
Coverage Performance of MIMO-MRC in Heterogeneous
Networks: A Stochastic Geometry Perspective

Mohammad G. Khoshkholgh∗, Keivan Navaie‡, Kang G. Shin†, Victor C. M. Leung∗

∗The University of British Columbia (m.g.khoshkholgh@gmail.com, vleung@ece.ubc.ca> )
‡Lancaster University (k.navaie@lancaster.ac.uk ), †The University of Michigan (kgshin@umich.edu )

Abstract— We study the coverage performance of multi-
antenna (MIMO) communications with maximum ratio combin-
ing (MRC) at the receiver in heterogeneous networks (HetNets).
Our main interest in on multi-stream communications when
BSs do not have access to channel state information. Adopt-
ing stochastic geometry we evaluate the network-wise coverage
performance of MIMO-MRC assuming maximum signal-to-
interference ratio (SIR) cell association rule. Coverage analysis
in MIMO-MRC HetNets is challenging due to inter-stream
interference and statistical dependencies among streams’ SIR
values in each communication link. Using the results of stochastic
geometry we then investigate this problem and obtain tractable
analytical approximations for the coverage performance. We
then show that our results are adequately accurate and easily
computable. Our analysis sheds light on the impacts of important
system parameters on the coverage performance, and provides
quantitative insight on the densification in conjunction with high
multiplexing gains in MIMO HetNets. We further observe that
increasing multiplexing gain in high-power tier can cost a huge
coverage reduction unless it is practiced with densification in
femto-cell tier.

I. I NTRODUCTION

Traffic demands of cellular networks—heavily driven by the
popularity of video streaming and mobile social networking—
are rapidly growing. Densification is one of the main ap-
proaches operators are advocating to smoothly deal with this
unprecedented deluge of traffic [1]. Spectral efficiency is
expectedly growing substantially because of small communi-
cation distance and universal frequency reuse. Much better
performance will be, on the other hand, materialized by vastly
exploiting multi-antenna (MIMO) techniques.

Nevertheless, the network performance of MIMO communi-
cations in conjunction with densification and heterogeneity is
yet to be truly understood. One way to pave the road for such
comprehensive assessment of the network can be achieved by
adopting tools from stochastic geometry. It has been vastly
employed for evaluation of the various performance metrics
in wireless networks including heterogeneous networks (Het-
Nets), see, e.g., [2], [3]. Work of [2] has proposed a flexible
approach in modeling the network byK tiers of indepen-
dent Poisson point processes (PPPs) and maximum signal-
to-interference ratio (SIR) for purpose of cell association
(CA). Authors in [4] have then used the framework of [2]
for studying the coverage and rate performances of MISO
HetNets. By providing ordering results, it has been shown

that in some scenarios space-division multiple access (SDMA)
was an inferior scheme to single user eigen-beamforming. In
[5], [6] area spectral efficiency of MISO-SDMA systems has
investigated assuming CA rule of maximum average received
power. In [7] the outage performance of space-time block
codes at the transmitters and optimal combining received filters
have studied. Work of [8] has focused on the advantages of
interference cancellation in zero-forcing based received filters
in enhancing the coverage performance of cellular systems.
However, the CA rules of [7], [8], [9] are simply a duplicate
of the counterpart in single-antenna (SISO) systems of e.g.,
[3]. It is then very compelling to develop analysis based on
CA rules that comprehensively encompass the traits of MIMO
communications in improving multiplexing and diversity. For
this reason, we here focus on maximum SIR rule.

We chiefly focus on multi-stream MIMO-MRC HetNets.
Despite the practical significance of MIMO-MRC — chiefly
because of its straightforward implementations, affordable
computational complexities, and near to zero feedback over-
heads — the literature dealing with its performance in HetNets
is small. This is because of inherent complexities rooting from
residual interference among data streams each communication
link suffers from. It was however previously studied in the
literature of ad hoc communications, see. e.g., [10]. But, in
comparison to cellular systems in ad hoc communications the
network configuration lacks CA stage, which render inappli-
cability of the derived results therein for HetNets. Besides,
in the literature of MIMO communications, both ad hoc and
cellular systems, the coverage probability per a data stream
was merely studied, while in reality coverage probability per a
communication link (global coverage probability) comprising
of multiple streams is the main performance metric. To bridge
such gaps, we therefore provide accurate approximations on
the latter metric via analysis. The derived bounds explicitly
capture the impacts of important system parameters such as
density of BSs and multiplexing gains. Our results, further,
indicate that, in general, increasing multiplexing gains worsens
the coverage performance of HetNets.

II. SYSTEM MODEL

Consider downlink communication paradigms in heteroge-
neous cellular networks (HetNets) comprising ofK ≥ 1 tiers
of randomly located BSs. BSs of tieri ∈ K are spatially



distributed according to a homogenous Poisson Point Process
(PPP)Φi with given spatial densityλi ≥ 1 [2]. For mathe-
matical tractability we assume that the processes are mutually
independent. Each tieri can entirely be characterized with the
parameters: spatial density of BSsλi , transmission power of
BSsPi Watts, SIR thresholdβi ≥ 1, number of BS’s transmit
antennasN t

i , and finally the number of scheduled streams
Si ≤ min{N t

i , N
r}. Si is referred to as multiplexing gain

here. Also,Nr is the number of antennas user equipments
(UEs) possess. The modelled system of multi-stream data
communication is considered asSi pipes of information as
[11], [10]. UEs also randomly scattered across the network
and form a PPPΦU , independent of{Φi}s, with density
λU À ∑

i λi. At each given time slot only one UE is served
per active cell [12], [4], [7]. In the case that more that one UE
is associated with a given BS time-sharing per cell is adopted
for scheduling.

Note that according to Slivnayak’s theorem and thanks to
the stationarity of the point processes [13], [14], the spatial
performance of the network can be adequately obtained from
the eye of atypical UEpositioned at the origin. Let the typical
UE be associated with BSxi transmittingSi data streams.
Denoteyxi

∈ CNr×1 as the received signal:

yxi
= ‖xi‖−α

2 Hxisxi +
∑

j∈K

∑

xj∈Φj/x0

‖xi‖−α
2 Hxj sxj , (1)

where sxi = [sxi,1 . . . sxi,Si ]
T ∈ CSi×1, so that sxi,l ∼

CN (0, Pi/Si), is the transmitted streams at BSxi, Hxi ∈
CNr×Si is the intended fading channel matrix between BS
xi and the typical UE with entries independently drawn
from CN (0, 1), i.e., Rayleigh fading assumption. Transmitted
signals are assumed independent. Likewise, channel matrices
are independent.‖xi‖−α is the distance-dependent path-loss
attenuation where‖xi‖ denotes the Euclidian distance between
BS xi and the origin, andα > 2 is the path-loss exponent.
We further defineα̌ = 2/α. We assume that the typical UE
knowsHxi perfectly—perfect CSI at the receiver (CSIR).

We focus on the scenarios that BSs do not have access to
the channel state information at the transmitter (CSIT). Thus
BSs of each tieri simply turn onSi transmit antennas and air
information-bearing signals with fixed transmission powerPi

that is equally divided among the transmitted data streams—
open-looptechnique [10], [11]. For the specific purpose of
this paper maximum ratio combining (MRC) at the receiver
is considered. Accordingly, for decodingli-th stream of data
the typical receiver extractsli-th column of matrixHxi and
multiplies its corresponding conjugate with the received vector
(1). Let r.v.s Hmrc

xi,li
be chi-squared with2Nr DoFs,H̃mrc

xi,li
be

chi-squared with2(Si − 1) DoFs, andGmrc
xj ,li

be chi-squared
with DoF 2Sj , respectively, standing for the intending channel
power gains associated withli-th data stream, inter-stream
interference on streamli caused by streamsl′i 6= li, and
inter-cell interference (ICI) caused by BSsxj 6= xi on data
streamli. Regarding [10] we can show that the SIR expression

associated withli-th data stream is

SIRmrc
xi,li =

Pi

Si
‖xi‖−αHmrc

xi,li

Pi

Si
‖xi‖−αH̃mrc

xi,li
+

∑
j∈K

∑
xj∈Φj/xi

Pj

Sj
‖xj‖−αGmrc

xj ,li

.

(2)
Per each stream and across streams all fading coefficients are
independent. Also, (2) is identically, but notindependently,
distributed across streams. The nominator and denominator of
(2) are respectively represent the effective power of intended
signal of streamli and inter-stream interference plus ICI.

III. C OVERAGE ANALYSIS

We merely consider fixed-rate transmission (FRT) scheme,
in which the transmission rate on each streamli is constant,
and equal toRxi,li = log (1 + βi) bit/sec/Hz, assuming that
the typical UE is associated with BSxi. Typical UE is
associated with the best BS that its weakest stream is stronger
than the corresponding SIR threshold. To declare the coverage
per communication link, FRT scheme mandates that at allSi

scheduled streams the corresponding SIR values satisfy the
required SIR thresholdβi ≥ 1, i.e., the typical UE is claimed
to be in coverage if set

Afrt =
{
∃i ∈ K : max

xi∈Φi

min
li=1,...,Si

SIRmrc
xi,li ≥ βi

}
, (3)

is nonempty. We therefore define coverage probabilityomrc
frt =

P{Afrt 6= ∅}. Note that exact evaluation ofomrc
frt is very

complex mainly because of dependency of SIR values (2)
across streams per each communication link as well as the
inter-stream interference on each stream. We thus in the
following resort to approximating the coverage probability.

Proposition 1: With MIMO-MRC and maximum SIR CA
rule, the coverage performance can be approximated as

omrc
frt ≤

∑
i∈K

π

C̃(α)

(
Pi

Siβi

)α̌
λi

Sα̌
i

(
Nr−1∑
ri=0

(−1)ri

ri!
dri

dtri
t
− α̌

Si

(1+tβi)
Si−1

∣∣∣
t=1

)Si

K∑
j=1

λj

(
Pj

Sj

)α̌
(

Γ( α̌
Si

+Sj)

Γ(Sj)

)Si
.

(4)
Proof: See the Appendix.

(4) demonstrates impacts of many important system pa-
rameters such as deployment density, transmission power,
multiplexing gain, and SIR threshold of tiers. Note that, in
general the nominator and denominator of (4) are respectively
corresponding to the intended communication link and ICI.
On the other hand, the impact of inter-stream interference
is captured by(1 + tβi)

Si−1 that solely depends on SIR
threshold and multiplexing gain.

Please note that evaluation of (4) is actually computationally
affordable. But, it is yet possible to provide bounds excluding
the evaluation of high-order derivatives as is carried out in
following:

Proposition 2: Another approximation on the coverage
probability of MIMO-MRC system with maximum SIR CA



rule might be

omrc
frt ≈ π

C̃(α)

∑

i∈K

λi

(
Pi

S2
i βi

)α̌ (
Nr−1∑
ri=0

Γ( α̌
Si

+
Si−1

2 +ri)

Γ( α̌
Si

+
Si−1

2 )Γ(1+ri)

Si−1∑
li=0

(Si−1
li

)β
li
i

)Si

∑
j∈K λj

(
Pj

Sj

)α̌
(

Γ( α̌
Si

+Sj)

Γ(Sj)

)Si
,

(5)
Proof: To prove this claim, we apply the following heuristic
approximation

(1 + tiβi)
Si−1 =

Si−1∑

li=0

(
Si − 1

li

)
βli

i tli
i ≈ t

Si−1
2

i

Si−1∑

li=0

(
Si − 1

li

)
βli

i .

Using this, equation (10) in appendix is reduced to

=
∑
i∈K

π

C̃(α)

(
Pi

Siβi

)α̌
λi

Sα̌
i

(
Si−1∑
li=0

(
Si−1

li

)
βli

i

)−Si

K∑
j=1

λj

(
Pj

Sj

)α̌
(

Γ( α̌
Si

+Sj)

Γ(Sj)

)Si




∞∫

0

LF̄Hmrc
i

(ti)

t
α̌
Si

Si−1
2

i




Si

.

The claimed result is then obtained recalling thatHrmc
i is chi-

squared r.v. with DoF2Nr.
Corollary 1: Let Si = 1 ∀i and Nr = 1, thus (4) is

reduced tooSISO = π
C(α)

∑
i∈K λi

(
Pi
βi

)α̌

∑
j∈K λjP α̌

j
, which coincides with

the result of [2] of single-antenna (SISO) HetNets.
Corollary 2: Let Si = 1 ∀i thus oSIMO =

oSISO

Nr−1∑
r=0

Γ(α̌+r)
Γ(α̌)Γ(1+r) .

Note that in the case of SIMO scenario the results are
actually accurate. On the other hand, by comparing SISO and
SIMO cases it is easy to confirm that

oSIMO

oSISO
=

Nr−1∑
r=0

Γ(α̌ + r)
Γ(α̌)Γ(1 + r)

.

Using this result, one may show that by applying Kershaws
inequality [15] we have

Γ(α̌)
oSIMO

oSISO
≥

Nr−1∑
r=0

(r + 0.5α̌)α̌−1 ≈
Nr−1∫

0

(z + 0.5α̌)α̌−1
dz,

or equivalentlyozf
SIMO

oSISO
∝ (Nr)α̌.

IV. SIMULATION RESULTS

In this section we present simulation results. For clarity we
setK = 2. The simulation results are based on Monte Carlo
technique.

We study the accuracy of the analytical findings of the paper
against deploying densities of the BSs in Fig. 1 and Fig. 2.
In the former (the later) we fixλ1 = 10−4 (λ2 = 10−4)
and changeλ2 (λ1). As it is seen Proposition 1 provides
accurate bound on the coverage probability while the accuracy
of Proposition 2 is generally questionable. However, there
are scenarios, see, Fig. 2 case ofS1 = 6 and S2 = 2, that
Proposition 2 is also accurate.
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Fig. 1. λ1 = 10−4. α = 4, Nr = 10, P1 = 50 W, P1 = 10W, β1 = 2,
andβ2 = 5.
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Fig. 2. λ2 = 10−4. α = 4, Nr = 10, P1 = 50 W, P1 = 10W, β1 = 2,
andβ2 = 5.

Moreover, both of these illustrations highlight many im-
portant trends showing the impacts of multiplexing gains and
densifications on the coverage performance.

First, as Fig. 1 reveals whenλ1 is fixed (the density of
high-power BSs in tier 1) by increasingλ2 smaller coverage
will follow if S1 = S2. In the contrary, Fig. 2 indicates that
whenλ2 is kept fixed (density of low-power BSs in tier 2) by
increasingλ1 higher coverage performance is resulted again
whenS1 = S2. In fact, for the cases that the multiplexing gains
are the same across the tiers, the coverage probability could
decrease/increase depends upon the tier that the densification
is practiced in. The findings of these illustrations indicate
that for such cases it is better to densify the tier with higher
transmission power.

Second,on the other hand, Fig. 1 shows that for fixed
λ1, increasingλ2 is beneficial and renders higher coverage
performance whenS1 = 6 and S2 = 2. Fig. 2 further
highlights that whenS1 = 6 and S2 = 2 and λ2 is fixed,
increasingλ1 extremely exacerbates the coverage probability.
Consequently, in scenarios that multiplexing gains are not the
same it is better to densify the tier corresponding to low-power
and low multiplexing gain.

Third, for high values ofλ2 Fig. 1 indicates that both
scenarios ofS1 = 6, S2 = 2 and S1 = S2 = 2 perform the
same. While, Fig. 2 indicates that for high values ofλ1 there is
a huge gap between the coverage probability of regimeS1 = 6,



S2 = 2 and coverage probability of regimeS1 = S2 = 2. In
the other words, when the network is ultra-dense in low-power
tier, it is possible to increase the multiplexing gain of high-
power tier without worrying about the coverage performance.

In summary, the above observations suggest that increasing
the density of low power BSs (tier two) should be interpreted
as a welcome for the growth of the multiplexing gains of tier 1
without damaging the coverage performance. Moreover, if we
are allowed to practice densification in tier 1, it could render
higher performance provided that the similar multiplexing
gains are set across the all tiers.

According to the results of both Fig. 1 and Fig. 2 we
observe that increasing the density of low power BSs of tier
2 yields a much profound impact on the coverage probability
than does tier 1. For example, 10 fold densification of tier
2 (tier 1) changes the coverage performance by more than
30% (10%). This is actually very important from practical
viewpoints because installing more low-power BSs is more
economically feasible than increasing the density of high-
power BSs of tier 1. Finally, both of these figures confirm that
for large values ofλ1 as well asλ2 the coverage probability
is stable and does not responde to densities, which is known
as scale invariancy phenomenon in the literature [2].

V. CONCLUSIONS

We studied the coverage performance of multi-antenna
(MIMO) communications with multi-stream maximum ratio
combining (MRC) at the receiver in heterogenous networks
(HetNets) when BSs did not have access to channel state infor-
mation. We utilized powerful tools of stochastic geometry and
PPP to comprehensively evaluate the network-wise coverage
performance of MIMO-MRC when the cell association rule
was maximum signal-to-interference ratio (SIR). Our analysis
provided accurate, and easy-to-use bound of the coverage per-
formance. Combined with simulations, it further demonstrated
various important aspects of denseness and high multiplexing
gains in HetNets. It was observed that increasing multiplexing
gains could severely damage the coverage probability unless it
practiced in high-power, low density tier in conjunction with
densified low-power tier.
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APPENDIX: PROOF OFPROPOSITION1

According to Lemma 1 in [2] and recalling that we have
assumedβi ≥ 1 ∀i, we can write

omrc
frt =

∑

i∈K
E

∑

xi∈Φi

1
(

min
l=1,...,Si

SIRmrc
xi,l ≥ βi

)
. (6)

(6) is further simplified as:

omrc
frt =

∑
i∈K

2πλi

∞∫

0

xiP
{

min
li=1,...,Si

SIRmrc
xi,li ≥ βi

}
dxi

=
∑
i∈K

2πλi

∞∫

0

xiE{Φj}P
{
SIRmrc

xi,li ≥ βi : ∀li
∣∣{Φj}

}
dxi

=
∑
i∈K

2πλi

∞∫

0

xiE{Φj}

Si∏

li=1

P
{
SIRmrc

xi,l ≥ βi

∣∣{Φj}
}

dxi (7)

where the first step is because of Campbell’s theorem [13], and
in step 4 we have used the fact that conditioned on processes
Φjs SIR values across streams are statistically independent.
For fix value of xi, we now provide an expression for
P

{
SIRmrc

xi,li ≥ βi

∣∣{Φj}
}

as follows

P
{
SIRmrc

xi,li ≥ βi

∣∣{Φj}
}

= P
{

Hmrc
xi,li ≥

Siβix
α
i

Pi

Pi

Si
x−α

i H̃mrc
xi,li

+
Siβix

α
i

Pi

∑
j∈K

∑

xj∈Φj/xi

Pj

Sj
‖xj‖−αGmrc

xj ,li

∣∣{Φj}
}

=

∞∫

0

L−1
F̄Hmrc

i

(ti)
∏
j∈K

∏

xj∈Φj/xi

EGmrc
xj,li

e
−tiβi

Si
Pi

xα
i

Pj
Sj
‖xj‖−αGmrc

xj,li

×Ee
−tiβiH̃mrc

xi,li dti



=

∞∫

0

L−1
F̄Hmrc

i

(ti)

(1 + tiβi)
Si−1

∏
j∈K

∏

xj∈Φj/xi

EGmrc
xj,li

e
−tiβi

Si
Pi

xα
i

Pj
Sj‖xj‖α Gmrc

xj,li dti

(8)
whereL−1

F̄Hmrc
i

(ti) is the inverse Laplace transform ofHmrc
i

which is equal toL−1
F̄Hmrc

i

(ti) =
Nr−1∑
m=0

1
m!δ

(m)(t−1) [16], such

that
∞∫
0

e−tihL−1
F̄Hmrc

i

(ti)dti = e−h
Nr−1∑
l=0

hl

l! , andδ(m)(t) is the

m-th derivative of Dirac delta function. Note that in (8) we
have discarded indexli from L−1

F̄Hmrc
i

(ti) due to the fact that

Hmrc
xi,li

are identical r.v.s across streams. Substituting (8) into
(7) and applying some straightforward manipulations, it is then
seen that

omrc
frt =

∑
i∈K

2πλi

∞∫

0

xiE{Φj}

Si∏

li=1

∞∫

0

L−1
F̄Hmrc

i

(ti)

(1 + tiβi)
Si−1

∏
j∈K

∏

xj∈Φj/xi

EGmrc
xj,li

e
−tiβi

Si
Pi

xα
i

Pj
Sj
‖xj‖−αGmrc

xj,li dtidxi

=
∑
i∈K

2πλi

∞∫

0

xidxiE{Φj}

∞∫

0

. . .

∞∫

0

∏
j∈K

∏

xj∈Φj/xi

Si∏

li=1

EGmrc
xj,li

e
−βi

Si
Pi

xα
i

Pj
Sj
‖xj‖−αGmrc

xj,li
tli

Si∏

li=1

L−1
F̄Hmrc

i

(tli)

(1 + tliβi)
Si−1

dtli

=
∑
i∈K

2πλi

∞∫

0

xidxiE{Φj}

∞∫

0

. . .

∞∫

0

∏
j∈K

∏

xj∈Φj/xi

EGmrc
xj

Si∏

li=1

e
−βi

Si
Pi

xα
i

Pj
Sj
‖xj‖−αGmrc

xj,li
tli

Si∏

li=1

L−1
F̄Hmrc

i

(tli)

(1 + tliβi)
Si−1

dtli ,

as r.v.sGmrc
xj ,li

are i.i.d. across streams. Consequently,

omrc
frt =

∑
i∈K

2πλi

∞∫

0

xiE{Φj}dxi

∞∫

0

. . .

∞∫

0

∏
j∈K

∏

xj∈Φj/xi

EGmrc
xj

e
−βi

Si
Pi

xα
i

Pj
Sj
‖xj‖−α

Si∑
li=1

Gmrc
xj,li

tli
Si∏

li=1

L−1
F̄Hmrc

i

(tli)

(1 + tliβi)
Si−1

dtli

=
∑
i∈K

2πλi

∞∫

0

xidxi

∞∫

0

. . .

∞∫

0

∏
j∈K

EΦj

∏

xj∈Φj/xi

EGmrc
xj

e
−βi

Si
Pi

xα
i

Pj
Sj
‖xj‖−α

Si∑
li=1

Gmrc
xj,li

tli
Si∏

li=1

L−1
F̄Hmrc

i

(tli)

(1 + tliβi)
Si−1

dtli

=
∑
i∈K

2πλi

∞∫

0

xidxi

∞∫

0

. . .

∞∫

0

Si∏

li=1

L−1
F̄Hmrc

i

(tli)

(1 + tliβi)
Si−1

dtli

e
−x2

i C̃(α)
(

Siβi
Pi

)α̌ K∑
j=1

λj

(
Pj
Sj

)α̌
EGmrc

j

[
(

Si∑
li=1

Gmrc
j,li

tli
)α̌

]

,

where in the last step we have applied following formula [17]:

EΦj

∏
xj∈Φj

Ehxj
e
−sj‖xj‖−αhxj = e−C̃(α)sα̌

j E[hα̌].

Consequently,

omrc
frt =

∑
i∈K

2πλi

∞∫

0

. . .

∞∫

0

Si∏

li=1

L−1
F̄Hmrc

i

(tli)

(1 + tliβi)
Si−1

dtli

∞∫

0

xie
−x2

i C̃(α)
(

Siβi
Pi

)α̌ K∑
j=1

λj

(
Pj
Sj

)α̌
EGmrc

j

[
(

Si∑
li=1

Gmrc
j,li

tli
)α̌

]

dxi

=
∑
i∈K

π

C̃(α)
λi

(
Pi

Siβi

)α̌
∞∫

0

. . .

∞∫

0

Si∏

li=1

L−1
F̄Hmrc

i

(tli)

(1 + tliβi)
Si−1

dtli

× 1

∑
j∈K

λj

(
Pj

Sj

)α̌

EGmrc
j

[
(

Si∑
li=1

Gmrc
j,li

tli)
α̌

] , (9)

Unfortunately, direct evaluation of (9) seems highly un-
tractable. Instead, we in the following resort to the arithmetic-
geometric inequality for deriving an upper-bound, i.e.,

EGmrc
j


(

Si∑

li=1

Gmrc
j,li tli)

α̌


 ≥ EGmrc

j


Sα̌

i




Si∏

li=1

Gmrc
j,li tli




α̌
Si




= Sα̌
i EGmrc

j




Si∏

li=1

(Gmrc
j,li )

α̌
Si







Si∏

li=1

tli




α̌
Si

.

Utilizing this, (9) can be upper-bounded by

omrc
frt ≤

∑
i∈K

π

C̃(α)

(
Pi

Siβi

)α̌
λi

Sα̌
i

K∑
j=1

λj

(
Pj

Sj

)α̌

EGmrc
j

Si∏
li=1

(Grmc
j,li

)
α̌
Si

×
∞∫

0

. . .

∞∫

0

Si∏

li=1

t
− α̌

Si
li

L−1
F̄Hmrc

i

(tli)

(1 + tliβi)
Si−1

dtli

=
∑
i∈K

π

C̃(α)

(
Pi

Siβi

)α̌
λi

Sα̌
i

K∑
j=1

λj

(
Pj

Sj

)α̌ (
EGmrc

j
(Gmrc

j )
α̌
Si

)Si




∞∫

0

t
− α̌

Si
i L−1

F̄Hmrc
i

(ti)

(1 + tiβi)
Si−1




Si

.

(10)
where the last step was due to the fact that r.v.sGmrc

xj ,li
are

i.i.d. across streams. Note that

∞∫

0

t
− α̌

Si
i L−1

F̄Hmrc
i

(ti)

(1 + tiβi)
Si−1

=

Nr−1∑
ri=0

1

ri!

∞∫

0

δ(ri)(ti − 1)
t
− α̌

Si
i

(1 + tiβi)
Si−1

=

Nr−1∑
ri=0

(−1)ri

ri!

dri

dtri

t
− α̌

Si

(1 + tβi)
Si−1

∣∣∣
t=1

(11)

Also, recalling that r.v.sGmrc
xj ,li

are chi-squared with DoF2Sj ,

it is straightforward to show thatEGmrc
j

(Gmrc
j )

α̌
Si =

Γ( α̌
Si

+Sj)

Γ(Sj)

By substituting (11) into (10) the desired result is obtained.


