a negative relationship between model-free implied skewness and 

future stock returns. Such a difference could be due to two reasons: (1) Conrad, 

Dittmar and Ghysels (2013) use a time series average of skewness over the last three 

months and (2) the investment horizon tested in Conrad, Dittmar and Ghysels (2013) 

                                                 

57 DeMiguel, Plyakha, Uppal and Vilkov (2013) estimate option implied volatility and skewness by 

using the method derived in Bakshi, Kapadia and Madan (2003). Option-implied correlations are 

calculated by using the approach derived in Buss and Vilkov (2012). 
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is three-month period. Different from these previous studies, this chapter focuses on 

how the systematic part of standard deviation and skewness risk, not the total 

model-free implied volatility and skewness, can help to explain stock returns. 

From previous literature, there is empirical evidence about the explanatory power 

of systematic skewness risk in asset pricing. Furthermore, previous literature confirms 

the outperformance of option-implied information in predicting future market 

conditions. So, to be distinguished from previous literature, rather than investigating 

option-implied volatility and skewness of each individual stock, this chapter focuses 

on the systematic standard deviation and skewness risk, which are calculated based on 

the model proposed in Kraus and Litzenberger (1976) and incorporating 

option-implied information into the analysis. 

6.3 Data 

This chapter uses the information about the S&P500 index. The S&P500 index is 

a capitalization-weighted index of 500 stocks. Among constituents of the S&P500 

index, this chapter tests the relationship between asset returns and systematic standard 

deviation risk (i.e., beta) or systematic skewness risk (i.e., gamma).  

In order to do such analysis, daily and monthly stock data are downloaded from 

CRSP. The information about constituents of the S&P500 index is available from 

Compustat. Option data for the S&P500 index are downloaded from “Volatility 

Surface” file in OptionMetrics. OptionMetrics provides data starting from the 

beginning of 1996. So, the sample period of our analysis starts from January 1996 to 

December 2012. 

The S&P500 index includes 500 leading companies and captures approximately 

80% coverage of available market capitalization in the US market. Constituents of the 
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S&P500 index change every year. The number of such changes in each year varies 

during the sample period. Details are presented in Table 6.1. During the sample period 

from 1996 to 2012, there are 968 firms in total as constituents of the S&P500 index. 

However, among these firms, only 903 firms have available stock and option data, 

which are required for the beta and gamma calculation. That is, this chapter includes 

903 firms in the empirical analysis. 

6.4 Methodology 

6.4.1 A Two-Factor Model in Kraus and Litzenberger (1976) 

From Kraus and Litzenberger (1976), in addition to systematic standard deviation 

risk, systematic skewness risk is another pricing factor, which should be taken into 

consideration by investors.  

   1 2   i f i iE r r b b   (6.1) 

where ir  is the return on asset i , 2

i im m    measures systematic standard 

deviation risk of asset i , 3

i imm mm m   measures systematic skewness risk of asset 
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 1 W mb dW d  , and  2 W mb dW dm m . 1b  can be interpreted as the risk 

premium on beta, and 2b  can be interpreted as the risk premium on gamma. Kraus 

and Litzenberger (1976) calculate beta and gamma for an asset i  by using historical 

daily return data on individual stocks and the market index: 
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Table 6.1: Changes in the S&P500 Index Constituents 
 

Year The number of changes in constituents in each year 

1996 20 

1997 29 

1998 37 

1999 43 

2000 53 

2001 30 

2002 24 

2003 9 

2004 20 

2005 16 

2006 32 

2007 38 

2008 35 

2009 29 

2010 16 

2011 19 

2012 18 
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where 
,m tr  is the return on the market portfolio. Later analysis uses daily stock return 

during previous one-year (i.e., 252 trading days) period for historical beta and gamma 

calculation. Then, next subsection discusses how systematic skewness risk links with 

aggregate skewness. 

6.4.2 Decomposition of Aggregate Skewness 

In Albuquerque (2012), under the assumption that the portfolio is constructed by 

using an equally-weighted scheme, the non-standardized skewness (i.e., the central 

third moment, 3

Pm ) of the portfolio is decomposed into three components: firm 

skewness, co vol  (comovements of an asset’s return with the return variance of 

other firms in the portfolio), and co cov  (comovements of an asset’s return with the 

covariance between any other two assets’ returns):  
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  (6.4) 

Rather than using the decomposition method in Albuquerque (2012), this chapter 

decomposes non-standardized skewness of a portfolio (i.e., 3

Pm ) as follows: 
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where 
,P tr  is the return on the portfolio P , 

,i tr  is the return on an individual asset 

i  that is a constituent of the portfolio P , and iw  is the weight for an individual 

asset i . From equation (6.5), it is obvious that the non-standardized aggregate 

skewness is the weighted average of co-movements of an asset’s return with the return 

variance of the portfolio. Decomposing the non-standardized skewness of a portfolio 

in this way helps us to better understand the relationship between aggregate skewness 

and systematic skewness risk. 
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where iP  is defined in the same way as in Kraus and Litzenberger (1976) and it 

measures the systematic skewness risk of an asset i . From this equation, gamma of 

the portfolio, which is equal to one, is the weighted-average of gammas on all 

constituents in that portfolio. That is, gamma is a linearly additive pricing factor as 

beta. On the basis of the decomposition, this chapter examines whether the predictive 

power of the aggregate skewness could be due to the gamma factor, which is a proxy 

for systematic skewness risk. So, this chapter investigates the relationship between 

asset returns and systematic skewness risk (i.e., market gamma) rather than that 

between asset returns and aggregate skewness. 
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6.4.3 Beta and Gamma Calculation by Using Option Data 

In addition to beta and gamma calculation shown in equations (6.2) and (6.3), 

Kraus and Litzenberger (1976) propose another way to estimate beta and gamma. In 

the first step, excess return of an individual asset is regressed on market excess return 

and the squared deviation of the market excess return from its expected value: 

    
2

, , 0 1 , , 2 , , ,+i t f t i i m t f t i m t m t i tr r c c r r c r E r            (6.7) 

After obtaining coefficients (i.e., 1ic  and 2ic ) from time-series regressions by using 

historical data, the market beta and gamma for each individual stock could be 

calculated by using the following two equations: 
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where 2

m  is the variance of the market portfolio (  
2

2
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the central third moment of the market portfolio (  
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is the central fourth moment of the market portfolio (  
4

4
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). 

Previous empirical studies (French, Groth and Kolari, 1983; Buss and Vilkov, 

2012; Chang, Christoffersen, Jacobs and Vainberg, 2012) support that option-implied 

data incorporate forward-looking information and they are more efficient in reflecting 

future market conditions. Thus, in addition to calculating beta and gamma by using 

historical data (as shown in equation (6.2) and (6.3)), this chapter calculates beta and 

gamma under the risk-neutral measure by using option-implied information. Based on 

equation (6.8) and (6.9), in order to incorporate forward-looking information, this 
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chapter estimates model-free central moments (i.e., 2

m , 3

mm , and 4

mk ) by using 

option data.  

6.4.4 Central Moments Calculation under Risk-Neutral Measure 

In order to calculate 2

m , 3

mm , and 4

mk  under risk-neutral measure, this chapter 

applies the method derived in Bakshi, Kapadia and Madan (2003). This chapter first 

calculates prices for the volatility, the cubic and the quartic contracts (i.e., ( , )V t  , 

( , )W t  , and ( , )X t  , respectively) by using out-of-the-money options. 
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where  , ;C t K /  , ;P t K  is the price for the out-of-the-money call/put option on 

the S&P500 index with strike price of K  and time-to-expiration of   at time t , 

and tS  is the price of the underlying asset at time t . Then, by using ( , )V t  , 

( , )W t  , and ( , )X t  , this chapter calculates model-free central moments. 
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Thus, option-implied beta and gamma can be calculated by using the following two 

equations: 
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Then, option-implied beta and gamma for each individual stock ( Q

i  and Q

i ) are 

used in empirical analysis. From these equations, it is clear that, rather than using 

model-free volatility and skewness (which is investigated in Rehman and Vilkov 

(2012), Conrad, Dittmar and Ghysels (2013), and Stilger, Kostakis, and Poon (2016)), 

this chapter focuses on systematic standard deviation and skewness risk (i.e., Q

i  and 

Q

i ), which combine historical and option-implied information. 

6.4.5 Discussion on Option-Implied Gamma 

As discussed in the introduction section 6.1, some previous studies also 

incorporate option-implied information to calculate beta and gamma from a different 

perspective. Ang, Hodrick, Xing and Zhang (2006) use the daily innovation in VXO 

index as a proxy for the second moment of market returns: 
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where i  captures the comovement of an asset’s excess return with the innovation in 

aggregate volatility index. Thus,   is a proxy for systematic skewness risk. Chang, 

Christoffersen and Jacobs (2013) use a similar way to incorporate forward-looking 

information by replacing the VXO index with the new VIX index: 

  , , , , ,+i t f t i i m t f t i t i tr r r r VIX           (6.20) 
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Thus, the systematic skewness risk in these two studies can be written as: 
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Compared with previous literature, this chapter incorporates risk-neutral higher 

moments in a different way. Rather than changing the explanatory variables reflecting 

the second moment of the market portfolio return, this chapter sticks to the original 

model setting proposed by Kraus and Litzenberger (1976). In addition to risk-neutral 

variance, the method used in this chapter also includes risk-neutral skewness and 

kurtosis. Option-implied risk factors used in this chapter are expected to incorporate 

more useful information. Details about empirical results are presented in following 

sections. 

6.5 Results for Portfolios Constructed by Using Historical Data 

Previous literature provides supportive evidence that aggregate skewness is an 

important factor related to asset returns (Chang, Christoffersen and Jacobs, 2013; etc). 

This chapter investigates whether the effect of the aggregate skewness is due to the 

systematic skewness risk of each individual asset (i.e., whether gamma is an important 

pricing factor in addition to beta).  



 

182 

First, this section divides all available constituents of the S&P500 index into five 

quintiles based on each historical pricing factor (beta or gamma calculated by using 

equations (6.2) and (6.3), respectively). Within each quintile, equally-weighted or 

value-weighted portfolios are constructed. Then, a “5-1” long-short portfolio is 

constructed by holding a long position in portfolio with the highest factor and a short 

position in portfolio with the lowest factor. If the average return on the long-short 

portfolio is significantly non-zero, it indicates that the factor is significantly related to 

asset return. That is, the factor is important in explaining asset return, and it should be 

included in asset pricing models. 

6.5.1 Quintile Portfolio Analysis on Historical Beta 

First of all, this subsection presents results for quintile portfolios constructed 

among constituents of the S&P500 index based on historical beta, which is calculated 

by using previous 252-trading-day daily data at the end of each calendar month (as 

shown in Table 6.2). As shown in the table, after quintile portfolio construction, this 

chapter assumes that an investor’s holding period varies from one month to 12 months. 

Portfolio 1 consists of stocks with the lowest historical beta, while portfolio 5 consists 

of stocks with the highest historical beta. The “5-1” long-short portfolio is constructed 

by holding a long position in portfolio 5 and a short position in portfolio 1. Since 

quintile portfolios are constructed at the end of each calendar month, there are data 

overlaps for holding-period return calculation. In order to avoid potential serial 

autocorrelation issue, this chapter calculates p-values by using the Newey-West 

method.58 Corresponding Newey-West p-values in Table 6.2 indicate that, there is no 

significant relationship between portfolio returns and historical beta no matter how 

long the investment horizon is.  

                                                 

58 P-values presented in Table 6.2 to Table 6.14 are all calculated using the Newey-West method. 
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Table 6.2: Results for Quintile Portfolio Analysis among Constituents of the S&P500 Index (Historical Beta) 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, beta for each individual asset is calculated by using previous 252-day daily data. 

    
2252 252

, , , , , ,1 1i m t m t i t i t m t m tt t
r E r r E r r E r

 
              

 After portfolio formation, the holding period varies from one-month to 12-month. “EW” means that the portfolio is constructed by equally weighting all constituents, while 

“VW” means that the portfolio is constructed by using value-weighted scheme. Portfolio 1 consists of stocks with the lowest historical beta, and portfolio 5 consists of stocks 

with the highest historical beta. The “5-1” long-short portfolio is constructed by holding a long position in portfolio 5 and a short position in portfolio 1. The sample period is 

from January 1996 until December 2012. 

 
1 Month 2 Months 3 Months 4 Months 

 
EW VW EW VW EW VW EW VW 

1 0.0073 0.0063 0.0150 0.0132 0.0225 0.0201 0.0310 0.0279 

2 0.0086 0.0068 0.0178 0.0152 0.0269 0.0228 0.0352 0.0298 

3 0.0093 0.0064 0.0198 0.0124 0.0304 0.0201 0.0422 0.0288 

4 0.0115 0.0075 0.0239 0.0150 0.0355 0.0216 0.0469 0.0294 

5 0.0105 0.0072 0.0219 0.0147 0.0319 0.0217 0.0428 0.0287 

5-1 0.0032 0.0009 0.0069 0.0015 0.0093 0.0016 0.0118 0.0008 

Newey-West P-value (0.5872) (0.8694) (0.5383) (0.8853) (0.5604) (0.9191) (0. 5648) (0.9690) 

 
5 Months 6 Months 9 Months 12 Months 

 
EW VW EW VW EW VW EW VW 

1 0.0397 0.0358 0.0480 0.0435 0.0743 0.0667 0.1022 0.0893 

2 0.0439 0.0373 0.0531 0.0443 0.0812 0.0684 0.1080 0.0919 

3 0.0536 0.0370 0.0651 0.0454 0.0996 0.0688 0.1324 0.0924 

4 0.0589 0.0368 0.0715 0.0451 0.1080 0.0721 0.1439 0.1019 

5 0.0540 0.0363 0.0656 0.0449 0.1008 0.0710 0.1376 0.0980 

5-1 0.0143 0.0004 0.0175 0.0014 0.0266 0.0044 0.0354 0.0087 

Newey-West P-value (0.5590) (0.9857) (0.5295) (0.9575) (0.4565) (0.8951) (0.4080) (0.8280) 
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Table 6.3: Results for Quintile Portfolio Analysis on Constituents of the S&P500 Index (Historical Gamma) 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, gamma for each individual asset is calculated by using previous 252-day daily data. 

     
2 3252 252

, , , , , ,1 1i m t m t i t i t m t m tt t
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              

 After portfolio formation, the holding period varies from one-month to 12-month. “EW” means that the portfolio is constructed by equally weighting all constituents, while 

“VW” means that the portfolio is constructed by using value-weighted scheme. Portfolio 1 consists of stocks with the lowest gamma, and portfolio 5 consists of stocks with 

the highest gamma. The “5-1” long-short portfolio is constructed by holding a long position in portfolio 5 and a short position in portfolio 1. The sample period is from 

January 1996 until December 2012. 

 
1 Month 2 Months 3 Months 4 Months 

 
EW VW EW VW EW VW EW VW 

1 0.0057 0.0042 0.0145 0.0097 0.0218 0.0144 0.0308 0.0193 

2 0.0093 0.0067 0.0197 0.0156 0.0287 0.0241 0.0391 0.0352 

3 0.0098 0.0070 0.0203 0.0153 0.0312 0.0244 0.0422 0.0336 

4 0.0101 0.0101 0.0219 0.0200 0.0334 0.0290 0.0444 0.0369 

5 0.0122 0.0087 0.0218 0.0150 0.0321 0.0220 0.0417 0.0290 

5-1 0.0065** 0.0045 0.0073 0.0053 0.0103 0.0076 0.0109 0.0097 

Newey-West P-value (0.0389) (0.1956) (0.1812) (0.3711) (0.1574) (0.3308) (0.2319) (0.2895) 

 
5 Months 6 Months 9 Months 12 Months 

 
EW VW EW VW EW VW EW VW 

1 0.0425 0.0265 0.0543 0.0360 0.0851 0.0596 0.1124 0.0771 

2 0.0500 0.0459 0.0601 0.0562 0.0911 0.0796 0.1215 0.1050 

3 0.0532 0.0434 0.0654 0.0540 0.0994 0.0855 0.1301 0.1149 

4 0.0555 0.0446 0.0672 0.0527 0.1033 0.0809 0.1411 0.1090 

5 0.0489 0.0338 0.0562 0.0383 0.0850 0.0598 0.1191 0.0869 

5-1 0.0064 0.0073 0.0019 0.0023 -0.0001 0.0002 0.0067 0.0098 

Newey-West P-value (0.5583) (0.4948) (0.8848) (0.8511) (0.9948) (0.9899) (0.7716) (0.6318) 
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From portfolio level analysis, empirical results document no significant 

relationship between portfolio return and its historical beta. During previous years, 

beta is a well-documented pricing factor. There are lots of instruments that can be 

used to hedge the market risk. Previous studies also provide supportive evidence that 

historical beta cannot explain asset returns adequately.  

6.5.2 Quintile Portfolio Analysis on Historical Gamma 

This chapter also tests the relationship between an asset’s return and its 

systematic skewness risk. Table 6.3 presents results for quintile portfolios constructed 

based on historical gamma, which is calculated by using previous 252-trading-day 

daily data at the end of each calendar month.  

Looking at Table 6.3, there is no significant relationship between portfolio 

returns and historical gamma in 15 out of 16 cases. The only significant relationship 

between quintile portfolio returns and historical gamma can be found if quintile 

portfolios are constructed among constituents of the S&P500 index and investors hold 

the long-short portfolio for one month. There is a significant and positive mean return 

on “5-1” long-short portfolio for one-month predictive horizon (0.0065 per month 

with a p-value of 0.0389).  

Overall, if beta and gamma for each individual stock are calculated by using 

historical data, it is difficult to detect a significant relationship between portfolio 

returns and beta or gamma no matter how long investors hold their long-short 

portfolios.  

6.6 Results for Portfolios Constructed by Using Option Data 

This section computes beta and gamma by using option-implied information 

following the process discussed in Subsections 6.4.3 and 6.4.4.  
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This chapter uses options with different day-to-maturities to calculate 

option-implied beta and gamma, and then assumes that the length of investors’ 

holding periods should be the same as day-to-maturity of options used for beta and 

gamma calculation.59 That is, time-to-expiration of options (i.e., the predictive period 

indicated by options) matches the length of investment horizon. This section then uses 

these option-implied beta and gamma in quintile portfolio level analysis to analyze the 

relationship between portfolio returns and option-implied beta or gamma. 

6.6.1 Description of Model-Free Moments 

In order to construct the proxy for systematic standard deviation risk ( Q

i ) or 

systematic skewness risk ( Q

i ), second, third and fourth central moments of the 

S&P500 index (i.e., 2

m , 3

mm  and 4

mk ) are estimated under risk-neutral measure. 

Figure 6.1 plots risk-neutral central moments. 

The first panel shows how risk-neutral variance performs during the sample 

period. It is clear that  2
Q

m  is higher during dot-com bubble around 1999 and 

financial crisis in 2008 and 2009. The second moment of the S&P500 index translates 

to risk. Thus, aggregate risk is always higher during crisis period. The second panel 

shows the variation of risk neutral third central moment.  3
Q

mm  is always negative, 

and it is more negative when the market is more volatile. During volatile period, the 

return distribution of the S&P500 index becomes more negatively skewed. In the third 

panel, risk-neutral fourth central moment (i.e.,  4
Q

mk ) becomes higher during the 

period of market crashes.   

                                                 

59 For example, if options with 91 day-to-maturity are used to calculate option-implied beta and 

gamma, the corresponding holding period will be three-month. 
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Figure 6.1: Risk-Neutral Central Moments of The S&P500 Index 
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Figure 6.1 indicates that pair-wise correlations between any two of these three 

central moments are very high. By calculation, the correlation between  2
Q

m  and 

 3
Q

mm  is -0.9670, the correlation between  2
Q

m  and  4
Q

mk  is 0.9555, and the 

correlation between  3
Q

mm  and  4
Q

mk  is -0.9448. These three central moments are 

used for option-implied beta and gamma calculations. 

6.6.2 Quintile Portfolio Analysis on Option-Implied Beta 

This subsection presents results for quintile portfolios constructed on 

option-implied beta calculated by using options with different day-to-maturities. 

Results for quintile portfolio analysis using constituents of the S&P500 index are 

summarized in Table 6.4.  

From Table 6.4, it is difficult to detect a significant relationship between 

option-implied beta and portfolio returns, since none of “5-1” long-short portfolios has 

a significant non-zero mean return.  

Results in Table 6.4 provide no evidence about the outperformance of 

option-implied beta in explaining portfolio returns compared to historical beta. Again, 

it could be due to the fact that more and more instruments are available to hedge 

market risk which is captured by beta. It becomes difficult to explain stock returns 

only using beta. 

6.6.3 Quintile Portfolio Analysis on Option-Implied Gamma 

This chapter also calculates gamma by using option-implied information under 

risk-neutral measure. Quintile portfolios presented in Table 6.5 are constructed on 

option-implied gamma among constituents of the S&P500 index. 
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Table 6.4: Results for Quintile Portfolio Analysis on Constituents of the S&P500 Index (Option-Implied Beta) 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, this chapter first runs the following time-series regressions: 

   
2

, , 0 1 , , 2 , , ,i t f t i i m t f t i m t m t i tr r c c r r c r E r           

Then, this chapter uses 1ic  and 2ic  to calculate option-implied beta: 

   3 2

1 2

Q Q
Q

i i i m mc c m   
    

where  2
Q

m  and  3
Q

mm  are calculated under risk-neutral measure by using the method derived in Bakshi, Kapadia and Madan (2003). To calculate model-free central 

moments, this chapter uses options with different day-to-maturity. After the portfolio formation, the holding period is the same as the day-to-maturity of options. “EW” means 

that the portfolio is constructed by equally weighting all constituents, while “VW” means that the portfolio is constructed by using value-weighted scheme. Portfolio 1 

consists of stocks with the lowest option-implied beta, and portfolio 5 consists of stocks with the highest option-implied beta. The “5-1” long-short portfolio is constructed by 

holding a long position in portfolio 5 and a short position in portfolio 1. The sample period is from January 1996 until December 2012. 

 
1 Month 2 Months 3 Months 4 Months 

 
EW VW EW VW EW VW EW VW 

1 0.0081 0.0068 0.0166 0.0142 0.0259 0.0225 0.0343 0.0301 

2 0.0087 0.0066 0.0199 0.0172 0.0295 0.0267 0.0390 0.0375 

3 0.0095 0.0083 0.0195 0.0175 0.0307 0.0264 0.0423 0.0346 

4 0.0110 0.0085 0.0228 0.0175 0.0310 0.0243 0.0408 0.0327 

5 0.0101 0.0053 0.0197 0.0104 0.0302 0.0174 0.0421 0.0253 

5-1 0.0019 -0.0015 0.0031 -0.0038 0.0042 -0.0050 0.0077 -0.0048 

Newey-West P-value (0.7290) (0.7879) (0.7584) (0.7005) (0.7456) (0.6984) (0.6151) (0.7501) 

 
5 Months 6 Months 9 Months 12 Months 

 
EW VW EW VW EW VW EW VW 

1 0.0425 0.0365 0.0518 0.0444 0.0768 0.0658 0.1046 0.0899 

2 0.0491 0.0465 0.0585 0.0539 0.0914 0.0798 0.1203 0.1031 

3 0.0534 0.0444 0.0642 0.0552 0.0945 0.0848 0.1268 0.1156 

4 0.0496 0.0401 0.0631 0.0500 0.1029 0.0820 0.1377 0.1070 

5 0.0558 0.0340 0.0659 0.0418 0.0988 0.0628 0.1351 0.0887 

5-1 0.0132 -0.0025 0.0140 -0.0026 0.0220 -0.0030 0.0304 -0.0013 

Newey-West P-value (0.4422) (0.8788) (0.4668) (0.8864) (0.3495) (0.8891) (0.2443) (0.9584) 
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Table 6.5: Results for Quintile Portfolio Analysis on Constituents of the S&P500 Index (Option-Implied Gamma) 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, this chapter first runs the following time-series regressions: 

   
2

, , 0 1 , , 2 , , ,i t f t i i m t f t i m t m t i tr r c c r r c r E r           

Then, this chapter uses 1ic  and 2ic  to calculate option-implied gamma: 

      
2

4 2 3

1 2

Q Q Q
Q

i i i m m mc c k m 
  

    
    

where  2
Q

m ,  3
Q

mm and  4
Q

mk  are calculated under risk-neutral measure by using the method derived in Bakshi, Kapadia and Madan (2003). To calculate model-free 

central moments, this chapter uses options with different day-to-maturity. After the portfolio formation, the holding period is the same as the day-to-maturity of options. “EW” 

means that the portfolio is constructed by equally weighting all constituents, while “VW” means that the portfolio is constructed by using value-weighted scheme. Portfolio 1 

consists of stocks with the lowest option-implied beta, and portfolio 5 consists of stocks with the highest option-implied beta. The “5-1” long-short portfolio is constructed by 

holding a long position in portfolio 5 and a short position in portfolio 1. The sample period is from January 1996 until December 2012. 

 
1 Month 2 Months 3 Months 4 Months 

 
EW VW EW VW EW VW EW VW 

1 0.0083 0.0065 0.0154 0.0097 0.0230 0.0152 0.0310 0.0210 

2 0.0096 0.0083 0.0204 0.0182 0.0302 0.0271 0.0414 0.0367 

3 0.0097 0.0071 0.0201 0.0165 0.0305 0.0251 0.0399 0.0325 

4 0.0093 0.0085 0.0209 0.0166 0.0305 0.0230 0.0415 0.0324 

5 0.0104 0.0058 0.0218 0.0135 0.0332 0.0218 0.0448 0.0290 

5-1 0.0021 -0.0008 0.0064 0.0038 0.0102 0.0066 0.0138 0.0079 

Newey-West P-value (0.5253) (0.8336) (0.2534) (0.5471) (0.1776) (0.4240) (0.1222) (0.4241) 

 
5 Months 6 Months 9 Months 12 Months 

 
EW VW EW VW EW VW EW VW 

1 0.0400 0.0275 0.0482 0.0330 0.0769 0.0583 0.1082 0.0873 

2 0.0509 0.0454 0.0622 0.0548 0.0926 0.0780 0.1221 0.1005 

3 0.0497 0.0400 0.0604 0.0481 0.0962 0.0775 0.1304 0.1058 

4 0.0519 0.0405 0.0632 0.0511 0.0957 0.0773 0.1265 0.1007 

5 0.0578 0.0378 0.0696 0.0457 0.1030 0.0681 0.1373 0.0919 

5-1 0.0178* 0.0103 0.0214* 0.0127 0.0261* 0.0098 0.0291* 0.0046 

Newey-West P-value (0.0911) (0.3587) (0.0806) (0.3320) (0.0858) (0.5628) (0.0966) (0.8169) 
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This table presents that there is no significant relationship between 

value-weighted portfolio returns and option-implied gamma. Nevertheless, if investors 

construct equally-weighted “5-1” long-short portfolio and hold it for five months or 

longer, they can get marginally significant and positive profits. The profit on the 

equally-weighted long-short portfolio increases as investors extend their investment 

horizons.  

Results presented in this section show that option-implied gamma is weakly and 

positively related to returns on equally-weighted portfolios. 60  So compared to 

historical gamma, option-implied gamma calculated in this chapter performs better in 

predicting asset returns for longer investment horizons (five months or longer). 

6.7 Discussions 

6.7.1 Discussions on Systematic Standard Deviation Risk 

Sections 6.5 and 6.6 have some hints about the performance of historical 

beta/gamma and option-implied beta/gamma in predicting asset returns. No matter 

which method is used to calculate beta, it is difficult to detect a significant relationship 

between portfolio returns and beta.  

Compared with previous literature, empirical results about beta are different. For 

example, Buss and Vilkov (2012) document a significant and positive relationship 

between option-implied beta and one-month future return. However, in this chapter, 

there is no significant relationship between beta and asset returns no matter how long 

the predictive period used in empirical analysis is. This chapter distinguishes from 

Buss and Vilkov (2012) since this chapter uses a two-factor model, while Buss and 

                                                 

60 The findings here are inconsistent with results in previous literature. Details will be discussed in 

Subsection 6.7.2. 
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Vilkov (2012) only consider beta as a pricing factor. Thus, the setting of the model in 

our study is different.  

In addition to systematic standard deviation risk, the model used in this chapter 

also takes the systematic skewness risk into consideration. The setting of the model 

used in this chapter is more close to real capital markets. From empirical results, after 

considering the systematic skewness risk, the predictive power of beta becomes less 

important. 

6.7.2 Discussions on Systematic Skewness Risk 

In addition to beta, gamma is another important and common-used pricing factor. 

From results for portfolio level analysis on gamma, if investors construct 

equally-weighted portfolios on historical gamma and hold them for a calendar month, 

they can get significant and positive return (0.65% with a Newey-West p-value of 

0.0389). Nevertheless, the relationship between option-implied gamma and portfolio 

returns is marginally significant for longer investment horizons. If investors calculate 

gamma by using option-implied information, and hold equally-weighted “5-1” 

long-short portfolios for a longer period varying from five-month to 12-month, they 

get marginally significant profits. 

The empirical analysis in this chapter does not provide supportive evidence about 

the predictive power of beta. However, it shows a weak and positive relationship 

between option-implied gamma and asset returns for investment horizons longer than 

five months.  

It is known that beta has been widely tested during previous 50 years, and there 

are a lot of instruments, which can help to hedge the systematic standard deviation 

risk in capital markets. However, for gamma, it becomes more and more important in 

recent years. There are not too many instruments which can help to hedge the 
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systematic skewness risk due to the limitation of capital markets. In addition to beta, 

gamma is an important pricing factor, which should be included into the asset pricing 

model and considered by investors to improve their trading strategies. 

The relationship between option-implied gamma and future asset returns is 

marginally significant and positive. This conflicts with findings in previous studies 

(Ang, Hodrick, Xing and Zhang, 2006; and Chang, Christoffersen and Jacobs, 2013). 

This could be due to the fact that the setting of the model used in this chapter is 

different from what is used in previous literature. In addition, equations for beta and 

gamma calculation in Subsection 6.4.3 indicate that that beta and gamma are both 

calculated by using coefficients obtained from a regression model using historical 

daily data (i.e., 1ic  and 2ic ). So, beta and gamma are highly correlated 

cross-sectionally. Portfolio level analysis in section 6.6 only considers one pricing 

factor at each time, and ignores the effect from the other factor. At the end of each 

calendar month, this chapter sorts stocks on only one factor among all stocks without 

eliminating the other effect. So results could be not robust.  

6.7.3 Discussions on Size Effect 

From Tables 6.2 to 6.5, it is easy to find that, in all cases, equally-weighted “5-1” 

long-short portfolios have higher average returns than value-weighted “5-1” 

long-short portfolios. This indicates that, in addition to beta measuring systematic 

volatility risk and gamma measuring systematic skewness risk, firm size is of 

importance. Thus, it would be interesting to test whether the size effect is more 

important compared to option-implied beta and gamma in explaining returns on 

constituents of the S&P500 index. 
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6.8 Results for Portfolio Level Analysis by Double Sorting 

Since portfolio level analysis in Subsection 6.6 is not robust, this subsection 

controls for the effect of the other risk factor by constructing portfolios through 

double sorting. For example, to analyze the effect of option-implied beta on stock 

return with option-implied gamma controlled, this subsection first divides all stocks 

into five quintiles based on option-implied gamma. Within each gamma quintile, this 

subsection further forms five portfolios on the basis of option-implied beta. After 

constructing 25 portfolios, this subsection constructs new portfolios by equally 

weighting five portfolios with similar option-implied beta level across different 

option-implied gamma quintiles. Thus, each new portfolio has stocks with different 

option-implied gammas. This enables us to control for option-implied gamma when 

investigating the relationship between portfolio return and option-implied beta.  

This subsection first presents results for relationship between option-implied beta 

and portfolio returns with option-implied gamma or firm size controlled. Then, this 

subsection discusses results for relationship between option-implied gamma and 

portfolio returns after controlling for option-implied beta or firm size. Finally, in order 

to make sure whether the size effect is more important, this subsection analyzes how 

firm size correlates with portfolio returns after controlling for option-implied beta or 

gamma. 

6.8.1 Double-Sorting Portfolio Analysis on Option-implied Beta 

In the double-sorting portfolio level analysis, to examine whether the 

significance of the relationship between portfolio returns and option-implied beta is 

sensitive to the length of holding period, this chapter assumes that investors can hold 

their portfolios for various periods. Table 6.6 presents results for portfolios  
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Table 6.6: Results for Quintile Portfolios Constructed on Option-Implied Beta While 
Controlling for Option-Implied Gamma 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, this chapter first 

runs the following time-series regression: 
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Then, this chapter uses 1ic  and 2ic  to calculate option-implied beta and gamma: 
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Q Q
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 2
Q

m ,  3
Q

mm  and  4
Q

mk  are calculated under risk-neutral measure by using the method derived in 

Bakshi, Kapadia and Madan (2003). To calculate model-free central moments, this chapter uses options 

with different day-to-maturities. First, this chapter divides all individual stocks into five quintiles based 

on option-implied gamma. Within each gamma quintiles, this chapter constructs 5 portfolios on 

option-implied beta. Then, this chapter averages returns on 5 portfolios with similar option-implied beta 

across option-implied gamma quintiles. After the portfolio formation, the holding period is the same as 

the day-to-maturity of options. “EW” means that the portfolio is constructed by equally weighting all 

constituents, while “VW” means that the portfolio is constructed by using value-weighted scheme. 

Portfolio 1 consists of stocks with the lowest option-implied beta while controlling for option-implied 

gamma, and portfolio 5 consists of stocks with the highest option-implied beta while controlling for 

option-implied gamma. The “5-1” long-short portfolio is constructed by holding a long position in 

portfolio 5 and a short position in portfolio 1. The sample period is from January 1996 until December 

2012. 

 

  
1 2 3 4 5 5-1 

Newey-West 

P-value 

1 M 
EW 0.0081 0.0080 0.0096 0.0111 0.0105 0.0024 (0.6324) 

VW 0.0068 0.0058 0.0087 0.0073 0.0078 0.0010 (0.8229) 

2 M 
EW 0.0173 0.0175 0.0188 0.0227 0.0222 0.0048 (0.6111) 

VW 0.0142 0.0149 0.0149 0.0161 0.0165 0.0023 (0.7953) 

3 M 
EW 0.0256 0.0267 0.0287 0.0340 0.0322 0.0067 (0.6142) 

VW 0.0219 0.0233 0.0238 0.0255 0.0242 0.0024 (0.8547) 

4 M 
EW 0.0342 0.0368 0.0393 0.0452 0.0428 0.0086 (0.6017) 

VW 0.0288 0.0299 0.0329 0.0351 0.0327 0.0039 (0.8123) 

5 M 
EW 0.0430 0.0489 0.0489 0.0562 0.0531 0.0101 (0.5870) 

VW 0.0360 0.0403 0.0412 0.0438 0.0412 0.0052 (0.7816) 

6 M 
EW 0.0527 0.0592 0.0590 0.0671 0.0652 0.0126 (0.5463) 

VW 0.0432 0.0493 0.0496 0.0534 0.0499 0.0067 (0.7498) 

9 M 
EW 0.0816 0.0891 0.0899 0.1016 0.1015 0.0200 (0.4519) 

VW 0.0675 0.0718 0.0753 0.0818 0.0796 0.0121 (0.6527) 

12 M 
EW 0.1089 0.1185 0.1236 0.1345 0.1384 0.0295 (0.3331) 

VW 0.0909 0.0992 0.1036 0.1036 0.1095 0.0186 (0.5480) 
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Table 6.7: Results for Quintile Portfolios Constructed on Option-Implied Beta While 
Controlling for Firm Size 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, this chapter first 

runs the following time-series regressions 

   
2

, , 0 1 , , 2 , , ,i t f t i i m t f t i m t m t i tr r c c r r c r E r           

Then, this chapter uses 1ic  and 2ic  to calculate option-implied beta and gamma: 

   3 2

1 2

Q Q
Q

i i i m mc c m   
    

 2
Q

m ,  3
Q

mm  and  4
Q

mk  are calculated under risk-neutral measure by using the method derived in 

Bakshi, Kapadia and Madan (2003). To calculate model-free central moments, this chapter uses options 

with different day-to-maturities. First, this chapter divides all individual stocks into five quintiles based 

on firm size. Within each size quintiles, this chapter constructs 5 portfolios on option-implied beta. 

Then, this chapter averages returns on 5 portfolios with similar option-implied beta across size quintiles. 

After the portfolio formation, the holding period is the same as the day-to-maturity of options. “EW” 

means that the portfolio is constructed by equally weighting all constituents, while “VW” means that 

the portfolio is constructed by using value-weighted scheme. Portfolio 1 consists of stocks with the 

smallest option-implied beta while controlling for firm size, and portfolio 5 consists of stocks with the 

largest option-implied beta while controlling for firm size. The “5-1” long-short portfolio is constructed 

by holding a long position in portfolio 5 and a short position in portfolio 1. The sample period is from 

January 1996 until December 2012. 

  
1 2 3 4 5 5-1 

Newey-West 

P-value 

1 M 
EW 0.0085 0.0092 0.0094 0.0103 0.0099 0.0014 (0.7813) 

VW 0.0085 0.0092 0.0091 0.0098 0.0092 0.0007 (0.8827) 

2 M 
EW 0.0179 0.0199 0.0211 0.0208 0.0187 0.0008 (0.9247) 

VW 0.0180 0.0196 0.0201 0.0203 0.0174 -0.0006 (0.9504) 

3 M 
EW 0.0275 0.0296 0.0324 0.0296 0.0281 0.0006 (0.9556) 

VW 0.0277 0.0291 0.0307 0.0292 0.0265 -0.0013 (0.9142) 

4 M 
EW 0.0361 0.0404 0.0430 0.0397 0.0391 0.0031 (0.8141) 

VW 0.0364 0.0399 0.0409 0.0380 0.0370 0.0005 (0.9672) 

5 M 
EW 0.0456 0.0502 0.0521 0.0512 0.0512 0.0056 (0.6932) 

VW 0.0456 0.0498 0.0496 0.0486 0.0486 0.0030 (0.8369) 

6 M 
EW 0.0547 0.0600 0.0638 0.0637 0.0612 0.0065 (0.6730) 

VW 0.0544 0.0590 0.0616 0.0603 0.0581 0.0037 (0.8135) 

9 M 
EW 0.0810 0.0905 0.0974 0.1012 0.0940 0.0130 (0.4789) 

VW 0.0805 0.0889 0.0933 0.0972 0.0903 0.0098 (0.6078) 

12 M 
EW 0.1097 0.1202 0.1291 0.1379 0.1272 0.0175 (0.3746) 

VW 0.1082 0.1175 0.1248 0.1321 0.1232 0.0150 (0.4612) 
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constructed on option-implied beta while controlling for option-implied gamma. 

From Table 6.6, it is clear that, after controlling for option-implied gamma, 

average returns on “5-1” long-short portfolios are positive in all cases no matter how 

long the holding period is and no matter which weighting scheme is used for portfolio 

construction. However, there is no significant relationship between portfolio returns 

and option-implied beta. So results in Table 6.6 provide no evidence about the 

significant relationship between option-implied beta and portfolio returns after 

controlling for the effect of option-implied gamma.  

Table 6.7 shows results for portfolios constructed on option-implied beta with 

firm size being controlled. Results in Table 6.7 indicate that, even though “5-1” 

long-short portfolios have positive mean return in most cases, it is difficult to find a 

significant relationship between option-implied beta and portfolio returns after 

controlling for firm size.  

Results in this subsection indicate that it is difficult to detect a significant 

relationship between option-implied beta and portfolio returns after controlling for 

option-implied gamma or firm size. 

6.8.2 Double-Sorting Portfolio Analysis on Option-implied Gamma 

This subsection concentrates on the relationship between portfolio returns and 

option-implied gamma by taking into consideration the effect of option-implied beta 

or firm size.  

Table 6.8 presents results for portfolios constructed on option-implied gamma 

after controlling for option-implied beta. No matter how long the investment horizon 

is, average returns on the “5-1” long-short portfolios are always negative. The change 

in sign of average returns on “5-1” long-short portfolios could be due to the high 

correlation between option-implied beta and gamma. However, the relationship   
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Table 6.8: Results for Quintile Portfolios Constructed on Option-Implied Gamma 
While Controlling for Option-Implied Beta 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, this chapter first 

runs the following time-series regressions 

   
2

, , 0 1 , , 2 , , ,i t f t i i m t f t i m t m t i tr r c c r r c r E r           

Then, this chapter uses 1ic  and 2ic  to calculate option-implied beta and gamma: 
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i i i m m mc c k m 
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    
    

 2
Q

m ,  3
Q

mm  and  4
Q

mk  are calculated under risk-neutral measure by using the method derived in 

Bakshi, Kapadia and Madan (2003). To calculate model-free central moments, this chapter uses options 

with different day-to-maturities. First, this chapter divides all individual stocks into five quintiles based 

on option-implied beta. Within each beta quintiles, this chapter constructs 5 portfolios on 

option-implied gamma. Then, this chapter averages returns on 5 portfolios with similar option-implied 

gamma across option-implied beta quintiles. After the portfolio formation, the holding period is the 

same as the day-to-maturity of options. “EW” means that the portfolio is constructed by equally 

weighting all constituents, while “VW” means that the portfolio is constructed by using value-weighted 

scheme. Portfolio 1 consists of stocks with the lowest option-implied gamma while controlling for 

option-implied beta, and portfolio 5 consists of stocks with the highest option-implied gamma while 

controlling for option-implied beta. The “5-1” long-short portfolio is constructed by holding a long 

position in portfolio 5 and a short position in portfolio 1. The sample period is from January 1996 until 

December 2012. 

 

  
1 2 3 4 5 5-1 

Newey-West 

P-value 

1 M 
EW 0.0116 0.0099 0.0101 0.0069 0.0088 -0.0028 (0.2538) 

VW 0.0103 0.0065 0.0076 0.0048 0.0069 -0.0034 (0.1610) 

2 M 
EW 0.0235 0.0199 0.0189 0.0180 0.0182 -0.0053 (0.2955) 

VW 0.0199 0.0139 0.0152 0.0135 0.0140 -0.0058 (0.2211) 

3 M 
EW 0.0338 0.0296 0.0285 0.0283 0.0271 -0.0067 (0.3979) 

VW 0.0281 0.0197 0.0227 0.0231 0.0214 -0.0067 (0.3799) 

4 M 
EW 0.0440 0.0411 0.0379 0.0387 0.0366 -0.0074 (0.5044) 

VW 0.0359 0.0310 0.0288 0.0312 0.0281 -0.0078 (0.4572) 

5 M 
EW 0.0524 0.0527 0.0486 0.0479 0.0484 -0.0040 (0.7602) 

VW 0.0419 0.0420 0.0357 0.0385 0.0380 -0.0039 (0.7567) 

6 M 
EW 0.0623 0.0653 0.0598 0.0578 0.0580 -0.0043 (0.7770) 

VW 0.0481 0.0541 0.0448 0.0456 0.0474 -0.0007 (0.9629) 

9 M 
EW 0.0974 0.0996 0.0942 0.0879 0.0848 -0.0126 (0.5132) 

VW 0.0750 0.0817 0.0691 0.0724 0.0714 -0.0036 (0.8447) 

12 M 
EW 0.1355 0.1327 0.1243 0.1180 0.1134 -0.0221 (0.3408) 

VW 0.1057 0.1099 0.0952 0.0932 0.0981 -0.0077 (0.7303) 
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Table 6.9: Results for Quintile Portfolios Constructed on Option-Implied Gamma 
While Controlling for Firm Size 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, this chapter first 

runs the following time-series regressions 

   
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Then, this chapter uses 1ic  and 2ic  to calculate option-implied beta and gamma: 
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mm  and  4
Q

mk  are calculated under risk-neutral measure by using the method derived in 

Bakshi, Kapadia and Madan (2003). To calculate model-free central moments, this chapter uses options 

with different day-to-maturities. First, this chapter divides all individual stocks into five quintiles based 

on firm size. Within each size quintiles, this chapter constructs 5 portfolios on option-implied gamma. 

Then, this chapter averages returns on 5 portfolios with similar option-implied gamma across size 

quintiles. After the portfolio formation, the holding period is the same as the day-to-maturity of options. 

“EW” means that the portfolio is constructed by equally weighting all constituents, while “VW” means 

that the portfolio is constructed by using value-weighted scheme. Portfolio 1 consists of stocks with the 

smallest option-implied gamma while controlling for firm size, and portfolio 5 consists of stocks with 

the largest option-implied gamma while controlling for firm size. The “5-1” long-short portfolio is 

constructed by holding a long position in portfolio 5 and a short position in portfolio 1. The sample 

period is from January 1996 until December 2012. 

 

  
1 2 3 4 5 5-1 

Newey-West 

p-value 

1 M 
EW 0.0083 0.0100 0.0098 0.0096 0.0097 0.0014 (0.6094) 

VW 0.0080 0.0100 0.0096 0.0090 0.0091 0.0011 (0.6886) 

2 M 
EW 0.0157 0.0210 0.0206 0.0206 0.0205 0.0049 (0.2964) 

VW 0.0149 0.0210 0.0198 0.0198 0.0194 0.0044 (0.3573) 

3 M 
EW 0.0239 0.0306 0.0305 0.0310 0.0312 0.0073 (0.2511) 

VW 0.0229 0.0304 0.0295 0.0298 0.0295 0.0066 (0.3114) 

4 M 
EW 0.0322 0.0406 0.0405 0.0428 0.0420 0.0098 (0.1725) 

VW 0.0310 0.0403 0.0388 0.0412 0.0397 0.0088 (0.2368) 

5 M 
EW 0.0413 0.0500 0.0510 0.0537 0.0538 0.0124 (0.1294) 

VW 0.0399 0.0496 0.0485 0.0517 0.0512 0.0113 (0.1859) 

6 M 
EW 0.0499 0.0605 0.0628 0.0652 0.0646 0.0146 (0.1153) 

VW 0.0480 0.0601 0.0596 0.0630 0.0612 0.0132 (0.1721) 

9 M 
EW 0.0784 0.0907 0.0991 0.0999 0.0957 0.0173 (0.1402) 

VW 0.0766 0.0891 0.0943 0.0962 0.0920 0.0154 (0.2133) 

12 M 
EW 0.1095 0.1214 0.1325 0.1330 0.1275 0.0179 (0.1747) 

VW 0.1066 0.1192 0.1259 0.1285 0.1230 0.0165 (0.2309) 
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between option-implied gamma and portfolio returns is not statistically significant 

after controlling for option-implied beta.  

Next, this subsection investigates how option-implied gamma performs in 

explaining portfolio returns after controlling for firm size. Corresponding results are 

shown in Table 6.9. After controlling firm size, the relationship between 

option-implied gamma and portfolio returns is positive but not significant. In some 

cases, p-value is very close to 0.10. For example, if investor construct an 

equally-weighted “5-1” long-short portfolio and hold it for six months, the average 

return during six-month period is 1.46% with a p-value of 0.1153.  

From the above analysis, after controlling for option-implied beta and firm size, 

there is very limited evidence about the relationship between option-implied gamma 

and portfolio returns. 

6.8.3 Double-Sorting Portfolio Analysis on Firm Size 

Due to different performances of equally-weighted and value-weighted portfolios 

documented in section 6.6, firm size could be an important pricing factor. This 

subsection presents results for double-sorting portfolio level analysis on firm size with 

option-implied beta or gamma controlled. 

Table 6.10 presents results for portfolio level analysis on firm size with 

option-implied beta controlled. It is obvious that there is a significant and negative 

relationship between portfolio returns and firm size. The negative relationship is more 

significant for equally-weighted portfolios and for shorter (one-month and two-month 

periods) or longer holing horizons (nine-month or 12-month periods). 

Controlling for effect of option-implied gamma gives us similar results as shown 

in Table 6.11. There is a negative relationship between portfolio returns and firm size.  



 

201 

Table 6.10: Results for Quintile Portfolios Constructed on Firm Size While 
Controlling for Option-Implied Beta 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, this chapter first 

runs the following time-series regressions 
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, , 0 1 , , 2 , , ,i t f t i i m t f t i m t m t i tr r c c r r c r E r           

Then, this chapter uses 1ic  and 2ic  to calculate option-implied beta and gamma: 
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Q
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Q

mk  are calculated under risk-neutral measure by using the method derived in 

Bakshi, Kapadia and Madan (2003). To calculate model-free central moments, this chapter uses options 

with different day-to-maturities. First, this chapter divides all individual stocks into five quintiles based 

on option-implied beta. Within each beta quintiles, this chapter constructs 5 portfolios on firm size. 

Then, this chapter averages returns on 5 portfolios with similar firm size across option-implied beta 

quintiles. After the portfolio formation, the holding period is the same as the day-to-maturity of options. 

“EW” means that the portfolio is constructed by equally weighting all constituents, while “VW” means 

that the portfolio is constructed by using value-weighted scheme. Portfolio 1 consists of stocks with the 

smallest firm size while controlling for option-implied beta, and portfolio 5 consists of stocks with the 

largest firm size while controlling for option-implied beta. The “5-1” long-short portfolio is constructed 

by holding a long position in portfolio 5 and a short position in portfolio 1. The sample period is from 

January 1996 until December 2012. 

 

  
1 2 3 4 5 5-1 

Newey-West 

p-value 

1 M 
EW 0.0126 0.0111 0.0088 0.0079 0.0070 -0.0057* (0.0543) 

VW 0.0120 0.0111 0.0087 0.0080 0.0064 -0.0057* (0.0645) 

2 M 
EW 0.0268 0.0210 0.0198 0.0153 0.0156 -0.0112* (0.0637) 

VW 0.0253 0.0209 0.0194 0.0154 0.0145 -0.0109* (0.0765) 

3 M 
EW 0.0389 0.0323 0.0288 0.0239 0.0232 -0.0156* (0.0782) 

VW 0.0360 0.0325 0.0285 0.0242 0.0220 -0.0140 (0.1154) 

4 M 
EW 0.0520 0.0420 0.0396 0.0323 0.0324 -0.0196* (0.0860) 

VW 0.0486 0.0421 0.0392 0.0327 0.0304 -0.0182 (0.1132) 

5 M 
EW 0.0643 0.0533 0.0499 0.0409 0.0417 -0.0226 (0.1088) 

VW 0.0594 0.0530 0.0489 0.0412 0.0384 -0.0210 (0.1388) 

6 M 
EW 0.0777 0.0652 0.0586 0.0512 0.0506 -0.0271* (0.0968) 

VW 0.0718 0.0652 0.0575 0.0511 0.0467 -0.0251 (0.1249) 

9 M 
EW 0.1177 0.0987 0.0903 0.0797 0.0776 -0.0400* (0.0682) 

VW 0.1096 0.0988 0.0891 0.0789 0.0713 -0.0384* (0.0855) 

12 M 
EW 0.1578 0.1324 0.1203 0.1090 0.1047 -0.0531* (0.0544) 

VW 0.1481 0.1327 0.1187 0.1079 0.0954 -0.0527* (0.0601) 
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Table 6.11: Results for Quintile Portfolios Constructed on Firm Size While 
Controlling for Option-Implied Gamma 
Notes: In order to form quintile portfolios among constituents of the S&P500 index, this chapter first 

runs the following time-series regressions 
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Then, this chapter uses 1ic  and 2ic  to calculate option-implied beta and gamma: 
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mk  are calculated under risk-neutral measure by using the method derived in 

Bakshi, Kapadia and Madan (2003). To calculate model-free central moments, this chapter uses options 

with different day-to-maturities. First, this chapter divides all individual stocks into five quintiles based 

on option-implied gamma. Within each gamma quintiles, this chapter constructs 5 portfolios on firm 

size. Then, this chapter averages returns on 5 portfolios with similar firm size across option-implied 

gamma quintiles. After the portfolio formation, the holding period is the same as the day-to-maturity of 

options. “EW” means that the portfolio is constructed by equally weighting all constituents, while “VW” 

means that the portfolio is constructed by using value-weighted scheme. Portfolio 1 consists of stocks 

with the smallest firm size while controlling for option-implied gamma, and portfolio 5 consists of 

stocks with the largest firm size while controlling for option-implied gamma. The “5-1” long-short 

portfolio is constructed by holding a long position in portfolio 5 and a short position in portfolio 1. The 

sample period is from January 1996 until December 2012. 

 

  
1 2 3 4 5 5-1 

Newey-West 

p-value 

1 M 
EW 0.0132 0.0098 0.0090 0.0079 0.0074 -0.0058* (0.0913) 

VW 0.0123 0.0098 0.0088 0.0077 0.0068 -0.0055 (0.1213) 

2 M 
EW 0.0275 0.0201 0.0197 0.0157 0.0153 -0.0122* (0.0785) 

VW 0.0251 0.0201 0.0193 0.0151 0.0141 -0.0110 (0.1099) 

3 M 
EW 0.0403 0.0300 0.0301 0.0239 0.0229 -0.0174* (0.0743) 

VW 0.0369 0.0300 0.0297 0.0233 0.0211 -0.0158 (0.1067) 

4 M 
EW 0.0532 0.0412 0.0400 0.0332 0.0307 -0.0225* (0.0681) 

VW 0.0488 0.0412 0.0396 0.0328 0.0282 -0.0206* (0.0951) 

5 M 
EW 0.0657 0.0516 0.0517 0.0421 0.0389 -0.0268* (0.0759) 

VW 0.0600 0.0515 0.0509 0.0415 0.0356 -0.0243 (0.1069) 

6 M 
EW 0.0795 0.0623 0.0628 0.0508 0.0479 -0.0316* (0.0741) 

VW 0.0727 0.0621 0.0619 0.0500 0.0435 -0.0292* (0.0965) 

9 M 
EW 0.1196 0.0969 0.0950 0.0779 0.0744 -0.0452* (0.0549) 

VW 0.1103 0.0969 0.0941 0.0763 0.0677 -0.0425* (0.0727) 

12 M 
EW 0.1601 0.1301 0.1277 0.1055 0.1007 -0.0595** (0.0415) 

VW 0.1487 0.1301 0.1266 0.1034 0.0917 -0.0570* (0.0520) 
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Such a negative relationship becomes stronger when extending the investment horizon. 

For example, by holding an equally-weighted “5-1” long-short portfolio for 12-month, 

investors can lose 5.95% p.a. with a p-value of 0.0415.  

After controlling for option-implied beta or gamma, there is still a negative 

relationship between portfolio returns and firm size. This indicates that, for 

constituents of the S&P500 index, firm size is more important compared to 

option-implied beta and gamma constructed in this chapter during the period from 

1996 and 2012. 

6.9 Results for Cross-Sectional Regressions 

To investigate whether option-implied beta and gamma are priced in 

cross-section of stock returns, this subsection runs cross-sectional regressions. In this 

chapter, option-implied beta and gamma are calculated for each individual constituent 

of the S&P500 index. So, this subsection uses firm-level cross-sectional regressions. 

Returns on individual stocks during holding periods of different length are regressed 

on option-implied beta, gamma and other firm-specific variables (i.e., size, 

book-to-market ratio, historical return during previous 12 to two month, historical 

return during previous one month, bid-ask spread, and stock trading volume during 

previous one month) at the end of each month. Then, this subsection tests whether the 

slope on each risk factor has a significantly non-zero mean. If the time-series mean of 

the slope is significant and positive (negative), it indicates a significant and positive 

(negative) relationship between asset returns and the corresponding pricing factor. 

In addition, this subsection uses Fama-MacBeth two-step cross-sectional 

regressions to examine whether, in presence of other risk factors (e.g., MKT , SMB , 

HML  and UMD ), option-implied components for beta and gamma calculation have 
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significant risk premiums in explaining variation of asset returns (i.e., returns on 25 

size portfolios or 25 book-to-market portfolios).  

6.9.1 Results for Firm-Level Cross-Sectional Regressions 

First, this subsection shows results for firm-level cross-sectional regressions 

(Table 6.12). Panel A presents results obtained by running firm-level cross-sectional 

regressions among constituents of the S&P500 index without control variables. These 

results indicate that it is difficult to detect a significant relationship between asset 

returns and option-implied beta or gamma.  

Then, different firm-specific control variables are included into firm-level 

cross-sectional regressions to see whether the explanatory power of option-implied 

beta or gamma is significant when competing with other firm-specific effects. The 

corresponding results presented in Panel B of Table 6.12 show that there is no 

significant relationship between asset returns and option-implied beta even though the 

average slope on option-implied beta is always positive. The average slope on 

option-implied gamma is negative in all cases but not statistically significant. Some 

firm-specific control variables have significant average slopes. For example, Table 

6.12 documents the value effect (stocks with low book-to-market ratios have lower 

returns). However, the momentum effect does not exist. Instead, the contrarian effect 

exists when comparing to previous one-month historical returns. 

Thus, it is difficult to find evidence about the relationship between asset returns 

and option-implied beta or gamma in firm-level cross-sectional regressions. This is 

consistent with findings in portfolio level analysis. Some of firm-specific effects are 

statistically related to individual stock returns. This is consistent with pricing 

anomalies documented in previous studies (such as the value effect in Fama and 

French, 1992; the contrarian effect in De Bondt and Thaler, 1985 and 1987).  
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Table 6.12: Firm-Level Cross-Sectional Regression Results 
Notes: During the sample period from January 1996 to December 2012, at the end of each calendar month, individual stocks’ returns during holding period with different 

length are regressed on option-implied beta and gamma with and without the inclusion of different firm-specific factors at the end of each calendar month: 

i i i i ir b b         

12 2 112 2 1i i i i size i B M ret to M i r et M i bid askspread i vol i ii
r b b b size b B M b r et to M b r et M b bid - askspread b vol               

The length of the holding period is the same as the time-to-maturity of options used for beta and gamma calculation. Then, this chapter tests whether slopes on different 

factors have significantly non-zero mean through t-test. 

 

Panel A: Firm Level Cross-Sectional Regression Results without Control Variables 

 
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 9 Months 12 Months 

 0.0053 0.0110* 0.0168* 0.0222* 0.0282* 0.0338** 0.0550** 0.0744*** 

p-value (0.1134) (0.0856) (0.0718) (0.0664) (0.0556) (0.0462) (0.0140) (0.0072) 

b
 0.0054 0.0119 0.0181 0.0248 0.0299 0.0355 0.0459 0.0564 

p-value (0.3833) (0.3424) (0.3358) (0.3126) (0.3140) (0.2942) (0.2819) (0.2660) 

b  -0.0013 -0.0036 -0.0061 -0.0085 -0.0096 -0.0109 -0.0116 -0.0109 

p-value (0.3910) (0.2669) (0.2330) (0.2179) (0.2512) (0.2362) (0.2811) (0.3657) 

 

  

Intercept
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(Continued) 

 

Panel B: Firm Level Cross-Sectional Regression Results with Control Variables 

 
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 9 Months 12 Months 

Intercept  0.0053* 0.0105* 0.0163** 0.0212** 0.0280** 0.0356** 0.0568*** 0.0793*** 

p-value (0.0802) (0.0655) (0.0412) (0.0416) (0.0252) (0.0134) (0.0047) (0.0016) 

b
 0.0024 0.0052 0.0085 0.0127 0.0135 0.0134 0.0143 0.0201 

p-value (0.6487) (0.6126) (0.5680) (0.5160) (0.5620) (0.6087) (0.6666) (0.6138) 

b  -0.0011 -0.0024 -0.0041 -0.0059 -0.0058 -0.0056 -0.0041 -0.0031 

p-value (0.4332) (0.3749) (0.3277) (0.3045) (0.3939) (0.4525) (0.6426) (0.7618) 

sizeb  -0.0154 -0.0301 -0.0466 -0.0622 -0.0797 -0.1036 -0.1481 -0.1818 

p-value (0.4072) (0.3781) (0.3206) (0.3102) (0.2883) (0.2358) (0.2518) (0.2713) 

B Mb  0.0037 0.0064 0.0090 0.0113 0.0130 0.0142 0.0254* 0.0318* 

p-value (0.1053) (0.1339) (0.1431) (0.1509) (0.1621) (0.1824) (0.0735) (0.0659) 

12 2r et to Mb  -0.0046 -0.0070 -0.0105 -0.0129 -0.0167 -0.0231 -0.0313 -0.0297 

p-value (0.4180) (0.5030) (0.4547) (0.4722) (0.4493) (0.3742) (0.3331) (0.4195) 

1r et Mb  -0.0164** -0.0317** -0.0244 -0.0334* -0.0257 -0.0196 -0.0134 -0.0174 

p-value (0.0374) (0.0272) (0.1860) (0.0917) (0.2981) (0.5160) (0.7401) (0.7139) 

bid askspreadb 
 -0.0059 -0.0149 -0.0202 -0.0347 -0.0398 -0.0529 -0.0939 -0.1420 

p-value (0.6541) (0.5172) (0.5191) (0.3903) (0.4118) (0.3488) (0.2681) (0.2087) 

volb  0.7825 1.4533 2.2430 2.4358 3.2695 4.6073 8.8461 11.5051 

p-value (0.4488) (0.4177) (0.3320) (0.3932) (0.3329) (0.2392) (0.1370) (0.1757) 
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6.9.2 Results for Two-Stage Fama-MacBeth Cross-Sectional Regressions 

Both beta and gamma calculations need to use option-implied central moments, 

as well as coefficients from regression using historical information. Then, this 

subsection tests whether option-implied components for beta and gamma calculation 

have significant risk premiums. This subsection uses SMR  to denote the 

option-implied component of beta (i.e.,    3 2
Q Q

m mm  ), and SSR  to denote the 

option-implied component of gamma, (i.e.,       
2

4 2 3
Q Q Q

m m mk m
 

 
 

). These two 

components are calculated at aggregate-level, so this subsection uses traditional 

two-stage Fama-MacBeth cross-sectional regressions. Instead of using individual 

stock returns, this subsection uses returns on 25 portfolios constructed on size or 

book-to-market among constituents of the S&P500 index. First, daily portfolio excess 

returns during previous one-month period are regressed on SMR  and SSR  

calculated by using options with different day-to-maturities. In addition, the analysis 

also includes MKT , SMB , HML  and UMD  in the first-stage regressions. After 

obtaining beta coefficients on different factors, this subsection uses them as 

explanatory variables in the second-stage regressions to get the estimation of risk 

premiums. If the risk premium on one factor is significantly different from zero, it 

indicates that the pricing factor is priced in cross-section of stock returns. 

Table 6.13 presents results for the second-stage of Fama-MacBeth cross-sectional 

regressions obtained by using 25 portfolios constructed on firm size. In Panel A of this 

table, MKT  has a significant and positive risk premium in 6 out of 8 cases 

(three-month holding period or longer). In addition, SMR  has a significant and 

positive risk premium in cross-section of asset returns if the holding period varies 

from two-month to six-month. UMD  has a marginally significant and negative risk 
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premium in explaining asset returns for long-term holding period (i.e., nine-month or 

12-month periods). If portfolios are constructed by using value-weighting scheme, 

Panel B documents similar results both in significance and in magnitude compared to 

those presented in Panel A. Thus, it is clear that SMR  gains a significant risk 

premium in explaining cross-section of returns on 25 size portfolios for investment 

horizons from two-month to six-month period (significant at a 5% significance level). 

Table 6.14 shows results for 25 portfolios constructed on book-to-market ratio of 

individual firms. In Panel A of Table 6.14, it is clear that SSR  has a weakly 

significant and negative risk premium in only one case with two-month holding period 

(-0.0333 with p-value of 0.0752). SMB  has a marginally significant and negative 

risk premium in explaining returns on equally-weighted book-to-market portfolios in 

four cases (one-, three-, four- and five-month investment horizons). However, for 

value-weighted portfolios, there is no significant risk premium on SMR  or SSR . 

Thus, from Table 6.14, when explaining cross-section of returns on 25 book-to-market 

portfolios, there is weak evidence about the risk premium on SSR . 

Through two-stage Fama-MacBeth cross-sectional regressions, this subsection 

provides empirical evidence about a positive risk premium on option-implied 

component for beta (i.e., SMR ) in explaining cross-section of size portfolio returns 

over two- to six-month horizons, and very weak evidence about a negative risk 

premium on option-implied component of gamma (i.e., SSR ) in explaining 

cross-section of book-to-market portfolio returns over two-month period. In addition 

to common-used risk factors ( MKT , SMB , HML  and UMD ), option-implied 

components ( SMR  and SSR ) used in this chapter, especially SMR  for beta 

calculation, should be taken into consideration when explaining cross-section of asset 

returns. 
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Table 6.13: Two-Stage Fama-MacBeth Cross-Sectional Regression Results Using 25 Size Portfolios 
Notes: During the sample period from January 1996 to December 2012, at the end of each calendar month, this chapter forms 25 portfolios based on firm size and calculates 

equally-weighted and value-weighted returns on each trading day during previous one month, as well as returns in following months. In the first step of cross-sectional 

regressions, daily returns on each portfolio during previous one month are regressed on different market-based pricing factors to obtain factor loadings.  

, , .

MKT SMR SSR SMB HML UMD

p t f t p p t p t p t p t p t p t p tr r MKT SMR SSR SMB HML UMD                 

where    3 2
Q Q

m mSMR m   and       
2

4 2 3
Q Q Q

m m mSSR k m
 

  
 

. Then, in the second step, holding period returns on 25 portfolios are regressed on factor loadings 

cross-sectionally. 
MKT SMR SSR SMB HML UMD

p f p MKT p SMR p SSR p SMB p HML p UMD p pr r                       

Finally, this chapter uses hypothesis test to make sure whether different pricing factors have significant risk premiums in cross-section of stock returns. Results for the second 

step of Fama-MacBeth cross-sectional regressions are reported in this table. 

Panel A: Results for Fama-MacBeth Cross-Sectional Regressions Using Equally-Weighted Portfolios 

 
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 9 Months 12 Months 

Intercept  0.0046 0.0055 0.0044 0.0067 0.0075 0.0083 0.0199 0.0330 

p-value (0.2478) (0.3971) (0.6157) (0.5104) (0.5186) (0.5380) (0.2947) (0.1240) 

MKT  0.0036 0.0116 0.0216** 0.0281** 0.0361*** 0.0438*** 0.0596*** 0.0746*** 

p-value (0.4037) (0.1023) (0.0157) (0.0124) (0.0086) (0.0072) (0.0085) (0.0061) 

SMR  0.0053 0.0138** 0.0164** 0.0206*** 0.0205** 0.0220** 0.0155 0.0180 

p-value (0.1997) (0.0109) (0.0233) (0.0060) (0.0366) (0.0296) (0.2008) (0.2402) 

SSR  0.0205 -0.0102 0.0001 0.0003 0.0008 -0.0009 -0.0223 -0.0935 

p-value (0.6111) (0.6630) (0.9960) (0.9914) (0.9794) (0.9806) (0.7382) (0.3720) 

SMB  -0.0018 0.0021 -0.0006 -0.0009 0.0010 -0.0009 -0.0063 -0.0081 

p-value (0.3963) (0.5338) (0.8918) (0.8791) (0.8844) (0.9063) (0.5388) (0.5155) 

HML  0.0008 0.0019 0.0043 0.0048 0.0069 0.0084 0.0125 0.0171 

p-value (0.7462) (0.6696) (0.4864) (0.5289) (0.4546) (0.4383) (0.3591) (0.3089) 

UMD  -0.0009 -0.0022 -0.0067 -0.0098 -0.0144 -0.0220 -0.0422* -0.0517* 

p-value (0.8008) (0.7453) (0.4629) (0.3981) (0.3180) (0.2129) (0.0707) (0.0725) 
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(Continued) 

 

Panel B: Results for Fama-MacBeth Cross-Sectional Regressions Using Value-Weighted Portfolios 

 
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 9 Months 12 Months 

Intercept  0.0044 0.0055 0.0044 0.0069 0.0078 0.0082 0.0198 0.0320 

p-value (0.2700) (0.4079) (0.6260) (0.4991) (0.5070) (0.5403) (0.2867) (0.1285) 

MKT  0.0036 0.0113 0.0213** 0.0273** 0.0351*** 0.0434*** 0.0593*** 0.0748*** 

p-value (0.3907) (0.1008) (0.0139) (0.0114) (0.0089) (0.0068) (0.0074) (0.0046) 

SMR  0.0054 0.0131** 0.0145** 0.0190** 0.0202** 0.0222** 0.0193 0.0233 

p-value (0.1872) (0.0177) (0.0487) (0.0108) (0.0313) (0.0228) (0.1102) (0.1052) 

SSR  0.0108 -0.0189 -0.0054 -0.0020 -0.0036 -0.0040 -0.0231 -0.0980 

p-value (0.7820) (0.4313) (0.8291) (0.9383) (0.9074) (0.9139) (0.7326) (0.3568) 

SMB  -0.0021 0.0020 -0.0006 -0.0010 0.0006 -0.0011 -0.0059 -0.0084 

p-value (0.3200) (0.5522) (0.8948) (0.8618) (0.9293) (0.8849) (0.5636) (0.4958) 

HML  0.0010 0.0018 0.0041 0.0050 0.0074 0.0082 0.0137 0.0184 

p-value (0.6717) (0.6794) (0.4968) (0.5027) (0.4123) (0.4308) (0.3042) (0.2596) 

UMD  -0.0011 -0.0018 -0.0065 -0.0097 -0.0143 -0.0212 -0.0419* -0.0520* 

p-value (0.7519) (0.7808) (0.4682) (0.3921) (0.3081) (0.2116) (0.0612) (0.0631) 
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Table 6.14: Two-Stage Fama-MacBeth Cross-Sectional Regression Results Using 25 Book-to-Market Portfolios 
Notes: During the sample period from January 1996 to December 2012, at the end of each calendar month, this chapter forms 25 portfolios based on book-to-market ratio and 

calculates equally-weighted and value-weighted returns on each trading day during previous one month, as well as returns in following months. In the first step of 

cross-sectional regressions, daily returns on each portfolio during previous one month are regressed on different market-based pricing factors to obtain factor loadings.  

, , .

MKT SMR SSR SMB HML UMD

p t f t p p t p t p t p t p t p t p tr r MKT SMR SSR SMB HML UMD                 

where    3 2
Q Q

m mSMR m   and       
2

4 2 3
Q Q Q

m m mSSR k m
 

  
 

. Then, in the second step, holding period returns on 25 portfolios are regressed on factor loadings 

cross-sectionally.  
MKT SMR SSR SMB HML UMD

p f p MKT p SMR p SSR p SMB p HML p UMD p pr r                       

Finally, this chapter uses the hypothesis test to make sure whether different pricing factors have significant risk premiums in cross-section of stock returns. Results for the 

second step of Fama-MacBeth cross-sectional regressions are reported in this table. 

Panel A: Results for Fama-MacBeth Cross-Sectional Regressions Using Equally-Weighted Portfolios 

 
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 9 Months 12 Months 

Intercept  0.0123*** 0.0199*** 0.0267*** 0.0373*** 0.0464*** 0.0537*** 0.0795*** 0.1038*** 

p-value (0.0002) (0.0005) (0.0011) (0.0002) (0.0001) (0.0001) (0.0000) (0.0000) 

MKT  -0.0032 -0.0014 0.0016 0.0007 0.0017 0.0040 0.0071 0.0129 

p-value (0.4042) (0.8358) (0.8667) (0.9532) (0.9088) (0.8195) (0.7371) (0.5899) 

SMR  0.0024 0.0053 0.0047 -0.0044 0.0018 0.0031 0.0054 0.0123 

p-value (0.5255) (0.3062) (0.4963) (0.5044) (0.8198) (0.7032) (0.6884) (0.4212) 

SSR  0.0215 -0.0333* -0.0335 -0.0272 -0.0220 -0.0133 0.0135 0.0114 

p-value (0.2461) (0.0752) (0.1351) (0.2263) (0.4083) (0.6097) (0.8029) (0.8666) 

SMB  -0.0035* -0.0053 -0.0075* -0.0110** -0.0119* -0.0106 -0.0127 -0.0167 

p-value (0.0535) (0.1324) (0.0670) (0.0482) (0.0517) (0.1222) (0.1235) (0.1122) 

HML  0.0008 0.0020 0.0029 0.0039 0.0051 0.0074 0.0124 0.0152 

p-value (0.6857) (0.5659) (0.5708) (0.5645) (0.5349) (0.4408) (0.3143) (0.3144) 

UMD  -0.0014 -0.0013 -0.0032 -0.0052 -0.0055 -0.0044 -0.0116 -0.0168 

p-value (0.6384) (0.8047) (0.6704) (0.6143) (0.6597) (0.7563) (0.5074) (0.4401) 
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(Continued) 

 

Panel B: Results for Fama-MacBeth Cross-Sectional Regressions Using Value-Weighted Portfolios 

 
1 Month 2 Months 3 Months 4 Months 5 Months 6 Months 9 Months 12 Months 

Intercept  0.0158*** 0.0194*** 0.0250*** 0.0302*** 0.0358*** 0.0420*** 0.0702*** 0.1002*** 

p-value (0.0000) (0.0001) (0.0007) (0.0010) (0.0022) (0.0010) (0.0000) (0.0000) 

MKT  -0.0086* -0.0047 -0.0018 0.0014 0.0045 0.0062 0.0041 0.0007 

p-value (0.0512) (0.5492) (0.8575) (0.9095) (0.7601) (0.6968) (0.8369) (0.9776) 

SMR  -0.0009 0.0019 0.0068 0.0085 0.0135 0.0114 0.0074 0.0013 

p-value (0.7869) (0.7368) (0.3545) (0.3140) (0.1566) (0.3107) (0.5496) (0.9253) 

SSR  0.0064 -0.0114 -0.0048 0.0168 0.0271 0.0218 0.0308 0.0409 

p-value (0.8454) (0.6269) (0.8583) (0.5257) (0.3304) (0.4741) (0.4459) (0.5277) 

SMB  -0.0004 -0.0042 -0.0039 -0.0038 -0.0029 -0.0049 -0.0065 -0.0126 

p-value (0.8153) (0.1943) (0.2674) (0.4489) (0.6165) (0.4581) (0.4379) (0.2447) 

HML  0.0010 0.0016 0.0015 0.0018 0.0016 0.0032 0.0065 0.0109 

p-value (0.6183) (0.6765) (0.7812) (0.8010) (0.8423) (0.7391) (0.5891) (0.4643) 

UMD  0.0004 0.0006 -0.0044 -0.0056 -0.0057 -0.0024 -0.0081 -0.0130 

p-value (0.8865) (0.9099) (0.5376) (0.5496) (0.5972) (0.8488) (0.6225) (0.5241) 
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6.10 Conclusions 

Given the empirical evidence about the predictive power of higher moments 

shown in previous literature, it is expected that the mean-variance approach cannot 

fully describe capital markets. In addition to the systematic standard deviation risk, 

this chapter takes higher moments of asset returns into consideration, and focuses on 

the systematic skewness risk of individual stocks in addition to systematic standard 

deviation risk.  

In addition to using historical data for pricing factors’ calculation, this chapter 

incorporates forward-looking information. Empirical results show no evidence about 

the outperformance of option implied beta in explaining asset returns compared to 

historical beta. There are some evidence that option-implied gamma performs better 

than historical gamma in predicting asset returns over longer horizons (five-month or 

longer). The results reveal that, gamma is an important factor in asset pricing, and it 

gains marginally significant predictive power for long investment horizons. However, 

the predictive power of firm size is stronger than option-implied beta and gamma in 

explaining future returns of the S&P500 index constituents during the period from 

1996 to 2012. 

In order to make sure whether option-implied beta and gamma are priced in 

cross-section of asset returns, this chapter runs cross-sectional regressions. First, 

through firm-level cross-sectional regressions, it is difficult to find supportive 

evidence about the significant non-zero risk premiums on beta and gamma. This could 

be due to the high correlation between option-implied beta and gamma. Furthermore, 

this chapter also examines whether option-implied components used for beta and 

gamma calculation have significant risk premiums by using two-stage Fama-MacBeth 
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cross-sectional regressions. The results confirm that option-implied component for 

beta calculation contains some useful information in explaining cross-section of size 

portfolio returns over two-month to six-month horizons, whereas option-implied 

component for gamma calculation has weak explanatory power in explaining 

book-to-market portfolio returns over two-month period. 

Overall, this chapter provides weak empirical evidence that, in addition to 

systematic standard deviation risk, systematic skewness risk is of importance in 

explaining time-series and cross-section of stock returns. Furthermore, using 

option-implied information in asset pricing incorporates some useful information 

about future market conditions. 
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Chapter 7 Conclusions 

This thesis is motivated by the failure of the CAPM documented in empirical 

studies. Due to pricing anomalies found in previous literature, this thesis tries to figure 

out whether any other information could help with explanation or prediction of asset 

returns.  

Previous literature tests the asset pricing model by using the historical 

information. In order to use historical data in asset pricing, the fragile assumption that 

historical information can reflect future market conditions is essential. However, this 

assumption does not hold in real markets. In addition, due to the development of 

financial markets, more and more instruments are available for trading. These 

derivatives are expected to capture more information about future financial markets. 

Theoretical studies enable us to extract useful information from different derivatives 

and provide more advanced methodology to construct asset pricing factors. Thus, in 

recently years, more and more studies use forward-looking information in asset 

pricing. 

This thesis concentrates on how to use forward-looking information from 

different kinds of derivatives to explain or predict asset returns. This thesis consists of 

four independent chapters (presented in chapters 3, 4, 5 and 6). These chapters shed 

light on whether information contained in options or other derivatives is relevant to 

asset pricing, how to use forward-looking information more efficiently, and how to 

adjust investors’ trading strategies in order to earn premiums. 

First, chapter 3 tries to make sure whether option-implied information is related 

to asset returns. This chapter focuses on predictive power of different option-implied 

volatility measures at firm-level. This chapter constructs six volatility measures 

proposed in previous literature (i.e., call-put implied volatility spread, implied 
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volatility skew, “above-minus-below”, “out-minus-at” of calls, “out-minus-at” of puts, 

and realized-implied volatility spread) for each individual firm. The empirical results 

for portfolio level analysis confirm that there is a positive relationship between stock 

returns and call-put implied volatility spread, whereas implied volatility skew is 

negatively related to stock returns. Also, “above-minus-below”, and realized-implied 

volatility spread are marginally and negatively related to stock returns. This chapter 

also compares the predictive power of these measures at firm-level. The results 

suggest that call-put implied volatility spread contains most relevant information for 

one-month ahead asset returns, while for longer investment horizons (two-month or 

three-month), the predictive power of “out-minus-at” of calls becomes more 

significant.  

Chapter 4 constructs pricing factors by using implied volatilities extracted from 

at-the-money call and put options on individual stocks. The empirical results do not 

provide supportive evidence about significant risk premiums on volatility factors. That 

is, in most cases, volatility factors constructed in this chapter do not have significant 

risk premiums. Among all factors used in this chapter (implied volatility factor, 

market excess return, size factor, and book-to-market factor), size factor gains a 

significant risk premium in some cases. This indicates that risk related to firm size is 

relatively important. The insignificant results could be due to the short sample period 

and the data frequency used in the analysis, which are limitations of this chapter. This 

chapter uses stock return data at monthly frequency. So observations available in the 

analysis are fewer compared with other studies. If this chapter switches to use data at 

daily frequency, it is possible to get different results. 

Previous studies document empirical evidence about the existence of market risk 

premium. Due to the negative relationship between market returns and aggregate 
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volatility, Chapter 5 tests how sensitivities to aggregate volatility risk affect asset 

returns. Chapter 5 uses daily innovation in VIX index or VIX index futures as a proxy 

for the aggregate volatility risk. Different from findings in previous literature (Ang, 

Hodrick, Xing and Zhang, 2006), in Chapter 5, there is no significant evidence about 

the unconditional relationship between an asset’s return and its sensitivity to aggregate 

volatility risk. Then, in order to make sure whether the aggregate volatility risk plays 

different roles in different scenarios, this chapter uses VIX futures basis to separate 

different market conditions. The empirical results confirm that the effect of the 

volatility risk is asymmetric. If investors only take into consideration the information 

during highly volatile period, stocks with higher sensitivities to volatility risk have 

significantly lower returns than those with lower sensitivities to volatility risk. Such a 

relationship does not exist if investors only consider the information during calm 

period. Furthermore, this chapter decomposes the VIX index into two parts, volatility 

calculated by using out-of-the-money call options and volatility calculated by using 

out-of-the-money put options. The results provide evidence that out-of-money put 

options contain more useful information about future volatility risk in explaining asset 

returns. 

In order to improve the asset pricing model, Kraus and Litzenberger (1976) 

propose a two-factor model incorporating higher moments based on the CAPM. In 

addition to market beta, measuring the systematic standard deviation risk, there is 

another pricing factor, market gamma, measuring the systematic skewness risk. 

Chapter 6 investigates the systematic standard deviation and skewness risk, by 

incorporating forward-looking information. This chapter calculates an asset’s 

systematic standard deviation risk and systematic skewness risk (i.e., market beta and 

market gamma) by using option-implied higher moments. The model used in this 
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chapter is the same as the model-setting in Kraus and Litzenberger (1976). Empirical 

results show the outperformance of option-implied gamma compared to historical 

gamma over longer hozirons (five to 12 months). The results confirm that gamma is 

an important factor in asset pricing. The portfolio level analysis by double sorting 

reveals that firm size plays an important role in explaining stock returns. Then, the 

option-implied components in beta and gamma calculation gain significant risk 

premiums in traditional two-stage Fama-MacBeth cross-sectional regressions. This 

chapter provides investors another way to incorporate option-implied information. 

In summary, this thesis shows different ways to extract useful information from 

financial derivatives and to construct significant pricing factors. This thesis provides 

empirical evidence about the importance of option-implied information in asset 

pricing. Investors could get some hints about how to adjust their trading strategies 

based on the length of investment horizons and different market conditions. 
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