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Abstract  9 

The scientific literature has focused on uncertainty as randomness, while limited credit has 10 

been given to what we call here the “seventh facet of uncertainty”, i.e. lack of knowledge. 11 

This paper identifies three types of lack of understanding: (i) known unknowns, which are 12 

things we know we don’t know; (ii) unknown unknowns, which are things we don’t know we 13 

don’t know; and (iii) wrong assumptions, things we think we know, but we actually don’t 14 

know. Here we discuss each of these with reference to the study of the dynamics of human-15 

water systems, which is one of the main topics of Panta Rhei, the current scientific decade of 16 

the International Association of Hydrological Sciences (IAHS). In the paper, we argue that 17 

interdisciplinary studies of socio-hydrological dynamics can help coping with wrong 18 

assumptions and known unknowns. Also, being aware of the existence of unknown unknowns 19 

and their potential capability to generate surprises or black swans can contribute to more 20 

robust decisions in water management and disaster risk reduction.  21 
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 24 

Introduction 25 

The number seven has been very popular and widely used for a long time: the Seven Deadly 26 

Sins, the Seven Wonders of the World, the Seven Hills of Rome, the Seven Dwarves and the 27 

much more recent Murakami’s Little People of 1Q84. Mandelbrot (1997) introduced the 28 

seven states of randomness, and the number seven also has some popularity among 29 

hydrological scientists dealing with uncertainty: Pappenberger et al. (2006) discussed seven 30 
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reasons not to use uncertainty analysis, while Juston et al. (2013) provided seven reasons to be 31 

positive about uncertainty. 32 

Uncertainty is usually associated with the throwing of dice, which, strangely enough, have 33 

only six (and not seven) facets! A die was used, for instance, as the official logo of the 2013 34 

Leonardo Conference in Kos, Greece, titled “Facets of Uncertainty”. We think that this is 35 

consciously (or subconsciously) due to the fact that uncertainty is often directly (or indirectly) 36 

related to the concepts of randomness and probability. 37 

Sources of uncertainty can be classified in a variety of ways (Knight, 1921; Ferson and 38 

Ginzburg, 1996; Apel et al., 2004; Beven, 2012). These classifications enable a better 39 

exploration of the different sources of (unreducible or reducible) uncertainty and contribute to 40 

explicitly recognize the limitations of our analytical frameworks. It has been showed, for 41 

instance, that scientists and experts have a tendency to over-confidence as we tend to grossly 42 

underestimate uncertainty (Cooke, 1991; Shlyakhter et al., 1994) across a variety of studies, 43 

experts and questions (Lin and Bier, 2008). Differentiating the sources of uncertainty also 44 

supports the selection of appropriate methods (e.g. probabilistic or fuzzy) to deal with 45 

uncertainty and support the decision making process (Klir, 2006). 46 

In the 1920s, Frank Knight proposed a differentiation between the uncertainties that can be 47 

treated as probabilities and what he called the “true uncertainties” that cannot be quantified in 48 

probabilistic terms (Knight, 1921). More recently, Ferson and Ginzburg (1996) demonstrated 49 

the importance of distinguishing between variability and ignorance as their proper assessment 50 

requires different methods. In this paper, we refer to a similar classification, which 51 

differentiates between aleatory and epistemic uncertainties (Apel et al., 2004; Beven and 52 

Smith, 2014). 53 

Aleatory comes from the Latin alea, which means a die or game of dice. Aleatory uncertainty 54 

is related to the random variability of processes (Koutsoyiannis, 2010; Montanari and 55 

Koutsoyiannis, 2012). Probabilistic methods are valuable tools for dealing with the 56 

uncertainty related to chance and randomness, which, at the current time, cannot be reduced 57 

by improving our knowledge of the systems through scientific efforts. For instance, flood risk 58 

is often estimated by referring to the expected annual flood damage (Arnell, 1989) over long 59 

time horizons, such as 20 or 30 years. However, the actual damage (direct and indirect, 60 

tangible and intangible; see e.g. Giupponi et al., 2014) of future flood events will significantly 61 

depend on unpredictable factors, such as the exact time of the day, and day of the week, when 62 

the big, extreme flood event will eventually occur (Di Baldassarre et al., 2009a), e.g. the same 63 
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event would result into significantly different damages if it occurs on Sunday night during 64 

summer or during rush hours on a Friday afternoon. While the exact time of occurrence of 65 

future flood events cannot be deterministically predicted, this intrinsic uncertainty can be 66 

assumed to be predominantly aleatory and can be easily treated in probabilistic terms. 67 

Epistemic comes from the Greek ἐπιστήμη, which means knowledge. Sources of epistemic 68 

uncertainty are related to the lack of knowledge (Beven and Young, 2013). In some instances, 69 

we may understand some essential processes and be able to elaborate a number of stylized 70 

facts (Kaldor, 1957), but we do not have adequate or sufficient knowledge of all the details 71 

needed to properly capture these essential processes into our analytical frameworks.  72 

As epistemic uncertainty is not about the game of dice, here we call it the “seventh facet of 73 

uncertainty” and discuss its role in the observation and modelling of human-water systems, 74 

which is one of the main topics of Panta Rhei, the new IAHS Scientific Decade dealing with 75 

changes in hydrology and society (Montanari et al., 2013).  In particular, as social dynamics 76 

and their interplay with hydrological changes is largely unknown, and surprises might play a 77 

major role, we posit that the study of human-water systems will require going beyond current 78 

approaches, whereby epistemic uncertainty is neglected or treated as if aleatory, as well as 79 

heavy reliance on quantitative predictions. 80 

Our discussion is structured by differentiating three types of lack of understanding, with 81 

reference to the study of human-water systems: (i) known unknowns, which are things we 82 

know we don’t know; and (ii) unknown unknowns, which are things we don’t know we don’t 83 

know; and (iii) wrong assumptions, things we think we know, but we actually don’t know. 84 

 85 

Human-water systems 86 

Societies strongly rely on access to water resources, which is essential to support livelihoods 87 

and provide favourable conditions for socio-economic development (Di Baldassarre et al., 88 

2010a). While benefiting from water services, humans also alter the hydrological regime 89 

(Koutsoyiannis et al., 2009; Vörösmarty et al., 2010; Wagener et al., 2010; Lane et al., 2011).  90 

Savenije et al. (2014), for instance, identified four main types of human impacts on 91 

hydrology: (i) direct diversion of water flows (water supplies to cities, industries and 92 

agriculture), (ii) stream network transformation (construction of dams and reservoirs), (iii) 93 

changing river basin characteristics (deforestation, urbanisation, drainage of wet-lands and 94 
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agricultural practices), and (iv) alteration of the regional or global climate (greenhouse gas 95 

emissions and land cover changes). 96 

Hence, as societies change the hydrological regime, hydrological changes simultaneously 97 

shape societies. Figure 1 shows the coupled dynamics of hydrology and society driven by 98 

global changes in climate, economy, technology and culture.  99 

Fully coupled human-water systems are complex and non-linear. And the dynamic interplay 100 

between hydrology and society (Figure 1) is still poorly understood. Thus, the seventh facet of 101 

uncertainty plays a major role in the study of dynamic human-water systems, which is the 102 

main goal of socio-hydrology (Sivapalan et al., 2012; Srinivasan et al., 2012; Di Baldassarre 103 

et al., 2013ab; Montanari et al., 2013). 104 

Recognizing and assessing uncertainty is crucial to provide useful information to decision 105 

makers (Pappenberger et al., 2006; Faulkner et al., 2007; Montanari, 2007; Blazkova and 106 

Beven, 2009; Koutsoyiannis et al., 2010; Brandimarte and Di Baldassarre, 2012, Beven, 2012; 107 

2014; Krueger et al., 2012; Juston et al., 2013). To this end, a number of probabilistic 108 

methods have been developed (e.g. Beven, 2009; Di Baldassarre et al., 2010b; Neal et al., 109 

2013). As they are often based on an (unavoidably) incomplete collection of potential 110 

scenarios, the issue of what is exactly meant by probability arises. As a matter of fact, the 111 

uncertainty affecting the interconnected dynamics of hydrology and society is much more 112 

complex than the probabilities that e.g. gamblers estimate when playing dice or enjoying 113 

casinos. 114 

Figure 2 shows examples of ludic, hydrological and socio-hydrological time series whereby 115 

the reliability of probabilistic methods decrease as the seventh facet of uncertainty plays an 116 

increasingly major role. The first diagram (Figure 2a) is generated by simulating the outcomes 117 

of a fair-sided die, which are assumed independent and identically distributed. This is an 118 

example of ludic processes. Ludic comes from the latin ludus, which means “play or game”. 119 

Taleb (2007) introduced the term “ludic fallacy” to refer to the misuse of the narrow world of 120 

games, casinos and dice (whereby probabilities are known) to simulate the uncertainty of real-121 

world processes. The second time series (Figure 2b) is a long time series of hydrological data, 122 

i.e. annual minimum water levels of the River Nile at Roda. Figure 2b shows long duration 123 

structure, memory and persistence (Koutsoyiannis and Montanari, 2007, Koutsoyiannis, 124 

2013). Probabilistic methods can still be used to handle this type of uncertainty, but they 125 

require the identification of a model of the underlying stochastic structure (Montanari and 126 

Koutsoyiannis, 2012). Lastly, the third time series (Figure 2c) refers to the growth and 127 
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collapse of the Maya civilization. It shows the evolution of the human population over 128 

centuries and the potential relations with hydrological conditions. It has been showed, for 129 

instance, how technological revolutions triggered population and economic growth in the 130 

Maya lowlands, whereas the persistence of drought conditions eventually led to the societal 131 

collapse (Haug et al., 2003; Gill et al., 2007). However, it is difficult to rigorously test these 132 

causal links because the temporal resolution of human population data reconstructed from 133 

archeological records is very coarse (Figure 2b), while the proxies used for dating historical 134 

droughts are affected by significant uncertainties (Aimers and Hodell, 2011; see also 135 

Yancheva, 2007 and related discussion). 136 

 137 

Known unknowns 138 

Major flooding occurred in Brisbane (Australia) in 2011. More than 10,000 properties were 139 

affected and 25 people died (Bohensky and Leitch, 2014). This flood disaster was perceived 140 

as a surprise by the local population despite the occurrence of major flooding in 1974. People 141 

were surprised because, after the 1974 event, a number of flood protection measures were 142 

implemented, including the Wivenhoe Dam. The presence of this flood protection structures 143 

“led to the popular belief that Brisbane was flood proofed” (Bohensky and Leitch, 2014). 144 

Similarly, a few years before in 2005, people in New Orleans were surprised by the 145 

catastrophic flooding caused by levée failure during the Katrina event (Kates et al., 2006). 146 

New Orleans and Brisbane are only two recent examples of the so-called levée effect or 147 

paradox: that the consequence of building (or strengthening) flood protection measures is that 148 

the memory of flooding (and risk awareness) tends to decay over time and therefore more 149 

socio-economic development often takes place in flood prone areas. Hence, the reduced 150 

probability of flooding might generate increasing potential consequences. 151 

The levée paradox is an example of a known unknown. The paradox was already identified by 152 

White (1945) and has been discussed by several authors (Kates et al., 2006; Montz and Tobin, 153 

2008; Di Baldassarre et al., 2009b; Castellarin et al., 2011; Viglione et al., 2014). Most flood 154 

scientists know about it. Yet, methods to capture it in the assessment of future flood risk 155 

(which can be defined as a combination of flooding probability and potential adverse 156 

consequences) are completely lacking. For instance, when flood defense structures are 157 

planned and designed, current methods can indeed estimate the corresponding reduction of 158 
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flooding probability. However, they do not assess how such a reduction might trigger an 159 

increase of the adverse consequences of flooding.  160 

This is not a trivial aspect in assessing a realistic flood risk. There is evidence that flood risk 161 

might even increase in the long term as a result of flood protection measures (Di Baldassarre 162 

et al., 2013a). Thus, while there have been an enormous development of rigorous, formal, 163 

probabilistic methods to estimate uncertainty in flood hazard assessment, we still lack 164 

fundamental understanding of how flood risk actually evolves in time. It is bizarre that we 165 

provide estimates of future flood hazard with sophisticated uncertainty bounds, while 166 

neglecting crucial aspects (such the levée effect) that might determine if flood risk will 167 

actually increase or decrease! 168 

Other examples of known unknowns are the spontaneous adaptation of human societies to 169 

changing environments. For instance, there is empirical evidence that flood damages are 170 

lower when a flood event occurs shortly after a similar one. Wind et al. (1999) showed that 171 

the losses caused by the 1995 flood at the Meuse River were much lower than those caused by 172 

a previous event, of similar magnitude, that occurred in 1993. Similarly to the levée effect, 173 

this process of human adaptation effect, or learning processes, cannot be captured by the 174 

current methods of flood risk assessment. Mechler and Bouwer (2014) recently showed 175 

similar spontaneous dynamics with reference to Bangladesh, and demonstrated the limitations 176 

of our analytical frameworks in projecting future disaster risk.  177 

Moreover, many puzzles encountered in dealing with water sustainability challenges are 178 

caused by our inadequate explanatory power (e.g. water trade paradox, efficiency paradox, 179 

peak-water water; see discussion in Sivapalan et al., 2014) of feedbacks between social and 180 

hydrological processes. These effects are not mere paradoxes or exceptions. They actually 181 

drive the dynamics of many human-water systems (Di Baldassarre et al., 2013ab; Sivapalan et 182 

al., 2014). 183 

Sometimes, experts argue that these paradoxes are caused by irrational human behavior, or 184 

mismanagement. But, our point is that the study of human-water systems should first aim to 185 

understand and simulate how the human-water systems actually work, including spontaneous 186 

social dynamics, informalities, values and norms. 187 

Historical analyses of human-water interactions over long time scales, i.e. centuries, can be 188 

very challenging. The aforementioned example of the collapse of the Maya civilization shows 189 

the issues encountered when dealing with long time series of archeological data (human 190 
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population, Figure 2c) and proxies of historical climate conditions: causality links between 191 

social and hydrological dynamics are difficult to test (Yancheva, 2007; Aimers and Hodell, 192 

2011). Nevertheless, empirical studies of human-water interactions at time scales relevant for 193 

water management and disaster risk reduction, i.e. years to decades, can be much more 194 

feasible. Urbanized deltas and floodplains, for instance, are examples of ideal laboratories for 195 

the (inter- or trans-disciplinary) study of the interplay between social and hydrological 196 

processes as the interactions between human and water systems are apparent and have 197 

relevant impacts (Di Baldassarre et al., 2013a). In these flood-prone areas, human settlements, 198 

flood control measures, and memory of flooding have gradually co-evolved at similar 199 

temporal (years to decades) and spatial (floodplain) scales, while they have been also 200 

significantly affected by the sudden and localized occurrence of flooding events.  201 

Long time series of demographic, economic and hydrological data along with information 202 

about human adjustments to floods are already available for many case studies, such as New 203 

Orleans, the Tiber in Rome, and the Dutch delta (Werner and McNamara, 2007; Aldrete, 204 

2007; de Moel et al., 2011). Yet, to understand the dynamics emerging from the poorly 205 

explored interactions and feedbacks between human and water systems, there is a need to start 206 

collecting more empirical evidence. Socio-hydrological models (Di Baldassarre et al., 2013b, 207 

Viglione et al., 2014) can provide insights about the type of data that we need to collect to 208 

observe the dynamic interplay between physical and social processes. Hence, we think that 209 

more observations and empirical studies can significantly contribute to a better understanding 210 

of the dynamics of human-water systems and therefore reduce this type of epistemic 211 

uncertainty. 212 

 213 

Unknown unknowns 214 

The study of human-water systems requires an explicit treatment of the interplay between 215 

social physical processes. In this context, besides the aforementioned paradoxes that urge 216 

more understanding, there are many other things we don’t even know we don’t know (as 217 

stated by Donald Rumsfeld in February 2002). Some of these unknown unknowns may 218 

occasionally result in the so-called “black swans”: unexpected events with an extremely high 219 

impact on the system, which are essentially impossible to forecast. Yet, after their occurrence 220 

we will usually attempt to rationalize and explain them (Taleb, 2013). These unexpected 221 

events are typically created by unique, unrepeatable combinations of contexts and cascades of 222 
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contingencies. However, after they occur, humans tend to over-react and over-estimate their 223 

probability, potentially leading to some unintended consequences. 224 

While, as discussed above, more interdisciplinary research exploring the dynamics of human-225 

water systems can help reducing the epistemic uncertainty related to known unknowns, there 226 

is nothing we can do about unknown unknowns as we don’t even know what we don’t know. 227 

However, being aware of their potential occurrence is crucial as it supports the process of 228 

water management and disaster risk reduction. In this sense, black swans remind us about the 229 

importance of reducing the negative impacts of unexpected events, rather than focusing only 230 

on the precise (but most likely inaccurate) estimation of their close-to-zero probability 231 

(Makridakis and Taleb, 2009ab). Decreasing the potential adverse consequences of water-232 

related disasters by enhancing the resilience (and reducing the vulnerability) of human 233 

societies, can be more robust than heavily relying on predictions of the close-to-zero (but 234 

essentially unknown) probability of water-related disasters caused by unrepeatable 235 

combinations of contexts and cascades of contingencies. For instance, improving evacuation 236 

and contingency plans does not necessarily require an accurate and precise estimation of 237 

probabilities, but it can significantly increase the resilience of human-water systems, i.e. the 238 

ability to recover after an event.  239 

Thus, potential surprises and black swans suggest the need to go beyond heavy reliance on 240 

predictions, and traditional top-down approaches based on probabilistic assessments of 241 

hydrological hazards. In this context, Blöschl et al. (2013) comprehensively discussed the 242 

potentialities of complementing traditional top-down approaches with bottom-up ones. 243 

Bottom-up approaches do not start from probabilistic prediction, but, rather, from the societal 244 

and economical vulnerability of communities and individuals and explore the possibilities 245 

(rather than the probabilities) of failures by explicitly considering the expertise of local 246 

stakeholders and risk managers (see e.g. Lane et al., 2011). For instance, Wilby and Dessai 247 

(2010) showed how the vulnerability of the human-water systems to droughts and water 248 

scarcity can be reduced by enhancing the connectivity of water supply infrastructures and 249 

making abstraction licenses time-limited. While this combination of measures could not be 250 

considered “optimal”, it is more robust than alternative low-regret options to the potential 251 

occurrence of unexpected events with potentially devastating consequences. Thus, it is by 252 

acting from a vulnerability’s viewpoint that water managers and scientists can reduce the 253 

negative impacts of unknown unknowns and potential surprises. 254 

 255 
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Wrong assumptions 256 

Besides unknowns, there are also things we think we know, but we actually don’t know. This 257 

is what we call here “wrong assumptions”. Any scientific work, including hydrological or 258 

socio-hydrological studies, is necessarily based on a number of assumptions. Aware of the 259 

limitations of our hypotheses, we typically follow a parsimonious approach and focus on the 260 

dominant processes that drive the dynamics. However, while some assumptions may work for 261 

a number of case studies, they can be significantly wrong in other cases.  262 

To make this point, we introduce two fictitious characters that are inspired by the ludic fallacy 263 

(Taleb, 2007). Dr. Maria Smith, graduated summa cum laude at MIT, the youngest professor 264 

at Princeton University. She is a “logical positivist”. “Smart” Angie, perhaps graduated 265 

somehow/somewhere, is a great entrepreneur that got very rich in a few years. She is a 266 

“sceptical empiricist”. 267 

A test is made. A coin is flipped 99 times, and each time it comes up heads. The two ladies 268 

are asked what the odds are that the 100th flip would also come up heads.  269 

Without any hesitation, Dr. Smith says: “Odds are not affected by previous outcomes, so the 270 

odds must be 50%!” 271 

Smart Angie thinks about it and eventually says: “Well, if it came up heads 99 times in a row 272 

there must be something wrong with this coin! So, odds must be much more than 50%!” 273 

The point made by Smart Angie is that the coin must be loaded. In classical terms, odds of the 274 

coin coming up heads 99 times in a row are so low that the assumption that the coin had a 275 

50% chance of coming up heads is most likely wrong.  276 

Similarly, the occurrence of many 1-in-100 year flood events within a few years may suggest 277 

issues with the typical assumption of treating annual maximum flows as time series of 278 

independent and identically distributed random variables. Hydrological extremes can be 279 

affected by long-term persistence and memory related to climate variability. Bloeschl and 280 

Montanari (2010) as well as Hall et al. (2013) showed examples of occurrence of flood-rich 281 

and flood-poor periods. Also, by analyzing Figure 2b one can observe alternating cycles of 282 

drought-rich periods, whereby annual minimum levels are persistently lower than the average, 283 

and drought-poor periods, whereby annual minimum levels are persistently higher than the 284 

average. 285 
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This an example of the many hypotheses that have become standard and have not been 286 

sufficiently challenged (similarly to the way Dr. Smith keeps assuming the coin to be fair). 287 

While the assumption of treating hydrological extremes as independent and identically 288 

distributed can result acceptable (from a practical viewpoint) in a few instances, this 289 

assumption should be tested and not merely be taken for granted.  For another hydrological 290 

example see the discussion of preferential flows in relation to the transport of phosphorus and 291 

pesticides in Beven and Germann (2013). 292 

When it comes to the non-linear dynamics of human-water systems, the issue of making 293 

fundamentally wrong assumptions becomes even larger as the perception of hydrological 294 

change and attitude towards risk can strongly vary across human societies depending on 295 

political and socio-economic conditions as well as cultural values (Kahneman and Tversky, 296 

1979; Thompson et al., 1990; Viglione et al., 2014). And given wrong assumptions, of course, 297 

we should expect surprises in the future (as seen also in other disciplines, such as economics). 298 

It should be noted that some wrong assumptions can be related to known unknowns. For 299 

instance, while historical changes show that the dynamics of future flood risk can be 300 

significantly affected by socio-hydrological feedbacks, such as the levee effect, these 301 

feedbacks are, as mentioned above, assumed not to matter in state-of-art assessments of future 302 

flood risk. Moreover, some other wrong assumptions can be caused by unknown unknowns 303 

and we (might) become aware of their fallacy only after the occurrence of surprises or black 304 

swans. 305 

 306 

Conclusions 307 

Despite centuries of water management, we still lack the fundamental knowledge of the 308 

essential dynamics driving the long term behaviour of human-water systems. Over the past 309 

decades, focus has been given to assess in probabilistic terms the uncertainty of the assumed 310 

behaviour (how it should work) of the system, rather than exploring ranges of the actual 311 

behaviour of the system (how it actually works). This has been related to the focus on 312 

uncertainty as randomness along with limited credit to epistemic uncertainty, which we called 313 

here the seventh facet of uncertainty.  314 

The increasing impact of human activities on hydrological dynamics, in a time that some calls 315 

Anthropocene, has led to a growing interest on the study of water-society interactions. As the 316 

dynamics of human-water systems are still largely unknown, and social dynamics are highly 317 
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unpredictable, we argued that there is  a need to go beyond current approaches (focusing on 318 

uncertainty as randomness and probabilistic methods) and give more credit to the seventh 319 

facet of uncertainty. In particular, we proposed new observations and empirical studies of 320 

coupled dynamics of hydrology and societies to increase our knowledge of the behaviour of 321 

fully coupled human-water systems and reduce epistemic uncertainty. Hence, scientific 322 

understanding is believed to be a way to deal with wrong assumptions and known unknowns 323 

in the study of the interplay between social and hydrological processes, which one of the main 324 

focuses of Panta Rhei, the current IAHS’s scientific decade.  325 

We also discussed that, while unknown unknowns cannot be understood as we don’t even 326 

know what we don’t know, being aware of their existence and their potential capability to 327 

generate surprises, can help from a management viewpoint: we cannot predict black swans, 328 

but we can act to reduce their adverse consequences.  329 
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Figures 502 

 503 

 504 

 505 

Figure 1. The socio-hydrological cycle: societies change the hydrological regime via human activities, 506 
while the experience of hydrological changes shape societies. Human and water systems are deeply 507 
intertwined and respond to global changes in climate, economy, technology and culture. 508 
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 510 
 511 

a)  512 

b)  513 

c)  514 
 515 
Figure 2. Examples of ludic, hydrological and socio-hydrological time series. a) Fair-sided dice 516 
outcomes. b) River Nile at Roda, Egypt: annual minimum levels 622-1284. Note the presence of long-517 
term persistence and memory (Koutsoyiannis, 2013). c) Maya Lowlands: human population history. 518 
Note demographic growth periods and collapses, plausibly due to persistent drought conditions (Gill et 519 
al., 2007). 520 
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