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Abstract

In this paper we address the problem of representing the continuous but non-convex set of non-

dominated points of a multi-objective linear programme by a finite subset of such points. We prove

that a related decision problem is NP-complete. Moreover, we illustrate the drawbacks of the

known global shooting, normal boundary intersection and normal constraint methods concerning

the coverage error and uniformity level of the representation by examples. We propose a method

which combines the global shooting and normal boundary intersection methods. By doing so, we

overcome their limitations, but preserve their advantages. We prove that our method computes

a set of evenly distributed non-dominated points for which the coverage error and the uniformity

level can be guaranteed. We apply this method to an optimisation problem in radiation therapy

and present illustrative results for some clinical cases. Finally, we present numerical results on

randomly generated examples.

Keywords: Multi-objective optimisation, linear programming, non-dominated set, discrete

representation

1. Introduction

Multi-objective linear programming (MOLP) problems arise in many real world applications

of Operations Research. Due to the presence of multiple conflicting objective functions, there is in

general no single optimal value but an infinite continuous set of non-dominated objective function

vectors. A non-dominated objective function vector (or non-dominated point) is the image Cx of

an efficient solution x of the MOLP. An efficient solution x is a feasible solution of the MOLP

such that there is no other feasible solution which is at least as good as x in all objectives and

strictly better in at least one.
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In practical applications, a decision maker has to choose a most preferred point from the set

of all non-dominated points. Since the non-dominated set of an MOLP with p objectives is in

general a set of dimension p − 1, this is a difficult task. This is the motivation for computing a

finite representative subset of non-dominated points: selecting from a finite set is easier and there

is a wide variety of decision analysis methods for this task, see, e.g., Greco et al. (2016). Naturally,

the representative set should be chosen in such a way that its cardinality is not too big, that each

non-dominated point is close to at least one representative point (coverage error) and that the

representative points are uniformly distributed and not too close to each other (uniformity level).

We will give formal definitions (originally due to Sayin (2000)) in Section 2.

In this paper, which is an extension of an earlier conference paper (Shao and Ehrgott, 2007), we

present a method to compute a finite representative subset of the non-dominated set of an MOLP.

In Section 2 we formally define multi-objective linear programmes, review the definitions of the

criteria for a good representation and point out a relationship to so called dispersion problems of

location theory. We formulate the finite representation problem as a multi-objective optimisation

problem over the non-dominated set of an MOLP and use the relationship to dispersion problems

to prove that a decision version of our formulation is NP-complete. Section 3 is devoted to a

review of the literature on methods to compute finite representations, with focus on the global

shooting method (Benson and Sayin, 1997) , the normal boundary intersection method (Das and

Dennis, 1998) and the normal constraint method (Messac et al., 2003). We provide examples that

show that they all may fail the coverage property or provide bounds on the uniformity level of the

representation. Our own method, combining features of the global shooting and normal boundary

intersection methods is described in Section 4. In Section 5 we prove bounds on the coverage

error and the uniformity level of the representative set computed by our method under certain

assumptions on the underlying MOLP. We also show that the method works in polynomial time in

the bi-objective case. Section 6 provides some examples, presents an application of our method to

an MOLP arising in radiotherapy treatment planning and provides numerical results on randomly

generated examples. The numerical results provide empirical evidence for the theoretical results

of the previous section. Section 7 summarises our contributions and identifies some questions for

further research.

2. Multi-objective Linear Programming and Finite Representation of a Set

We shall use the following notation for the comparison of vectors y1 and y2 ∈ R
p. We write

y1 ≦ y2 if y1k ≦ y2k for all k = 1, . . . , p. We use y1 ≤ y2 to indicate y1 ≦ y2 but y1 6= y2, whereas

y1 < y2 means y1k < y2k for all k = 1, . . . , p. We shall also use the notation R
p
≺ := {y ∈ R

p : y ≺ 0}
for ≺∈ {≦,≤, <}.
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A multiple objective linear programming problem (MOLP) in compact matrix notation can be

written as the optimisation problem

min {Cx : x ∈ X}, (1)

where C ∈ R
p×n is a p × n matrix of objective function coefficients, the rows ck

T , k = 1, 2, . . . , p

of which are the coefficients of p linear functions ck
Tx, k = 1, 2, . . . , p. We assume that X ⊂ R

n

is a nonempty compact polyhedral set of feasible solutions in decision space R
n. The feasible set

Y in objective space R
p is defined by

Y = {Cx : x ∈ X}. (2)

Since the image of a convex polyhedron under a linear map is also a convex polyhedron (see, e.g.,

Rockafellar (1970), it follows that Y is also a nonempty compact convex polyhedron. In this paper,

we shall make the further assumption that YN contains at least two distinct points. Otherwise

the non-dominated set is a singleton, and the MOLP (1) is trivial.

We next define efficient solutions and non-dominated points.

Definition 2.1. Feasible solution x0 ∈ X is a (weakly) efficient solution to MOLP (1), if there does

not exist any x ∈ X such that Cx(<) ≤ Cx0. The set of all efficient solutions of MOLP (1) will

be denoted by X(W )E and is called the (weakly) efficient set in decision space. Correspondingly,

y0 = Cx0 is called a (weakly) non-dominated point and Y(W )N = {Cx : x ∈ XE} is the (weakly)

non-dominated set in objective space for problem (1).

Theorem 2.2 is fundamental in multi-objective linear programming.

Theorem 2.2 (Isermann (1974)). Feasible solution x0 ∈ X is an efficient solution of MOLP (1)

if and only if there exists a λ ∈ R
p
> such that

λTCx0 ≦ λTCx (3)

for all x ∈ X.

We recall that it is well known (see, e.g., Yu and Zeleny (1975); Naccache (1978)) that the

non-dominated set YN of an MOLP (1) is connected and consists of the union of faces of Y . It

will be convenient to refer to maximal faces of Y that belong to YN as non-dominated faces.

Definition 2.3. Let F ⊂ Y be a face of Y such that F ⊆ YN and F is maximal with this property

with respect to set inclusion. Then F is called non-dominated face.

We shall now introduce the notion of representation of a set, the quality of such a representation,

and the complexity of computing one.
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Let Z ⊂ R
p be a set and let R ⊂ Z be a finite subset. R is then called a discrete representation

of Z. We are interested in “how well” R represents Z. Sayin (2000) defines coverage, uniformity,

and cardinality as the three attributes of quality of discrete representations. According to these

three attributes, a good representation needs to contain a reasonable number of points, should not

miss large portions of Z, and should not contain points that are very close to each other. This

leads to the following definitions.

Definition 2.4. Let ǫ ≧ 0 be a real number and d be a metric. Representation R of Z is called

an ǫ-representation of Z if for every z ∈ Z, there exists some r ∈ R such that d(z, r) ≦ ǫ.

Definition 2.5. Let δ ≧ 0 be a real number and d be a metric. Representation R of Z is called

a δ-uniform representation of Z if

minr1,r2∈R,r1 6=r2{d(r1, r2)} ≧ δ.

We note here, that throughout the paper we will always use the Euclidean distance as metric.

Sayin (2000) proposes measures to quantify the three quality attributes. The number of points

contained in a representation obviously measures its cardinality. The coverage error ǫ and unifor-

mity level δ are defined as follows.

The coverage error ǫ signifies how precisely the set Z is being represented by the discrete

representative subset R. It can be written as:

ǫ = max
z∈Z

min
r∈R

d(z, r).

Thus, how well a fixed z ∈ Z is covered is determined by the closest point to z in the represen-

tation R. For the entire set Z, the coverage error depends on how well an arbitrary element of Z

is covered. Therefore, the coverage error ǫ is equal to the maximum coverage error for individual

points in Z.

The coverage error is closely related to what we informally term the coverage property of a

method to generate a discrete representation, namely the property, that every non-dominated

point can potentially be selected as a representative point.

The uniformity level of representation R can be measured by the distance between a pair of

closest distinct points of R. Thus it can be expressed as

δ = min
r1,r2∈R,r1 6=r2

d(r1, r2).

For a discrete representation, a small number of points, low coverage error, and high uniformity

level are desirable.

From the discussion above, we can formally write the problem of finding a discrete represen-

tation of Z as a multi-objective optimisation problem
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min |R| (4)

max min
{ri,rj∈R,ri 6=rj}

d(ri, rj) (5)

min max
z∈Z

min
r∈R

d(z, r) (6)

s.t. R ⊂ Z, |R| < ∞. (7)

Multi-objective optimisation problem (4) – (7) is the problem of locating a small number of

points in set Z such that the points are far apart from each other, yet each point of Z is close to

at least one point of R. Such problems are known as dispersion problems in location theory. In

the context of this paper, therefore, Z would be YN , the non-dominated set of an MOLP.

This relationship between dispersion problems and multi-objective decision making was in fact

first observed by White (1991): “... in the context of multiple objective problems, it may be that

it is not only the maximal dispersion which is of interest, but also the representativeness of the

solution obtained for the set Z as a whole.” However, he considers the problem

max{min{d(x, y) : x, y ∈ R} : R ⊆ Z, |R| = p}.

Thus, White (1991) considers only the uniformity measure, (5), keeps the cardinality constant

and ignores the coverage error. He also restricts Z to a finite set. More relevant is the work by

Baur and Fekete (2001). They consider, amongst others, the so called pure dispersion problem

max{min{d(v, w) : v, w ∈ R} : R ⊂ Z, |R| = p},

where Z is a polygonal region in R
2 and d(v, w) is the geodetic distance between v and w. They

prove Theorem 2.6.

Theorem 2.6. Unless P = NP, there is no polynomial-time approximation scheme for pure geo-

metric dispersion.

From this result it follows that the decision problem: Given a polygonal region Z, an integer p,

and a constant δ, does there exist a subset R of Z with cardinality p such that min{d(v, w) : v, w ∈
R} ≧ δ? is NP-complete. Hence the canonical decision problem of the discrete representation

problem stated in (4) – (7), given Z, an integer p and nonnegative scalars ǫ and δ, does there

exist a finite subset R of YN of cardinality p such that the coverage error is at most ǫ and the

uniformity level is at least δ is NP-complete, since it is NP-complete for the specific choice of ǫ

such that d(z1, z2) ≦ ǫ for all z1, z2 ∈ Z.

To relate this to the problem of finding discrete representations of the non-dominated set of

an MOLP, we notice that, as mentioned in Section 1 the non-dominated set of an MOLP as
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defined in (1) is the union of finitely many non-dominated faces of Y . Therefore, finding discrete

representations of YN is equivalent to finding discrete representations of a union of polytopes.

To complement this hardness result, we notice that for discrete bi-objective optimisation prob-

lems Vaz et al. (2015) provide algorithms that solve the discrete representation problem for known

YN in time polynomial in |YN | and |R| for various combinations of coverage error, uniformity

level, and ǫ-indicator as quality measures. Eusébio et al. (2014) provide algorithms to compute

δ-uniform or ǫ-representations for bi-objective integer network flow problems, but they do not anal-

yse their complexity. In Section 4 we prove that our method computes a discrete representation

of the non-dominated set of a bi-objective linear programme by solving O(|R|) linear programmes

without the knowledge of YN .

3. A Survey of Existing Methods

3.1. Brief Literature Review

We can categorise the methods for finding discrete representations of the non-dominated set

of multi-objective optimisation problems into two groups, one is based on the knowledge of XE

and the other works without the knowledge of XE .

Based on the knowledge of XE , Sayın (2003) proposes a procedure to find discrete represen-

tations with specified coverage errors. The procedure also specifies the uniformity level of the

representations. Knowledge of XE can, however, not be assumed when solving a multi-objective

optimisation problem. Therefore most methods work without the knowledge of XE . A recent

survey of methods for computing discrete representations in multi-objective optimisation can be

found in Faulkenberg and Wiecek (2010). In the following, we focus on methods that are related

to the concepts of the global shooting and the normal boundary intersection methods.

Benson and Sayin (1997) propose a global shooting method to find a representation of the non-

dominated set. This method has the coverage property, but it can not guarantee the uniformity,

i.e. a bound on the uniformity level, of the representations it generates. We will discuss the global

shooting method in more detail in Section 3.2. Das and Dennis (1998) propose a normal boundary

intersection (NBI) method for finding non-dominated points for general (nonlinear) multi-objective

optimisation problems. It uses the convex hull of the individual minima (CHIM) of the p objectives

as a reference plane. Evenly distributed reference points are placed on the CHIM and for each

reference point a non-dominated point is computed by solving a single objective optimisation

subproblem. While the method generates evenly distributed non-dominated points, some parts

of the non-dominated set may be missed, i.e. it does not have the coverage property, a problem

caused by the use of the CHIM. We will illustrate the method and its limitations in Section 3.3.

Based on the NBI and the ǫ-constraint methods, Ismail-Yahaya and Messac (2002) propose

the normal constraint (NC) method. Instead of an equality constraint used in the subproblems
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of the NBI method, the NC method uses an inequality constraint to reduce the feasible set in

the objective space of the multi-objective optimisation problem. Later, Messac et al. (2003)

propose the normalised normal constraint (NNC) method. The NNCmethod works in a normalised

objective space. However, both the NC and NNC methods have the same drawback as the NBI

method, because they use the CHIM as reference plane. Realising this limitation of using the

CHIM, Messac and Mattson (2004) improve the NNC method by using an extended CHIM instead

of the CHIM as reference plane. However, uniformity level and coverage error of the discrete

representation are not measured.

Martinez et al. (2007) improve the NNC method for bi-objective optimisation problems. The

improvements are based on two types of techniques, i.e., nonlinear optimisation and genetic algo-

rithms. Sanchis et al. (2008) propose a new alternative method, the enhanced normalised normal

constraint (ENNC) method for multi-objective optimisation problems. They present the formula-

tion of a new reference plane that improves the original normalised normal constraint method of

Messac et al. (2003) using two approaches: a redefinition of the anchor points, i.e., vertices of the

reference plane and an exact linear transformation between the objective space and the normalised

objective space. Mueller-Gritschneder et al. (2009) propose a successive approach to systematically

build up the representative non-dominated set. The approach is based on the generation of so-

called trade-off limits. Motta et al. (2012) propose a novel modified procedure which is similar to

the approach of Mueller-Gritschneder et al. (2009) and they claim that their method when applied

to the NBI and NC methods for more than two objectives overcomes some of their deficiencies.

Logist and Van Impe (2012) give theoretical insights in the conditions under which the NBI and

the ENNC are able to generate the same candidate non-dominated points. Hancock and Mattson

(2013) propose the smart normal constraint method for generating a “smart” non-dominated set.

However, with the idea of smart they do not consider uniformity any more. Another recent pa-

per dedicated to generating equidistant representations in bi-objective optimisation proposed by

Faulkenberg and Wiecek (2012) is based on the ǫ-constraint method.

It is worth mentioning that there are many approximation methods for multi-objective opti-

misation (the reader is referred to Ruzika and Wiecek (2005)) that compute some non-dominated

points. However, since their goal is to approximate the whole non-dominated set and they do

not aim at finding evenly distributed non-dominated points they may yield bad representations

in terms of coverage error and uniformity level. Such methods are therefore not mentioned in the

above survey.

We now present more details of some of the methods mentioned above. We note that although

they are originally formulated for general multi-objective optimisation problems, we use MOLP

notation throughout for consistency.

7



3.2. The Global Shooting Method

As indicated in Section 1, we assume that the feasible set Y in objective space is bounded. The

global shooting method defines polyhedron Y ′ := {y ∈ R
p : Cx ≦ y ≦ ŷ for some x ∈ X}, where ŷ

is chosen as a point so that for all y ∈ YN it holds that y ≦ ŷ. For instance, ŷ can be chosen as the

anti ideal point yAI the components of which are defined by yAI
k := max{yk, y ∈ Y }, k = 1, . . . , p.

Benson (1998) has shown that Y ′ has dimension p and that Y ′ and Y have the same non-dominated

set.

The global shooting method then constructs a simplex S that contains Y ′. A subsimplex Ŝ

of S (the non-dominated set of S) is chosen as the reference plane. Then, a discrete sample of

reference points are placed on Ŝ and the method “shoots” from ŷ towards each reference point

as far as possible while remaining in Y ′. This is achieved by solving the single objective linear

programme (the global shooting subproblem (8)) .

max t

s.t. ŷ + t(q − ŷ) ≧ Cx

t ≧ 0

x ∈ X,

(8)

where q is a reference point. Thus, a set of points on the boundary of Y ′ is computed and each

reference point qi corresponds to a boundary point yi = ŷ + ti(q − ŷ) of Y ′, where ti is the

optimal value of linear programme (8) for q = qi. However, not every intersection point yi is

non-dominated. Therefore it needs to be checked whether the intersection point yi is dominated

or not by solving the following linear programme.

min λT y

s.t. y ≦ yi

y ∈ Y ′,

(9)

where λ ∈ R
p is an arbitrary strictly positive vector. It is most convenient to choose λ = e, the

vector of all ones. Point yi is non-dominated if and only if the optimal value of (9) is λT yi. In case

yi is dominated, an optimal solution to (9) is non-dominated and is added to the representative

set in place of yi.

Fig. 1 illustrates the global shooting method for an MOLP problem where Y is the convex hull

of vertices (3,7), (2,9), (3,12), (6,11), (8,9), (9,7), (10,4) and (6,5). The non-dominated extreme

points of the MOLP are (2,9), (3,7), (6,5) and (10,4). There are 13 reference points on the

reference plane which is the line segment from (-2,12) to (10,0). For each reference point, we solve

problem (8) and obtain 13 intersection points with Y ′. Among the 13 intersection points, nine are
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non-dominated and four are dominated. The latter are shown as crosses in Fig. 1. After solving

(9), the nine non-dominated intersection points are kept, whereas solving (9) for the four weakly

non-dominated intersection points yields non-dominated point y = (2, 9). Thus the representative

sets consist of the nine non-dominated intersection points and non-dominated point (2,9).
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Figure 1: The global shooting method.

For the MOLP case, which is the topic of this paper, the global shooting method simply involves

solving two linear programmes for each reference point. It has the coverage property because it

puts reference points on Ŝ and YN ⊂ Ŝ + R
p

≧
. We refer to Benson and Sayin (1997) for proofs of

the properties of the global shooting method.

Next, we provide a series of MOLPs that shows that the uniformity level of the discrete

representative set computed by the global shooting method can be arbitrarily small, even if the

reference points are equidistantly distributed on the reference plane.

Example 3.1. Consider the MOLP problem min{Cx : Ax ≧ b, x ∈ R
n} with

C =





1 0

0 1



 , A =

















−1 0

0 −1

M 1

0 1

















, b =

















−M − 1

−M − 1

M2 + 1

1

















,

where M ≧ 1.

Fig. 2 shows the feasible set Y in objective space for M = 9. The non-dominated set is the

line segment from point (M − 1,M + 1) to point (M, 1). We use the global shooting method

to obtain a set of non-dominated points. M + 2 reference points which are evenly distributed

on the reference plane (the line segment between (0,M + 1) and (M + 1, 0)) are used. They are

(0,M+1), (1,M), (2,M−1), . . ., (M−1, 2), (M, 1) and (M+1, 0). We obtain M+1 corresponding
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non-dominated points shown in Fig. 2. They are (M − 1,M + 1), (M
3−M2+M+1

M2+1 , M3+M2−M+1
M2+1 ),

. . ., ( 3M
2−2M−1
3M−1 , M2+4M−1

3M−1 ) and (M, 1). The Euclidean distance between the “first” two non-

dominated points (M − 1,M + 1) and (M
3−M2+M+1

M2+1 , M3+M2−M+1
M2+1 ) is d1 = 2√

M2+1
and the

distance between the “last” two non-dominated points ( 3M
2−2M−1
3M−1 , M2+4M−1

3M−1 ) and (M, 1) is d2 =

(M+1)
√
M2+1

3M−1 so that d2 is equal to
(M+1)(M2+1)

6M−2 times d1. As M approaches infinity, d1 approaches

zero, while d2 approaches infinity. Therefore, as M → ∞, the uniformity level tends to 0 and

the coverage error tends to infinity. This clearly shows that the global shooting method cannot

guarantee any positive uniformity level or any bounded coverage error.
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Y ′

y2

y1

Figure 2: Unevenly distributed representative non-dominated points obtained by the global shooting method.

3.3. The Normal Boundary Intersection (NBI) Method

We first assume the individual minima of the functions ck
Tx over X are attained at xk for

k = 1, 2, . . . , p. Let yk = Cxk and let yI = (cT1 x
1, cT2 x

2, . . . , cTp x
p)

T
denote the ideal point. We

note that in the original paper, Das and Dennis (1998) consider a multi-objective optimisation

problem in which Y is translated by yI so that the ideal point becomes 0. To be consistent with

the description of the other methods in this paper, we do not work with the translated problem.

The convex hull of the individual minima (CHIM) is then defined as the set of all convex

combinations of the individual global minima of the objective functions, i.e. conv{Cxk : k =

1, . . . , p}. A set of evenly distributed reference points on the CHIM is generated and for each of

them a NBI subproblem is solved to find the farthest point on the boundary of Y along the normal

n̂ of the CHIM pointing towards the ideal point. The NBI subproblem for a given reference point

q is the linear programme

max t

s.t. q + tn̂ = Cx

t ≧ 0

x ∈ X.

(10)
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Fig. 3 shows how the NBI method works for the same MOLP example with two objectives as in

Fig. 1. For this example, all the points obtained are non-dominated and the non-dominated set is

uniformly covered. For problems with more than two objectives, Das and Dennis (1998) state that

the method may overlook portions of the non-dominated set. They claim that these overlooked

areas are likely near the periphery of the non-dominated set. However, in Example 3.2 we provide

an MOLP with p = 3 objectives that shows that the normal to the CHIM may not always be

positive and does therefore not find any non-dominated point on the largest part (any facet) of

the non-dominated set. In fact, in this example, the NBI method only finds non-dominated points

that belong to the CHIM. In other words, the NBI method does not have the coverage property.

Although Das and Dennis (1998) claim that the NBI method does compute evenly distributed

non-dominated points, they do not provide bounds on the uniformity level of the computed rep-

resentative set.
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ȳ
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ȳ
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Figure 3: The NBI method.

3.4. The Normal Constraint (NC) and Related Methods

Like the NBI method, the normal constraint method (Ismail-Yahaya and Messac, 2002) also

uses the CHIM (called the utopia plane in that paper) as the reference plane to put reference points.

However, for each reference point, NC solves a different subproblem to compute a corresponding

non-dominated point. The subproblem is described as follows.

min yp

s.t. Nk
T (y − q) ≦ 0, for all k = 1, . . . , p− 1

y ∈ Y,

(11)

where Nk = yp − yk and yk = Cxk is a vector such that ykk is the minimal value of the kth

objective.

11



The inequality constraint Nk
T (y− q) ≦ 0 reduces the feasible set in the objective space of the

MOLP. Therefore, the subproblem is actually minimising the last single objective in the reduced

feasible set in objective space subject to the reduced objective space.

Fig. 4 shows how the NC method works for the same MOLP example with two objectives as

in Fig. 3.
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Figure 4: The NC method.
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Figure 5: The normalised objective space of the NNC

method.

For handling disparate objective magnitudes, scales, or ranges of objective function values for

the different objective functions, Messac et al. (2003) propose the normalised normal constraint

(NNC) method. The NNC method is the same as the NC method, except that the subproblems

are formulated in a normalised objective space, see Figure 5.

Similar to the NBI method, the NC and NNC methods do not provide a guarantee that the

generated set of non-dominated points will represent the non-dominated set well if p ≧ 3. Realising

this limitation, Messac and Mattson (2004) improve the NC method by using an extended CHIM

instead of the CHIM as reference plane. They claim that this improvement will generate evenly

spread non-dominated points over the entire non-dominated set. However, as Example 3.2 shows,

this is not necessarily always the case. Messac and Mattson (2004) also generalise the subproblem.

Instead of minimising the last single objective, the subproblem can minimise any single objective.

Messac and Mattson (2004) expect that the same result is obtained no matter which objective

is minimised. However, this is not always true. Example 3.2 can be used to show that solving

different subproblem gives different results.

Example 3.2. We consider the linear relaxation of a binary assignment problem with three

objectives. The cost coefficients of the three linear objective functions are shown as matrices c1, c2

12



and c3,

c1 =

















3 6 4 5

2 3 5 4

3 5 4 2

4 5 3 6

















, c2 =

















2 3 5 4

5 3 4 3

5 2 6 4

4 5 2 5

















, c3 =

















4 2 4 2

4 2 4 6

4 2 6 3

2 4 5 3

















.

We define Y ′ := {y ∈ R
3 : Cx ≦ y ≦ ŷ for some x ∈ X} and choose ŷ as (21, 21, 21), which is

greater than the anti-ideal point (20, 20, 20) in this example. Fig. 6 shows Y ′ as the convex hull

of the 16 extreme points (21, 21, 21), (11, 21, 21), (21, 9, 21), (21, 21, 10), (11, 11, 14), (11, 11,

21), (15, 9, 21), (11, 21, 14), (21, 14, 10), (19, 21, 10), (13, 21, 11), (19, 14, 10), (21, 9, 17), (21,

11, 14), (15, 9, 17), (13, 16, 11).
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Figure 6: Y ′ and the non-dominated set in Example 3.2.

The four points y1 = (11, 11, 14), y2 = (15, 9, 17), y3 = (19, 14, 10) and (13, 16, 11) represented

by circles are the non-dominated extreme points of Y ′. The non-dominated set consists of a line

segment from point y1 to point y2 and a triangular facet which is the convex hull of y1, y3 and

(13, 16, 11).

The three dots at y1, y2 and y3 in Fig. 6 are the unique non-dominated points at which the

individual minima of the three objectives are attained. Hence the CHIM is the convex hull of

these three points. The normal of the CHIM is n̂ = (1,−40,−28) or n̂ = (−1, 40, 28), which are

not positive. Placing evenly distributed reference points on the CHIM, the results of the NBI,

NC and NNC methods are shown in Fig. 7, 8 and 9, respectively. In those figures, circles repre-

sent the reference points, while dots represent non-dominated points generated by the respective

methods. It is worth noting here, that neither Das and Dennis (1998) nor Messac et al. (2003)

specify procedures for checking the non-dominance of points generated by solving subproblems

(10) and (11), respectively. However, in this example, the optimal solutions of both subproblems

for reference points located on the CHIM are those reference points themselves. For testing the

methods, we did, therefore, implement the same non-dominance check that we use for the RNBI

13



method described in Section 4 below.

We did not obtain any non-dominated points in the interior of the non-dominated facet by

any of the three methods. For the NBI method, this occurs because the angle between the non-

dominated facet and the CHIM is approximately 151.5 > 90 degrees. But even for the NC and

NNC method, the subproblems only generate non-dominated points on the (relative) boundary

of the non-dominated facet and on the non-dominated edge between y1 and y2. Hence, all three

methods clearly miss the major portion of the non-dominated set.
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Figure 7: Reference points and non-

dominated points generated by the

NBI method in Example 3.2.
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NC method in Example 3.2.
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Figure 9: Reference points and non-

dominated points generated by the

NNC method in Example 3.2.

We also applied the improved NC and NNC methods with extended CHIM. We chose the

extended reference plane big enough so that the projection of the non-dominated set is contained

in the plane. For the NC method, we also solved different subproblems for the same set of reference

points to see if they yield the same result or not, they didn’t. We omit detailed results and figures,

but note that all generated non-dominated points are on the boundary of the non-dominated set.

While Benson and Sayin (1997) have shown that the global shooting method has the coverage

property, Example 3.2 shows that the NBI and NC methods do not have this property. This result

indicates, that in general these methods will not be able to compute ǫ-representations for arbitrary

ǫ.

4. The Revised Normal Boundary Intersection Method

As discussed in Section 3.2 above, the global shooting method satisfies the coverage property,

and the NBI method (Section 3.3) can generate evenly distributed non-dominated points. There-

fore, we propose a revised NBI method which combines these two approaches. The revised normal

boundary intersection (RNBI) method provides a priori guarantees on both the uniformity level

and coverage error.
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On the one hand, instead of the CHIM, the RNBI method uses the non-dominated subsimplex

Ŝ of the simplex S that is used in the global shooting method (Benson and Sayin, 1997) as the

reference plane on which to put equidistant reference points. By doing this, it retains the coverage

property. On the other hand, by solving single objective subproblems similar to (10), the RNBI

method generates a set of non-dominated points with a known positive bound on the uniformity

level.

The RNBI method involves choosing a reference plane, placing equidistant reference points on

the plane and computing the intersection points of rays emanating from the reference points in

a direction normal to the reference plane with the feasible set Y in objective space. Finally, the

non-dominance of the computed intersection points is checked by solving a linear programme. In

the following paragraphs we explain each of these steps in detail.

Constructing the Reference Plane. The reference plane is the same as in the global shooting

method of Benson and Sayin (1997). For completeness, we describe the details of this construction

here.

First, let

β := min{eT y : y ∈ Y }, (12)

where e ∈ R
p is a vector in which each entry is 1.

Next, we define p+ 1 points vk ∈ R
p, for k = 0, 1, . . . , p. Let v0 = yAI and, for k = 1, 2, . . . , p

and l = 1, 2, . . . , p, let

vkl =







yAI
l , if l 6= k,

β + yAI
k − eT v0, if l = k,

(13)

As Benson and Sayin (1997) have shown, the convex hull S of {vk : k = 0, 1, . . . , p} is a

p-dimensional simplex, and S contains Y .

The subsimplex of S given by the convex hull Ŝ of {vk : k = 1, 2, . . . , p} is the non-dominated

set of S. It is contained in the hyperplane {y ∈ R
P : eT y = β∗}, where β∗ is the optimal value of

(12). This hyperplane supports Y and YN at all optimal solutions of (12).

Placing Equidistant Points on the Reference Plane. Clearly, for p = 2, Ŝ is a line segment.

Proposition 4.1 shows that in the general case of p > 2 objectives, Ŝ is a p−1 dimensional simplex

with equal edge length.

Proposition 4.1. The reference plane Ŝ is an equilateral simplex.

Proof. Let us consider two vertices vi and vj , i, j ∈ {1, . . . , p} and assume without loss of generality
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that i < j.

vi − vj = (vi1, . . . , v
i
i , . . . , v

i
j , . . . , v

i
p)

T − (vj1, . . . , v
j
i , . . . , v

j
j , . . . , v

j
p)

T

= (yAI
1 , . . . , β + yAI

i − eT v0, . . . , yAI
j , . . . , yAI

p )T −

(yAI
1 , . . . , yAI

i , . . . , β + yAI
j − eT v0, . . . , yAI

p )T

= (0, . . . , β + yAI
i − eT v0 − yAI

i , . . . , yAI
j − (β + yAI

j − eT v0), 0 . . . , 0)T

= (0, . . . , β − eT v0, . . . ,−β + eT v0, . . . , 0).

Thus the distance between any two vertices of Ŝ is equal to d(vi, vj) =
√
2(β − eT v0).

For p = 3, Fig. 10 shows how a triangular lattice can be used to generate equidistant points

on Ŝ. In the general case of p objectives, the ith reference point qi is given by

qi =

p
∑

k=1

αi
kv

k

where 0 ≦ αi
k ≦ 1 and

∑p
k=1 α

i
k = 1. By varying αi

k from 0 to 1 with a fixed increment of ηk a

finite set of equidistant points on the reference plane can be generated. For the three objective

case in Fig. 10 ηk = 0.25. We denote ds the distance between two closest reference points.

dsdsds

Figure 10: Equidistant reference points on the reference plane.

Computing the Intersection Points. Given a reference point q on Ŝ, the RNBI subproblem searches

for the point in Y that is closest to the reference point along the normal direction e. This is achieved

by solving the RNBI subproblem (14).

min t

s.t. q + te ∈ Y

t ≧ 0.

(14)

Fig. 11 illustrates the RNBI method for the same MOLP example that was used in Figs. 1 and

3 to illustrate the global shooting and the NBI method. The reference plane and the placement of

reference points are the same as for the global shooting method. However the search for intersection

16



points with Y uses a direction normal to the reference plane, as in the NBI method. Since due

to our assumption of boundedness of Y (and therefore S), the linear programme (14) cannot be

unbounded, it is either infeasible or has an optimal solution. In fact, there are three scenarios for

the solution of (14), see also Fig. 11.
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Figure 11: The revised normal boundary intersection method.

1. (14) is infeasible. This occurs if and only if there is no intersection between the ray {q+ te :

t ≧ 0} and Y .

2. (14) has an optimal solution t∗ if and only if the ray {q+ te : t ≧ 0} and Y intersect. In this

case, y∗ = q + t∗e belongs to the boundary of Y . Two subcases may occur.

(a) The intersection point y∗ is dominated.

(b) The intersection point y∗ is non-dominated.

Because in the case that (14) has an optimal solution, the identified intersection point y∗ may

or may not be non-dominated it is necessary to check the status of y∗. A simple non-dominance

filter can be applied to the set of all generated intersection points to eliminate some of them,

see Messac et al. (2003). This method has the advantage of being fast, but it may accept some

dominated points (often ones close to YN ) as non-dominated.

An exact method to test the non-dominance of an intersection point y∗ is similar to (9) and is

provided by Proposition 4.2, a proof of which can be found in Ehrgott (2005).

Proposition 4.2. Let y∗ ∈ Y and let λ ∈ R
p
>. Then y∗ ∈ YN if and only if y∗ is an optimal

solution to the linear programme (15),

min λT y

s.t. y ≦ y∗

y ∈ Y.

(15)
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5. Properties of the RNBI Method

In this section we investigate the properties of the RNBI method, in particular we prove bounds

on the uniformity level and the coverage error of the representative set generated by the RNBI

method.

First of all, we notice that for every non-dominated point ŷ of the MOLP (1) there is a point

q̂ ∈ Ŝ such that (14) has an optimal solution t̂ such that q̂ + t̂e = ŷ. This point is simply the

projection in direction e of ŷ onto Ŝ. Hence it follows, similar to Benson and Sayin (1997) for

the global shooting method, that the RNBI method has the coverage property. Next we shall

investigate the uniformity level.

Let F be a non-dominated facet of Y with normal n̂. Since the normal of Ŝ is e by definition,

the angle between Ŝ and F is given by

cos θ =
eT n̂

||e|| ||n̂|| =
n̂1 + · · ·+ n̂p

√

(n̂1)2 + · · ·+ (n̂p)2
√
p
. (16)

Since, according to Theorem 2.2 and Definition 2.3 the normal n̂ to F is an element of Rp
> we

have
n̂1 + · · ·+ n̂p

√

(n̂1)2 + · · ·+ (n̂p)2
√
p
>

n̂1 + · · ·+ n̂p
√

(n̂1 + · · ·+ n̂p)
2√

p
=

1√
p
. (17)

Therefore
1√
p
< cos θ ≦ 1 (18)

and θ is in the range of 0 ≦ θ < arccos 1√
p
.

For p = 2, 0 ≦ θ < π
4 and for p = 3, 0 ≦ θ < arccos

√
3
3 , i.e., the range of angles between the

reference plane Ŝ and non-dominated facets increases with p.

Now for the equidistant reference points with distance ds that the RNBI method places on Ŝ

it follows that the corresponding non-dominated points in the representative set have a distance

of ds/ cos θ <
√
pds.

Fig. 12 shows an example with two objectives (p = 2) so that non-dominated facets are line

segments. F1 is a non-dominated facet, while F2 is a weakly non-dominated facet. Angles between

non-dominated facets and the reference plane must be smaller than π
4 , whereas the angle between

the reference plane and the weakly non-dominated facet F2 is θ = π
4 . The distance between two

closest non-dominated points obtained by the RNBI method is between ds and
√
2ds.

Since for an MOLP (1) with p objectives we have shown that for the distance d between two

closest non-dominated points in the representative set it holds that ds ≦ d <
√
pds, we have

minr1,r2∈R,r1 6=r2{d(r1, r2) ≧ ds. Thus, Theorem 5.1 is proved.

Theorem 5.1. Let R be the representative subset of YN obtained by the RNBI method. Then R

is a ds-uniform representation of YN .
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Figure 12: Analysis of distances for a 2D example.

The width w(B) of a convex set B ⊂ R
p is defined as the smallest Euclidean distance between

two supporting hyperplanes of B. Since this means that the width of any convex set of dimension

less than p is 0 but we want to measure the width of projections of subsets of YN onto Ŝ, we also

define the width of a convex set on a hyperplane Ŝ, wŜ(B) as the minimal distance between two

parallel supporting hyperplanes perpendicular to Ŝ.

It is well known (Yu and Zeleny, 1975), that the non-dominated set of MOLP (1) is the finite

union of maximal non-dominated faces of Y , i.e. YN = ∩K
k=1Fk. Now, let Y p

N be the projection

of YN to the reference plane Ŝ. Y p
N can then be written as the union of K polytopes

⋃K
k=1Ok on

Ŝ, where Ok is the projection of Fk onto Ŝ. Using this notion, we can now prove the bound of
√
pds on the coverage error of the discrete representation generated by the RNBI method under

an assumption on the width of sets Ok.

Theorem 5.2. Let ds be the distance between reference points and assume that each set Ok in the

projection Y p
N of YN satisfies wŜ(Ok) ≧ ds, then the representative set R obtained by the revised

NBI method is a
√
pds-representation of YN .

Proof. Let Q be the set of reference points for which solving (14) results in the set of representative

points R. Since the width of Ok, k = 1 . . . ,K on the reference plane Ŝ is greater than or equal to

ds, it follows that Q ∩Ok 6= ∅ for all k = 1, . . . ,K.

Let y ∈ YN and let o be the projection of y to Ŝ. Clearly o ∈ Ok for some k ∈ {1, . . . ,K}.
Therefore, there must exist q ∈ Q ∩ Ok such that d(o, q) ≦ ds because the distance of reference

points is ds. Clearly, there also exists r ∈ R which is the representative point generated by q.
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From the analysis of distances between representative points, it follows that d(y, r) ≦
√
pds

Therefore, for any non-dominated point y ∈ YN , there must exist r ∈ R such that d(y, r) ≦

√
pds.

We remark that the proof of Theorem 5.2 also shows that, even in the case that not all Ok

have width at least ds, any non-dominated facet of YN that satisfies the condition wŜ(Ok) ≧ ds

will be present in the representation. Hence it implies that only non-dominated faces that are

“too small” because either their dimension is smaller than p − 1 or their width is smaller than
√
pds can be missed.

Theorems 5.1 and 5.2 quantify the quality of the discrete representation generated by the RNBI

method in terms of coverage error and uniformity level. They also clarify that the only parameter

of the method is the distance ds between two closest reference points. Since Ŝ is an equilateral

simplex, this then determines the number of reference points and hence an (as we shall see very

weak) upper bound on the cardinality of the discrete representation, the lower bound ds on the

uniformity level, and the the upper bound
√
pds on the coverage error. By increasing ds, the

cardinality will increase, the uniformity level will decrease and the coverage error will decrease.

We emphasise that the RNBI method does not allow independent control of the three measures

of quality of the discrete representation. Nevertheless, it is to the best of our knowledge the first

method that allows the computation of a discrete representation of the non-dominated sets of

MOLPs with guaranteed coverage error and uniformity level, and without the knowledge of YN .

Finally, we consider the special case of MOLPs with p = 2 objectives. Let ylex(1,2) and ylex(2,1)

denote the two lexicographically optimal non-dominated points and olex(1,2) and olex(2,1) their

projections on the reference plane. Then for any reference point q such that q1 < o
lex(1,2)
1 or

q1 > o
lex(2,1)
1 we have that (14) is either infeasible or its optimal solution yields a dominated

point. On the other hand, all reference points with o
lex(1,2)
1 ≦ q1 ≦ o

lex(2,1)
1 yield non-dominated

points. Hence, to compute a representation R of cardinality |R| = r one places r equally spaced

reference points on the line segment from olex(1,2) to olex(2,1) and solve (14) for these reference

points. The resulting representation will have coverage error
√
2δ and uniformity level δ, where

δ = d(olex(1,2), olex(2,1))/(r − 1).

Theorem 5.3. For any MOLP with p = 2 objectives, such that Y is bounded, the RNBI method

computes a δ-uniform
√
2δ-representation of cardinality r for YN in time polynomial in the size

of the MOLP and linear in r.

6. Examples and Numerical Results

In this section, we first apply the RNBI method to Examples 3.1 and 3.2, which we used

before to illustrate that the global shooting and NBI methods cannot provide a guarantee on the
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uniformity level or the coverage error. Then, we present an application of the RNBI method to the

beam intensity optimisation problem arising in the planning of radiotherapy treatment of cancer.

Finally, we present the results of numerical tests of the RNBI method on randomly generated

linear programmes with between three and eight objectives.

In Example 3.1 we apply the RNBI method with the the same set of reference points as we used

for the global shooting method. The RNBI method generates six non-dominated points as shown

in Fig. 13. These six points are evenly distributed on the non-dominated set and the distance

between the two closest points in the representation is 1.9079. The guaranteed uniformity level

in this example is of course
√
2. According to Theorems 5.1 and 5.2, the distance between two

closest representative points is at least
√
2 and at most

√
2 ·

√
2 = 2. Hence the RNBI method

computes a
√
2-uniform 2-representation of the non-dominated set.
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Figure 13: The non-dominated points generated by the RNBI method for Example 3.1.

Next, we apply the RNBI method to Example 3.2. We use reference points with distance
√
2

as in the previous example. This results in 325 reference points. The RNBI method generates 33

intersection points, ten of which are non-dominated points. These are shown in Fig. 14. We note

that all non-dominated points generated by the method are on the non-dominated facet defined

by vertices (11, 11, 14), (19, 14, 10) and (13, 16, 11). No non-dominated point on the edge between

(11, 11, 14) and (15, 9, 17) is generated. This is of course expected due to Theorem 5.2, because

the width of the projection of the non-dominated edge onto the reference plane is equal to 0.

Thus, the RNBI method correctly computes a representation of the non-dominated facet, without

guaranteeing any coverage of the non-dominated edge.

We shall now apply the RNBI method to a multi-objective linear programme derived from

the so-called beam intensity optimisation problem in the planning of radiation therapy treatment

for cancer. This serves to illustrate the potential of the RNBI method in practical application.

We refer the reader to Ehrgott et al. (2009) for more details on optimisation problems in this

domain. The goals of radiation therapy are to deliver a uniform dose as close as possible to a
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Figure 14: The set of non-dominated points generated by the RNBI method for Example 3.2.

prescribed dose to the planning target volume (which contains the tumour to be treated), while

at the same time sparing the surrounding normal tissues and organs at risk as much as possible

from the harmful effects of radiation. Given the number of beams and beam directions from which

to irradiate the patient, beam intensity optimisation computes beam intensity profiles that yield

the best dose distribution for treating a particular patient under consideration of clinical and

physical constraints. Due to the conflicting goals, the beam intensity optimisation problem can,

for example, be formulated as an MOLP in the form provided in Shao and Ehrgott (2008). In

this MOLP the objectives are to minimise the maximum deviations α, β, γ of delivered dose from

prescribed lower bounds on the dose delivered to the tumour and from prescribed upper bounds

on the dose delivered to the organs at risk and other normal tissue, respectively.

We use three clinical cases, an acoustic neuroma (AC), a prostate tumour (PR) and a pancreatic

lesion (PL). These are ordered according to the number of constraints and the number of variables.

The RNBI method was implemented in Matlab 7.3 using the Matlab optimisation toolbox as LP

solver and all tests were run on a PC with 2.5 GHz processor speed and 4.0 GB RAM. In Table

1, we list the number of reference points (RP), the number of intersection points generated (IP),

as well as the number of non-dominated points (NP). The fourth column shows the distance ds

between two closest reference points. Finally, the CPU time in seconds is shown. For each case,

we used two different numbers of reference points.

We notice that for all three cases, more than half of the reference points did not generate

intersection points. However, checking infeasibility of (14) was not time consuming in this appli-

cation, but this may be an issue for other MOLP problems. Moreover, Table 1 shows that for the

PR and PL cases not every intersection point is non-dominated. Hence, checking non-dominance

by solving linear programme (15) is necessary, but may be more time consuming than checking

infeasibility. Clearly, the main effort in applying the RNBI method is in solving LPs. Hence, the

time taken depends on the number of reference points, since at least one (but at most two) LPs
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need to be solved for each reference point.

Table 1: The number of reference points, intersection points with Y , non-dominated points, distance between closest

reference points and CPU time in seconds for the application of the RNBI method to an MOLP in radiotherapy

treatment planning.

RP IP NP ds CPU

AC 378 72 72 1.04 23.828

PR 378 144 112 4.79 30.365

PL 378 145 129 3.31 100.728

AC 153 29 29 1.59 9.852

PR 153 62 48 7.30 20.842

PL 153 59 54 5.06 51.308

We show the non-dominated points of the three clinical cases in Figs. 15 and 16. The generated

non-dominated points clearly appear to be evenly distributed. We also note that the distance

ds of reference points and the distance of non-dominated points is measured in Gray, the unit of

radiation dose, because all three objectives are measured in this unit. This unit has a clear meaning

for radiotherapy planners. Since each non-dominated point represents a potential treatment plan,

their distance can be interpreted as a measure of the difference of the plans. Radiotherapy planners

may have a good idea what dose value would constitute recognisable significant difference in plans.

Hence they should be able to set a desired value for the distance d of non-dominated points, which

then implies that ds should be set to a value between d/
√
3 and d to guarantee non-dominated

points with a distance between d and
√
3d. The value of d then in turn determines the number of

reference points to be used.
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Figure 15: The non-dominated points generated for the AC, PR and PL cases (from left to right) when 153 reference

points are used.

To conclude this section, we present numerical results for randomly generated MOLP problems.

The examples are generated as follows. First, l points xi ∈ R
p, i = 1, . . . , l with xi

1, . . . , x
i
p−1

randomly distributed between 0 and 1 and xi
p = (xi

1−1)2+ . . .+(xi
n−1−1)2 are generated. Next,

the convex hull of the l points xi, i = 1, . . . , l is constructed. Now, we let the convex hull be the

feasible set X in decision space, i.e., we use all facet defining inequalities of the convex hull as
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Figure 16: The non-dominated points generated for the AC, PR and PL cases (from left to right) when 378 reference

points are used.

constraints of the MOLP. Finally, we set the objective matrix C of the MOLP to be the identity

matrix I. This procedure is employed in order to generate MOLPs with p-dimensional feasible set

in objective space for which the non-dominated set has non-dominated facets. Since the randomly

generated points are distributed on the lower-left part of the sphere xn = (x1−1)2+. . .+(xn−1−1)2,

this does happen most of the time (always in our experiment). If, instead, we were to generate

the coefficients of the constraint matrix, right hand side vector and objective function matrix of

(1) randomly, it would quite often be the case that Y and YN have lower dimensions, in which

case Theorem 5.2 tells us that the RNBI method may not work.

Ten examples for selected combinations of l (number of points) and p (number of objectives,

which is equal to the number n of variables) were solved for two different numbers of reference

points (RP). The average number of constraints m as well as the results, consisting of the average

numbers of intersection points (IP), non-dominated points (NP), distance between two closest

reference points ds and the CPU time in seconds are listed in Table 2. We also show the generated

non-dominated points and the feasible sets in objective space for two of the randomly generated

examples with (p, l,m) = (3, 30, 56) in Fig. 17. The one on the left has (RP,IP,NP, ds) = (158,

81, 74, 0.1273) and the one on the right (82, 40, 37, 0.2122).

Figure 17: The generated non-dominated points and feasible sets in objective space for two of the randomly

generated examples with p = 3.

Table 2 shows that the CPU time clearly increases with the size of the MOLP (number of vari-

ables and constraints) and also the number of reference points, but as is usual in multi-objective
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Table 2: The number of objectives p, variables n, random points l, constraints m, reference points RP, intersection

points IP on Y , non-dominated points NP, the distance ds between two closest reference points and the CPU time

in seconds.

p = n l m RP IP NP ds CPU

3 30 56 82 40.8 39.3 0.1906 0.6108

158 74.1 71.4 0.1375 1.2902

4 40 195 340 82.4 74.9 0.2612 2.5516

907 203.0 182.4 0.1938 6.3787

5 50 748 947 85.3 72.7 0.3511 7.2225

3627 297.6 246.9 0.2591 26.3532

6 60 3041 1899 83.5 64.9 0.4339 17.6222

10875 355.9 260.0 0.3197 130.5689

7 70 12678 2852 57.3 46.7 0.4988 94.0288

25345 360.4 255.5 0.3666 822.7798

8 80 53239 3264 41.1 29.8 0.5687 447.4213

47033 260.6 155.9 0.4191 6184.2201

optimisation, the most significant impact on CPU time is the number of objective functions p.

Nevertheless, the RNBI method can be applied to MOLPs with up to eight objective functions.

Under the assumption of Theorem 5.2 it is guaranteed to generate an evenly distributed represen-

tative set of non-dominated points. It is also apparent that as p increases, the number of reference

points that do not generate an intersection point with Y increases dramatically.

7. Conclusion and Future Work

In this paper, we have addressed the problem of generating a discrete representation of the

non-dominated set of a multi-objective linear programme. We have proposed the revised normal

boundary intersection method, which, by combining features of the normal boundary intersection

method and the global shooting method overcomes drawbacks of both of these methods and

generates an evenly distributed set of representative points. In fact, we have been able to prove a

priori bounds on the uniformity level and the coverage error of the discrete representation under

the assumption that the non-dominated faces of the feasible set in objective space are “big enough”

relative to the distance of reference points. The RNBI method is the first method for which quality

guarantees in terms of both coverage error and uniformity level have been proved. Moreover,

numerical results on intensity optimisation problems from radiotherapy treatment planning and

on randomly generated examples empirically confirm that the points of the discrete representation
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are indeed evenly distributed, and that it is applicable for MOLPs with up to eight objectives.

We have indicated in Section 6 above, that one of the problematic issues with the RNBI

method is that many reference points lead to infeasible RNBI subproblems. Hence methods to

decide whether (14) is feasible before solving it, would help eliminate unnecessary computation.

This is a topic we will further investigate in the future. Moreover, we have seen that (14) may yield

dominated intersection points with Y . In the case of p = 2 objectives this can easily be avoided

by replacing the anti-ideal point yAI by the nadir point yN in the construction of the reference

plane. This makes it easy to determine which RNBI subproblems will yield a non-dominated

point and the RNBI method becomes an algorithm that runs in time linear in the cardinality of

the representation. However, the determination of the nadir point is itself a difficult problem for

p ≧ 3, so other techniques to replace the anti-ideal point by a better upper bound on YN are worth

investigating.

In order to address more general problems, we will first generalise the method to MOLPs

without the compactness assumption on Y , i.e., where Y may be unbounded, with YN either

bounded or not. Another interesting extension to be addressed in future research is a variant of

the RNBI method for convex multi-objective optimisation problems.

Acknowledgements and Data Statement

This work has been partially supported by Beijing Natural Science Foundation [grant number

4152034]; National Natural Science Foundation of China [grant number 81000650], [grant number

61370132] and National High-tech Research Development Program of China (863 Program) [grant

number 2013AA040705]. More information on the data used in this paper can be found at DOI

10.17635/lancaster/researchdata/xx.

Baur, C. and Fekete, S. (2001). Approximation of geometric dispersion problems. Algorithmica,

30(3), 451–470.

Benson, H. P. (1998). An outer approximation algorithm for generating all efficient extreme

points in the outcome set of a multiple objective linear programming problem. Journal of

Global Optimization, 13(1), 1–24.

Benson, H. P. and Sayin, S. (1997). Towards finding global representations of the efficient set in

multiple objective mathematical programming. Naval Research Logistics , 44(1), 47–67.

Das, I. and Dennis, J. E. (1998). Normal-boundary intersection: A new method for generating the

pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization,

8(3), 631–657.

Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin Heidelberg, second edition.

26
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