
Ranking Robustness and its Application to

Evacuation Planning∗

Marc Goerigk†1, Horst W. Hamacher2, and Anika Kinscherff2

1Department of Management Science, Lancaster University, United Kingdom
2Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany

Abstract

We present a new approach to handle uncertain combinatorial opti-
mization problems that uses solution ranking procedures to determine
the degree of robustness of a solution. Unlike classic concepts for robust
optimization, our approach is not purely based on absolute quantitative
performance, but also includes qualitative aspects that are of major im-
portance for the decision maker.

We discuss the two variants, solution ranking and objective ranking
robustness, in more detail, presenting problem complexities and solution
approaches. Using an uncertain shortest path problem as a computational
example, the potential of our approach is demonstrated in the context of
evacuation planning due to river flooding.

Keywords: Robust Optimization, Solution Ranking, Combinatorial Optimiza-
tion, Evacuation Planning

1 Introduction

In the recent past, several evacuations became necessary due to river flooding in
various parts of the world. From a planning point of view, operations research
methods have a high potential to be used quite successfully in this context (see,
for instance, [HT01]), since there is usually some time before the decision for an
evacuation is made and the actual evacuation is started. Obviously, the water
level in flooded areas is dependent on the rain fall causing the flooding, and the
latter is subject to uncertainty. Therefore, robust optimization models are very
appropriate to deal with flood evacuation.

Since its first formalization in the late 90s, robust optimization has seen
uninterrupted rising interest both from the research community as well as from
practitioners. Following the seminal work [BTN98], many different variants have
evolved, each catering to the specialized needs of some application, or a better

∗Partially supported by the German Ministry of Research and Technology (BMBF),
projects RobEZiS, grant number 13N13198 and StanLay, grant number 13N12826, and by
the Air Force Office of Scientific Research, Air Force Material Command, USAF, grant num-
ber FA8655-13-1-3066. The U.S Government is authorized to reproduce and distribute reprints
for Governmental purpose notwithstanding any copyright notation thereon.
†Email: m.goerigk@lancaster.ac.uk, {hamacher,kinscherff}@mathematik.uni-kl.de

1

trade-off between conservatism and costs. We refer to [BBC11, BTGN09, GS15]
for surveys on the topic, and to [GYdH15, CG16b] for more hands-on guides on
robust optimization.

In this paper we focus on combinatorial optimization problems with uncer-
tain cost coefficients. As a typical example, consider a shortest path problem in
a road network, where the time to traverse an edge is not known exactly, and
even no probability distribution is available. More formally, we write

P (c) min{f(x, c) : x ∈ X}, c ∈ U (1)

where X denotes the set of feasible solutions, and U a set of possible scenarios,
the so-called uncertainty set.

As noted above, there exist many approaches to reformulate this family of
problems P (c) to a robust counterpart, whose optimal solution should perform
“well” over all possible scenarios in some sense that needs to be specified. For
this type of problems, we refer to the overview [ABV09].

In this paper, we restrict ourselves to two classical robust counterparts. The
first one, minmax robustness (also known as strict robustness)

MM min

{
max
c∈U

f(x, c) : x ∈ X
}

(2)

is a conservative measure based on the absolute objective values of all scenarios.
The second one uses a relative measure comparing objective values of a given
solution with the best possible one and is known as minmax regret :

MMR min

{
max
c∈U

(f(x, c)− f∗(c)) : x ∈ X
}
. (3)

Here f∗(c) := min{f(x, c) : x ∈ X} is the best possible objective value with
respect to scenario c ∈ U and is used as a benchmark for any other solution
x ∈ X . Both approaches evaluate the robustness of a solution only based on its
(absolute or relative) worst-case performance in the objective.

An ideal minmax regret solution xI ∈ X is one, where the objective value

max
c∈U

(
f(xI , c)− f∗(c)

)
= 0 (4)

of MMR is equal to 0, which means that some xI ∈ X can be found which
is optimal for each scenario c ∈ U . Although an ideal minmax regret solution
is highly desirable, one can, in general, not expect to find such a solution.
We, therefore, propose in this paper a modified version, the ranking robust
counterpart which relaxes the condition of an ideal minmax regret solution to

max
c∈U

(
f(xRR, c)− f(xK(c), c)

)
= 0 (5)

where xK(c) is a K best solution of P (c) in (1).
As a numerical example, consider the following minimization problem with

two scenarios c1 and c2, and three solutions A, B, and C. The objective values
are given in Table 1.

Solution A has the best worst-case performance, and is the optimal solution
to MM . However, it ignores the poor performance of A compared to B and C

2

A B C
c1 50 21 10
c2 100 105 110

Table 1: Objective values of an example problem.

in scenario c1. Solution C has the smallest maximum regret, and is the optimal
solution toMMR. Solution B is the second-best solution in every scenario, and is
thus also interesting as a compromise solution from a practical perspective (while
both A and C can be the worst choices in one of the scenarios, respectively).

Alternatively, we may also consider each scenario as an objective function
of a multi-criteria optimization problem. There usually does not exist a single
solution that performs best for all objective functions at the same time; instead,
one aims at finding Pareto solutions (see [Ehr06]). It can be shown that the set
of Pareto solutions also includes optimal solutions to MM and MMR [ABV09].

Choosing one solution out of the set of Pareto solutions is already a difficult
task that is hard to automate, as it depends on the practical insight and priori-
ties of the decision maker (see [Mie14] for a survey on visualization methods that
guide such a selection process). One approach to select such a desired solution
from the set of candidates is to roughly classify their performance in each ob-
jective, and to choose one that never falls into a bottom-percentile performance
class. Such an approach also leads to our concept of ranking robustness.

Our method is related to the robust optimization approach presented in
[BMSW13]. For any ρ ≥ 1, the authors consider the set of ρ-approximate
solutions in each scenario. Their aim is to find ρ large enough, such that the
intersection of these sets is non-empty. Furthermore, a value for ρ is to be found
which maximizes what they call the unexpected similarity between the solution
sets.

In the following, we formalize our approach of ranking robustness. We intro-
duce a general definition for ranking robust optimization problems and discuss
general properties in Section 2. We then consider two variants in more detail:
Solution Ranking Robustness in Section 3, and Objective Ranking Robustness
in Section 4. These approaches are compared in Section 5, and applied to the
shortest path problem in Section 6. A computational example applying our
approach to the shortest path problem on a real-world street network in the
context of evacuation planning is presented in Section 7, before the paper is
concluded in Section 8.

2 Ranking Robustness

We consider combinatorial optimization problems

(P) min{f(x, c) = ctx : x ∈ X} (6)

over some set X ⊆ 2E of feasible solutions, where E = {e1, . . . , em} is a finite
ground set (equivalently X ⊆ Bm and x ∈ X a binary vector). Due to data
uncertainty, we assume that the cost coefficients c are not known exactly, but are
known to stem from some set of possible outcomes U , also called the uncertainty
set. We write P (c), c ∈ U to denote that problem P is uncertain and depending
on c.

3

Inspired by ranking problems (often also referred to as K best problems, see,
e.g., [HQ85]), we introduce the following notation.

Definition 1. For each c ∈ U a priority list (with respect to c) with length
L(c) is an ordered partition of the set X of feasible solutions into L(c) subsets,
i.e.,

S(c) =
(
S1(c), S2(c), . . . , SL(c)(c)

)
with

L(c)⋃
i=1

Si(c) = X , Si(c) ∩ Sj(c) = ∅

for i 6= j, i, j ∈ {1, ..., L(c)}.

Definition 2. Given c ∈ U and a priority list S(c), x ∈ Si(c) is said to be
preferred to y ∈ Sj(c) iff i < j. For x ∈ Si(c) and y ∈ Sj(c) with i < j, we
say that x is preferred to y in scenario c ∈ U .

Generally speaking, a priority list should encapsule the preferences of a de-
cision maker under each scenario. Hence, there may be different approaches to
construct such lists. We illustrate some in the following.

Example 1. We consider the shortest s− t path instance from Figure 1. Next

Figure 1: A shortest path instance.

to each edge, its name and length are shown. Table 2 summarizes all feasible
solutions in this setting.

Path Name Path Length
P1 (e1, e2, e3) 9
P2 (e1, e4, e7, e5, e3) 14
P3 (e1, e4, e7, e8) 9
P4 (e6, e7, e5, e3) 11
P5 (e6, e7, e8) 6

Table 2: Feasible solutions to the example shortest path instance from Figure 1.

One natural approach to construct a priority list is to group paths according
to their objective ranking, i.e., their total length, which yields

SOR(c) = ({P5}, {P1, P3}, {P4}, {P2}) (7)

Note that paths P1 and P3 have the same length, and are therefore given the
same level or priority. Alternatively, we may decide that every priority class

4

should consist of a single solution, e.g., by applying some lexicographic quality
criterion. If we use the number of edges in a path to refine the set {P1, P3}
further, we get

SSR(c) = ({P5}, {P1}, {P3}, {P4}, {P2}) . (8)

As we will see later, priority lists consisting of singletons have algorithmic ad-
vantages. Finally, it is even possible to use priority lists which are not solely
based on objective values, but on additional expertise of the planner; as an ex-
ample, we assume that there exists some priority order on the set of edges E,
such that edges are preferred in the order (e8, e3, e1, e6, e4, e5, e2, e7). Following
such an approach, we find

SPL(c) = ({P3}, {P5}, {P2}, {P1}, {P4}) .

In this paper, we focus on priority lists of type SOR(c) and SSR(c) which
we formalize subsequently.

Definition 3. A priority list S(c) is called objective-ranking, if

f(x, c) < f(y, c) for all x ∈ Si(c), y ∈ Sj(c) with i < j (9)

and

f(x, c) = f(y, c) for all x, y ∈ Si(c). (10)

It is called solution-ranking if

f(x, c) ≤ f(y, c) for all x ∈ Si(c), y ∈ Sj(c) with i < j (11)

and

|Si(c)| = 1 for all i = 1, . . . , L(c). (12)

Based on these definitions, we now consider their usage in robust optimiza-
tion. To this end, we consider solutions that guarantee a certain preference over
all scenarios c ∈ U .

Definition 4. Let a priority list S(c) be given for every scenario c ∈ U , and let
K ∈ N. Then we denote with

XK(c) :=
⋃
i≤K

Si(c) (13)

the set of feasible solutions with preference at most K in scenario c, and with

XK :=
⋂
c∈U
XK(c). (14)

Here we assume Si(c) = ∅ for i > L(c) such that XK(c) is well-defined for all
K ∈ N in (13). We are now in a position to define our new approach to robust
optimization, ranking robustness.

Definition 5. We say a solution x ∈ X is K-ranking robust if x ∈ XK .
The (general) ranking robustness problem (RR) consists in finding K∗ :=
min{K ∈ N+ : XK 6= ∅}, i.e. the smallest K for which a K-ranking robust
solution exists. Given a solution- or objective-ranking, the corresponding RR
problems are called Solution-Ranking Robustness (SRR) and Objective-
Ranking Robustness (ORR), respectively.

5

It should be noted that any solution xRR ∈ XK∗ satisfies the relaxed ideal
minmax regret robustness criterion presented in (5). A small K∗ can be con-
sidered as an indicator of a well-conditioned uncertainty set, since one can find
a feasible solution which is close to an ideal minmax regret solution. Large K∗

indicate a large variability in the scenarios.
We illustrate the ranking robustness approach by extending Example 1.

Example 2. Let us denote the scenario shown in Figure 1 as c1, and let us
assume there exists a second scenario c2 with c2 = (1, 3, 1, 1, 4, 4, 2, 3). Then the
objective ranking for c2 is given as

SOR(c2) = ({P1}, {P3}, {P2, P5}, {P4})

and the solution ranking as

SSR(c2) = ({P1}, {P3}, {P5}, {P2}, {P4})

Using the priority lists (7,8) of c = c1 we find that for objective ranking,
K∗ = 2 with both P1 and P3 being 2-ranking robust, while for solution ranking,
K∗ = 2 with only P1 being 2-ranking robust.

When the priority lists for all scenarios are given, problem RR can be solved
by iteratively testing if the intersections ∩c∈UXK(c) are empty. This can be
done in polynomial time in the cardinality of X (as the priority lists are part of
the input, this means a polynomial solution time overall).

In general the solution set XK∗ contains more than one solution which are
all considered as optimal for RR. Hence, if a single solution should be presented
to the decision maker, we are facing the problem which solution from XK∗ to
choose (naturally, this also applies to most other robust optimization concepts,
such as MM and MMR). There are several selection criteria conceivable, some
of which are described below.

• Choose the best solution with respect to the nominal scenario (if existent).

• Choose the best solution with respect to the minmax problem.

• Choose the best solution with respect to the minmax regret problem.

• Choose the solution minimizing the mean objective value over all scenarios.

• Apply another existing robustness concept on XK∗ instead of on X .

Choosing a specific criterion, say criterion C, we apply C on the solution set
XK∗ to obtain the final optimal solution of the problem using the RR concept.
If there is more than one solution which fulfills C, we choose one arbitrarily.

Note that for both SRR and ORR, solutions in X 1 are also optimal for MM
and MMR, if they exist.

For a more in-depth discussion of solution postprocessing in robust optimiza-
tion, we refer to [IT14].

6

3 Solution-Ranking Robustness

In this section we consider the SRR problem first for finite uncertainty sets U ,
and then show that the problem of interval uncertainty sets can be reduced to
finite ones.

In SRR, the cardinality constraint (12) implies |XK(c)| = K for all K ∈ N,
and S(c) can be written for all c ∈ U as

S(c) =
(
x1(c), x2(c), . . . , xL(c)(c)

)
, (15)

where xk(c) is the k-th best solution of problem P (c), k = 1, . . . , L(c) and L(c) =
|X |.

In contrast to the ORR problem, the ordering inequality (11) is, in general,
not strict, i.e., it may happen that f(xi(c), c) = f(xj(c), c) for i 6= j. Hence,
to specify the solution priority lists, we assume the existence of a common tie
breaking rule for all c ∈ U to decide a consistent ordering in U :

Assumption 1. If two solutions x and y have the same objective value with
respect to c ∈ U and x is preferred to y in this scenario, then x is also preferred
to y in every other scenario c′ ∈ U with f(x, c′) = f(y, c′).

Due to Definition 5 and (15), a feasible solution satisfies x ∈ XK iff it is
among the K best solutions for every scenario c ∈ U . We can thus apply any
ranking algorithm for combinatorial optimization problems to compute XK(c) =(
x1(c), x2(c), . . . , xK(c)

)
, for instance, the binary search tree (BST) algorithm

of [HQ85]. We sketch this algorithm to keep the paper self-contained.
For the BST procedure we assume to have an algorithm computing in addi-

tion to the best also a second best feasible solution of P (c). In the initialization
step, this algorithm is applied to the whole feasible set X and returns x1 = x0,1

and x2 = x0,2, respectively. Then X is partitioned into two disjoint sets X1 and
X2 such that x1 is the best solution of X1 and x2 is the best solution of X2. We
can choose these sets using an element e ∈ E such that x1e = 1 and x2e = 0 by
setting

X1 := X ∩ I, where I := {x ∈ X : xe = 1} (16)

and

X2 := X ∩O, where O := {x ∈ X : xe = 0} (17)

For both sets the second best solutions x1,2 (in X1) and x2,2 (in X2) are
computed and compared. Assuming w.l.o.g. that x2,2 is better, we find the
third best solution x3 := x2,2 for the original feasible set X .
X2 is replaced by its partition X3 and X4, with x3,1 and x4,1 being the

corresponding best solutions. These steps are repeated until we receive the
K-th best solution.

Figure 2 illustrates how to find the three best solutions.
The complexity of this algorithm to find the K best solutions of P (c) is

O(B(m) + (K − 1)C(m)), where B(m) and C(m) denote the computational
effort to determine the best and restricted second best solution, respectively.
Since in the worst case K∗ = |X | is possible for the SRR problem, this yields
an O(|U|(B(m) + |X |C(m))) algorithm.

7

X
x1 = x0,1, x2 = x0,2

X1
x1 =: x1,1, x1,2

X2
x2 =: x2,1, x3 = x2,2

X3
x2 =: x3,1, x3,2

X4
x3 =: x4,1, x4,2

Figure 2: BST approach with computed 3-best solutions. The 4-th best is the
best of x1,2, x3,2 and x4,2.

In order to avoid this exponential running time, we suggest to combine the
ranking approach with a relaxation of the ideal minmax regret equation (4):
Fix some scenario c ∈ U and some K ∈ N, compute XK(c) = {x1, ..., xK} and
the value

min
i=1,...,K

max
c∈U

(
f(xi, c)− f∗(c)

)
. (18)

The solution xi minimizing (18) is used as approximate solution. This approach
generalizes [MG04] from shortest paths to other combinatorial optimization
problems (see [HQ85]), and has a complexity of O(B(m)+(K−1)C(m)+K|U|).
Alternatively, one could stop the SRR algorithm, if the bound (18) is smaller
than a given accuracy ε.

We conclude this section by proving that we can solve a SRR-problem for a
special case of infinite uncertainties the same way as for finite uncertainties.

Theorem 1. Let Assumption 1 hold and U be an interval-based uncertainty
set, i.e., ce ∈ [ce, ce] for all e ∈ E, and let Ext(U) be the extreme points of U .
Then x ∈ X is K-solution ranking robust with respect to U if and only if x is
K-solution ranking robust with respect to Ext(U).

Proof. Since Ext(U) ⊆ U , any solution that is K-solution ranking robust w.r.t
U is also K-solution ranking robust w. r. t. Ext(U).

To prove the converse, suppose that x ∈ X is not K-solution ranking robust
with respect to U . Then there exists a scenario c ∈ U and solutions yk ∈ Sk(c)
for k = 1, . . . ,K that are preferred to x. As we consider solution rankings, it
holds that ∑

e∈E
cexe ≥

∑
e∈E

cey
K
e ≥ · · · ≥

∑
e∈E

cey
1
e

We define the following scenario ĉ ∈ Ext(c):

ĉe =

{
ce, if xe = 1

ce, if xe = 0

By construction of ĉ, it holds that∑
e∈E

ĉxe ≥
∑
e∈E

cexe.

8

For any k ∈ {1, . . . ,K}, we therefore have that∑
e∈E

ĉexe −
∑
e∈E

ĉey
k
e =

∑
e∈E

xe=1,yk
e=0

ce −
∑
e∈E

xe=0,yk
e=1

ce

≥
∑
e∈E

xe=1,yk
e=0

ce −
∑
e∈E

xe=0,yk
e=1

ce

=
∑
e∈E

cexe −
∑
e∈E

cey
k
e ≥ 0

Due to Assumption 1, this means that yk is preferred to x also in scenario ĉ.
Hence, x cannot be K-solution ranking robust with respect to Ext(U).

4 Objective-Ranking Robustness

For ORR we can generate the priority lists using an adaption of the BST
ranking algorithm, but since the number of solutions with the same objective
value can be up to |X |, we develop another way to solve it. For i = 1, ..., L(c)
let val(i, c) := f(x, c) be the unique common objective value within each set
Si(c) (recall Definition 3). For ease of notation we set val(i, c) = val(L(c), c)
for i > L(c).

Suppose the first N values of val(i, c) are known for all c ∈ U , and K∗ ≤ N .
Then the ORR problem can be formulated as the following integer program
(IP):

min K (19)

s.t. ctx ≤ val(i, c) +M(c)zi ∀c ∈ U , i = 1, . . . , N (20)

N∑
i=1

zi ≤ (K − 1) (21)

x ∈ X (22)

zi ∈ {0, 1} (23)

K ∈ N+ (24)

where M(c) is a constant sufficiently large (e.g. M(c) ≥
∑
e∈E ce) and zi

a variable equal to 1 whenever there is no x which is i-ranking robust. If
solving this problem shows that K∗ > N , we need to increase N by determining
additional values val(i, c). Finding val(i, c) given val(i− 1, c) can be done also
using an IP, or by using the BST algorithm from Section 3.

If we only want to check if there exists a K-objective ranking robust solution
given the first K values of val(i, c), we solve the problem

min
x∈X

max
c∈U

(f(x, c)− val(K, c))

instead. Note the similarity of this formulation to problem MMR.
The next example shows that for the ORR approach – in contrast to SRR

– it is not possible to find a solution by restricting an uncertainty set to its
extreme points, even in the case of intervals.

9

Example 3. Consider an uncertain shortest path problem with three disjunct
paths P1, P2 and P3 from s to t, with costs c1 ∈ [5, 9], c2 ∈ [6, 13] and c3 ∈ [6, 14].
There are eight extreme scenarios; solving ORR using only these gives K∗ = 2
and X = {P1}. However, in the scenario c1 = 8, c2 = 6 and c3 = 7, we find
that P1 /∈ X 2(c).

To analyze the complexity of ORR, we consider the unconstrained combi-
natorial optimization problem

(UP) min

{∑
e∈E

cexe | x ∈ {0, 1}m
}

in the following. Note that the minmax robust counterpart of (UP) is NP-hard
already for two scenarios and unrestricted ce (see [BBI14]).

We show that calculating val(i, c) for some fixed c ∈ U and given val(i−1, c)
is NP-hard. An integer program to calculate val(i, c) in the case of c ∈ Nm is
the following.

(UP-val) min
∑
e∈E

cexe

s.t.
∑
e∈E

cexe ≥ val(i− 1, c) + 1

x ∈ Bm

Theorem 2. Problem (UP-val) is NP -hard.

Proof. The decision problem of (UP-val) is to decide whether there exists a
solution x such that K1 ≤

∑
e∈E cexe ≤ K2 for given values K1, K2.

We use a reduction from the Partition problem. Given a set A and weights
w : A −→ Z+, we need to decide if there is a subset A′ ⊆ A such that∑
i∈A′ w(ai) =

∑
i∈A\A′ w(ai).

Given an instance of Partition, we build an instance of (UP-val) by setting
ci = w(ai) and K1 = K2 = 1

2

∑
i∈A w(ai). Then (UP-val) is a Yes-instance iff

the Partition problem is a Yes-instance.

Problem (UP-val) has similar structure as a knapsack problem, and also
allows a pseudo-polynomial dynamic programming approach. We denote the
different stages by r = 1, . . . ,m and the possible right hand sides by λ =
0, . . . , val(i− 1, c) + 1. We define

fr(λ) = min{
r∑
i=1

cixi :

r∑
i=1

cixi ≥ λ, x ∈ Bm}

and aim at finding fm(val(i− 1, c) + 1). To this end, we can use the following
recursion:

fr(λ) = min{fr−1(λ), cr + fr−1(λ− cr)} (25)

Using scaling techniques as for the knapsack problem [IK75], also a PTAS for
(UP-val) can be achieved.

10

5 Interrelation between SRR and ORR

We start this section by considering interrelations between the objective values
of SRR and ORR for the case of finite uncertainty sets U . Since the solution
sets XK(c) and the optimal values K∗ may differ between the concepts, we use
an additional subindex S or O to distinguish between SRR and ORR.

By definition, |XKS (c)| = K ≤ |X | holds for all c ∈ U , whereas |XKO (c)| > K
will occur whenever there exists more than one solution with the same objective
value in P (c). While K∗O is an indicator for the quality of the objective function
value, K∗S is not only related to the objective value, but also to the decision set,
such that a high value of K∗S does not necessarily indicate a solution with bad
objective value. Obviously, K∗O ≤ K∗S , but this result can be strengthened.

Theorem 3. The optimal objective values K∗O and K∗S satisfy

1

b |U|−1|U| |X |c+ 1
K∗S ≤ K∗O ≤ K∗S (26)

Proof. It suffices to show that K∗S ≤
|U|−1
|U| |X |+ 1. To this end, we introduce a

priority function p(x) : X −→ N|U| with

p(x) = (p1(x), . . . , p|U|(x))T ,

where pi(x) denotes the priority of x respective to scenario ci ∈ U in SRR.
Given p(x) for some x ∈ X , we can determine the maximal priority of x by

K∗(x) = max
i=1,...,|U|

pi(x)

which gives an upper bound for K∗S . Finding x ∈ X for which K∗(x) is mini-
mized leads to the optimal K∗S for the SRR problem.

By definition the maximal priority of a solution x is bounded by |X |. Since
we are dealing with a finite number of scenarios, this upper bound can only be
reached by at most |U| different solutions, i.e. K∗(x) = |X | can hold for at
most |U| different solutions. With the same argument we know that for at most
|U| different solutions we have K∗(x) = |X | − 1 and so on. Thus, in the worst

case we can iterate K = |X | − d |X ||U| e steps without finding a K robust solution.

However, in the K + 1-th step there is at least one x with K∗(x) = K. By

simplifying the term we get that K∗S ≤
|U|−1
|U| |X |+ 1.

Figure 3 illustrates this process. Here we have three scenarios and six pos-
sible solutions (A–F). The position p1(x) and the point that corresponds to the
maximal priority of x are filled with the same color. Then one can see that E
is the first solution for which the stopping criteria holds, and we know that the
maximal possible K∗S in this case is five.

Note that for large values of |U|, the bound from Theorem 3 is getting close
to the trivial bound K∗S ≤ |X |; thus, our bound is particularly strong for small
values of |U|. If |U| = 2, then Theorem 3 yields K∗S ≤ b 12 |X |c+ 1. We show in
Appendix A that this bound is tight.

Next we assume that both solution sets XK
∗
S

S and XK
∗
O

O are given and that
we have to choose a particular solution x∗ as output for the SRR and the ORR

11

Figure 3: Example for the proof for Theorem 3.

problem, respectively. It is easy to find examples in which XK
∗
S

S ∩ XK
∗
O

O = ∅
holds for all possible orderings of SRR. To decide which solution is put into
practice, a postprocessing criterion C is applied, for instance one of the criteria
listed at the end of Section 2.

In the final part of this section, we interpret the different objective func-
tions f(x, c) as part of a vector-valued objective function in a multi-criteria
environment.

Definition 6. We call x ∈ X efficient if there is no y ∈ X dominating x,
i.e., satisfying f(y, c) ≤ f(x, c) for all c ∈ U and f(y, c′) < f(x, c′) for at least
one c′ ∈ U .

It has been noted (see [ABV09]) that for MM and MMR at least one op-
timal solution is also an efficient solution. This property has also been used
algorithmically, see, e.g., [CG16a, IT14]. We show that similar results hold for
SRR and ORR.

Theorem 4. Let a solution ranking be given such that efficient solutions are
preferred to non-efficient solutions with the same objective value. Then, all
solutions in XK∗S are efficient.

Proof. Let x be in XK∗S and assume x is not efficient, but dominated by y ∈ X .
We consider the following subsets of scenarios:

U := {c ∈ U | f(y, c) = f(x, c)}

U ′ := {c ∈ U | f(y, c) < f(x, c)}

Since y dominates x, we have U ′ 6= ∅. By definition of XKS (c) it follows that y
enters XK∗S (c) before x for c ∈ U ′. But also for c ∈ U we have that y enters
XK∗S (c) before x by the assumption that efficient solutions are preferred. This
contradicts the minimality of K∗; hence, x is efficient.

If we cannot guarantee that efficient solutions are preferred, we still obtain
that the solutions are weakly efficient. For ORR, a different result holds. Note
that a tie breaking condition as in Theorem 4 is not required.

12

Proposition 1. At least one solution in XK∗O is efficient.

Proof. Assume that x ∈ XK∗O is dominated by y ∈ X . We show that y is also
in XK∗O .

Let U and U ′ be defined as above. Then for all c ∈ U ′, solution y has a
strictly higher priority than x. For all c ∈ U , both x and y are contained in
XK∗O (c). Thus, by minimality of K∗, we have that y is also included in XK∗O .
If y is dominated by some other solution z ∈ X , we can repeat this argument
finitely many times, until we find an optimal efficient solution.

6 Ranking Robust Shortest Paths

We now analyze the application of ranking robustness to shortest path problems
in more detail. Given a directed graph G = (V,E), with edge lengths ce ∈ N, n
nodes and m edges, we need to find a path from s to t with minimal length.

6.1 SRR for Shortest Path Problems

To solve SRR, we are faced with two subproblems: Determining the priority
lists S(c), and solving the ranking problem for given priority lists. As the second
problem is trivial for SRR (by checking if XK is empty), we focus on the first
problem here.

Finding a solution ranking is known as the K-th shortest path problem in
the literature. It is known to be NP-hard (see [GJ79]), but pseudo polynomial
algorithms exist. Apart from the general BST method of [HQ85], problem-
specific algorithms can be found in [Yen71, EM03, ZG09].

In [ZG09], an algorithm is presented that solves the K-th shortest path
problem in O(K(mn+ n2loglogn)).

6.2 ORR for Shortest Paths Problems

As before, we consider two subproblems here: The computation of val(i, c), and
finding a solution that is K-objective ranking robust, given the values val(i, c).
In contrast to SRR, the second problem is not trivial.

We first discuss the computation of val(i, c) for some c ∈ U , assuming that
val(i− 1, c) has already been determined. To this end, the following IP can be
used:

(SP-val) min
∑
e∈E

cexe (27)

s.t.
∑
e∈E

cexe ≥ val(i− 1, c) + 1 (28)∑
e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = bv ∀v ∈ V (29)

uv − uw + nxe ≤ n− 1 ∀e = (v, w) ∈ E (30)

x ∈ {0, 1}m (31)

u ∈ Zn (32)

13

where bs = −1, bt = 1 and bv = 0 otherwise. Note that subtour elimination con-
straints (30) are required to find a path, as otherwise, cycles would be possible
due to constraint (28).

Although the general shortest path problem is solvable in polynomial time,
this does not hold for (SP-val).

Theorem 5. Given val(i, c) for some c ∈ U and i = 1, ...,K−1, the computation
of (SP − val) is NP-hard.

Proof. The decision problem of (SP-val) is to decide if there is a simple (s, t)-
path with length of at least K1 and at most K2. We use a reduction from
the longest path problem (see [GJ79]), which is to decide if there is a simple
(s, t)-path with length L or more.

Given an instance of the longest path problem, we build an instance for
(SP-val) using the same graph, the same edge costs, and setting K1 := L and
K2 = n · maxe∈E ce. Since no simple path can be longer than K2, we find as
(s, t)-of length L or longer if and only if there is an (s, t)-path with length of at
least K1 but not longer than K2.

We now consider the second subproblem, which is to find a K-ORR solution,
given the values val(i, c). For K = 1, this problem can be rewritten as

min
x∈X

(
max
c∈U

(f(x, c)− val(1, c))
)

which is equivalent to problem MMR (see also Section 4).
Most combinatorial minmax regret problems are NP-hard (see [ABV09]).

We show that this is also the case for ORR shortest paths.

Theorem 6. Let an uncertain shortest path problem with finite uncertainty set
be given. Then, the objective ranking robust shortest path problem is NP hard,
even for two scenarios and if all values val(i, c) are given.

Proof. We use a reduction from the following decision problem of MMR: Given
a graph G = (V,E), is there an s− t path with regret less or equal to L? This
problem is known to be NP-complete already for two scenarios with integral
edge lengths ([YY98]).

Given an instance of MMR, we construct a new graph G′ where additional
nodes and edges are inserted in front of node s, as described in Figure 4. The

Figure 4: Graph G′.

edge costs of the new edges are constant over all scenarios. We are now looking
for a path from vk to t. Note that G′ is constructed such that

val(K, c) = val(1, c) +K − 1

14

Accordingly, there is an s − t path in G with regret at most L if and only if
there is an L+ 1-objective ranking robust path in G′.

Using the same construction, the same results also holds for spanning tree
problems:

Corollary 1. The objective ranking robust spanning tree problem is NP-hard.

7 Computational Example

We consider the city of Kulmbach, Germany, as an example instance (see Figure
5). In the context of river flooding we focus on the river White Main which runs
through Kulmbach. Due to an outdated flood protection infrastructure, which
is currently being renewed, Kulmbach has been affected by recent floodings,
e.g., in 2006.

Assuming that the water level increases, people need to be evacuated from
endangered regions as fast as possible. To this end, we consider a network with
no arc capacities such that the best evacuation route from a start to an end
point can be computed by solving a shortest path problem.

Since we cannot calculate the exact degree of destruction caused by flood-
ing or other environmental disasters, it is even more important to deal with
uncertainty. Some roads might be still passable in one scenario but for an-
other outcome it is nearly impossible to use them. Thus, we model a scenario
dependent condition of roads and bridges via the arc labels of our network. Us-
ing robust optimization to determine appropriate paths leads to solutions that
hedge against all given scenarios.

In this section we present an example as a proof of concept that compares
our new SRR and ORR approaches with the classical concepts of minmax
(MM) and minmax regret (MMR) robustness. Our intention is not to give a
quantitative comparison, but to focus on qualitative solution differences.

7.1 Setup

Using OpenStreetMap (OSM) data, the underlying graph is aggregated by merg-
ing nodes that are less than 75 meters away from each other (for a detailed
description of the aggregation procedure, see [Grü15]). Moreover, we removed
all arcs and corresponding nodes leading to dead ends. This way, the original
graph containing 4105 nodes and 59,066 arcs is reduced to 217 nodes and 690
arcs (see Figure 6).

Increasing the original, undisturbed arc lengths of the aggregated graph,
we produce additional scenarios. Each arc is modified and its new weights are
determined randomly using the following scheme:

x := uniform(l, u), y := N (x,
1

2
), mod := |N (y, 1)|.

Here, uniform(l, u) is the uniform distribution between l = 0 and u = 1
2

to model a set-up in which the generated scenarios deviate not that much from
the original one. For stronger deviation we choose l = 1

2 and u = 1. Next, the

15

Figure 5: City of Kulmbach (image copyright 2015 Google and 2015 GeoBasis).

Figure 6: Aggregated OSM graph data for Kulmbach.

16

normal distribution N is applied twice to ensure that the scenarios are not too
similar. When an arc length is modified, the new arc value is

lengthnew = lengthold(1 +mod).

We created different instances and scenarios and applied SRR, ORR, MM
and MMR to the resulting uncertain instance. For MM and MMR we solve the
corresponding IPs using Gurobi [GO15] on Python. SRR is solved as described
in Section 6.1, using Yen’s algorithm ([Yen71]) for finding the K best shortest
paths with given shortest path algorithms provided by networkx [HSS08]. For
ORR we use Gurobi to determine solutions for the integer programs presented
in Section 6.2.

All algorithms have been tested on a 64 Bit Linux compute server equipped
with two Intel Xeon E5-2690 (single processor specifications: nominal speed
2.9GHz, boost up to 3.8GHz, 8 cores, 16 threads, 20MB Cache) and 192GB
DDR-3 ECC RAM at 1333MHz, making use of Python 2.7.11, networkx 1.6
[HSS08], numpy 1.6.1 [SvdWV11], python-igraph 0.7.0 [CN06], and Gurobi
solver 6.5.0 [GO15].

7.2 Results

We focus on an example which illustrates that our new concept is a viable alter-
native to MMR and MM . Extensive numerical tests will follow in a subsequent
paper.

In this example, we used five scenarios and computed optimal paths with
respect to MM , MMR, ORR and SRR. Since ORR and SRR lead to the same
solution, we simply refer to it as RR in the following. The resulting three paths
PMM , PMMR and PRR are shown in Figure 7.

The path lengths with respect to the different scenarios are given in Table 3.
By definition, PMM has to be best in one scenario, but PRR outperforms PMM
in all others. In only one scenario, PRR is worse than both PMM and PMMR;
in two of five scenarios it even leads to the best solution, indicating that this
approach deserves further research.

PRR PMM PMMR
c1(P) 6760 7306 6886
c2(P) 4047 4224 3896
c3(P) 8986 7904 8591
c4(P) 7185 8038 7577
c5(P) 7394 7675 7370

Table 3: Objective values ci(P)

Tables 4–7 show how well a solution of one concept performs as a solution to
a different concept. For Table 4 we computed the ORR objective of each of the
three paths, i.e., the smallest K such that the corresponding path is K-ranking
robust. In this way we obtain a quality measure for the MMR-solution, since
the ideal minmax regret solution is K = 1 (see 4). The value K = 266 for PMMR
is about 1.5 times larger than the optimal K = 188 from PRR, which indicates
a potential preference for the solution obtained by the ranking approach. This

17

Figure 7: Shortest paths PRR (green), PMMR (red) and PMM (blue). (c© Open-
StreetMap contributors www.openstreetmap.org/copyright)

comparison is even more in favor of RR, if we compare PRR with the MM
solution.

The values of Table 5 indicate in how many scenarios the solution of the
various approaches are contained after the solution algorithm stopped with out-
put K∗ for SRR . By definition, this number is 5 for PRR, but PMMR was only
contained in three, and PMM even only in one K∗ best priority lists.

Finally, in Tables 6 and 7 we compare the worst-case and regret objective
values of all approaches. While MM performs by definition best in the worst-
case, and MMR best for the regret objective, one can observe that RR presents
a reasonable alternative.

Table 8 shows the computation times for each approach. While the SRR
and ORR solutions have high quality, they are also more complex to compute

Objective Value
RR 188
MM 657
MMR 266

Table 4: ORR objective values

Number Scenarios
RR 5
MM 1
MMR 3

Table 5: Number of inclusions
in SRR−K∗ best solutions.

18

www.openstreetmap.org/copyright

Objective Value
RR 8986
MM 8038
MMR 8591

Table 6: MM objective values

Objective Value
RR 1351
MM 1754
MMR 1334

Table 7: MMR objective values

(especially ORR) and thus show a high potential for further research in the area
of complexity and improving the efficiency of the underlying procedures.

Model Time (sec.)
MM 0.23
MMR 0.33
SRR 14.93
ORR 212,747.31

Table 8: Different running times of each approach, given in seconds.

8 Conclusion

In this paper we introduced ranking robustness, a new approach to robust opti-
mization that is based on a preference ranking of solutions. Two such ranking
methods have been discussed, which are solution ranking (i.e., every feasible
solution is given a unique degree of preference in every scenario) and objective
ranking (i.e., solutions are ranked according to their objective value). Solution
algorithms and problem complexities have been discussed for both approaches,
in particular with respect to shortest path problems.

Our new approach is motivated by experience with decision makers, who
tend to classify solutions according to a coarser concept of quality than their
precise objective value.

As a proof of concept our approach has been applied to a real-world shortest
path instance, where we observed promising differences to other robust solutions,
motivating further research into ranking robustness.

References

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max
regret versions of combinatorial optimization problems: A survey.
European Journal of Operational Research, 197:427–438, 2009.

[BBC11] D. Bertsimas, D. Brown, and C. Caramanis. Theory and applica-
tions of robust optimization. SIAM Review, 53(3):464–501, 2011.

[BBI14] F. Baumann, C. Buchheim, and A. Ilyina. A Lagrangean decom-
position approach for robust combinatorial optimization. Technical
report, Optimization Online, 7 2014.

[BMSW13] Joachim M Buhmann, Matús Mihalák, Rastislav Srámek, and Peter
Widmayer. Robust optimization in the presence of uncertainty.

19

In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, pages 505–514. ACM, 2013.

[BTGN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization.
Princeton University Press, Princeton and Oxford, 2009.

[BTN98] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math-
ematics of Operations Research, 23(4):769–805, 1998.

[CG16a] A. Chassein and M. Goerigk. A bicriteria approach to robust opti-
mization. Computers & Operations Research, 66:181 – 189, 2016.

[CG16b] A. Chassein and M. Goerigk. Performance analysis in robust op-
timization. In E. Grigoroudis M. Doumpos, C. Zopounidis, editor,
Robustness Analysis in Decision Aiding, Optimization, and Ana-
lytics, International Series in Operation Research & Management
Science. Springer, 2016. To appear.

[CN06] Gabor Csardi and Tamas Nepusz. The igraph software package for
complex network research. InterJournal, Complex Systems:1695,
2006.

[Ehr06] Matthias Ehrgott. Multicriteria optimization. Springer Science &
Business Media, 2006.

[EM03] M.M.B. Pascoal E.Q.V. Martins. A new implementation of Yen’s
ranking loopless paths algorithm. Quarterly Journal of the Bel-
gian, French and Italian Operations Research Societies, 1(2):121–
134, 2003.

[GJ79] M R Garey and D S Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. WH Freeman & Co.,
San Francisco, 1979.

[GO15] Inc. Gurobi Optimization. Gurobi optimizer reference manual,
2015.

[Grü15] B. Grün. Dissertation tba. PhD thesis, Technische Universität
Kaiserslautern, 2015.

[GS15] M. Goerigk and A. Schöbel. Algorithm engineering in robust opti-
mization. In L. Kliemann and P. Sanders, editors, Algorithm En-
gineering: Selected Results and Surveys, volume 9220 of Lecture
Notes in Computer Science, page 0. Springer Berlin / Heidelberg,
2015.

[GYdH15] Bram L Gorissen, İhsan Yanıkoğlu, and Dick den Hertog. A prac-
tical guide to robust optimization. Omega, 53:124–137, 2015.

[HQ85] H.W. Hamacher and M. Queyranne. K best solutions to combi-
natorial optimization problems. Annals of Operations Research,
4:123–143, 1985.

20

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using NetworkX. In
Proceedings of the 7th Python in Science Conference (SciPy2008),
pages 11–15, Pasadena, CA USA, August 2008.

[HT01] H. W. Hamacher and S. A. Tjandra. Mathematical modelling of
evacuation problems: a state of the art. In Pedestrian and Evacu-
ation Dynamics, pages 227–266. Springer, Berlin, 2001.

[IK75] Oscar H Ibarra and Chul E Kim. Fast approximation algorithms
for the knapsack and sum of subset problems. Journal of the ACM
(JACM), 22(4):463–468, 1975.

[IT14] Dan A. Iancu and Nikolaos Trichakis. Pareto efficiency in robust
optimization. Management Science, 60(1):130–147, 2014.

[MG04] R Montemanni and L.M. Gambardella. An exact algorithm for
the robust shortest path problem with interval data. Computers &
Operations Research, 31(10):1667–1680, 2004.

[Mie14] K. Miettinen. Survey of methods to visualize alternatives in mul-
tiple criteria decision making problems. OR Spectrum, 36(1):3–37,
2014.

[SvdWV11] S. Chris Colbert Stéfan van der Walt and Gaël Varoquaux. The
numpy array: A structure for efficient numerical computation.
Computing in Science & Engineering, 13:22–30, 2011.

[Yen71] J. Y. Yen. Finding the k shortest loopless paths in a network.
Management Science, 17:712–716, 1971.

[YY98] Gang Yu and Jian Yang. On the Robust Shortest Path Problem.
Computers & Operations Research, 25(6):457–468, 1998.

[ZG09] M. Lewenstein Z. Gotthilf. Improved algorithms for the k simple
shortest paths and the replacement paths problems. Inf. Process.
Lett., 109:352–355, 2009.

A Tightness of Bound in Theorem 3

We show that the bound

1

b |U|−1|U| |X |c+ 1
K∗S ≤ K∗O

is tight whenever |U| < |X |. For |U| ≥ |X | the trivial bound K∗S ≤ |X | holds.
Let X = {x1, . . . , xN}, U = {c1, . . . , cM} and N − 1 = s(M − 1) + r. For

i = 1, ..., N we set f(xi, c
1) = 1. Furthermore, we set

f(x1, c
2) = f(x2, c

3) = · · · = f(xM−1, c
M) = N,

f(xM , c
2) = f(xM+1, c

3) = · · · = f(x2M−2, c
M) = N − 1,

21

x1 · · · xM−1 xM · · · x2(M−1) · · · xs(M−1)+1 · · · xN−1 xN

c1 1 · · · 1 1 · · · 1 · · · 1 · · · 1 1

c2

1 + (N − 1) · Id 1 + (N − 2) · Id · · ·

N − s · · · 1 1
...

. . .

cr+1 1 · · · N − s 1
cr+2 1 · · · 1 1

...
. . .

cM 1 · · · 1 1

Table 9: Instance for which the inequality of Theorem 3 is tight.

and so on, until we reach xN . f(xN , c
i) for i = 1, ...,M and all remaining

objective values are set to one (see Table 9).

For this instance, the ORR problem is solved with K∗O = 1 and XK
∗
O

O =
{xN}. We can solve the SRR problem by setting p1(xi) = i for i = 1, ..., N
which is possible since all objective values are the same. Then, K∗S is determined
by finding xi with p1(xi) ≥ K∗(xi). By construction we obtain this for i =
bM−1M Nc + 1. This way we can always find an instance for which the ratio of
Theorem 3 holds with equality.

Note that this example only works since the ranking of solutions with equal
objective value can be done arbitrarily. If there is an ordering rule, better
bounds might be obtained.

22

	Introduction
	Ranking Robustness
	Solution-Ranking Robustness
	Objective-Ranking Robustness
	Interrelation between SRR and ORR
	Ranking Robust Shortest Paths
	SRR for Shortest Path Problems
	ORR for Shortest Paths Problems

	Computational Example
	Setup
	Results

	Conclusion
	Tightness of Bound in Theorem 3

