
OpenCache: A Content Delivery
Platform for the Modern

Internet

Matthew Broadbent

This dissertation is submitted for the degree of Doctor of Philosophy

Abstract

Since its inception, the World Wide Web has revolutionised the way we share

information, keep in touch with each other and consume content. In the latter

case, it is now used by thousands of simultaneous users to consume video, sur-

passing physical media as the primary means of distribution. With the rise of

on-demand services and more recently, high-definition media, this popularity has

not waned. To support this consumption, the underlying infrastructure has been

forced to evolve at a rapid pace. This includes the technology and mechanisms

to facilitate the transmission of video, which are now offered at varying levels of

quality and resolution.

Content delivery networks are often deployed in order to scale the distribution

provision. These vary in nature and design; from third-party providers running

entirely as a service to others, to in-house solutions owned by the content service

providers themselves. However, recent innovations in networking and virtualisa-

tion, namely Software Defined Networking and Network Function Virtualisation,

have paved the way for new content delivery infrastructure designs. In this thesis,

we discuss the motivation behind OpenCache, a next-generation content deliv-

ery platform. We examine how we can leverage these emerging technologies to

provide a more flexible and scalable solution to content delivery. This includes

analysing the feasibility of novel redirection techniques, and how these compare

to existing means. We also investigate the creation of a unified interface from

which a platform can be precisely controlled, allowing new applications to be cre-

ated that operate in harmony with the infrastructure provision. Developments

in distributed virtualisation platforms also enables functionality to be spread

throughout a network, influencing the design of OpenCache. Through a proto-

type implementation, we evaluate each of these facets in a number of different

scenarios, made possible through deployment on large-scale testbeds.

Declaration

I declare that the work in this thesis has not been submitted for a degree at any

other university, and that the work is entirely my own.

Matthew Broadbent

December, 2015

Acknowledgements

First and foremost, I would like to express gratitude to my PhD supervisor, Dr.

Nicholas Race. Throughout my postgraduate study, he has offered me the support

and guidance necessary for me to succeed as both a researcher and a scientist.

My thanks also go to those that I have worked with during this period, including

Panagiotis Georgopoulos, Mu Mu and Arsham Farshad.

I would like to thank those that have kept me sane over the past few years,

including my good friends, Oliver Bates and Richard Withnell, and my parents,

Stephen and Jane Broadbent. The encouragement and motivation offered by

these people has been unfaltering.

Contributing Publications

M. Broadbent, P. Georgopoulos, V. Kotronis, B. Plattner, and N. Race. Open-

Cache: Leveraging SDN to demonstrate a customisable and configurable cache.

In Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE

Conference on, pages 151–152. IEEE, 2014.

M. Broadbent, D. King, S. Baildon, N. Georgalas, and N. Race. OpenCache: A

software-defined content caching platform. In Network Softwarization (NetSoft),

2015 1st IEEE Conference on, pages 1–5. IEEE, 2015.

M. Broadbent and N. Race. OpenCache: exploring efficient and transparent

content delivery mechanisms for video-on-demand. In Proceedings of the 2012

ACM conference on CoNEXT student workshop, pages 15–16. ACM, 2012.

P. Georgopoulos, M. Broadbent, A. Farshad, B. Plattner, and N. Race. Us-

ing Software Defined Networking to enhance the delivery of Video-on-Demand.

Computer Communications, 69:79–87, 2015.

P. Georgopoulos, M. Broadbent, B. Plattner, and N. Race. Cache as a service:

leveraging SDN to efficiently and transparently support Video-on-Demand on

the last mile. In Computer Communication and Networks (ICCCN), 2014 23rd

International Conference on, pages 1–9. IEEE, 2014.

Other Publications

O. Bates and M. Broadbent. HomeFlow: inferring device usage with network

traces. In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous

computing adjunct publication, pages 815–820. ACM, 2013.

A. Farshad, P. Georgopoulos, M. Broadbent, M. Mu, and N. Race. Leveraging

SDN to provide an in-network QoE measurement framework. In Computer

Communications Workshops (INFOCOM WKSHPS), 2015 IEEE Conference

on, pages 239–244, April 2015.

T. Fratczak, M. Broadbent, P. Georgopoulos, and N. Race. Homevisor: Adapt-

ing home network environments. In Software Defined Networks (EWSDN), 2013

Second European Workshop on, pages 32–37. IEEE, 2013.

P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race. Towards

network-wide QoE fairness using openflow-assisted adaptive video streaming.

In Proceedings of the 2013 ACM SIGCOMM workshop on Future human-centric

multimedia networking, pages 15–20. ACM, 2013.

S. Nazir, Z. Hossain, R. Secchi, M. Broadbent, A. Petlund, and G. Fairhurst.

Performance evaluation of congestion window validation for DASH transport.

In Proceedings of Network and Operating System Support on Digital Audio and

Video Workshop, page 67. ACM, 2014.

Contents

1 Introduction 21

1.1 Content Delivery in the Modern Internet 22

1.2 The Move Towards Programmability 24

1.3 Motivation . 25

1.4 Thesis Aims and Contributions 26

1.5 Thesis Structure . 28

2 Background and Related Work 31

2.1 The Growth of the Internet . 32

2.2 Network Softwarisation . 34

2.2.1 Programmable Networks 35

2.2.2 Software Defined Networking 35

2.2.2.1 OpenFlow . 37

2.2.2.2 ForCES . 41

2.2.3 Network Functions Virtualisation 42

2.3 Video as an Emerging Application 46

2.3.1 Protocols for Video Delivery 47

2.3.1.1 Real Time Transfer Protocol 47

2.3.1.2 Real Time Messaging Protocol 48

2.3.1.3 Multicast . 48

2.3.1.4 Peer-to-Peer . 50

2.3.1.5 HTTP Progressive Downloads 52

2.3.1.6 HTTP Adaptive Streaming 53

2.3.1.7 Information-centric Networking 55

2.3.2 Infrastructures for Video Delivery 57

2.3.2.1 Web Caches . 57

2.3.2.2 Content Delivery Networks 60

2.3.2.3 Redirection Techniques 65

2.4 Infrastructure-assisted Applications 68

2.4.1 Switching and Routing . 68

2.4.2 Security . 69

2.4.3 Resiliency . 71

2.4.4 Data Centre . 72

2.4.5 Application Development 73

2.4.6 Content Delivery . 74

2.4.7 Moving Forward . 76

2.5 Summary . 77

3 Design 79

3.1 Motivation and Aims . 79

3.1.1 Content Delivery Fundamentals 80

3.1.2 Programmable Control . 81

3.1.3 Open Processes and Interfaces 83

3.1.4 Flexible Deployment . 84

3.1.5 Summary . 85

3.2 Architecture and Design . 85

3.2.1 Service Layer . 87

3.2.2 Control Layer . 90

3.2.3 Redirection Layer . 94

3.2.4 Application Layer . 97

3.3 Discussion . 99

4 Implementation 101

4.1 OpenCache Core . 101

4.1.1 Shared Library . 102

4.1.2 Node . 104

4.1.2.1 Services . 107

4.1.2.2 Storage . 109

4.1.3 Controller . 110

4.1.3.1 Redirection . 112

4.1.3.2 Virtualised Compute 114

4.1.4 API . 115

4.1.4.1 External . 117

4.1.4.2 Internal . 122

4.1.5 Development and Deployment Aids 125

4.2 OpenCache Console . 126

4.3 OpenCache Applications . 128

4.4 Scootplayer . 131

4.5 Summary . 132

5 Evaluation 133

5.1 Redirection . 133

5.1.1 Results . 139

5.1.2 Discussion . 140

5.2 Quality-of-Experience . 141

5.2.1 Results . 145

5.2.1.1 Single-user . 145

5.2.1.2 Multi-user . 147

5.2.2 Discussion . 150

5.3 Application Programming Interface 152

5.3.1 Load Balancer . 154

5.3.2 Failover Monitor . 155

5.3.3 Results . 156

5.3.4 Discussion . 159

5.4 Summary . 160

6 Conclusions 163

6.1 Thesis Contributions . 164

6.1.1 Commercial and Research Impacts 166

6.1.2 Summary . 167

6.2 Future Work . 168

6.3 Concluding Remarks . 170

Bibliography 191

List of Figures

2.1 NFV Architectural Framework . 44

3.1 Layers of the OpenCache Architecture 86

3.2 OpenCache Node Design . 87

3.3 OpenCache Controller Design . 90

3.4 OpenCache Controller Hierarchy 92

3.5 OpenCache Proxy Design . 95

4.1 Request Redirection Process . 113

4.2 OpenCache Console Management Pane 127

4.3 OpenCache Console Statistics Pane 127

4.4 Example Application Message Flow 128

5.1 OFELIA Experimental Facility 134

5.2 OFELIA Evaluation Topology . 136

5.3 Request Message Flow . 138

5.4 GOFF Experimental Facility . 141

5.5 GOFF Evaluation Topology . 142

5.6 GOFF Single-user Results . 145

5.7 GOFF Multi-user Results . 148

5.8 Fed4FIRE Evaluation Topology 153

5.9 Load Balancing Message Flow . 154

5.10 Failover Monitor Message Flow 156

5.11 Client Buffer During Load Balancing 157

5.12 Client Buffer During Failover with 1s Resolution 158

5.13 Client Buffer During Failover with 5s Resolution 159

5.14 Client Buffer During Failover with 10s Resolution 160

17

List of Tables

3.1 Feature Summary . 85

3.2 OpenCache Methods . 97

4.1 External API Specification . 117

4.2 Internal API Specification . 122

4.3 Example Application JSON-RPC Calls 129

5.1 OFELIA Evaluation Results . 139

19

Chapter 1

Introduction

The Internet has become an integral part of many people’s lives. From its humble

beginnings as a research network, it is now the primary means by which many

people keep in contact with each other, stay abreast of current events, and con-

sume their favourite TV shows and films. In the latter case, it has now surpassed

physical media as the preferred way in which to deliver video.

This change in consumption is in part due to improvements in the availability

of Internet access. As this has grown to encompass much of the general pop-

ulation, many of the aforementioned services have become accessible to a large

number of people. Matched with a simultaneous improvement in last-mile connec-

tivity, this has created an environment in which the distribution of high-quality

video to the masses is both technically possible and financially viable.

To support the widespread consumption of video over the Internet, different

technologies and methods have been employed over recent years. This includes the

deployment of dedicated platforms to enable the necessary scale and availability

to be realised, such as content delivery networks. The techniques used to deliver

video to client devices have also seen recent advancements, especially towards

adaptive streaming technologies.

In parallel, there has been a significant move towards open and programmable

infrastructures. These range from the highly-configurable networks, to the abil-

ity to dynamically control compute and storage platforms to enable the flexible

provision of resources.

21

1.1 Content Delivery in the Modern Internet

The Internet is now the primary conduit through which the general population

consumes video. This is apparent in the overall traffic profile of the Internet,

which is now dominated by video [46].

The scale and support necessary to deliver this video is considerable, and

relies heavily on investment in both network and service infrastructure. This has

been developed over numerous years, and has often resulted in the need to evolve

in the many areas contained within the content delivery ecosystem.

Furthering Network Capacity

The underlying computer network is a core part of this; without sufficient ca-

pacity, congestion and latency manifest themselves as visual defects exhibited

during playback. By expanding the amount of traffic that a network can carry,

more users and services can be simultaneously consumed. Network expansion

also delivers increased throughput, which can be used to deliver higher quality

video. Considering the ongoing shift from standard definition to high definition

media, and the not-so-distant move to ultra high definition, capacity needs to

continually increase to match consumer demands and expectations.

However, provisioning networks, especially those that involve the physical

installation of equipment and cabling, is a time and cost intensive process. A

gradual approach is often taken, with long-lived planning cycles allowing replace-

ment and upgrade to occur every few years. There is therefore an element of

prediction involved in this process, as operators need to provision for expected

future demand.

Matching Consumer Demand

Naturally, demand can often outstrip supply in these cases. This is especially

true when rapid, unexpected growth occurs. The unprecedented popularity of

video delivery over the Internet would be an example of such. To supplement

the expansion of network capacity, content providers often rely upon supporting

infrastructure to solve some of the scalability and performance requirements of

delivering content to a great number of users.

22

These deployments can take many forms, but share commonality in their

ability to replicate content over a number of locations. By doing so, they provide

assurance that content is always available, regardless of the number of requests.

They also aim to minimise the amount of network hops necessary to fetch the

content, which should reduce the chance of encountering congestion.

Further tenants in this environment include the underlying delivery technolo-

gies used to get content to a requesting user. With an increase in the quality

of available video, it became viable to offer multiple tiers to customers. Yet,

clients cannot always receive the highest tier of quality; network impairments are

sometimes unavoidable, regardless of the infrastructures in place. For example,

a client transitioning in a mobile context cannot guarantee a constant level of

throughput. A solution that adapts to network and device conditions adaptive

solution is therefore necessary.

Managing Competing Interests

Operating within this environment are a number of different parties, each with

different goals and motivations. Commercial content service providers are driven

by either paid subscription or advertising revenue models. Regardless of their

funding, these services commonly offer vast content libraries that can be accessed

any time of day, and on a multitude of devices. Yet, as the range and depth of

these services expands, customer expectations also increase. Users have now come

to expect the availability of vast content libraries, as well as higher quality video

delivered with minimal initial delay. Users also have a much lower tolerance to

impairments during playback, with even a minor disturbance having a measurable

impact on the quality of their experience. In the case of commercial service

providers, consumers will often take their custom elsewhere if they are unhappy

with the service they are receiving.

The burden of delivering content does not rest solely with the content service

provider. Last-mile access networks are typically the final hop before a user’s

device, and as such, they play an important role in determining the perceived

user experience. However, these networks receive no direct remuneration from

the content service provider for delivering their traffic, and offer a best-effort

service as a result. When it is considered that this video traffic has now become

the predominate type carried by these networks, the need to expand network

23

capacity is essentially driven by the proliferation of these services; yet they receive

no return on the profits generated by such.

To ensure that content is located in the best possible location given this situ-

ation, content service providers often employ the services of content distribution

networks. These entities place content in strategic locations, typically at the

edge of these access networks, to ensure that the impact of network conditions

and impairments is reduced to those within the network itself. They achieve this

by peering with the access networks and replicating content objects within their

own infrastructure. Requests for content originating from the access network are

then redirected towards these copies. In addition to this, content delivery net-

works also guarantee the availability of content without sole reliance on content

service provider provision. This scale is necessary to meet the increasing demand

generated by the popularity of content, particularly in cases where this demand

is sudden and unexpected.

1.2 The Move Towards Programmability

For many years, there has been a trend towards creating programmability in

previously fixed appliances and infrastructure. This has seen significant research

in networking and virtualisation. Driven by the need to flexibly control the

behaviour of these elements, great effort has been expended towards achieving

such a goal. However, many attempts to address this have been met by concerns

of scalability, performance and security.

More recently, software defined networking has been coined as a term to rep-

resent networks which are capable of being controlled through distinct standalone

applications. In particular, it defines the process of decoupling control and for-

warding functionality. By doing this, control is granted to a controller applica-

tion, which then has the ability to define the behaviour of a forwarding element

in response to incoming packets. This controller can also accept responsibility

for multiple such entities, facilitating the control of an entire network from a

centralised and unified location.

These concepts were embodied in a number of technologies, each of which

aiming to successfully realise this functionality. Unlike previous attempts, indus-

try followed academic trends and began manufacturing equipment compliant with

24

these specifications. This fast-tracked research in the area, and allows novel func-

tionalities to be built quickly and evaluated rapidly. It also provides a migration

path between lab-based experimentation and real-world deployment, something

that was previously hard to realise, and which resulted in only a select few inno-

vations seeing widespread usage.

A similar process has taken place in the field of virtualisation, and more specif-

ically, in the virtualisation of computing machinery. This field also has a long

history, but recent progress in platform design has enabled users to dynamically

build, modify and destroy virtual machine instances as desired. Furthermore,

these platforms also provide the supporting infrastructure for these new instances,

including storage, networking and monitoring capabilities. This is tied with the

ability to programmatically control these platforms; that is, perform these actions

from within an application using a well-defined interface.

Together, these advancements have enabled a new generation of infrastructure-

assisted applications, capable of modifying the behaviour of various elements of

their own infrastructure where necessary. This allows new forms of flexibility,

and paves the way for the efficient usage, sharing and allocation of resources.

Importantly, the actions necessary to accomplish this can be achieved in almost

real-time, enabling reactive behaviours in response to service load, availability of

resources and the cost of operating.

1.3 Motivation

The growth in demand for content of all forms, and in particularly that of video,

shows no sign of stopping. In order to satiate this demand, content service

providers use various approaches to ensure that video is not only available, but

delivered in a way which satisfies the increasingly stringent demands of consumers.

Content delivery networks are a core part of this solution. They ensure not

only that scalability requirements are met, but also that customers receive the

best possible experience. The success of these platforms is well documented,

but this is not to say that developments in this area can cease; in fact constant

innovation is required. As demand increases at levels beyond what was envisaged

only a few years ago, so does the scale and measure of the delivery networks

necessary to support it.

25

Scaling such a platform naturally introduces complexities concerning the effec-

tive management, provision and control of the service. As a result, there is a ne-

cessity to simplify this process to ensure that resources are appropriately utilised,

to avoid misconfiguration and to negate the associated overhead of deploying ad-

ditional equipment. This needs to be done in an open and programmable way to

not only guarantee interoperability, but also to encourage the reuse of function

and behaviour.

Given recent developments concerning the flexible provisioning of resources

and networks, services can now take advantage of the ability to dynamically scale

according to a number of factors, including anticipated load, associated cost and

energy utilisation.

This also provides a number of potential cost benefits for operators, including

a reduction in the cost of delivering content; both in terms of network utilisation

and infrastructure deployment. Exploiting these should not only result in the

extension in the lifespan of equipment, but better utilisation of the resources

already in a network.

These resources can also be effectively freed to enable other services to utilise

them, furthering the efficiency of existing fixed hardware resources. Content

delivery networks rely on functionality offered by dedicated appliances or third-

party services; this can now be realised in-network using commodity switching

hardware.

Delivery technologies have also moved to become more adaptive in the face

of changing network conditions. This introduces complexity, but provides the

potential for additional efficiency gains. Content delivery platforms need to con-

sider these developments, and determine the best way to work in harmony with

them.

Given the current state of content distribution technologies, and the avail-

ability of flexible and configurable infrastructures, the focus for this thesis is to

propose a next-generation content delivery platform for the modern Internet.

1.4 Thesis Aims and Contributions

This thesis aims to investigate the future of content delivery platforms. To be

achieved through design, implementation and evaluation, the main aims and con-

26

tributions of this thesis are summarised below:

1. OpenCache, an infrastructure-assisted content delivery platform

design: In this thesis, we aim to identify a set of key requirements for future

content delivery infrastructures. This is achieved through the analysis of ex-

isting systems and solutions, but also with consideration for current trends

and emerging technologies. In particular, this thesis will consider develop-

ments in software defined infrastructures and content delivery technologies.

As these will undoubtedly shape the future of platform development, we

will provide a comprehensive design. Entitled OpenCache, this will aim to

contextualise and encompass these elements.

2. A proof-of-concept implementation of the OpenCache content de-

livery platform: To evaluate and examine the effectiveness of this design,

a prototype implementation will be built. This follows the specification of

the aforementioned design, and forms the basis to evaluate the application

of software defined infrastructures in this scenario. It will also be used to

consider the implications of using new delivery technologies, and the impact

that this may have on both existing and future content delivery platforms.

3. An evaluation of OpenCache’s feasibility, performance and user

experience impact in large-scale testbeds: Through the use of the

aforementioned prototype, this thesis will contribute an initial measure of

feasibility in using these new technologies. This includes utilising the flex-

ibility in virtualisation platforms to dynamically scale resource allocation

dependent on availability, demand, or any other factor, as well as under-

standing the impact of using software defined networking to forward re-

quests for content. To measure potential detriments to performance, this

evaluation must be coupled with deployment into genuine network topolo-

gies, using production switching equipment and handling realistic traffic.

This evaluation will also consider user experience in these scenarios; an

important metric in commercial settings.

4. The specification, implementation and evaluation of the Open-

Cache API for programmable cache control: This thesis will propose

an open API for the control of content delivery networks, leveraging new-

found flexibility in infrastructure and network provision. Noting a lack of

27

such a specification, this thesis will provide a preliminary outline for the

realisation of a programmable cache infrastructure. This allows logic and

applications to be developed regardless of underlying capabilities, including

across alternative providers, and should foster innovation and openness in

the otherwise closed environment of content delivery networks.

1.5 Thesis Structure

This thesis is structured into six individual chapters. Following this introduction,

we describe the importance of the Internet and its modern-day role in delivering

content in Chapter 2. The chapter also examines the trend towards the soft-

warisation of networks and the services within them. This chapter also includes a

detailed description of the evolution of video delivery, including the protocols and

infrastructures that are employed to enable this. Finally, this chapter examines

the fledgling field of infrastructure-assisted applications, highlighting work across

a number of domains.

The following chapter, Chapter 3, presents the design of an evolutionary con-

tent delivery platform that seeks to utilise emerging technologies to improve the

process of delivering video to large volumes of people. This includes a detailed

motivation, which considers influences from a multitude of sources, and results

in a multi-layered architecture capable of meeting the rigorous demands imposed

by modern providers and their customers.

Chapter 4 provides details of a prototype implementation of the aforemen-

tioned design. This includes the node used to serve content in response to a

user request, as well as the controller used to coordinate and manipulate multiple

nodes at once. It also details the realisation of the API, and an exemplary ap-

plication which utilises such to determine cache operation. Finally, this chapter

describes the implementation of a number of complementary tools used to aid

both usage and evaluation of the platform.

In Chapter 5, we present a detailed evaluation of the prototype in a num-

ber of different scenarios. Each of these evaluations takes place on a different

pan-European experimental facility. In the first instance, we demonstrate the

feasibility of using software defined networking technology to redirect requests

for content towards a local cache. We then evaluate the prototype in respect

28

to a number of recognised quality-of-experience metrics. Finally, we show the

flexibility and power afforded to applications using the API. More specifically, we

show how functions typically provided by dedicated hardware appliances can be

replicated within the network itself.

Finally, in Chapter 6, we present the contributions and impacts of this work,

in addition to outlining future avenues of research created as a result.

29

30

Chapter 2

Background and Related Work

In this chapter, we examine the history of the Internet and how it has developed

to meet the changing needs of users. This progression has led to a number of

significant challenges, both past and present, which are outlined in Section 2.1.

One method of addressing these is through the use of programmable networks;

designed to offer increased flexibility to network operators by allowing them to

modify and control the network in an agile fashion. In Section 2.2, we examine

how previous work has influenced current thinking in programmable network

design, and highlight the current trends in technology. This includes the extension

of these principles to encapsulate the underlying hardware and software that

support the myriad of services that run within modern networks.

Many of the innovations in network design have been driven by a need for

greater efficiency in the face of growing demand. A significant portion of the

traffic in today’s Internet is generated by the consumption of video content. In

Section 2.3 we discuss the continued importance of the Internet in delivering

video to thousands, if not millions, of users. This includes the parallel evolution

of protocol and infrastructure design necessary to ensure that this continuous

demand can be satisfied.

There is also a growing body of work concerned with utilising the flexibil-

ity in emerging infrastructures to aid application development and deployment.

Outlined in Section 2.4, we discuss a number of areas in which this approach has

been taken, including content delivery.

31

2.1 The Growth of the Internet

The Internet originally came into being with the development of personal elec-

tronic computers. This occurred in 1950s through to the 1970s. To begin with,

computers were connected together using rudimentary packet networks. As the

cost of owning and running such devices was high, these deployments were largely

limited to various computer science research laboratories, located in different

countries throughout the world.

As these facilities developed and grew, focus began to shift towards internet-

working ; connecting together these disparate networks into a network of networks.

Many of these standalone networks ran their own proprietary protocols, and were

otherwise incompatible with each other. In 1982, the TCP/IP suite was intro-

duced, which standardised the way that one end host could communicate with

another. Evidently, the networking equipment in between also needed to support

this communication. Soon after, commercial Internet Service Providers (ISPs)

began to appear. These offered network connectivity, primarily to commercial

entities, which enabled them to communicate with other users using the service.

In the 1980s, Tim Berners-Lee theorised that documents could be interlinked

together to form an information system. This consisted of a number of elements:

Unique Resource Locators (URLs) used to globally identify a resource, Hyper-

Text Markup Language used to publish information and the Hypertext Transfer

Protocol (HTTP) used to transfer this information from one client to another.

Together, these elements formed the basis for the World Wide Web.

As networks developed, and capacity increased, the price of connectivity

dropped. Coupled with the increased affordability of personal computers, this

permitted many ordinary households access to what had become the Internet.

Users now had unparalleled access to information, typically in the form of web

pages. At this time however, there was not sufficient bandwidth to transfer media

at any usable rate, particularly on a low-capacity residential connection.

Over time, new technologies provided households with even greater connectiv-

ity. During the 2000s, many households moved from a Dial-up (or ISDN) based

service to higher-capacity ADSL connection. With this, home users now had the

capability to access a far richer set of services, including multi-player gaming,

video calling, and both live and on-demand video [126].

In more recent years, these connections have continued to increase in capacity.

32

A selection of technologies, focusing on pushing the high-capacity optical fibre

part of the connection closer to the user, have seen widespread deployment in a

number of countries. These range from FTTN (Fibre To The Neighbourhood) to

FTTD (Fibre To The Desktop), varying in the distance from the fibre termination

to the user. As well as enabling novel services, these connections also provide the

ability for a household to consume a multitude of services in parallel.

Yet despite the development of these technologies, network provision continues

to be challenged. Increasing last-mile capabilities simply transfers the bottleneck

to other parts of the network, or even to the infrastructure that underpins the

services in the first instance. Subsequently, this too must be upgraded to match

the new level of demand. This perpetuates a continuous cycle of development

and expansion, which can be a costly and time-consuming approach to all parties

involved.

Given this, there is a clear case for developing more efficient uses for exist-

ing infrastructure, without the need to continue capital expenditure. These ap-

proaches offer an opportunity to break from the cycle of provisioning by allowing

equipment and services to remain in place for longer.

In recent years, these efforts have focused on improving the behaviour and

functionality offered by the underlying networks; responsible for delivering the

services received by consumers. By innovating here, operators are able to benefit

from increased flexibility and programmability, which allows them to better utilise

the resources already at their disposal. Many of the innovations discussed in Sec-

tion 2.2 move towards softwarisation; that is, enabling a transition from closed,

hardware-based appliances, towards open, software-based implementations that

achieve the same purpose. This trend extends from the switching fabric itself,

right through to the services that support the continued operation of a network.

To compliment this drive for efficiency, there has also been significant innova-

tion in the technologies and methods used to deliver the content. In this thesis,

we focus on video as the primary example of media distribution. This is due to its

significance in the overall traffic profile observed on the current Internet [46]. In

Section 2.3, we examine the history behind this important medium, and examine

how protocols have evolved over time to take advantage of reduced latency and

increased throughput in residential Internet connections.

Moreover, we examine the state-of-the-art technologies used to deliver video in

different ways, both by evolving existing well-understood techniques, or through

33

the development of radically different approaches that depart from traditional

protocols and mechanisms. We also explore the infrastructures that are deployed

in today’s Internet to enable content distribution on a massive scale. This includes

highlighting the various design considerations that must be taken into account

when deploying a system in production.

2.2 Network Softwarisation

In the previous section, we highlighted the need to increase efficiency in existing

networks so that costly upgrades can be avoided. One method of doing this is

to empower network operators with the ability to dynamically change and adapt

their network dependent on their needs, thus escaping the need to change the

current hardware deployment.

In the case of network softwarisation, select components in a network are

taken from their hardware-based counterparts and moved into software. This

process varies amongst the constituent elements of a network, and ranges from

the decoupling of the control plane in network switches and routers, to the vir-

tualisation of hardware appliances. In most cases, software solutions have the

distinct advantage that they can be deployed as required and thus scaled ap-

propriately. This scaling, especially with the correct supporting platforms, can

take a matter of minutes rather than days. This, coupled with the ability to

modify functionality of software in-place, has led to significant interest from both

industry and academia.

Yet, at least in the case of programmable networks, the concept is not a new

one. In Section 2.2.1, we discuss previous work on the subject. Much of this work

has provided influence and insight to current work in the area, which is described

in Section 2.2.2. Included as part of this section is a focus on a technology which

has seen widespread usage in many fields, including deployment in production

networks.

With the rise of commodity servers offering cheap, affordable, storage and

compute resources to network providers, operators and academics alike sought

to exploit these infrastructures to afford the same programmability to the func-

tions that are relied upon within a network. Network Function Virtualisation,

as described in Section 2.2.3, is an attempt to do just that. By understanding

34

the potentially periodic nature of resource utilisation, it is possible to avoid over-

provision by directly matching the allocation of resources to meet the current

demand. This not only allows resources to be increased in the face of unexpected

amounts of load, but also grants the ability to relinquish those resources during

periods of low utilisation (at which point other functions can use the resources

instead).

2.2.1 Programmable Networks

The desire to rapidly develop, deploy and subsequently manage networks is not a

new one. Many of the issues surrounding the difficulty of deploying new protocols

and standards were as important then as they are now. Early work included the

SOFTNET project [173], which proposed that each network element acted as an

interpreter on receipt of a packet. If this packet contained a pre-defined command

string, it would be immediately executed by the device, allowing code to be run

remotely.

This visionary work was conducted in the early 1980s, yet the concepts would

not be revisited until the mid-1990s: Active Networking [164] introduced the

concept of user-programmable switches and capsules ; snippets of code carried

in packets that could be run directly on the switch. However, there were some

concerns around the safety and security of this approach, especially when it came

to managing and enforcing resource utilisation [134].

Later, the 4D Project [66] advocated a multi-plane approach to networking,

with a clear separation between decisions, data, dissemination and discovery func-

tionality. The NETCONF protocol [89] can also be viewed as a management

protocol for modifying the behaviour of networking devices, particularly when

combined with SNMP [72]. However, there were some shortcomings evident with

this pairing, including a lack of data/control plane separation and vendor neutral-

ity. It is also unsuitable for reactive control, as it did not provide any real-time

functionality.

2.2.2 Software Defined Networking

Despite the previous work in programmable networks, current Internet infras-

tructures still lack the flexibility pioneered by these early projects; it is typical

35

to find the control logic of a network appliance co-located with the forwarding

plane. More specifically, decisions on where are packet should be forwarded are

made on the same devices that actually forwards the packet. As much of this

infrastructure, at least in access and carrier networks, is physical hardware, these

two processes are tightly coupled. If changes to the operation of a device are re-

quired, manual configuration is often needed. This time-consuming and intricate

process is confounded when large networks, containing hundreds of forwarding

devices, are considered.

This situation is made worse as there is no consistent method of interacting

with these devices; manufacturers have their own configuration formats and syn-

tax. In recent years, efforts have been made to standardise at least elements of

this configuration [89], and facilitate a level of interoperability between vendors.

However, even with a common configuration platform, it was previously impos-

sible to reactively manipulate the control logic. Once defined, the logic would

remain in place until modified by configuration and cannot dynamically react to

individual packets or flows, adapt to changes in the wider network or facilitate

the layering of network-aware applications on top of the infrastructure itself.

Software Defined Networking is a continuation of the programmable networks

paradigm, designed to change the status-quo by decoupling these two layers. The

forwarding plane remains on the switch, to enable the hardware accelerated for-

warding necessary to satiate modern networking demands. However, the control

plane is detached from the hardware and placed entirely into software. In the

case of Software Defined Networking (SDN), the control plane is migrated to a

software controller. This controller then takes on responsibility for the behaviour

of all of the connected devices.

This behaviour is defined using two distinct methods. The controller can

define the behaviour of a device by waiting until an alert is received on the initial

establishment of a flow. Once this occurs, the controller receives a message,

containing either the content, or part thereof, of the first packet. The controller

can then parse this packet, and processes it as it wishes. In most cases, this will

result in the packet being forwarded on an appropriate port of the device that

produced the alert. The controller may also install a set of rules on the device

(as a result of the initiation) to handle subsequent packets belonging to the same

flow. By doing so, these packets will be processed in the fast-path of the switch,

increasing performance and avoiding the associated latency with passing a packet

36

from the device to the controller, parsing and processing it.

Alternatively, the controller may install rules proactively, to ensure that alerts

received by the controller are minimised. Evidently, this requires knowledge of

the type of packets that are likely to traverse the switch, and also the destination

that should be forwarded on. In reality, both techniques are used together to

ensure performance close to that of existing infrastructure is achieved.

Given the nature of the control plane as a pure software implementation, it

is significantly easier for operators and developers to add new functionality to

the network. It no longer requires the costly refresh of hardware devices; by

building new functionality in software, they can test and deploy the software into

production networks much quicker than before. It also allows novel functionality

to be built that otherwise would require in-depth collaboration in hardware and

software device design.

Despite this new found flexibility, functionality can only be built within the

constraints of the underlying protocol mechanisms used to control the hardware

switches. In the remainder of this section, we discuss two such protocols, and

examine in detail how one of these has changed over time to enable significantly

more functionality to be programmed in the network. In the scope of this work,

we discuss in later chapters how this technology can be used as a novel redirection

technique for content delivery networks.

2.2.2.1 OpenFlow

OpenFlow is a realisation of Software Defined Networking concepts. It is a pro-

tocol specification designed to enable the control of network devices. Since its

inception [71], OpenFlow has become the most widely recognised and deployed

technologies related to the SDN paradigm. OpenFlow itself was initially envi-

sioned as a tool to enable research and experimentation to take place on campus

LAN [130].

Prior to OpenFlow, there had been a lack of work that had made its way from

the research world to production. One of the fundamental issues identified with

this process was a lack of scalability and realism in the development and evalu-

ation of this work. OpenFlow aimed to combat this by allowing both research

and production traffic to coexist on the same network. By doing so, network

operators could continue to provide the connectivity and service to their users,

37

whilst the researcher would be afforded access to a specific portion or slice of this

traffic, on which they could do experimentation.

This compromise between production and research requirements was typically

realised through the use of tools such as Flowvisor [154], which enabled the sep-

aration of traffic through establishment of pre-defined network slices. Each slice

represented a subset of traffic, defined using a number of tuples, such as source

and destination IP addresses, port numbers or VLAN tags. Using this tool, an

experimenter could precisely define exactly the traffic they were interested in,

without disrupting the other traffic flowing through the network. Importantly,

this could also be done for multiple experimenters simultaneously, affording each

a separate slice that offered isolation between experiments.

Key to OpenFlow, and arguably a core reason for its success, is that it was

vendor agnostic; that is, it was not developed with a particular vendor, and as a

result was released openly for anybody to use. This created a situation whereby

a vendor could support the OpenFlow standard by implementing the minimum

necessary elements of the OpenFlow specification. This openness had a significant

advantage, in that a software controller supporting OpenFlow could communicate

and control a variety of devices, regardless of their vendor. The initial industry

support for OpenFlow came with version 1.0, which is discussed in the following

section.

Version 1.0

Version 1.0 [25] of the OpenFlow specification was released in 2009 and adopted

by network vendors soon after. This version describes a single OpenFlow flow

table, consisting of a number of flow entries. When a packet is received on the

device, the packet header is compared against these entries. Each entry consists

of a number of fields with specific values. If a field is omitted, it is assumed that

any value can be matched (wildcarded). Once a packet has matched on an entry

in this table, a set of actions is applied to the packet. These actions include

forwarding the packet on a specific physical port, forwarding to a virtual port

(such as a port aggregation or VLAN), or even flooding the packet to all ports.

Importantly, these matches also enable the packet headers to be modified,

such as changing the source or destination address, or incrementing a TTL value.

If the packet does not match on any of the rules found in the flow table, then

38

the device passes the packet to the control so that it may make a decision on its

destination. Each of these flow entries also includes a set of counters, which are

updated when a packet matches. These include both packet and byte counts, and

can be retrieved by the controller to use in defining the behaviour of the network.

The set of actions included in the OpenFlow specification are defined in two

sets; Required Actions must be implemented by the switch in order for it to

be OpenFlow compatible, and include the functionalities mentioned previously

(forwarding to all ports, forwarding to the controller, etc.). A number of Optional

Actions are also defined. These can be omitted if necessary, particularly in cases

where the underlying device does not support the action, but may assist the

developer in implementing additional functionality.

One such action is NORMAL, which passes the packet to the traditional for-

warding path supported by the switch. By chaining a number of these actions

together, it is possible to manipulate the packet, or duplicate the packet, and

still pass it through the regular forwarding stack of the switch. Inevitably, these

optional features are not supported on every switch: typically they are found on

devices where this OpenFlow has been developed on top of existing functionality,

as is the case with many hardware switches. However, in the case of software

switches, such as Open vSwitch [22], a traditional forwarding path is somewhat

of a misnomer; they do not process packets without explicit instruction or con-

figuration.

In order to support OpenFlow-capable switches, a number of compatible soft-

ware controllers became available. Engineered in a variety of programming lan-

guages, they provided a framework in which basic network functionality could

modified and new functionality could be built. Controllers such as Beacon [90]

also have external APIs, which enable third-party applications to interact with

the controller and modify the forwarding plane by installing matches and actions

manually, as well as retrieving counter values.

Later, version 1.1 [26] of OpenFlow was released. This version provided sup-

port for multiple flow tables (rather than the single table enabled in version 1.0).

It also introduced support for more field matches, and introduced multipath func-

tions, where a flow can be sent over one of several paths. Further support was

also added for MPLS and VLAN Q-in-Q encapsulation.

39

Version 1.3

In 2011, the Open Networking Foundation [21] took over the responsibility for

developing the OpenFlow specification, with the aim to eventually standardise

it. The first standard to be published under their custodianship was version

1.2 [27]. This version included features such as an extensible match support,

allowing experimenters to define their own match fields. This was accompanied

by an extensible header rewriting functionality, as well as support for IPv6. It

also clarified the controller role mechanism, simplifying the process for which

controllers were migrated between.

However, this saw little adoption from vendors, and in 2013, the 1.3 [28] spec-

ification was released. This incorporated many, if not all, of the changes made

in previous versions. It also included new functionality in the form of capability

negotiation, which allowed controllers to better discover the capabilities of a con-

nected device. Further to this, improved support for common IPv6 extensions

was added, as well as finer-grained reporting in the form of per flow meters. This

improved reporting was supplemented with the addition of a duration field for

statistics, allowing packet and byte rate to be determined by a controller.

With the development and release of switches supporting OpenFlow 1.3, new

controllers began to appear. Examples include the Ryu [38] controller, which

offers full OpenFlow version 1.3 support, and is designed to allow researchers and

developers to create functionality easily. Ryu is also used as a tool to ensure

compatibility and compliance with the 1.3 specification, which enables testing

across a variety of vendor hardware.

Other controllers have also been developed to meet some of the scalability

concerns evident in the SDN paradigm. ONOS [61] aims to do this by operating

in a distributed fashion, whilst ensuring state is synchronized between controller

nodes. In order to address concerns over commercial applicability, the OpenDay-

light consortium [23] is also attempting to build a controller capable of running

in a production environment, and support the vast array of protocols and func-

tionality necessary to do so.

Version 1.4 and Beyond

OpenFlow continues to be developed, with subsequent versions (1.4 [29] and

1.5 [30]) being released recently. In version 1.4, new features include more exten-

40

sible wire protocols for defining custom match fields, and extensions encompass-

ing optical port properties. This also includes bundles, which allows a group of

OpenFlow messages to be applied as a single operation, and synchronised tables,

allowing lookups to occur on multiple tables simultaneously.

In version 1.5, egress tables were introduced, enabling processing to be done

in the context of an output port (rather than input port, as previously). This

version also introduces packet aware pipelines, allowing packets other than Eth-

ernet packets to be processed. There is also the ability to trigger an alert when

a statistics exceeds a given threshold (in opposition to regularly polling for a

metric, which has a processing overhead). However, despite the extra function-

ality provided in these versions, as of yet, no organisation has released a version

capable of supporting either of these versions.

However, continuously iterating the OpenFlow specification to include new

header fields is not necessarily a scalable nor sustainable solution; every version

has included new fields, with the trend continuing in the latest releases. The

expansion of fields is in part due to a growing range of mediums that OpenFlow

is targeting, including optical and wireless technologies. In order to address this,

P4 [64] proposed as a way to describe the data-plane connectivity of a network

using a domain-specific language. Programs written in P4 specify how a switch

processes packets, and works in harmony with OpenFlow to provide even greater

flexibility. Importantly, P4 is both protocol and target independent, allowing new

protocols to be developed without concern for the underlying hardware. It is also

field reconfigurable, allowing hardware behaviour to be changed even after it is

deployed.

2.2.2.2 ForCES

Forwarding and Control Element Separation (ForCES) [86] is similar to OpenFlow

in that it seeks to detach the forwarding and control planes within a devices.

However, it differs in that the control plane is still co-located with the devices

rather than being located remotely. This difference means that a ForCES switch is

still viewed as a single entity, which is intended to increase performance. Rather

than the flow table approach used in OpenFlow, ForCES utilises well-defined

Logical Function Blocks (LFBs), although they can ultimately be used to achieve

the same effect [170]. Despite the earlier standardisation of ForCES through the

41

IETF, OpenFlow has seen far greater adoption, driven by a combined effort from

industry and academia.

2.2.3 Network Functions Virtualisation

Building upon the enablers of Software Defined Networking, and in some cases, by

exploiting related technologies, Network Functions Virtualisation (NFV) aims to

extend the same transparency and flexibility to the many appliances and services

that support the operation of large-scale networks. As these systems continue to

grow in both scale and complexity, managing and operating them has become a

challenge. Examples include firewalls, intrusion detection systems and broadband

access routers. Functions provided by third-parties, such as content delivery

networks, are also viewed as vital to the smooth operation of many of these

networks, particularly when they provide access to consumers.

As with the underlying network hardware, network functions often perceived

as black boxes ; operators have little or no knowledge of their internal workings.

This can create issues, particularly when engineering the network and planning

for expected load. Furthermore, the appliance may not necessarily operate in

the most efficient way, with no consideration for the operation of other functions

or the availability of resources. In most cases, the operator has minimal control

of their behaviour, with some appliances offering limited fixed configuration and

others being completely managed by external entities.

To break away from this paradigm, there has been a substantial effort to

create a new generation of network functions based at least partially in software.

The primary reason for bringing these functions into software is so that they can

be virtualised. This process brings about a number of unique challenges, which

once addressed, present the potential for additional benefits. These requirements

are discussed in the following section, and based upon documents published by

the ETSI Network Functions Virtualisation Industry Specification Group [48], as

well other sources [100].

Chief amongst the requirements for a virtualised function is portability; that

is, the ability to create, migrate and destroy functions regardless of the under-

lying technology platform. This allows the functions (or elements thereof) to be

optimised based upon location and availability of resources. As the optimal ar-

rangement may change over time and as the availability of resources changes, this

42

portability allows flexibility not afforded to current fixed appliances. In this case

software has to be decoupled from the underlying hardware. This gives operators

the ability to use cheap, commodity servers without vendor lock-in, reducing their

capital expenditure.

Virtualisation also presents new requirements for scaling. Presuming suitably

implemented and managed software functions, scaling can be achieved by allow-

ing a function to be matched with resources consummate to the task it needs to

complete. Rather than a static one-time provision (where provisioning new hard-

ware may take days or even weeks), this allows resources to be consumed more

efficiently and without significant wastage. With a hardware-based solution, re-

sources are allocated based upon a worse-case scenario. However, a virtualised

function can dynamically adapt to load to both release and reserve resources as

necessary. This also has consequences for energy efficiency as resource alloca-

tion can be tuned dependent on the availability and cost of electric tariffs. This

flexibility also has the potential to power down servers or even entire racks.

The ability to adapt appropriately and in a timely manner also introduces a

new requirement: these functions must report performance and usage. This in-

formation can then be used to adapt appropriately by either increasing allocation

and creating new instances, or inversely, by reducing allocation and removing in-

stances. This instance management is only possible if at least part of the function

can be parallelised in some way. This allows instances to be located over multiple,

potentially co-located, physical servers. This offers an alternative approach over

increasing the allocation of a single, monolithic entity (which may have upwards

bounds imposed by the underlying hardware).

This same flexibility can also be applied to scenarios that require increased

resiliency, as functions can be recreated in the case of failure. This includes

problems with the virtualised instance, as well as downtime in the hardware

itself. Through the use of the above mentioned metrics, each virtualised function

can be monitored for health and uptime. Once issues are observed, remedies

can be sought quickly and automatically, even without user intervention. This

reduces reliance on sometimes slow and manual processes, and helps to maintain

availability guarantees in Service Level Agreements (SLAs).

A software based solution should also be significantly easier to update and

modify in-place when compared to a hardware based alternative. This allows

faster development cycles without the need to replace costly hardware appli-

43

ances. It also affords the ability to have a smooth transition path from hardware

to software; devices can be trialled and replaced gradually without the need to

completely remove existing provision. This is particularly important in cases

where performance is a concern and software must be developed to strict perfor-

mance and latency specifications, which may be a time consuming process.

Clearly there are many advantages to be gained by moving to a virtualised

solution. However, getting to a stage where these functions can be used in pro-

duction deployments that support millions of users is far from reality currently.

Software implementations required extensive testing and need to prove that they

can perform equivalent to their hardware counterparts. There has already been

issues raised over current limitations in the off-the-shelf hardware that would

ideally support virtualised functions [108]; commodity hardware does not neces-

sarily support processing packets at line-rate, a requirement for high bandwidth

network functions. To overcome this, the authors have proposed using a combi-

nation of technologies and techniques to bypass inefficiencies in the underlying

operating systems and program design.

Operations Support System

Virtualised Infrastructure

VNF VNF VNF VNF

Virtual
Compute

Virtual
Network

Virtual
Storage

Virtualisation Layer

Shared Hardware Resources

Compute Network Storage

VNF VNF

Orchestrator

VNF Manager

Virtualised
Infrastructure Manager

Figure 2.1: NFV Architectural Framework

It has become clear that coordination and cooperation is necessary in order to

address the monumental challenge of architecting and building a platform capable

of realising truly virtual functions. Recent efforts have focused on specifying a

platform design [9], illustrated in Figure 2.1. This describes the various layers on

44

which the Virtual Network Functions (VNFs) sit. A VNF provides a specific net-

work function, with the possibility for multiple instances to be chained together

to provide a broader range of services.

This design also outlines various managers and an overall orchestrator needed

to ensure the smooth operation of the platform. However, there are significant

steps that need to be taken in order to realise this platform today. As such,

current efforts [32] have focused on a subset of this architecture, namely the lower

Virtualised Infrastructure layer, and the elements contained within it. These are

the initial steps necessary to bring NFV into production environments, and utilise

existing production-ready cloud platforms, such as OpenStack [31], to provide the

necessary functionality.

Alternatives to this approach include the usage of tools designed specifically

to meet the stringent latency and throughput requirements required in modern

network appliances [128]. This work includes extensive evaluation which demon-

strates the diminutive size of the memory footprint, as well as the rapid startup

times possible. A number of proof-of-concept implementations are also included,

such as a firewall, carrier-grade network address translation and a broadband

remote access server.

Other notable areas requiring work include the placement and scheduling of

virtual appliances. As this process can both introduce deficiencies, and prove

valuable in addressing latency requirements, it is a key area of study. Existing

early work includes an evaluation of numerous algorithms that can be used to

map and schedule functions [132], as well exploring the efficient placement of

such given a set of constraints [133]. Further work has examined the placement

problem in the context of a mobile core, and combines function placement with

topology optimisation [132].

In carrier networks, it is common to find multiple functions linked together in

a service chain. The order through which traffic flows from one function to the

next is important in these cases. For example, if traffic flows through a Intrusion

Detection System (IDS) and then on to a Wide Area Network (WAN) optimiser,

it is critical that the packet is inspected at the IDS before it is encrypted by

the WAN optimiser. This chaining can impose additional requirements on the

location and composition of functions for latency or security reasons. Specifying

and placing these chains of network functions requires the ability to not only

formally describe the composition [131], but also ensure that they are arranged

45

optimally given the requirements of each function [122]. Realising this chain-

ing with existing software platforms has again shown the deficiencies of current

implementations [67], with a clear need to develop further existing platforms.

2.3 Video as an Emerging Application

It is not just networks that have seen rapid development in recent years; the

services and technologies that utilise these resources have also seen similar ad-

vancements. The Internet is used increasingly to deliver media and content to

thousands of simultaneous users. In fact, this is now a core part of the Internet’s

current function: the delivery of video now constitutes a large percentage of over-

all Internet traffic with recent estimations predicting a 80% share of all traffic on

the Internet by 2019 [46]. Clearly the techniques used to distribute this video are

as critical as the infrastructure necessary to support it. In the following section,

we examine the evolution of these techniques into the technologies we use today.

As bandwidth increased in the Internet, particularly in the access networks

used by consumers, new services became viable. Over time, and as the throughput

continued to increase, the services began to not only offer an increased amount of

content, but also content available in higher resolutions and qualities. Evidently,

this requires a higher sustained throughput to deliver in a satisfactory manner.

Coupled with an increase in production quality and user expectations, this trend

continues even now, with consumers now demanding high-definition content by

default, and ultra high-definition on the near horizon. By 2019, it is predicted

that 70% of content will be high definition [46]. These requirements place huge

demand not only on the networking infrastructure, but also on the technologies

and techniques used to deliver the video from the source to many users.

The importance of ensuring that video is delivered in a satisfactory manner has

now become a commercial matter, especially in the case of paid or ad-supported

services. In these cases, it is critical that the user receives the highest quality

of experience, without any degradation. A suboptimal service can lead to user

disengagement, with even with a small delay in start-up time causing users to

switch video [88]. As traditional disc-based technologies which have increased

vastly in capacity in recent years, the Internet is increasingly becoming a viable

alternative from which to distribute content (in all forms) to the masses.

46

2.3.1 Protocols for Video Delivery

Without an adequate protocol for delivering video to end clients, advances in

infrastructure design cannot otherwise be fully realised. Since the inception of

the Internet, the protocols used to deliver video have changed. Different standards

and techniques are also appropriate dependent on the circumstances, and have

been deployed to match changing user behaviours and habits. In the following

section, we explore a number of these, explaining their significance in the evolution

of video delivery over the Internet.

2.3.1.1 Real Time Transfer Protocol

The Real Time Transfer Protocol (RTP) is a technique long used to deliver video.

Defined by the IETF in 2003 [150], it defines a transport protocol which can be

used for real-time transfers. The underlying technology used to achieve this is

typically1 the User Datagram Protocol. UDP is a stateless mechanism through

which information can be sent from a server to a client without the client having

to specifically acknowledge the receipt of each packet. Although it is considered a

lightweight mechanism, it provides an unreliable service where packets can arrive

out of order, or even be lost altogether.

The usage of UDP is particularly appropriate in circumstances where live real-

time video needs to be delivered as soon as possible, regardless of impairments

in the network. As a result, UDP is used for delivering video during conference

calls and during live broadcasts, where timeliness of delivery is of paramount

importance. However, the best-effort service offered by UDP transport streams

is also a significant downside: the unpredictable nature of the Internet, where

congestion and queuing can prevent reliable transmission, means that the quality

of experience provided to the user can be variable at best, and suboptimal at

worst.

Semantically above RTP is the Real Time Control Protocol (RTCP), which

operates at the session layer. Its primary function is to provide feedback to the

server in regards to the quality of the data layer, allowing the server to adjust

the rate at which it sends to the client. To compliment the capabilities of RTP,

the Real Time Streaming Protocol (RTSP) [151] is used to control streaming at a

presentation-level. Connected clients can send commands to the server streaming

1Reliable TCP can theoretically be used, although this is rarely the case.

47

the video to them. These included play, pause and record, and emulated the in-

teraction with physical media players of the day, providing a level of interactivity

that users were familiar with [78].

This technique carries a large management overhead, as each session needs

to be maintained on a per-client basis. This is a complex and resource intensive

process. As the popularity of Internet video services increased, scaling became a

challenge as infrastructure requirements reached an infeasible level.

2.3.1.2 Real Time Messaging Protocol

The Real Time Messaging Protocol (RTMP) is an important protocol in the

history of Internet video. Proprietary by design, it became the de-facto standard

for delivering video in the 2000s. This was brought about largely by the ubiquity

of Flash Player and its associated plug-in. It usually used TCP as the underlying

transport mechanism, although it too was flexible enough to also be compatible

with UDP if needed.

Importantly, RTMP is actually format agnostic; any video can be delivered

using the technology. Extensions to RTMP include support for tunnelling through

HTTP (RTMPT) to avoid issues with firewalls blocking the port normally used.

Various versions also offer differing levels of encryption on the stream. Recent

years have seen a drastic demise in the usage of RTMP, however. This can likely

be attributed to the growing usage of handheld devices, which lack support for

the protocol.

2.3.1.3 Multicast

Unlike RTMP or the RTP family of protocols, multicast is one-to-many distri-

bution method, rather than one-to-one. This means that information can be

disseminated from a single sender to many receivers. The advantage of this in an

IP context is that the sender does not require knowledge of the receivers before

transmitting the information: the network maintains the list of receivers. These

clients then selectively join the multicast group, leaving and joining at any point.

By doing so, they subscribe to receive messages from the sender. As the net-

work handles the replication on a packet level, the sender need only send a single

message towards the multicast group, greatly increasing efficiency.

Multicast is well suited to distributing live content where many clients require

48

the same content delivered in parallel and at scale. However, this method of

dissemination is not suited to content delivered on-demand: requests for content

are instead distributed over time. The on-demand model is also a pull-based

principle; the client requests the content when it requires it, whereas multicast is

a push-based technique; content is sent from the server, regardless of whether or

not a client is subscribed to receive the content. As a result of these limitations,

multicast is often deployed using UDP as a transport protocol. This avoids having

to maintain state, but does mean that transmission is unreliable.

In order to apply a multicast strategy for on-demand content delivery, a

number of alternative multicast video distribution techniques have been cate-

gorised [76]. Broadcasting [104] dictates that the sender periodically broadcasts

the video, irrespective of demand. A user can then receive the video by wait-

ing for the next broadcast cycle. Evidently, although this increases efficiency by

ensuring that the content only has to traverse the network once in a given time

frame, it is however not a real-time on-demand solution, as the user will likely be

delayed until they can consume the content.

An alternative approach is batching [81], in which the server waits for a number

of requests for the same content, and servers it using multicast once a threshold

has been met. As with broadcasting, early users will have to wait until this thresh-

old has been reached. This variable must be flexible, otherwise the early users

will simply cancel the video playback before it has begun. Similarly, batching

does not provide a true on-demand service.

Patching [105] on the other hand aims to achieve real-time playback by offering

the initial requester a multicast stream, whilst subsequent requesters are served

using unicast flows. These late arrivals continue to be served in this way until

they have buffered sufficient content to join the multicast stream. Finally, the

stream merging [87] technique is similar to patching with the modification that

later streams are delivered over multicast too, with users batched appropriately.

Later in this chapter, we examine the move towards adaptive streaming, where

video is offered at multiple quality levels and resolutions. A client can use this

selection of content to adapt its own playback to best match its capabilities and

present network conditions. Multicast does not have the ability to manipulate

the quality of video without effecting the entire multicast group, which would

evidently impact all the connected clients. An alternative approach would be to

offer many multicast groups, one for each version of the content. However, this

49

would likely carry a significant management and provisioning overhead, and in a

worst-case scenario, simply resemble a unicast distribution infrastructure.

2.3.1.4 Peer-to-Peer

Peer-to-Peer (P2P) networking is a paradigm where end-hosts communicate di-

rectly with each other, in opposition to the client-server model. In the latter case,

multiple clients connect to the same server, whereas in a P2P network each client

can connect to any another participating client in order to share a resource. As

such, a P2P network is self-organising; clients can leave and join as they wish,

and the topology will change to match. This behaviour is ideal for the delivery of

content as distribution scales naturally (as more participating nodes join) without

the need to also increase server provision.

In a content delivery scenario, a client requests content from other participat-

ing nodes, assuming that they hold a copy of this content. In order to increase

the fidelity of such a request, content is often separated into smaller chunks; a

client may not necessarily hold all of the chunks that represent a file, but they

can still participate in the sharing of the parts of the content that they do hold.

There are a number of variations found in P2P networks [57], including the

level of centralisation and the structure of the network. For example, a P2P

network can be fully decentralised, which is where each node has an equal role

in the network. Another approach is to partially centralise the P2P network,

and have a number of nodes act as supernodes. These supernodes may preform

additional functions, such as storing a hash-table containing the nearby location

of various chunks of content.

A hybrid approach can also be taken, whereby a centralised server is respon-

sible for facilitating the connections between clients, storing meta-data collected

from each so that it can correctly direct a request. The formation of the network

can also vary: unstructured networks are formed without consideration for the

location of content. In order to find the location of a required item of content, a

node must search amongst all the nodes until their request is satisfied. As this is

somewhat of a random search, the time taken to do so is indeterminate. Clearly,

in cases where many hundreds or thousands of clients are searching for content

simultaneously, this can produce a significant overhead, especially in cases where

the content is scarce and the chances of finding it narrow [123].

50

A solution to this is to use a structured network, in which an overlay topology

is used to direct requests to a specific node which either holds the content, or

knows where a copy is located. Technologies such as Chord [161], a distributed

lookup protocol, enable a relationship to be made between a key and a node. If a

key is associated with an item of content, this can be used to locate the item in the

network. This addresses the responsiveness and efficiency of searching, although

maintaining the required information can be difficult in networks with a high

turnover of clients. Other previous work [84] has highlighted P2P networks as a

strong candidate for fault-tolerant delivery platforms, allowing clients to recover

from failures quickly.

P2P technology can also be used in a live streaming context, and has been

deployed as viable alternative to unicast IPTV services [102]. However, in the

case of video playback, there is an additional constraint in that the content needs

to arrive in a particular order, in opposition to a bulk file transfer (such as in a file

sharing network) where the order is irrelevant. This stands true for both live and

on-demand video; live because the user will not receive a true real-time experience

if the sequencing does not occur, and on-demand because the user will typically

watch the video from the beginning (and thus those initial segments should be

retrieved first).

The necessity for ordered chunk delivery in an on-demand context is high-

lighted in [58], to which they propose a system of network coding, segment

scheduling, and topology management in order to address some of these chal-

lenges; failure to correctly determine the connectivity and content availability in

a P2P network can lead to issues during playback. In [124], these challenges are

overcome by accurately deriving peer connectivity and devising a random mesh

to ensure content is delivered efficiently.

For a device to also serve content to other participants, it must also be stored

for a period of time. This is the case regardless of whether the content is to be

consumed live or on-demand. A P2P distribution network relies on this storage to

operate, which offloads some of the cost in infrastructure necessary to operate in a

client/server model [75, 106]. The storage requirements, and indirectly the length

of time necessary to store content, differ depending on the context: on-demand

usually requires a larger capacity coupled with greater persistency, whereas live

P2P streaming can be achieved using a much smaller storage allocation, given

that content needs be retained for a much shorter period of time.

51

There are a number of approaches to P2P streaming, which are broadly di-

vided into two main categories [125]. The first approach is to use a mesh-based

approach, which is similar to that used for conventional file sharing (such as

BitTorrent) and video-on-demand content. There is an alternative approach in

tree-based streaming: this organises peers into multiple trees using an overlay

mechanism. Each of the trees is designed to be balanced amongst peers, stable

(as to avoid peer churn) and short. A peer may belong to multiple trees, with

content disseminated from the top of the tree structure. If a peer does not have

the required bandwidth to forward the content to the underlying peers, then they

do not receive the content.

Regardless of the playback method, the inherent resource requirements can

be problematic on a resource-constrained device such as a set-top box or mobile

phone, where storage is always at a premium. A P2P network also requires

the user to also share their bandwidth capacity so that others may retrieve the

content from them. It can be difficult to incentivise users to do this, particularly

when it is a relatively scarce resource (as in the case of ADSL networks) [120].

P2P traffic can also be difficult to manage and predict due to its opportunistic

behaviour and is often seen as unfriendly to ISPs [113]. It has also proven to be

incompatible with many firewalls and network address translators [80], further

lessening its potential usefulness.

2.3.1.5 HTTP Progressive Downloads

The Hypertext Transfer Protocol (HTTP) can also be used to transfer video. As

the current de-facto standard for delivering files of any size over the Internet,

HTTP is a reliable protocol used every day to transfer millions of web pages

and images. Although alternative technologies exist, HTTP is easy to use in

comparison and well understood amongst administrators and developers. HTTP

servers have become somewhat of a commodity, and building them at scale is a

well understood process. Most, if not all, networks are configured and engineered

to handle HTTP traffic, including compatibility with the supporting services that

often run aside modern networks. It is a ubiquitous part of the modern Internet.

It is natural then that HTTP came to be used to deliver on-demand video

content. An important part of enabling this is the use of progressive downloads.

This process allows a browser or media player to download parts of a large file

52

in smaller ranges. This enables users to watch the beginning of the video whilst

the remainder of the video continues to be downloaded, significantly reducing

the start up delay compared to required the entire video to be downloaded first.

This process also forms the basis for the evolution in video delivered over HTTP,

described in the following section.

2.3.1.6 HTTP Adaptive Streaming

Despite the relative success of HTTP as a technology, there were other challenges

that simply could not be overcome by HTTP alone. As networks expanded, and

bandwidth become more available, a disparity appeared between the connections

of different users. Many Internet Service Providers offer tiered services, with

different levels of throughput guaranteed at different price points. Similarly,

some of these tariffs enforce a limit or cap on the amount of traffic a household

can consume over a billing period. Geographically, not all countries moved at

the same technological pace either, making it difficult for services to cater for a

wide range of connection types and speeds. The explosion of data-based cellular

networks only exacerbated the situation, leading to an even greater spectrum of

network capabilities.

Despite the ubiquity of the Internet, the capacity of the networks which un-

derpin it are not an infinite resource: with an increase in popularity came a need

to further increase the provision of resources. Unfortunately, this is a relatively

time and capital intensive process, especially when considered in the scope of

a nationwide network. These national networks are often-times connected to-

gether, with connections sometimes spanning continents. Clearly this requires

vast amounts of coordination, planning and foresight to expand and upgrade.

Yet despite this ever increasing technology provision, it is inevitable that during

busy periods, congestion can occur in the path between a client and the service

they are requesting. This congestion often results in a loss of observed through-

put, and in the context of video, a potential reduction in the quality of video a

stream can carry.

As alluded to previously, mobile networks have also seen a huge explosion in

popularity. In particular, data services capable of carrying video have become an

affordable reality for many. A mobile context carries its own challenges though,

as the physical movement of a client can lead to a fluctuation in service strength,

53

which consequently impacts usable bandwidth. Despite this, with the evolution

of the transmission technologies, there is a notable trend in the increased capacity

that these cellular networks nonetheless afford to clients. This trend is not set to

change with the development of future networks [167], which should enable more

users to access even higher quality videos whilst on the move.

The suitability of mobile networks has also led to an increase in the specifi-

cation of the mobile devices themselves. As these handsets advanced to a level

capable of video playback, new video codecs were developed in order to allow

a relatively resource constrained device to play back video. Content providers

now needed to not only encode a video in multiple quality levels, but also with

multiple codecs. However, the capability of at least some of these devices has

now progressed so far that they can decode videos that were previously limited

to personal computers. Regardless of this innovation, these devices are often still

resolution constrained due to their very nature as hand-held devices.

It is clear that content creators need to offer various levels of quality, resolu-

tions and encodes in order to match the diversity in both networks and devices.

This situation is not fixed either; despite the increase in available bandwidth,

the impairments described previously result in fluctuations in bandwidth for an

end-host. This can vary from day-to-day, and even from minute-to-minute in the

case of a moving client in a mobile network. Clearly a blanket approach to de-

livering a single quality level is no longer appropriate. Adaptive video streaming

aims to combat the unpredictable nature of modern networks by enabling clients

to dynamically adjust the quality of video by requesting a representation that

best matches its own available bandwidth. The premise behind this is that user

experience is maximised: a client will always request the maximum video quality

possible given the resources it has at its disposal.

With a huge amount of content variations to be provided, storage require-

ments are vastly increased for providers. Rather than storing a single copy of

the content, many versions need to be available to handle all possible requests.

Given that HTTP is used to delivery thousands of files every day, it became a

natural choice for serving the many variants found in an adaptive representation,

and thus a new set of HTTP Adaptive Streaming (HAS) based technologies came

into being. These can be broadly categorised by the fact that they rely on HTTP

for their transport mechanism. Proprietary commercial solutions (such as Apple

HLS [3] and Microsoft Smooth Streaming [16]) are complimented with open and

54

standardised techniques (such as MPEG-DASH [159]). In the case of the lat-

ter, content of different qualities and encodings are chunked into smaller, often

fixed-length (in terms of playback), segments. These segments are then grouped

together to form a single representation (an entire video, from start to finish).

Alternate representations are collected together in the same manifest, which is

used by the player to enable playback. If the player wishes to change repre-

sentation during playback, this process is as simple as requesting an alternate

representation from the manifest.

The manifest also includes annotation and metadata for each of the represen-

tations. This includes information necessary for the client to determine the most

appropriate representation given its own capabilities (decoding capability and res-

olution) and those of the connected networks (required throughput). This ability

gives the playback client the adaptability required to maximise the experience of

a user in a constantly shifting environment.

Importantly, content can be organised and described in two main ways. Firstly,

content can be segmented on a file-system level, with a number of different smaller

files, each of which is directly equal to an individual segment. Together, these

segments represent an entire video. In this context, each chunk is individually

playable, affording the player the flexibility to freely swap between representa-

tions without the need to download header information. In the second method,

segments can also be represented as a byte-range of a much larger file (much the

same as a HTTP progressive download technique described previously in Sec-

tion 2.3.1.5). By downloading a particular byte-range, the client can reassemble

the file necessary for playback. This method also requires an initial set of headers

to be downloaded, often before playback starts. Without the headers, the play-

back element will not be able to correctly recognise and process the content, as

the header contains the information and structure necessary to do so.

2.3.1.7 Information-centric Networking

There is a growing number of researchers and engineers that believe that current

method of connection-orientated delivery is inherently inefficient and unscalable.

A number of alternatives have been proposed, typically described as clean-slate

approaches, which require a fundamental restructuring of the technology and

hardware deployed in the Internet. This is achieved by completely replacing

55

the existing IP provision that is used today and replacing it with alternative

technologies. One such example is Information-centric Networking (ICN) [56]:

networks specifically built for the purpose of disseminating information.

The ICN approach enables clients to request information by making said infor-

mation addressable through a naming scheme. In order to retrieve information,

a client disseminates a request using one of these names, otherwise known as

an interest. The connected network devices are then responsible for locating,

and subsequently delivering, the requested information to the client. This data

is otherwise separated from its location, requesting application and method of

transport. This enables the devices within the network to act as caches, and

allows data to be replicated in the network. A specific example of an ICN ap-

proach is Content Centric Networking [109], a realisation of the ICN architecture

has been specifically designed for the purpose of delivering content.

This approach avoids the need to deploy various competing technologies con-

necting to a vast array of differing services, as is the situation in today’s Inter-

net. Instead, there is a unified method of requesting data, which can be fulfilled

at many levels within the network hierarchy, allowing scalability. The content

caches (akin to network devices in this case) can be populated on-demand, or

pre-populated, similar to modern content delivery techniques. There are also

cache replacement strategies built explicitly for these networks [74], which in-

corporate the distance between nearby cache nodes holding the desired content.

CCN also has a proof-of-concept software implementation in CCNx [35], which

is designed to run alongside existing IP networks.

Despite the potential advantages that such an approach could provide, fully

implementing these approaches in a real-world network would require a complete

replacement of equipment and software. This is a prohibitively expensive pro-

cess, that would likely obsolete all of the supporting equipment and knowledge

that are used in modern computer networking. Furthermore, ICN has existing

challenges that must be solved before a widespread evaluation could take place.

This includes evolving the technology within the Internet to support CCN at

scale [139].

More recently, there have been attempts to partner ICN and CCN techniques

with complementary technologies, such as the HTTP adaptive streaming [118]

described in Section 2.3.1.6. In this work, they directly integrate a MPEG-DASH

compliant player with a CCN network. Through doing so, they observe that CCN

56

incurs a significant messaging overhead when compared to HTTP. However, they

do note that CCN allows additional functionality, not otherwise possible with

HTTP, such as fastest route selection and a natural network resiliency.

ICN has also been matched to the Software Defined Networking (SDN) dis-

cussed in Section 2.2.2 [148]. As ICN approaches require a fundamental change in

network behaviour, SDN technology enables a compromise to be made the two:

clean-slate approaches can be realised with existing infrastructure provision. De-

spite this, they are in fact limited by the capability of OpenFlow, their chosen

SDN technology, which enforces some restrictions on the ability to forward by

name.

2.3.2 Infrastructures for Video Delivery

Despite the move towards adaptive protocols and advanced networking tech-

niques, the Internet is still best-effort; congestion, outages and latency can all

have a negative impact on a users experience. A complimentary method used

to avoid these issues is to use infrastructure located topographically close to the

user. The aim of this infrastructure is to avoid the necessity for delivery to take

place using external links, over which the provider has little or no control. In

the following section, we discuss these and investigate how they have evolved

alongside the changing Internet.

2.3.2.1 Web Caches

As the consumption of content increased, it became clear that a significant portion

of the requests are duplicated. This results in content being delivered repeatedly,

often to a group of individual users, over a period of minutes, hours or days.

By storing this content nearby, an appliance could deliver the content for subse-

quent requests without having to continuously fetch the content from the origin

server. Given this situation, tools were created to remedy the inefficiency. Soft-

ware such as the Harvest web cache [73] (which later evolved into the Squid web

cache [171]) allowed network operators, both small and large, to deploy caches in

their network. Prior to the wide-spread deployment of dedicated content delivery

networks (described later), these content caches were an effective means for oper-

ators to cache content. They were primarily deployed to reduce external network

57

traffic, which often had to traverse metered transit links. By deploying a cache,

an operator could effective reduce their operational expenditure.

Web caches typically operated as a proxy; traffic was directed to them by

various means and then inspected before a policy was applied. This policy de-

termined the type of traffic to be cached. If the request matched content that

was destined to be cached, the appliance would first check if it already had a

content object which could satisfy the request. If possible, the content would be

delivered from the cache (a cache-hit). However, if the cache did not have a copy

of the content, the cache would request the content from the remote server (a

cache-miss). This content would then be delivered to the requester, as well as

being stored on the cache to serve future requests.

For the most part, cache implementations such as Harvest and Squid did not

require the participation of the remote server in the process; they were a trans-

parent appliance from their perspective. However, depending on how the traffic

was redirected towards the cache, manual configuration would often be necessary

on the end-user’s device. For example, if the cache was operating as a gateway

proxy, the user would be required to configure their application or browser to

point at this gateway for external connectivity. With the advent of the Bring

Your Own Device concept, in which users bring their own devices to connect to

either a wired or wireless network, disseminating the required configuration be-

came increasingly complex. Importantly, these cache implementations were also

tailored primarily for caching static HTTP traffic. This limits the utilisation of

protocols such as RTSP and RTMP, with much of the video traffic been excluded

from the caching policy.

More recently, Varnish [43] has become a popular tool to be used as a HTTP

accelerator. It is designed exclusively to work with the HTTP protocol, and acts

as a reverse proxy sitting in front of a HTTP origin server. It caches the response

to requests entirely in virtual memory, leaving the operating system to decide

what is stored in memory and what is stored on disk. Interestingly, Varnish also

contains its own configuration language that can be used to define how specific

requests are handled, facilitating a level of customisation for the owner.

58

Content Replacement

An important consideration in the design and implementation of web caches is

the content replacement policy. In most cases, storage is a constrained resource,

and cannot be easily altered and expanded, particularly on the fly. To combat

this, a suitable cache replacement strategy needs to be implemented. This is

especially important as consumers requests and demands change over time. In

order to optimise the availability of content given this inherent variability, it is

necessary to evict items of content from the cache and remove them from the

storage medium. There is a wide variety of content replacement strategies, many

of which are described and categorised in [140].

Recency-based strategies are based upon the locality of reference given a set of

requests. This locality can be either spatial (where requests imply future requests

to other related objects) and temporal (where an object is requested repeatedly in

a short period of time). Least Recently Used (LRU) is the most popular example

of this strategy, but other variants exist.

Frequency-based strategies are often based on the Least Frequently Used

(LFU) technique, and track the popularity of different pieces of content over

time. This information can then be used to aid future decisions on what content

should be retained.

Furthermore, there also combinations of the two previously described tech-

niques, such as the Segmented LRU [59], which partitions the cache into protected

and unprotected segments, each of which is a pre-determined size. Popular con-

tent is maintained in the protected area until evicted using a LRU policy. At this

point it is moved into the unprotected segment as the most recently used object.

If the content is subject to eviction in this segment (also using LRU) it will be

removed permanently.

Function-based strategies use general functions to calculate the value of keep-

ing an object. These may also take outside input into consideration, as is the

case with server-assisted cache replacement [77]. In this case, the servers pro-

vide information to the cache as to the inter-request distribution currently being

observed. Finally, there is also randomised strategies, which simply removes a

random object from the cache. This can be combined with LRU [160] to influence

the probability of said eviction.

In the next section, we discuss Content Delivery Networks: large-scale infras-

59

tructures used to aid delivery on a massive scale. By introducing them, limitations

in storage and capacity become less relevant due to the strong over-provisioning

often employed by the operators. As such most of these networks do not em-

ploy replacement strategies, instead hosting a large set of content that is rotated

according to customer requirements.

2.3.2.2 Content Delivery Networks

Over time, bandwidth increased in the environments where traditional web caches

were typically found: businesses, campuses and schools. Driven by the demand

for content, over-provisioning became the norm. Operators no longer needed to

operate their own cache, which removed some of the burden on them to deploy

and maintain such an appliance. However, there was still advantage to be gained

through caching, albeit on an entirely grander scale.

Content Delivery Networks (CDNs) took advantage of this by hosting this

content in a topologically centralised location [116]. In the first instance, they

were used to serve the increasingly popular medium of video, only being employed

for serving HTTP requests at a later time. With connectivity to a number of dif-

ferent access networks, a huge number of users could be served from a relative

modest deployment, important for large-scale delivery requirements. This en-

abled comparatively similar network efficiency gains (although each request still

had to be delivered repeatedly over the access network), whilst moving the onus

of operation to a third party.

This shift in responsibility coincided with a change in the relationship be-

tween network operators and content providers. Network operators carry the

traffic generated by user requests for items stored by content providers. These

operators are serving the subscribers who pay for their access to the Internet, and

so are obliged to carry this traffic. As many of the content creators are driven

commercial enterprises, whose main revenue stream was derived from either the

subscription of users to their service or through advertising placed alongside their

content, it became increasingly important for them to ensure that the user re-

ceived the best possible quality of experience. It has been shown that users are

very sensitive to even small delays in the loading of content [97]; CDNs are often

employed by the content creators to guarantee that a user is not dissuaded from

watching a video due to availability or poor connectivity.

60

CDNs ensure that content can be served to the user from a nearby location.

In this case, locality is related to the number of network hops required to fetch the

content. CDNs achieve this by simultaneously deploying in a number of Points

of Presence (PoPs) [158]: centralised points in a nations network infrastructure

where most access networks connect to the wider Internet. This ensures that users

received a consistent standard of service, regardless of where they are located.

CDNs also actively manage the load to ensure that they have sufficient provision

to meet the anticipated demand. This scaling ensures that users always have

access to their service, especially important when they are paying to do so. This

availability also helps to combat unexpected events, such as flash-crowds; where

content becomes very popular, very quickly. By localising the demand, this can

be handled without impacting other users or the origin servers. Similarly, the

same techniques can be used to prevent malicious Distributed Denial of Service

(DDoS) from having a widespread impact on the overall user experience.

Without replicating the content close to the edge of networks, it would be

necessary for content providers to host all of their own content. In this case, not

only would each request have to travel across a wider number of network hops, but

it would also require the provider to scale up their own infrastructure significantly.

In the early days of the Internet, hosting content on a single server may have

sufficed for the relatively small amount of demand generated. As demand grew,

it may have also been satisfactory to provision multiple servers, and load-balance

between them.

In the aforementioned cases, the service providers themselves would typically

operate the infrastructure; as this grew, it would become a resource intensive task.

In most cases, it now makes more financial sense for these content providers to

employ the services of a third-party CDN [162, 2, 14], and offload all of their

content distribution demands on to them. Not only do these operators have

experience running networks used for the sole purpose of delivering content, they

also do so for a number of different clients, enabling economies of scale and

allowing them to pass the savings on to their customers, further strengthening

the business case for usage by a content service provider.

Despite the possible advantages to a content provider, there is irrefutably

a cost attached to using their services. As the demand for content exploded

in recent years, this cost has, at least in some cases, outweighed the potential

benefits of using a third-party CDNs services. Recently, a number of content

61

providers have made a decision to operate their own CDNs [51, 19, 166], designed

and deployed in a similar way, but tailored to their own content delivery platform.

Usually, placing the content topologically closer to the user results in a more

stable and reliable connection between the client and the server (in this case,

the CDN surrogate). This is the case because the connection has to traverse

fewer networks, and is not at the mercy of latency and bottlenecks that could

otherwise interfere with the flow. This reliability typically affords the user with

more throughput and thus allows them to request higher quality media. When

we consider that user expectations of media quality are consistently rising, this

enables content providers, via the collaboration with CDNs, to meet this demand.

The composition of a CDN can vary greatly from provider to provider [137],

and often change over time. However, these deployments can often be generalised

into a number of key components:

• Surrogate or Replica Servers: These servers are the core infrastructure of a

CDN; they replicate the content precisely in order to serve it once requested

by a client.

• Origin Servers: The origin servers are where the master copy of the content

is located. This may be a server operated by the content provider, or

a designated server within the CDN operators infrastructure. Typically,

changes in the content made on this origin server will be replicated across

the surrogate servers, as the origin server is deemed to be authoritative in

this respect.

• Clients: The clients are the end-user devices requesting the content. They

may be located anywhere on the Internet, connected through a multitude

of networks and technologies.

• Redirection Infrastructure: The redirection infrastructure ensures that a

client requests a cached piece of content located on one of the surrogate

servers. Importantly, the redirection mechanism must also ensure that the

redirection is destined for a nearby surrogate server. This ensures that

the client experiences the most consistent network conditions, which should

result in a higher quality of service.

62

• Distribution Infrastructure: The distribution infrastructure is responsible

for delivering the content, stored on the origin server, to a number of surro-

gate servers. Distribution can be achieved in a number of ways, although a

composite is often used dependent on the scenario in which the surrogates

are deployed:

– Proactively: A set of content is duplicated on the surrogate server

before it is ever requested from a client. This ensures a client request

can be handled in the most timely fashion, as the surrogate server does

not have to retrieve the content from the origin server before delivering

it to the client.

– Reactively: No content is stored on the surrogate server by default.

Instead, content is only retrieved from the origin server when it is

initially requested by a client. This means that the initial request

will be typically slower, but subsequent requests will benefit from the

surrogate server having already stored the content. That content will

remain in the cache until is evicted through a cache replacement policy.

Despite the small performance disadvantage, this method of content

distribution is useful in cases where the cache has a very limited stor-

age resource, and cannot store a large catalogue of content, as would

typically be the case with proactive content caching.

• Accounting and Monitoring Infrastructure: The accounting infrastructure

within a CDN enables the provider to accurately charge for the usage of

the CDN to their clients. In conjunction with monitoring, it also enables

them to monitor the health of the other elements of the CDN, ensuring

that content remains available and surrogate servers are reachable at all

times. It also allows the CDN provider to make informed decisions about

what content should be situated on which surrogate servers; by analysing

previous request data, there is the potential to locate content in such a way

as to maximise the cost savings, efficiency gains or quality of experience.

In reality, a balance of each of these metrics is probably required.

63

Content Placement

Content Delivery Networks (CDNs) are distributed in their very nature; content

needs to be available to customers regardless of their location. A core part of

meeting this requirement is to ensure that content is located in as many appro-

priate locations as possible. In the case of commercial CDNs, the location of

the content (and the nodes that serve it) are a closely guarded commercial se-

cret. It is in fact part of their business model to place these nodes efficiently and

conveniently, something that their competitors could easily replicate. Despite

this secrecy, a large number of works have attempted to benchmark, observe and

measure the behaviour of commercial content delivery platforms and their traffic

patterns [162, 50, 51, 166, 54, 52]. These provide an interesting insight into the

patterns for content placement, and demonstrate the diversity and variance in

such strategies.

As one of the core aims of a CDN is to improve user Quality-of-Experience,

moving content even closer to the user is an important capability. This should,

under the same circumstances, allow the CDN to deliver content at a higher

quality level and with less variance. Previous work has observed the relationship

between CDNs and Internet Service Providers (ISPs) [99, 96]. In some cases, it

is not possible to deploy equipment into the access network (for cost or access

reasons), yet there are clear advantages to cooperation on the matter [55]. A

flexible and coordinated approach is clearly required in such cases in order to

achieve maximum efficiency and benefit.

To combat this disconnect between ISPs and CDNs, PaDIS [141] is a tool

which enables the transfer of meta-information without revealing internal topolo-

gies and/or deployments. In particular, it allows ISPs to identify, and subse-

quently use, both server and path diversity towards CDNs. This can provide

benefits to users who should receive improved throughput capability. From an

ISPs point of view, it also allows greater control of traffic which can be directed

at will and thus accurately engineered.

Karsalis et. al [114] consider the case of content replication in light of ex-

tensible, distributed cloud resources and a converged wireless-optical-datacentre

virtual environment. They conclude that distributed approaches to solving repli-

cation offer significant benefits when compared to centralised off-line alternatives.

This works also highlights the additional challenges that increasingly distributed

64

and available infrastructures bring to effectively placing content given a multi-

tude of constraints. In this case, these include the cost of object retrieval, the

size of the object in storage, the amount of requests generated over a fixed in-

terval and the probability of an object being requested. Papagianni et. al [136]

again consider the replica placement in the context of cloud resource availability.

This is part of a larger, overarching process designed for use in a multi-provider

networked cloud environment, which offers benefits in terms of operational cost

and computational complexity.

2.3.2.3 Redirection Techniques

As CDNs became popular, the redirection techniques utilised in historic web

caches no longer became scalable across many thousands of users. For example,

using the proxy gateway approach would be infeasible given the traffic load. It

would also be difficult to manage connections to multiple CDNs simultaneously.

Clearly, the redirection techniques need to be scalable and support the simulta-

neous use of a number of different CDNs. In the modern Internet, a number of

methods are used to achieve this redirection; these are described in the following

section.

HTTP

In the context of a request made over HTTP, the HTTP 1.0 specification [63]

defines a number of response codes that can be used to redirect a client to an

alternative location. For example the 301 code is defined as Moved Permanently.

This indicates that content is no longer available at the current location, and all

future requests should be directed to a given URI. To supplement this, the 302

code was originally described as Moved Temporarily. Despite this specification,

most browser implementations would typically modify the subsequent request

method to a GET, regardless of the previous method used.

In order to rectify the ambiguity in the use of the 301 and 302, three further

codes were added in the HTTP/1.1 specification [92]. Specifically, the 303: See

Other and 307: Temporary Redirect codes were added to explicitly define this be-

haviour, with 303 mandating a GET request, and 307 requiring the preservation

of the original request type. Similarly, 308 was added to signify a Permanent

Redirect, and just as 307, does not allow the request type to change.

65

There is a clear limitation for using these HTTP codes to modify requests

for content: it requires the participation of the end servers, and mandates that

they specifically have to have knowledge of where the content is now located.

In a distributed system, where the content can be located in multiple locations,

dynamically rewriting the target of a redirect on a per-client basis is not a par-

ticularly scalable solution. Furthermore, if the content is located in multiple

alternative locations, as can be the case with a video stream, successive redirects

will have to be issued to the client. This requires inter-server collaboration, and

would likely require large amounts of messaging overhead and coordination. It

would also be infeasible if the servers belong to different organisations or delivery

networks.

DNS

DNS resolution is a core part of any connection establishment process initiated

over the Internet. Before a client can request content from a remote server, it will

seek to resolve the given URL to an IP address using a lookup to a DNS server.

In the case of redirection, this process can also be used to direct requests to a

topographically closer cache [53]. To achieve this, the DNS server will inspect the

source of a request, and associate this with a topographical region. A resolver

will then return a response to the client, the contents of which will instruct the

client to request content from a nearby edge cache.

This method of redirection is by far the most commonly used technique in

use in the Internet today. However, when used in conjunction with a traditional

web cache, it can result in inefficiencies. As these caches rely on the URL as

the unique identifier for a piece of stored content, each object will be treated

individually. However, as the DNS resolution may not be the same between

clients, the same piece of content can be delivered to different clients, and thus

stored under different identifiers within a cache. This leads to cache duplication

and wasted disk utilisation.

Under normal circumstances, a DNS resolver should always resolve clients

located within the same network to the same surrogate server. However, many

of these DNS resolvers also act as a type of load balancer, ensuring requests are

distributed between a number of surrogate servers, each of which evidently has

its own address. DNS redirection can also be problematic in cases where a user

66

utilises a third party DNS resolver, rather than one provided by the ISP; this

may result in ignorance of content located within an ISPs network [53], leading

to the inefficient delivery of content.

The usefulness of DNS-based redirection is also diminished when the client

itself caches the DNS response [152]. This caching can result in a slower response

to failures and changes in demand, with the client not aware of changes in the

availability or location of content. To address this, content providers use low time

to live (TTL) values in their DNS entries. This in turn results in frequent DNS

cache misses, adding additional latency to the request process.

Transport Layer

Another approach to request routing is to do so at the transport layer. Typically,

this requires the introduction of a request routing middlebox or appliance, to

be used as an initial gateway. This intermediary will then select a surrogate

from a connected group, and facilitate a connection between it and the client.

Once this connection is made, the surrogate will typically deliver the content to

the user without traversing the middlebox again. This enables the maximum

possible throughput to be used, without the performance penalty of traversing

the middleware on the throughput intensive return flow of traffic.

This approach is often used in conjunction with another approach to ensure

that requests arrive at the appliance. It can therefore be seen as a complimentary

technique: it offers fine-grained control and redirection, but only once a requested

is routed appropriately to it. Using an intermediary appliance also requires the

need to purchase, maintain and house said equipment. Changing the behaviour of

a device can also be a time-consuming process, especially as there is no standard

technique of interacting with devices across vendors.

Anycast

This method utilises the behaviour of IP packet routing to select the nearest

possible surrogate server. This is typically achieved by using routing protocols

(such as the Border Gateway Protocol) to announce the same IP address from

many different places within the Internet. When a request for content is sent from

a client, the nearest router will automatically forward the packet to the nearest

surrogate server, which should theoretically provide the best service to the client.

67

This technique requires a deterministic approach; identical requests can be

handled in different ways if the routing table differs in any way. For a connection-

orientated protocol, such as HTTP, this approach can lead to clients attempting

to connect to a different surrogate during a long-lived connection, such as that

found in video playback. As these surrogates do not share the same connection

state, reconnects will occur, which can disrupt availability and thus playback.

The same deterministic nature of Anycast also has implications for the content

catalogues stored on a surrogate server, as not all surrogates will replicate the

same set of content. This can result in inefficient behaviour, and lead to increased

and/or variable content delivery times.

2.4 Infrastructure-assisted Applications

Section 2.2 presented current trends towards the softwarisation of networks and

the services that support them. This process facilitates a new generation of

network applications that have full control over the underlying infrastructure;

whether that be network, additional compute resources or storage. Through this

tighter integration, applications can use these resources to more flexibly assist

them in their operation.

A wide range of actions is available to this software, from modifying the for-

warding plane in some way, to creating new instances of a function in response to

demand, anticipated or otherwise. In the remaining sections we examine some of

these applications. They are categorised broadly into different groups dependent

on their purpose or goal. We also highlight a number of technologies designed

to aid developing with this new found flexibility, including specific languages and

tools used to determine the correctness of a technique or application. These are

found in Section 2.4.5.

2.4.1 Switching and Routing

Computer networks provide switching and routing as fundamental functions.

However, the softwarisation of networks has re-established the potential for inno-

vation in this long-established technology domain. For example, Routeflow [147]

proposes the use of centralised engines to handle routing behaviour. The com-

puted routes are then realised in the network through the use of OpenFlow, which

68

pushes flow rules into switching hardware. This enables novel behaviour that was

near-impossible to achieve in existing networks, such as secure inter-domain rout-

ing and optimal best path reflection.

OSHI [149] eases the move towards full Software Defined Networks (SDN) by

providing a migration path from traditional IP equivalents. This is done in the

context of enabling a hybrid SDN/IP backbone, which allows existing networking

behaviour to co-exist with SDN-enabled services such as VPNs, Virtual Leased

Lines and Traffic Engineering. To this end, they created an OSHI node, which

contains both IP and SDN functionality on a single switching device.

In [98], the authors outline the role and function of a Software Defined Inter-

net Exchange (SDX): a modern replacement for the ubiquitous Internet Exchange

Point (IXP). This is designed to overcome some of the shortcomings of existing

BGP routing through the use of SDN, which enables fine-grained control and

matching based upon multiple header fields. To demonstrate this, they create

an application where two networks peer only select traffic, such as streaming

video. Through experimentation, they show that their solution allows hundreds

of participants to advertise full routing tables whilst maintaining sub-second con-

vergence.

The applicability and suitability of SDN in production networks is com-

pounded in Google’s decision to utilise the technology in a private WAN con-

necting their worldwide data centres [110]. This move aims to maximise capacity

by maintaining a constant 100% link utilisation. It also enables end-to-end pro-

grammability, which has been demonstrated through the centralisation of their

traffic engineering logic; this allocates bandwidth amongst competing services

based upon application priority, communication patterns and network availabil-

ity.

2.4.2 Security

Security is an ongoing threat to the uptime of any infrastructure. The continued

safety of such has been the focus of much research, and recently, academics have

looked towards the increased flexibility in infrastructure to assist in securing these

networks.

FRESCO [155] is a framework designed to facilitate the development of OpenFlow-

based detection and mitigation applications. Implemented as an OpenFlow appli-

69

cation itself, FRESCO aims to enable researchers to implement and share different

security modules, including a scan deflector service and a P2P malware detec-

tion service, which are implemented as examples. These applications introduce

minimal overhead, as well as providing the necessary functionality in significantly

fewer lines of code.

A core part of modern security measures is the ability to sample traffic.

FleXam [157] describes the need for additions to the OpenFlow specification in

order to sample effectively, noting deficiencies in existing techniques. To remedy

this situation, they propose the design of an extension to enable applications to

define not only which packets are sampled, but also which part of the packet

should be sampled and where it should be sent.

CLOUDWATCHER [156] is a tool that can be deployed in cloud environ-

ments where conditions are constantly changing and topologies are often large.

CLOUDWATCHER addresses this environment by redirecting packets to be in-

spected by existing network security devices. This behaviour can be configured

through the use of simple policies determined by the network administrator. This

work provides a number of algorithms for detouring packets, and evaluate each

in terms of the time necessary to generate the necessary flow rules to be installed

in the network.

A facet of infrastructure-assisted applications is that they are granted un-

paralleled control over networks and their resources. However, this does not

prevent malicious actors from threatening the security of the infrastructure itself.

Similarly, it does not prevent multiple applications from requesting potentially

conflicting resources, particularly in the network later. FortNOX [142] aims to

counter this by providing role-based authorisation and security constraining en-

forcement as an extension to an existing OpenFlow controller. FortNOX operates

by checking for flow rule contradictions in real-time, and attempting to remedi-

ate any problems. It also adds additional flow rules so avoid circumvention of

rules imposed by the application. This work is demonstrated through a proto-

type which offers minimal overhead compared to the standard controller when

determining if a flow rule can be inserted.

70

2.4.3 Resiliency

Network infrastructure has also been deployed to aid resiliency. For example,

in [153], the authors utilised OpenFlow to provide a unique fast-failover mecha-

nism which allows networks to rapidly recover from hardware failures. They com-

pare the performance of this mechanism with existing MAC-based re-convergence

and client-initiated recovery using ARP. In all cases, it exhibits a faster switch-

over time with lower packet loss.

There is also a significant body of work concerning the use of Software Defined

Networking (SDN) to offer load-balancing. An initial demonstration of this [101]

shows the advantages of taking into account both the congestion of the network

and the load on the servers to better adapt to prevailing conditions. In response

to this load, OpenFlow is used to reconfigure routes accordingly.

In [169], the authors note that the functionality provided by dedicated hardware-

based load-balancers can be provided at a lower cost using commodity network

switches compatible with OpenFlow. This work proposes the exploitation of the

wildcard functionality within OpenFlow to reduce the amount of necessary rules,

and thus load on the controller. They present a number of algorithms which

automatically adjust to changes in policy without disrupting existing client con-

nections.

Furthering work this in this area, [115] addresses load-balancing in the face

of multiple concurrent services. Using Flowvisor [154], the network is logically

partitioned into a number of slices, each controlled by a separate controller, with

each slice belonging to a single service. With this, each controller implements its

own specific logic dependent on the service it is carrying. For example, web server

load balancing may require a different procedures to an e-mail server. Through

a prototype implementation, they discover that although this approach is viable,

the existing generation of OpenFlow-capable forwarding equipment did not offer

sufficient performance to make this approach viable in production networks.

Taking the ability to control the network further, [121] proposes a method

of load-balancing that offers increased performance when compared to two com-

peting load-balancing techniques. LABERIO again relies on OpenFlow as a tool

to modify the network, which allows it handle load imbalance even during the

life of an existing network flow, something that other existing approaches fail to

consider.

71

2.4.4 Data Centre

The data centre environment has also garnered a significant amount of attention

from the academic community. CrossRoads [127] looks to ease the migration of

Virtual Machines (VMs) between these facilities by providing a layer agnostic

network fabric that enables seamless live and offline mobility of VMs. A proto-

type was realised with OpenFlow and showed a negligible performance overhead

compared to a regular network, even outperforming it in some cases.

Similarly, [65] proposes the use of OpenFlow as a tool to aid inter data centre

connectivity. This work claims that there is significant complexity in the topol-

ogy and configuration of their networks, and through the abstraction of internal

configuration, the process of interconnecting them can be made significantly eas-

ier. They demonstrate their solution using inter data centre VM migration, and

show that their solution offers reasonable delay values in doing so.

Migration also forms a core part of the XenFlow [129]. XenFlow aims to

provide flexible virtual networks in coordination with the Xen hypervisor [45].

This includes the ability to isolate networks, as well as provisioning networks

with QoS guarantees. During migration, their prototype offers performance better

than the existing Xen hypervisor mechanism, without the need to create tunnels

or losing packets.

Duet [95] proposes a combined hardware and software approach to data centre

load balancing. Their prototype offers all the benefits of a software-based load

balancer, including low latency and high availability, at no additional cost. This is

achieved through the utilisation of the switches themselves, in which they embed

the majority of the load balancing functionality. When combined with a small

deployment of software-based load balancers, a hybrid solution is created. This

solution offers a 10-fold increase in capacity, whilst reducing latency by a factor

of 10. It also able to adapt to changing network conditions, including failures.

Interestingly, the authors intentionally avoid the use of OpenFlow, instead relying

on equal-cost multi-path routing [165] and IP-in-IP encapsulation to tunnel traffic

accordingly, noting that the APIs to control these features have only just become

available in vendor’s switching hardware.

ElasticTree [103] looks to improve the energy efficiency of data centre net-

works. It tackles this using a power manager, which dynamically adjusts not only

the switching fabric of the network, but also the power state of each networking

72

element. This is done in the face of changing load in the data centre. Through

analysis of multiple strategies, and by utilising an OpenFlow-based testbed, the

authors show how trade-offs between energy efficiency, performance and robust-

ness can be tuned to offer desired performance, cost and robustness. Results

indicate that ElasticTree can save up to 50% of the energy consumed by data

centre networks whilst maintaining the capability to deal with peak demand.

2.4.5 Application Development

To aid the development of infrastructure-assisted applications, a number of tools

and programming languages have been created. In [91], the authors coin the

term participatory networking, proposing a common API for application to con-

trol SDNs. This is designed to allow applications to work more effectively with

the network, including providing predictability, performance and security. To

achieve this, they address the safety concerns surrounding presenting a network

topology and its details, as well as the resolution of conflicts across different user’s

requests. To demonstrate the applicability of this API, they port four well-known

applications to used the API, including Hadoop [83] and ZooKeeper [107].

Atlas [143] proposes an agent-based approach to enable fine-grained traffic

classification with SDNs. As existing technologies are limited to information

gathered the lower layers of the networking stack, agents located on client devices

provide ground truth data. When combined with data derived from the SDN, a

machine learning approach can be used to provide accurate traffic classification.

Through a prototype implementation using Android devices, they show a 94%

success rate.

A number of programming languages have been designed specifically for de-

veloping applications for software-defined infrastructures. For example, Fre-

netic [94, 93] is a high-level language that can be used to program a number

of distributed network switches. Taking a declarative approach, Frenetic allows

network traffic can be classified and aggregated, as well enabling high-level packet-

forwarding policies to be determined. The ability to reuse code and modules is

highlighted in a comparison of program size between Frenetic and an existing

OpenFlow controller. To further highlight the usefulness of this approach, a num-

ber of applications were implemented, including a fault-tolerant routing, a load

balancer and a Dynamic Host Configuration (DHCP) server. A Python-based

73

version of Frenetic is also available [144]. Nettle [168] also looks to address the

issue of programming networks, albeit this time taking an event-based functional

approach.

There has also been a small body of work concerning the correctness of these

applications. In particular, the automated testing of OpenFlow-based applica-

tions is addressed in [68, 138]. They note that given increased programmability,

the likelihood of a single bug disrupting the entire network become apparent.

Challenges faced by applications include the multitude of possible of inputs, the

complexity of a distributed topology, and a dependency on external events. Work-

ing towards ensuring correctness, applications should be subjected to a number of

packet sequences and network events. These should be derived from both simple

traffic models and from the nature of the environment in which the application

will be deployed. Further work includes applying this validation to a number of

real applications [69], notably a load-balancer, a layer-2 learning switch and an

energy-efficient traffic engineering mechanism. In doing so, the authors found a

number of previously undiscovered bugs.

2.4.6 Content Delivery

Particularly important in the context of this thesis, there has been a number of

related works conducted in the area of infrastructure-assisted content delivery.

In [111], the authors utilise the flexibility enabled in the data plane by Software-

defined Networking (SDN) to realise path selection for specific applications, in this

case YouTube video streaming. In effect, this work combines application-state

information with the control element of SDN. In their experiments, it allows spe-

cific flows (all those related to YouTube) to traverse links that have favourable

characteristics. Their evaluation shows benefits that far outweigh the usage of

standard Quality-of-Service (QoS) flags, used to denote traffic with particular

requirements. This is largely due to the time-dynamic requirements of a user,

which can be easily signalled to an application layer via SDN, yet can be hard

to convey using QoS alone. Similar work [82] also demonstrates the advantage

of application-aware aggregation and traffic engineering, albeit in a converged

packet and optical network. In particular, they show how circuits can be ini-

tialised dynamically with specific flow properties, such as guaranteed bandwidth,

low latency and low jitter. These allow differential treatment of different packet

74

flows, in this case denominated more generally as voice, video or web.

Kaleidoscope [174] presents a prototype designed to aid real-time content de-

livery using both SDN and cloud computing technologies. This offers a flexible

resource allocation that changes in response to demand. By modifying their

usage, expenditure can be reduced whilst maintaining service quality. The pro-

totype uses a mixture of SDN-based broadcasting, network virtualisation and

the ability to dynamically provision cloud resources when needed. Live media

distribution has a number of unique challenges, such as the need for real-time

processing and simultaneous distribution to multiple clients.

Software-defined networking has also been used to aid delivery of content

over wireless networks [135]. Addressing a deficiency in the cooperation between

network operators and content providers, they suggest a unified control plane

that is realised end-to-end. This includes both the wireless access network and

the mobile core network. This can then be used to dynamically control traffic

flows in response to changing network conditions, maximising the users quality

of experience and avoiding traffic traversing links which may negatively impact

such. Similar work [79] aims to optimise content caches in LTE mobile networks

by exploiting the inherent flexibility in software-defined networks. Not only do

they reduced expenditure on equipment (which can now be generic rather than

specific to mobile networks), it also enables caches to be relocated dynamically

and without the necessity to consider physical topologies in the process.

Liu et al. [119] take a different approach to addressing the inherent uncer-

tainty in today’s networks and delivery infrastructures. They make the case for a

coordinated video control plane that uses measurements derived from the client

to dynamically adapt playback to maximise performance. These adaptations are

based around the selection of CDNs in conjunction with the bitrate requested.

Through collaboration between network operators and content delivery networks,

a network-wide view can be established. This ensures that various policy goals

and constraints can be met, whilst simultaneously improving end-user experi-

ence. This collaboration is also realised in [172], where the authors instead utilise

software-defined networking to enable the sharing of information between Inter-

net Service Provider (ISP) and Content Delivery Network (CDN). This provides

the basis for optimisation to take place, as the accuracy of redirection can be im-

proved (avoiding costly transit costs to the ISP) whilst maximising the experience

provided to the user (achieving the CDNs primary purpose). This is possible due

75

to the control logic of the ISPs network being in software, allowing the CDN to

build an application to interact with said logic.

2.4.7 Moving Forward

In this section, we have outlined existing work in the area of infrastructure-

assisted applications. Despite the relative infancy of this field, we examined

work in the area of content distribution in Section 2.4.6. The innovations in this

area have been matched by a clear movement within the video delivery space

to produce similarly open and adaptable technologies that make the best use of

the resources at their disposal. As described in Section 2.3, these fundamentally

change the way that video is delivered over the Internet.

As a result of developments in the networking, infrastructure and delivery

technology fields, a new approach to content delivery is required. This is driven

not only by the availability of these new technologies and the subsequent ben-

efits that they may bring, but also out of the necessity to innovate in order to

satisfy the continuous growth in the demand for content. Bringing all of these el-

ements together presents the opportunity to create more adaptive and responsive

methods of delivering both content and services.

In this section, we have shown a precedent for increased network and service

collaboration, with this early work demonstrating some of the potential benefits

possible. Yet there is a clear need to prove that the use of Software Defined

Networking is the correct and appropriate tool for the situation. This can be

quantified in a number of ways, but the benefits should at least be tangible

to the end user. This can only be demonstrated through implementation and

extensive evaluation.

The extension of programmability towards the process of content delivery has

also not yet been explored in literature. This presents some interesting prospects

in terms of specifying the behaviour of distributed content delivery platforms,

yet continues a notable trend in this area. In the next chapter we outline the

motivations behind a next-generation content delivery platform. Taking into

account existing infrastructure architectures, this thesis proposes a design which

also encompasses a number of novel features. This includes an emphasis on

utilising the aforementioned new technologies, and deploying them as tools to

aid the process. The design must also consider evolution in delivery technologies,

76

particularly those that are adaptive. These may introduce additional implications

to the process, something that existing work has not yet considered.

2.5 Summary

This chapter has presented background material and related work straddling

many different research topics. To begin with, we described the continued im-

portance of the Internet in today’s world. We then identified a particular trend

in the field of networking, which moves towards softwarisation: transitioning

away from fixed hardware-based functionality towards more flexible and agile

software alternatives. Importantly, this is done without compromising current

performance and scalability requirements. This movement has its roots in pro-

grammable networking, the concept of which has seen somewhat of a resurgence

with the recent popularity of Software Defined Networking (SDN). When these

same features and desires are applied to the myriad of functions that underpin

modern networks (under the title of Network Functions Virtualisation (NFV)),

further benefits become evident.

A further topic described in this chapter is video, and particularly the distri-

bution of it over Internet architectures. This too is a rapidly evolving field, with

a distinct trend towards the use of commodity hardware and adaptive delivery

techniques. To support the ever-increasing demand for this content, there has

been the need to deploy additional infrastructure and apply novel techniques to

direct requests towards local duplicates. As noted in this chapter, this enables

scalability as well as efficiency; fewer requests are handled at the origin server.

Combining such infrastructure with the application that it supports has led

to the concept of Infrastructure-assisted Applications. Although it is to be noted

that this is a relatively new, and thus underdeveloped, area of research, it has

nonetheless been viewed from a number of different perspectives, including se-

curity, resiliency and content delivery. The core commonality across all of these

related items of work is the ability for an application to somehow influence the

form and structure of the underlying infrastructure in a way that aids the appli-

cation in some way.

It is through this process that we have identified some shortcomings in the

area, particularly in the scope of content delivery. These are follows:

77

• There are clear benefits to content delivery by using an infrastructure-

assisted application, but these have yet to be realised.

• The application of SDN and NFV concepts in this domain has the potential

to impact a number of the underlying functionalities, such as content deliv-

ery, infrastructure provision and request redirection. Understanding these

is of paramount importance if provision is to adequately match increased

demand.

• There is also a distinct lack of investigation into how these infrastructures

are impacted with the use of emerging standards for delivering video, which

may have further, as of yet unconsidered, ramifications.

78

Chapter 3

Design

In this chapter, we discuss the motivation behind the need to develop universal

content delivery platforms which are both open and programmable. We discuss

how emerging technologies are applicable in this context, and how we can use

them to create a platform for the next-generation of software-based virtualised

functions. We present a novel architecture for achieving this, illustrated through

a comprehensive design. In Section 3.1, we discuss the motivation behind such a

design, and define the aims that such a design should achieve. In Section 3.2, we

discuss how these aims are met in a comprehensive design analysis.

3.1 Motivation and Aims

Given the background and related work described in Chapter 2, it is clear that

there is significant effort centred around the delivery of content and the infras-

tructures that support such. Over time, these have developed into a large-scale

ecosystem which ensures that content is available to the maximum number of

users and delivered in the timeliest fashion. However, existing platforms do not

make use of advances in technology, nor consider changes in thinking concern-

ing the design of network services. In this chapter, we outline a number of core

requirements central to both present and future content delivery platforms. Fur-

ther to this, we consider the motivation behind a universal approach which is

both open and programmable. This includes the use of emerging technologies

and service paradigms. Ultimately, this enables both new research opportunities

as well as disruptive business models.

79

3.1.1 Content Delivery Fundamentals

Any content delivery platform must satisfy a number of core functions. The most

important of these is that it must ensure that it can always satisfy a users request.

This can be achieved in a number of ways, including pre-loading content ready

to serve to a client, retrieving content in response to a user request, or serving

content already stored within the cache. A cache in this case is a collection of

objects or files that have been previously retrieved from an origin server, and now

retained to enable requests to be handled internally. Regardless of the method,

this must be completed in a timely fashion, ensuring that the user experiences no

degradation in service. A comparison in this case can be made between fetching

content directly from the origin server (where the content is located by default)

or fetching the content from a cache.

The baseline scenario for a cache is that content is delivered at approximately

the same latency and throughput as though it was requested from the origin

server. However, in ideal circumstances, the cache should be able to handle a

request in a much smaller time frame and with a higher observed throughput.

Evidently, achieving this will at least partially rely on the placement of the cache,

and the resources that this affords. Nonetheless, the design of a cache should

ensure that no impairments are introduced in this process.

Given that caches are often deployed to ensure availability of content, a design

should be capable of handling a large number of requests simultaneously. The

amount of incoming requests will largely fluctuate given the time of day and the

placement of the cache (and thus the number of potential clients). A design must

therefore be able to handle the maximum possible number of requests expected in

a peak period. During these times, it is again important not to degrade the service

received by the user. In particular, it is imperative to avoid content becoming

unavailable due to service interruption, especially as a cache is typically deployed

to avoid such a situation.

Where a high volume of requests may overwhelm a single server, such as

the origin server, the aim of a cache is to ensure that this load is more evenly

balanced. As before, this can be partly accomplished through the intelligent

placement of content replicas. Similarly, scaling the hardware deployment can

also aid in ensuring that there is sufficient resources to meet the level of requests;

through provisioning more capability, more simultaneous requests can be handled.

80

However, it is important that the underlying design makes the most efficient use

of resources, regardless of what is provisioned. This prolongs the need to expand

resource allocation, especially important when this is a long-term process that is

both time and capital intensive.

Another fundamental aim of any cache is to provide network efficiency. In

addition to taking load off the server, a direct effect of the caching process is a

distinct reduction in the network traffic flowing towards the origin server. This

includes any request having to traverse the network between the client and the

aforementioned server. In some cases, this may even be a metered transit connec-

tion. The efficiencies gained by serving the content locally, and thus reducing the

unicast flows, ensures that only the initial flow has to be handled in the external

network; that is, there is a single flow that retrieves the initial object from the

server. Instead, the unicast flows are now internalised between the client and the

cache. This cache would be based either within the same network, or at least at

the edge, to attain maximum efficiency.

Another core design feature, present in all modern content delivery networks,

is that they are capable of being distributed. By hosting content in multiple loca-

tions, providers can ensure a minimal round-trip time when replying to requests

for content. It also allows the tailoring of caches dependent on the connected

customers, hosting content specific to that region. To realise this distribution,

a level of coordination and cooperation is necessary. This is achieved through

the passing of messages between constituent entities. A design should therefore

aim to define this process in a rigid way, allowing entities to join and leave seam-

lessly and as required. This may be facilitated by the specification of a discovery

mechanism. Furthermore, there should be a level of abstraction which provides

operators with the ability to address a group of elements as one. This is partic-

ularly important in an environment where similar elements may co-exist closely

together, and presents an opportunity to simplify the control and command of

these elements.

3.1.2 Programmable Control

In Section 2.2.2, we described Software Defined Networking (SDN), a new paradigm

for computer networking. It allows for greater management over the underlying

forwarding with in a network. Traditional control decisions are separated from

81

hardware-based appliances and placed into software. This enables programma-

bility in the network, as applications can define custom network behaviour and

manipulate this on-the-fly.

Thus far, these concepts have not been applied to the field of content delivery.

A design should aim to evaluate the effectiveness of this technology to forward

requests for content to a nearby cache. A programmable approach to this pro-

cess may have other advantages, such as the ability to modify existing redirects

almost instantaneously. There has been numerous comparisons made between

the effectiveness of different redirection techniques [112], including a focus on the

predominant DNS-based technique used today [152]. However, due to newness of

SDN, it has not yet been considered in this comparison.

The design should also aim extend this programmability to the cache de-

ployment itself. A well-defined interface can be used to achieve this by allowing

critical operations to be determined and modified during runtime. To aid pro-

grammability, this should also aim to provide feedback and statistics to the user.

This allows the development of applications that are reactive in nature, ensuring

that the decisions made in the underlying cache are both timely and appropriate.

Programmability should also be extended to the underlying infrastructure.

In fact, the ability to dynamically allocate resources according to the needs of

a program is a core concept within Network Function Virtualisation (NFV). As

described in Section 2.2.3, NFV is a concerted moved towards more flexible and

virtualised functions for use in the network. Given that content delivery networks

are one of the recognised use cases [47], it is clearly a pertinent example.

In existing content delivery networks, CDN nodes (the entities that serve the

content to the users), are physical devices, dedicated to the purpose. This ap-

proach can be viewed as inflexible, as the hardware is provisioned in order to

serve content during peak demand. During periods of unexpected demand, such

as flash-crowds, this resource provision can be challenged. However, upgrad-

ing the hardware requires foresight and preparation, as well as increased capital

expenditure. Hosting dedicate nodes per CDN can also increase operation com-

plexity, especially if they are managed devices. As mentioned previously, content

delivery is a constantly changing field, and the ability to create new software

rather than hardware is a distinct advantage in order to remain agile.

In order to address these challenges, a design should ensure that the con-

stituent components of a CDN be realised entirely in software. These elements

82

can then be run on generic virtualised infrastructure, shared with other compo-

nents and functions. This allows the CDN to release resources when they are not

in use. Given the periodic nature of user requests [163], a solution should be able

to dynamically resize the provision when demand is not present.

3.1.3 Open Processes and Interfaces

In today’s world, there is an ever present trade-off between closed and open

innovation; each has their own merits. In terms of content delivery platforms,

many of the existing solutions are proprietary and a closely guarded commercial

secret. When a customer approaches a content delivery network, they do not

necessarily need to understand the details of how and where their content is

delivered from; they are simply paying for a service to enable their content to be

distributed widely.

However, an open solution has a distinct set of advantages, which includes

transparency and an understanding of the underlying mechanisms. Given an

open solution, it is possible to effectively modify the fundamental behaviour of a

deployment to suit the necessary requirements. When combined with a modular

design (as discussed in Section 3.1.4), it presents the opportunity to create a

community in which modules can be shared and refined between users. This

allows developers to build modules and distribute them to others without the need

for duplicated effort, and with the benefit of combined wisdom and knowledge.

In cases where content providers do not need to understand the complexity of a

deployment, any implementation must be easy to deploy and maintain so that

operators are not burdened with the complexity of managing such a solution.

In Section 2.4, we discussed a continued trend towards increased collaboration

between content distribution networks and Internet service providers. Through

the sharing of information, they hope to further optimise the benefits of delivering

content from a cache. An open and accessible method of enabling this exchange

of information to continue, and eventually become commonplace, is to the benefit

of all parties involved.

It is believed that this information sharing may also be extended beyond

the aforementioned organisations, and opened up to other potential interested

parties. Examples include those that do not currently have any influence over

the caching process, such as content creators. As they may have detailed and

83

specific knowledge of their own libraries and catalogues, this can be exploited to

realise further efficiency gains.

3.1.4 Flexible Deployment

Any design should also be capable of operating in a myriad of possible deployment

scenarios. For example, this could be a small-scale cache node deployed in a users

home, constrained by a small amount of storage, available bandwidth and limited

processing capability. Similarly, it should be possible to deploy the same solution

in a data-centre scenario, where resources are abundant and it is relatively trivial

to scale resources dependent on demand and availability. The same could be

said for any deployment in-between these two extremes, such as in a Internet

Point-of-Presence or even within an operators network. In order to achieve this,

it is necessary to build a solution under a universal code-base. This is, the

software can be run on a multitude of platforms. The software should also scale

to the resources it has available, with the operational constraints being either

automatically discovered or manually defined.

As the methods for content delivery have changed over time, the infrastructure

to support such has changed with it. However, this technological innovation is a

constantly ongoing process, with new techniques persistently revolutionising how

we meet the demand for content. Evidently, any design needs to be sufficiently

flexible to adapt these changes. In Section 2.3.1.6, we observed how delivery

technologies are now moving towards the use of adaptive streaming techniques

matched with commodity HTTP servers. Support for this technology should be

critical in any design. In Sections 2.3.1.3, 2.3.1.4 and 2.3.1.7, we noted a number

of alternative technologies, all equally capable of delivering content, but with

vastly different methods of doing so. Ensuring that any design supports both

current and future technologies is an important design aim. A modular design

enables this; existing functionality can be replaced, as well as new functionality

trialled and added, when the need arises.

Similarly, the process of redirecting requests should also be independent of

protocol or request: it should also be transparent in use, and without the re-

quirement that clients have to configure their devices or download additional

software to take advantage of content delivered from the cache. It should also

offer compatibility with existing services found in the network, such as firewalls.

84

Importantly, the realisation of the design should also work in harmony with exist-

ing content delivery platforms, regardless of their location in the Internet. This

provides a viable integration path, and does not preclude services from using

a multitude of means to ensure that their content is available to the greatest

amount of users.

3.1.5 Summary

In this section, we have identified a number of features to be used in the design

and implementation of a next-generation content delivery platform. In Table 3.1,

we collect and provide a summary of each of these desired design attributes.

Core Functionality Incur no additional impairment to the content delivery process
Handle a large number of simultaneous requests
Efficiently utilise given resources
Exploit network efficiency by satisfying requests closer to the user
Operate in a distributed fashion

Programmable Control Evaluate the effectiveness of SDN in a content delivery context
Explore new ways of controlling CDNs
Extend programmability to the infrastructure
Bring content delivery functionality into software

Open Processes and Interfaces Provide a transparent and open alternative to existing CDNs
Foster a community to develop useful functionality
Define well-documented and open interfaces
Increase cooperation between CDNs and other interested parties

Table 3.1: Feature Summary

3.2 Architecture and Design

In this section, we discuss how the aforementioned aims will be met with an over-

all design. This design will also become the basis for a prototype implementation,

discussed later in Chapter 4. The OpenCache architecture contains a number of

layers. The components in each of these layers work in harmony to achieve the

goals set out in the previous section. In the scope of OpenCache, a number of

existing technologies and techniques will be used, combined with novel function-

ality implemented in a number of new components; namely the OpenCache node,

controller and the optional proxy. It also includes a well-defined interface, which

should afford an unprecedented level of control and configuration to operators

85

over their deployment and resources. These components are described in the

following section.

Application Layer

Control Layer

Service Layer

Redirection Layer

OC Node OC Node...

Com‐
pute
Con‐

troller

SDN
Con‐

troller

User
Re‐

quests

User
Re‐

quests

User
Re‐

quests

User
Re‐

quests

SDN
Forward‐

ing

Virtualised Compute

SDN
Forward‐

ing

OC
Proxy

SDN
Forward‐

ing
...

OC Node OC Node

Control Layer
(contd.)

OC Con‐
troller

Operator
Applica‐

tion

3rd Party
Applica‐

tion

Figure 3.1: Layers of the OpenCache Architecture

The layers (and constituent components) are illustrated in Figure 3.1. At

the top of this architecture is the application layer, responsible for defining the

behaviour of the caches. This is where third-party developers and operators

will interact with the whole deployment to create the functionality that they

require in their particular deployment scenario. It is described in further detail

in Section 3.2.4.

Below the application layer is the control layer (described in more detail in

Section 3.2.2), and is responsible for orchestrating the remaining layers, notably

the service and redirection layers. This is shown as two split vertical layers in

the figure: one containing the external components and one containing the inte-

gral OpenCache controller. In reality, these would be present in the same layer;

they’re illustrated as such only for clarity. The OpenCache controller interacts

with these existing control entities, which includes Software Defined Networking

(SDN) controllers and computer controllers, in order to provide flexible resource

allocation and network forwarding.

The service layer, described in Section 3.2.1, contains a number of distributed

caches in the form of OpenCache nodes, whom directly serve content in response

to user requests. The final and lowest layer is the redirection layer, described in

86

Section 3.2.3. This layer redirects user requests towards the caches using a variety

of means, including direct modification of the forwarding layer and through the

use of an OpenCache proxy, designed to further backwards compatibility.

It is important to note that in Figure 3.1, communication between the various

elements is signified by a connecting line. If the line is dashed, this is commu-

nication using an internal protocol, designed to enable OpenCache nodes and

proxies to be controlled from the OpenCache controller. Similarly, the applica-

tions interact with the controller using a protocol developed especially for this

architecture. In the case of dotted lines, this signifies communication using an

existing third-party protocol, designed in each case to enable the elements to be

controlled or communicated with (but not built specifically for OpenCache).

3.2.1 Service Layer

Service Service Service...

Core
Configu‐

ration

Interface

State

Storage Storage...

Discov‐
ery

User
Re‐

quests

OpenCache Controller

Figure 3.2: OpenCache Node Design

The service layer is at the core of the OpenCache design. The sole component

of this layer is the OpenCache node, illustrated in Figure 3.2. This node consists

of a number of modules, and is responsible for delivering the content to the user.

As such, it is the actual realisation of a cache and responsible for storing the

87

content. It will subsequently deliver this when requested by a client.

At the heart of the OpenCache Node is the core module. This orchestrates

the other remaining modules, including communicating changes in state, creating

and destroying services and responding to commands made through the interface.

In this case, communication between modules is established through the use of a

connecting dashed line1. This inter-module communication is preformed through

method calls and returns between each module.

Attached to the core module is a number of other modules. This includes the

state module, responsible for maintaining the state of the OpenCache node as a

whole, and also of the individual services running alongside it. This also allows

the core module to respond to interface calls for statistics, as well as providing

an important role for the underlying services. In this case, the state module

maintains a representation of the content objects that are currently stored by the

cache, and the location of them on any of the various storage mediums. It also

maintains the state of each service, enabling the core module to report any issues

or defects to the control layer.

When an OpenCache node begins operation, it will typically need some initial

configuration, mainly so that it can connect to the wider OpenCache deployment;

this is handled by the configuration module. As time progresses and the node be-

gins operation, additional configuration may be disseminated to the node. In this

case, the configuration will be modified and the node will operate in a modified

manner.

This configuration, and in fact any communication within the scope of Open-

Cache, will be achieved through interaction with two modules: namely the in-

terface and discovery modules. The discovery module will be used in the first

instance to broadcast the presence of a new OpenCache node to the overarching

control framework. Once this has been established, communication will migrate

across to the interface module, which has a much broader and richer capability.

It is through the interface module that the OpenCache node will be controlled

and configured during its operation. This is signified through the use of a dotted

line to represent external communication between itself an external OpenCache

controller2. This external communication is discussed further in Section 3.2.4.

1The use of a dashed line to represent internal module communication is consistent amongst
the remaining figures of this chapter.

2The use of a dotted line to represent external communication is consistent amongst the

88

The main functionality afforded by this interface is the ability to start and

stop service modules. In the scope of OpenCache, a service represents a specific

set of content to be served. This is defined through the use of an OpenCache

expression: a pattern passed to the service module on startup that defines the

content that a service should handle. This can be intentionally specific, or utilise

wild-carding to enable more generic sets of content to be served. An expression

can also define content from multiple locations, such as a set of geographically

distributed servers. A service is always started, and subsequently controller,

through the interface module: the interface provides operations such as stopping

and pausing a service. An OpenCache node will typically consist of multiple

services, running simultaneously. Under normal conditions, each of these services

will be serving a unique set of content.

When a service starts, it will not hold any content. Without interference from

the control layer, this will remain true until an initial user request arrives. Once

this occurs, the service will check (via the core module) with the state module to

discover if this content is already stored. As the service has just started, this is

unlikely to be the case, and thus, a cache-miss event is created. At this point, the

service module will request the content from the origin server. Once this has been

retrieved, it will be delivered to the client, satisfying their request. Importantly,

the node will also store this content.

This storage of content is achieved through utilisation of a storage module.

Each of these storage modules is unique to a type and/or location of storage. The

decision of which storage module to use is determined through the core module.

Once content is retrieved and a request has been handled, the service module will

then store this content on a chosen storage module. This enables the content to

be served in response to future requests. Importantly, an OpenCache node should

be able to support numerous underlying storage technologies and locations for

such storage. Multiple services can also share the same underlying storage.

When a subsequent request for content arrives at the same service module,

the process is repeated. However, in this case, the query to the state module will

yield a positive result. This is a cache-hit event, as the content is already located

on the node. As such, the result will contain the location of such content on

the underlying storage module. The service can then retrieve this, and use it to

remaining figures of this chapter.

89

serve the content to the user. Importantly, the content does not have to retrieved

from the origin server, reduce the load on the network. The response to this

request will also be completed in a more timely manner, as there is significantly

less latency involved when retrieving a file from a storage module as apposed to

retrieving it across a network.

3.2.2 Control Layer

Core
Configu‐

ration

Interface
(South)

State

Redirec‐
tion

Com‐
pute

Discov‐
ery

Open‐
Cache
Node

Open‐
Cache
Node

Open‐
Cache
Node

...

SDN
Con‐

troller

Com‐
pute
Con‐

troller

Interface
(North)

Applica‐
tion

Com‐
pute
Con‐

troller

Applica‐
tion

Figure 3.3: OpenCache Controller Design

As mentioned previously, the OpenCache design also includes a control layer.

This layer will typically consist of one or more OpenCache controllers, and may

also be accompanied with third-party controllers for software-defined networking

and compute resources. The design of this OpenCache controller is illustrated in

Figure 3.3. This controller is responsible for the behaviour of all of its connected

nodes, with each node having a connection to a single controller. Typically, a

node will stay connected to a controller until terminated or migrated to another

controller.

Much like the node design presented in the previous section, a core module is

at the heart of the controller design. This module ensures that the other modules

are coordinated. As with the node, this coordination is achieved through the

calling of functions located in the other connected modules. The controller will

90

also use the return values to determine if the calls have been successful or to

gather additional information.

The configuration module configures the controller on start-up, much like the

node. However, in the case of the controller, this configuration is rather static,

and will likely remain for the duration of the controllers lifetime. As much of

the application logic is located in the nodes themselves, it is unlikely that the

behaviour of a controller will change.

However, the behaviour of the underlying services can be modified using one of

the interface modules found in the OpenCache controller. It is important to note

that the OpenCache controller has two of these modules. One of these module is

north facing; that is, it allows external applications to interact with OpenCache

controller in order to modify the behaviour of underlying OpenCache nodes. The

south-facing interface module is responsible for direct communication with these

nodes.

Often, many of the calls to the OpenCache controller on the north-bound

interface directly translate to a number of calls on the south-bound interface.

That is, an external application will make a call to the controller, which will then

determine the destination of these calls, and send them directly to the relevant

nodes. Ensuring that the correct nodes and/or services receive the messages is

the responsibility of the OpenCache controller. This accuracy can be achieved be-

cause the controller has an overall awareness of the state of each of the connected

OpenCache nodes.

The aggregation of calls in the north-bound interface module also allows the

design of the interface to remain rather generic, whilst allowing the controller

to handle the complexity of knowing where and how to communicate with the

connected nodes. It also provides a form of aggregation to the application layer,

allowing a single interface through which a number of OpenCache nodes (and the

services running upon them) can be controlled in synchrony. This functionality

should also allow a form of selection, in that both individual or groups of specific

nodes can be addressed in a call. This is a key feature of the design when used

in flexible, service-based approach.

The availability of a single north-bound interface also provides a focal point

of authority when working with an OpenCache deployment, and allows security,

verification and authorisation to be readily enforced. Similarly, the controller-

node architecture proposed in the OpenCache design is also an important way to

91

secure the channel between the two layers. In this case, there is only one possible

way for a third-party to interact with the OpenCache deployment, and this is

through the north-bound interface module: it is prohibited to communicate with

a node directly. This too ensures consistency in the controller state module,

but also ensures that the responses received from the use of the interface are

guaranteed accurate.

OC Node OC Node

OC Con‐

troller

OC Node

OC Con‐

troller

OC Node OC Node OC Node

OC Con‐

troller

OC Con‐

troller

Figure 3.4: OpenCache Controller Hierarchy

The north-bound interface module also presents an interesting design possi-

bility for the OpenCache architecture. Rather than relying on a single control

element to command all of the available OpenCache nodes, this same interface

can also facilitate a form of hierarchical control. This is possible because of simi-

larities in the operation of the north-bound and south-bound interface modules,

which utilise a very similar command structure. As such, the overarching con-

troller should have no knowledge as to whether it is communicating directly with

a set of nodes or through another controller, illustrated in Figure 3.4. This should

help to alleviate scalability and reliability concerns present if a single-controller

approach was adopted in a deployment. This design feature also furthers the

aggregation facility offered in the interface module, by allowing a controller to be

co-located with a group of nodes. This is particularly appropriate in a virtualised

scenario, where a group of nodes may be commanded to work as if they were

a single node; useful in situations where load needs to be distributed between

instances.

In addition to these state modifying calls, the OpenCache architecture also

incorporates some internal mechanisms, not exposed through the north-bound

interface module. These are used to monitor the availability and state of both the

92

OpenCache nodes and the services running upon them. This should be achieved

through a heartbeat mechanism, which is a periodic communication between each

of the entities. Piggybacked onto these messages are fresh sets of statistics and

metrics, ensuring that the state module within the controller can be updated

with the most recent version of information. These statistics include items such

as the amount of objects stored, the size of those objects, and how many cache-

hits and cache-misses have been observed. The controller keeps a local copy of

this information to ensure calls to the north-bound interface module are served

quickly, without having to specifically retrieve metrics from each node. This also

reduces messaging overhead, although it can be overridden if necessary.

Importantly, the OpenCache controller also communicates with other control-

layer elements, including the SDN controller and compute controllers. For in-

stance, when communicating with an SDN controller, the redirection module

allows OpenCache to modify the behaviour of the network’s forwarding layer. In

the scope of the OpenCache design, this is used as the primary means to redirect

requests for content towards a specific cache node.

Evidently, when a new service is started on an OpenCache node, a matching

forwarding rule needs to be included in the network. In these cases, ordering

and consistency is paramount; if a forwarding rule is installed prior to the service

becoming ready, forwarded requests will be rejected or timed-out by the service,

resulting in the user being unable to retrieve the content, and thus a degradation

in their overall experience. This situation must be avoided at all costs. As a

result, the OpenCache controller is the sole entity in the OpenCache design that

can introduce these forwarding rules. It will only send a request to modify the

forwarding plane to the SDN controller when it can guarantee that a service is

ready to accept user requests. Through the use of the south-bound interface

module, the controller can update and modify the state module to ensure that it

always has the current view of the state of the OpenCache deployment, ensuring

this consistency between the network and the running services.

The compute interface module enables an OpenCache controller to communi-

cate with a distributed, virtualised hardware resource. In this case, it will likely

be a form of compute hypervisor. With this interface, the OpenCache controller

should be able to create, destroy and modify instances of OpenCache nodes in a

dynamic and flexible fashion. As with much of the functionality in OpenCache,

this will typically be in response to a call made to the north-bound interface

93

module. In this case, example usage includes requests for new OpenCache nodes

in response to flash-crowds, migration of resources to different locations due to

potential cost savings, or suspension of resources due inactivity amongst the user

base. In each of these cases, the OpenCache controller will communicate with

the computer controller to ensure that this occurs. These changes should then

be reflected in the underlying resource provision, using whatever mechanisms the

compute controller supports.

As with the OpenCache node, the controller also features a discovery module.

This facilitates the connection of new OpenCache nodes, and ensure that they

are then migrated across to the south-bound interface module once a satisfactory

state has been reached. This feature is particularly important in an environment

where the compute interface module is used. In these scenarios, a number of

nodes may be dynamically brought online to in response to some criteria being

met (as illustrated in Figure 3.1). The discovery module can be used to ensure

that the nodes connect quickly and efficiently, allowing the resources to be used as

soon as possible. This mechanism also enables the nodes to start with minimum

configuration, allowing the controller to determine how they should operate once

available.

3.2.3 Redirection Layer

As mentioned in the previous section, OpenCache will typically modify the under-

lying network by communicating with an SDN controller. This communication

will indicate, through whatever means necessary, the desire of the OpenCache

controller to modify the forwarding plane. Although this communication occurs

at the control layer, the changes are realised at the redirection layer. This layer

consists of two main parts, the first of which is the network forwarding described

previously.

To achieve the necessary redirection functionality, the forwarding layer is ex-

plicitly modified to ensure that requests for content are redirected towards a

chosen cache. One of the design aims declared in Section 3.1 was that this pro-

cess should be transparent; in other words, the client should not be aware of

the process. The only requirement in this case is that the SDN controller has

responsibility for at least one forwarding element in the path between the client

and the origin server.

94

As OpenCache will operate the redirection in a reactive style, rather than

a catch-all proxy-based approach, modifications will only be made if a request

matches a specific set of criteria. This criteria is defined in the passed Open-

Cache expression: a flexible approach to both coarse and fine-grained content

redirection. The redirection will occur by modifying a flow within the network.

As mentioned in the previous section, the flow will only be modified if there is

a service already started; it is a one-to-one mapping between a modification and

a service in this case. When this occurs, packets will be redirected away from

the origin server and towards the cache, where the request for content will be

handled. Supposing the content is already stored on the cache, this prevents the

content from being delivered over the link(s) between the client and the origin

server.

Core
Configu‐

ration

Interface

User
Re‐

quests

Broker Broker Broker

Open‐
Cache
Node

User
Re‐

quests

User
Re‐

quests

User
Re‐

quests
...

... Broker

Open‐
Cache
Node

Open‐
Cache
Node

Open‐
Cache
Con‐

troller

State

Figure 3.5: OpenCache Proxy Design

The modular design of OpenCache allows other potential redirection tech-

niques to be used, including those outlined in Section 2.3.2.3. In order to support

these, the OpenCache design also proposes the inclusion of a proxy element, il-

lustrated in Figure 3.5. Importantly, this is an optional component, used in a

select few scenarios, and is not required for the fundamental operation of the rest

of the OpenCache architecture.

The OpenCache proxy is not a catch-all proxy, nor equivalent to a proxy cache.

95

Instead, the proxy operates by creating a number of broker instances. Each of

these instances is responsible for receiving user requests, regardless of where they

came from. Whereas an OpenCache node service module expects a specific set of

requests, usually redirected towards the node by modifying the forwarding layer

of a network, the broker module does not make such an assumption. Instead, it

will handle each individual request, regardless of where it came from or is destined

to.

Once a request is received at a broker module, it will lookup the potential

destination for a request using state module. If a positive response is returned,

the module will forward this request towards the correct OpenCache node. In

this case, this will be a node with the appropriate service running, which will then

take over responsibility for handling the request. This method allows requests to

be redirected to a single point in the infrastructure; the proxy then handles the

rest.

The proxy includes a single interface module, which is used for communica-

tion between it and the controlling OpenCache controller. It is not envisaged

that OpenCache proxies will be created and destroyed on demand, and a such, a

discovery module is not required. A proxy will typically start with a set number

of broker instances, configured statically through the configuration module. The

OpenCache controller will then periodically update the proxy to ensure that it

is aware of the available service running on OpenCache nodes, as well as their

location and current state. This ensures that the controller has full command

over the proxy, and as with the redirection module in the controller, ensures that

consistency is maintained and that requests are always handled most appropri-

ately.

In most cases, the OpenCache proxy will not be necessary, as the forwarding

provided by the underlying software defined network should provide the necessary

functionality. However, it is important to consider different technologies and also

the capability of existing software defined networking technologies in potential

paths to migration. As such, the proxy can be used to overcome some of these

challenges, and is considered critical in doing so.

96

Method Input(s) Function
start expression, node, tag Create a new service on a node
stop expression, node, tag Halt a running service on a node
pause expression, node, tag Halt a running service on a node, without removing

the associated content objects
move expression, from, to Move a running service to a different node
fetch expression, node, tag, target Pre-emptively fetch content object for a service
seed expression, node, tag Define equivalent services
stat expression, node, tag Retrieve statistics related to a service or node
register expression, node, tag, alert Subscribe to a particular event occurring
describe node Retrieve the capabilities of a node
tag node, tag Define an arbitrary identifier for a node
create expression Create a new instance of a node
destroy node Destroy a node instance

Table 3.2: OpenCache Methods

3.2.4 Application Layer

The application layer is found at the top of the OpenCache architecture. It is at

this layer where the actual behaviour and operation of the cache deployment is

determined. This is achieved through interaction with the north-bound interface

module found in the OpenCache controller. Through use of this interface a de-

veloper can perform numerous operations on the cache. To achieve the required

programmability, a number of methods are outlined in Table 3.2. This includes

a set of inputs which should be included in the method call, as well as a brief

description of the expected functionality in each case.

This interface allows the developer to define the specific set of nodes that a call

is being addressed towards. This can include a single node, a set of nodes or even

all of the nodes under the control of the OpenCache controller. Similar granularity

is offered on a service-level, with services being capable of being addressed by

the OpenCache expression they were started with. With this functionality, the

developer does not have to be concerned about the location or method by which

these commands are disseminated; this is the responsibility of the controller and

handled using its internal knowledge of the connected OpenCache nodes and the

services running upon them.

To compliment this addressing, OpenCache will also support both the alloca-

tion and usage of an arbitrary description given to an OpenCache node. This can

be used to define a custom subset of nodes. This is particularly useful in cases

where nodes may be physically co-located (such as in a data-centre) or if a set of

97

nodes have a particular resource not common amongst the rest of the deployment

(such as SSD-backed storage).

Core methods include the ability to start and stop individual service mod-

ules on specific OpenCache nodes, as well as temporarily pausing them. It also

includes the ability to move existing services between nodes. These methods

provide fine-grained control over individual services, providing this in full to any

application.

Table 3.2 also outlines some of the advanced functionality of OpenCache.

In Section 3.1, we identified some of the gaps present in current cache design,

namely pre-fetching and de-duplication. As with the other functionality, these

are controlled solely through the interface. In the case of fetch, this allows a

user to define the content that they want to be fetched in advanced. This can

be beneficial when the developers have access to additional information, such as

popularity metrics, or algorithms designed to predict the frequency of requests.

Similarly, the de-duplication functions are defined explicitly using seed. By tak-

ing this approach, a developer can avoid duplication through an understanding of

alternative locations of their own data. This may be derived through collabora-

tion with other content delivery platforms, or some geographical understanding

of how requests are redirected (in the case of DNS usage).

As described in Section 3.1, the OpenCache architecture needs to offer rich

reporting and statistics to application developers. This is realised through a stat

method call, available to applications in this layer. This functionality enables

applications to make decisions and operations given the greatest amount of in-

formation possible, including both application and resource information. Thanks

to the heartbeat mechanism, a developer can ensure that any changes to the

underlying OpenCache deployment are both timely and appropriate; this is, the

information that they receive is current. These features are complimented with

a call-back mechanism, which allows the application to react to changes in the

conditions immediately, without having to constantly poll the interface to retrieve

statistics.

The OpenCache architecture is specifically designed to be self-contained. This

allows the resource allocation (and subsequent deployment of nodes and services)

to be increased and decreased on-demand. In addition to the service-level manip-

ulation described previously, additional methods allow nodes to be created and

destroyed as required. This enables OpenCache to adapt to load on-the-fly, which

98

is achieved not only on an infrastructure and service level, but also in the network

through an SDN-enabled dynamic redirection mechanism. The collaboration and

synchrony of these elements is key to ensuring the availability and consistency of

a service.

The applications that reside in this layer can be structured in any way, and

programmed in any language as desired by the developer. The only requirement

is that they have compatibility with the technology used to create the inter-

face to the controller. As such, the application layer facilitates a wide range of

programming types and styles, and should suit many potential applications of

OpenCache.

3.3 Discussion

The architecture described in the previous section is designed to meet the afore-

mentioned goals and aims. Much of the arrangement of the architecture is based

on similar fundamental designs found in the distributed compute and software

defined networking fields. In particular, the one-to-many relationship between

the OpenCache nodes and the controller is inspired that used in the OpenFlow

technology previously described in Section 2.2.2.1. This provides an air of famil-

iarity to operators, whilst enabling scalability at the service layer. Importantly, it

also allows the control layer to be hierarchical, which is illustrated in Figure 3.4.

The OpenCache architecture requires significant development in the cases

of the OpenCache node, controller and proxy. Importantly though, it utilises

existing technologies, such as the software defined networking and compute vir-

tualisation, to lessen the necessary time spent. OpenCache is also designed to be

universally deployable; that is, it should be able to run on the largest possible

subset of both hardware and operating systems. This is realised by developing

OpenCache in programming language that has significant compatibility, and also

a wide range of support. As mentioned previously, the aim is to make Open-

Cache easy to deploy for user who are unconcerned with the internal details. As

such, OpenCache should be packaged in a way that it can be run out-of-the-box,

without the need for extensive configuration.

99

100

Chapter 4

Implementation

In the previous chapter, we described the components that make up the Open-

Cache architecture. We also discussed the utilisation of existing elements, such as

third-party network and computer controllers, and software-defined networking

forwarding elements. Once these are taken into consideration, there is a num-

ber of elements that must be implemented specifically for use in the OpenCache

architecture.

The core elements (those that are necessary for the operation of OpenCache)

are described in Section 4.1. The implementation of a number of additional tools

are also described in this section. For example, a graphical user interface, imple-

mented specifically to allow users to interact with an OpenCache deployment in

a visual way, is described in Section 4.2. A number of example applications are

also implemented in Section 4.3. These utilise the OpenCache API specified in

Section 4.1.4 to demonstrate the flexibility and control offered by such. Finally in

Section 4.4, we also present the implementation of a tool used in a later chapter

to evaluate certain facets of OpenCache.

4.1 OpenCache Core

The items described in this section are the core components of OpenCache, specif-

ically implemented for the purposes of realising the OpenCache architecture.

These contributions satisfy the requirements established in Sections 3.1 and 3.2

by providing the fundamental capability of a distributed and controllable cache

deployment. In this section, we discuss the implementation details of each.

101

As discussed in the previous design, OpenCache follows a modular implemen-

tation. This aids the community development of additional modules, which can

simply be swapped in to alter the functionality of a given component. Each of

these modules share some commonality in the way they are built.

In order to satisfy the flexible deployment requirements laid out in Sec-

tion 3.1.4, all of these modules are built using the Python programming lan-

guage [1]. In particular, version 2.7 of Python was used. This was chosen because

it is the variant with the greatest amount of both support and libraries. Although

Python has since evolved into the version 3.0 specification, version 2.x variants

still see a significant amount of usage due to their familiarity and the range of

libraries currently available. Python 3 changes the language significantly, and

breaks background compatibility. As a result, the OpenCache core is developed

entirely using version 2.7. However, there is no reason why the implementation

could not be ported to run on this newer runtime in the future; at present there

is no real justification to do so.

4.1.1 Shared Library

All of the modules in the OpenCache core share some basic functionality1. In

order to reduce code duplication, these are provided in a standalone Python

module. This enables this functionality to be compartmentalised and updated

without effecting the implementation of the other modules. Through the use of

Python’s packaging system, installing this library is as simple as including it in

the requirements specification for the relevant component.

This module includes support for logging, which enables an OpenCache com-

ponent to supply in-depth information to the user during running. In this case,

the library utilises the in-built logging module [15]. The configuration provided

by module grants OpenCache with a flexible capability to output logs in differ-

ent formats, including to stdout and to a file. In the case of writing to a log

file, this module supports standard specifications for logging output, including

time-stamping and verbosity. It also enables log rotation, ensuring that log files

never consume excessive resources. This is particularly important if the module

is running on a resource constrained device and the resources would be more ef-

fectively allocated to store the cache content (rather than a large log file). The

1https://github.com/opencache-project/opencache-lib

102

https://github.com/opencache-project/opencache-lib

logging functionality provides important runtime information, which allows the

user to determine if the cache is operating normally. Furthermore, the logging

also enables debug output to be stored, important during both the implementa-

tion and deployment phases, as issues can be discovered and remedied quickly

and effectively. The same logging module also enables simultaneous output; that

is, logging output can be sent to multiple locations simultaneously.

The shared library also includes basic file system functionality used by each

of the OpenCache modules to manage folders used for logging and debug output.

Importantly, these methods are not used for storing the content objects used in

the caching process. Instead, this is handled in the module itself, and will be

discussed later.

Much of the communication desired from the interface described in Sec-

tion 3.2.4 is realised using the JSON-RPC protocol, version 2.0. This was chosen

as the candidate protocol not only for the internal OpenCache communication,

but also for the external application interface. JSON-RPC was deemed as the

most appropriate due to its ease of use, availability of supporting libraries and

human readability (particularly as it is self-describing). The specification rigidly

defines the format of a dictionary in JSON format, and consists a two main object

types: the request and response.

When a request is made, the string must consist of the following members:

jsonrpc, method, params and id. The jsonrpc field contains the version of JSON-

RPC used, in this case 2.0. The method field will contain the name of the method

to be invoked on the called module. params contains the passed variables for this

call. If multiple are to be passed, this can be in the form of a nested dictionary,

a list or one of the other numerous supported data types in JSON. Finally, the

id field is used to uniquely identify the call. The object returned in response to

this request must contain the same value within the id field so that the correct

response can be accurately determined. If the id field is omitted during a request,

the responder assumes that this is a notification, in which case no response is

required.

The response object has a similar implementation, albeit without the inclusion

of the method and params keys. In replacement of these, the result and error

fields are now included. If the method has been a success, a response must contain

the result field with an appropriate value. This may be the result of a calculation,

or indication of a change in state. The error field has its own specification, and

103

within the appropriate value contains the following keys: code, message and data.

The value of code corresponds to one of the codes outlined in the specification,

including JSON parse errors, method not found and invalid parameters. The

message field will contain a short description of the error, whilst the data field

can include additional information, including further nested error objects.

The JSON-RPC specification also includes support for batching. This enables

multiple calls to be sent at once, which is important in cases where the order of

execution is paramount. Batched requests take the format of an ordered list. The

corresponding results are also returned in the same corresponding order, with the

exception that notifications will be omitted due to the fact that they do not

require a response.

Given this specification, the shared library handles basic JSON-RPC func-

tionality for each of the following modules, including handling the request and

response objects, as well as creating error objects where necessary. In all cases,

the library will marshal the given functions into a suitable call object, or inversely,

parse the returned object into a Python object ready for the receiving module

to utilise. JSON-RPC satisfies all the functional requirements for both internal

and external interfaces, as we will demonstrate through evaluation in Section 5.3.

Further details on the actual contents of the various interfaces is discussed in

Section 4.1.4.

Finally, the shared library also provides basic functionality for the OpenCache

expressions. As discussed in Section 3.2.3, these are used to define sets of content

that should be cached within OpenCache. The library offers parsing support

for these expressions, which are based loosely on Python’s regular expression

pattern syntax [37]. Importantly, the library does not dictate the functionality or

behaviour given one of these expressions; only the parsing and compliance with

the format is handled in the shared library.

4.1.2 Node

As discussed in Section 3.2.1, the OpenCache node2 consists of a number of

smaller components. This arrangement is illustrated in Figure 3.2. These com-

ponents are realised as individual python modules, which together compose the

module as a whole. For example, the core module is the main executable for

2https://github.com/opencache-project/opencache-node

104

https://github.com/opencache-project/opencache-node

this component, and contains the necessary code to initialise the other connected

objects. Importantly, in order to retain a modular design, this module handles

all communication between objects, and contains very little functionality within

itself. However, it does provide monitoring capability for the accompanying mod-

ules, particularly the service modules. In this case, it monitors the availability

and uptime of each of these to ensure that any of the statistics fed back to the

controller are true and correct.

Importantly, the controller needs to be alerted to a change in the availability

of these services to ensure that the redirections in place are appropriate. For

example, if a service ceases to serve content for whatever reason, the redirects

need to be removed immediately as not to effect the users request and prevent

service being disrupted. The core module is also manages a central logging facility,

used by both itself and the other modules that together constitute the OpenCache

node. As mentioned previously, the core module also has responsibility to ensure

that the other components contain the required methods before they are allowed

to run. This ensures consistency whilst providing the flexibility for alternative

implementations to be used.

The state module is responsible for storing information on the running service

instances, including the various statistics outlined previously in the design. It is

also used to store the location (upon the relevant file system) and details of

the individual content objects stored by each of the services. Such storage and

retrieval of information is well-suited to use of database, especially as persistent

storage and search functionality is required. Given this, the implementation

of the state module is rather a thin layer of compatibility for the underlying

database. This is intentionally implemented as such to allow different database

technologies and style to be used. For the purposes of this implementation, we

use a MongoDB [18] database.

MongoDB is a NoSQL database: it an unstructured data store, whereby data

is retrieved given a specific key. This is particularly appropriate in the case

of object storage within OpenCache, as a request URL can be used to lookup

the location of the object. Similarly, in case where de-duplication is applied

to objects, multiple keys can point to the same location reference. One of the

advantages offered by NoSQL is that horizontal scaling (the inclusion of additional

databases) is much easier to achieve. If a cluster of OpenCache nodes were to

share a single underlying database, scaling would be an important consideration.

105

This is especially the case when retrieval times are crucial to responding to a

users request in a timely fashion.

The implementation of the configuration element is again realised through a

Python module. OpenCache supports numerous methods of configuration, each

of which is provided through a different implementation of this module. The most

basic configuration is static in nature; a file is parsed from the local file system.

In this case, the conf format is used, similar to that utilised in the Microsoft

Windows INI specification. This is a simple way of describing configuration, and

is supported natively in Python as a standard library [5]. Files contain numerous

sections, each defined by a section header. Within each section is a number of

key/value pairs, separated using a pre-defined delimiter.

A typical OpenCache node configuration will contain configuration specific to

each of the loaded modules, as well as details of the capabilities and resources

of the environment of which the OpenCache node is running. It will also define

the various ports that the node will operate using as well as information required

for initialisation, such as thresholds for storage limits and alerts. However, these

will likely be modified by the OpenCache controller once the node is running. As

discussed in Section 3.2.1, a node should also support a bare minimum configura-

tion, with the remainder of the details supplied by the controller once connected.

In this case, additional information will be passed through the OpenCache API

(discussed later in Section 4.1.4).

The modular design of OpenCache also enables emerging technologies to be

used to realise the same bootstrapping process, including utilities such as etcd [41].

The advantage with this, and other similar technologies, is that zero-configuration

is required beforehand. Instead, a randomly generated token is used to bootstrap

devices, who then form a cluster to enable configuration to be shared amongst

peers.

Other elements crucial to the flexibility of the OpenCache node are the in-

terface and discovery modules. The implementation of the interface module is

relatively simple, in that it is a JSON-RPC module which listens for commands

on a given port. As discussed in Section 4.1.1, much of the JSON handling func-

tionality is realised in the shared module. Instead, the implementation starts

the server to receive requests, also checks the validity of calls and their passed

parameters. Once a request is deemed valid, it will be passed to the core module,

which will then perform the required actions using the companion modules.

106

As discussed in the design, OpenCache also features a heartbeat mechanism

so that the controller can accurately determine the availability and connectivity

of attached nodes. This functionality remains entirely within the implementation

of this interface module. To this end, the module will send out messages to the

controller at pre-defined intervals. Piggybacked onto these messages is the latest

version of statistics. The interface module will therefore periodically request

the most recent version of these from the core module (who will subsequently

retrieve these from the state module). The interface module will then martial

these statistics into a JSON-RPC call, ready to send to the controller.

The discovery module is used in cases where the node is not configured to

connect to an OpenCache controller. If this is the case, the discovery module will

send out a specially formed packet into the network at regular intervals. This can

only be utilised when an OpenCache controller is connected to a software-defined

network. If this is true, the controller should have pre-emptively inserted a set

of flow modifications in the underlying forwarding plane. These will ensure that

the discovery packets sent by a node are forwarded immediately to the controller,

which can then use this to determine a new node has come online. Once the

controller has begun to receive some of these discovery packets, the controller will

make contact with the node using the aforementioned interface module. Once

this is successful, the discovery module has achieved its primary function and will

cease to transmit packets.

4.1.2.1 Services

Arguably the most import element of the OpenCache node is the service module.

Instances of this module are responsible for retrieving and delivering the content

given a client request. Instances of this module will be spawned by the core in

response to requests made through the interface. When this occurs, the request

will be accompanied by an expression. As outlined in the design, this expression

defines the set of content that a single service will serve, as defined by the given

pattern. This will typically be unique to a node, as no two services should be

storing and serving the same set of content. However, it would be normal for an

OpenCache node to have tens or even hundreds of services running at one time,

depending on the underlying resource allocation.

When a service starts, it will request a port number from the core module.

107

It will then start handling request on this port, and will continue to do so until

instructed otherwise. This port number is allocated from a pool of configured

ports, and will be relinquished back into the port when the service is stopped.

When a port is allocated, the node must also inform the controller of this number;

it must be correlated against the relevant modifications made in the forwarding

plane so that requests can be redirected to the correct port (and thus service).

In the case of this implementation, a HTTP-centric module is provided, al-

though there is obviously scope for modules supporting other delivery technologies

to be developed. When a new instance of the service module is created, a modi-

fied HTTP server is brought online. This server used the BaseHTTPServer [39]

library already present in Python. However, some important modification are

made, including overwriting the logic when handling a HTTP GET request.

When a GET request is received, a HTTP servers would typically either serve

a file from disk or generate a page dynamically. As much of the content ob-

jects found on the Internet are static in nature, the latter does not concern the

implementation of this service module.

In replacement of this behaviour, the module will consult the state module (via

the core module), to determine if content is already stored on the cache for this

particular request. This is achieved by preforming a lookup given the request

URL. If a match is found (a cache-hit), a storage location will be returned to

the requesting service. In this case, the service module will retrieve the object,

and deliver it as normal to the client. This includes segmenting the object for

delivery over smaller packets (if necessary). However, if the lookup does not yield

a result, the content must be retrieved from the origin server (a cache-miss). In

OpenCache, this is implemented within the service module itself, mainly due to

the potential performance and latency impact handing this over to a different

process may incur. As OpenCache retrieves this object, it will simultaneously

deliver this to the client. Importantly, this is a parallel process; the node can

deliver the content as itself is fetching it. This prevents the client from having to

wait while the whole object is fetched.

Once this process is complete, the service will then store this content using

one of the attached storage modules. Once this has been successfully archived,

the service module will alert the core module that a new object has been stored

along with the location of said object. This will then be stored in the state

module in preparation for future requests. This compartmentalisation between

108

the fundamental cache functionality and the underlying storage enables differ-

ent technologies to be used in delivering content, whilst still utilising the same

underlying storage mechanisms.

The BaseHTTPServer used as the foundation for this module is also modi-

fied to enable multi-threading. This enables a service module to handle multiple

simultaneous user requests without blocking. This is implemented by spawning a

new thread on receipt of each client request. The service module is also responsi-

ble for maintaining a local copy of statistics, providing these to the core module

when requested (typically when the node needs to send a heartbeat message to

the controller). Storing these local to the module also enables the module to

alert the core component if a particular threshold is reached for any one of the

supported metrics. This facilitates the alerting process defined later in the API

description.

4.1.2.2 Storage

The final module implemented in the OpenCache node is the storage module.

This module is responsible for storing the content object, using whatever means

necessary. For this implementation of OpenCache, a simple file system based

approach is used. This will store an object directly to an attached storage device,

such as a hard-disk or solid-state drive. In order to achieve this, the implementa-

tion uses Pythons in-built file handling functions to store files in a pre-configured

directory in the case of cache-misses. Similarly, the same base functions are used

to open and read files in the case of cache-hits.

As illustrated in Figure 3.2, any of the instantiated service modules can have

its own attached storage module. This enables the storage used to be tailored

to the given application. For example, if there is a mixture of storage devices

and technologies available on the underlying hardware (such as mechanical disks,

solid state drives or even large amounts of random access memory), the service

can be configured to utilise the most appropriate technology. This decision may

be based upon the likely popularity, the latency requirements or given specific

cost constraints. The type of storage used when the service is started is defined

in the relevant API call, discussed in Section 4.1.4.

Furthering this capability, the modular design of OpenCache facilitates com-

patibility with distributed file stores, such as GlusterFS [13] or Ceph [4]. When

109

used in combination with a shared database, multiple OpenCache nodes can

share the same file system (and thus stored objects), regardless of whether or

not they are located on the same physical or virtual machine. The distribution

and retrieval of objects is largely handled by the third-party software; the state

component would be a simple compatibility layer.

4.1.3 Controller

The OpenCache controller3 follows a very similar design to the node, with many of

the functions fulfilling a similar purpose. For example, the implementation of the

core module includes the required logging functionality, and is also responsible

for calling various methods in the companion modules. This is an important

operation from the controller, as the main method that a user will interact with an

OpenCache deployment is through the controller. The core module also contains

the logic to interpret the contents of the OpenCache expressions. As mentioned

previously, these will be parsed and checked for validity using a shared library.

However, once this is complete, the controller is then responsible for directing

these messages and disseminating them to the required OpenCache nodes.

This capability is possible with the implementation of the state module. One

of the functions of this module is to maintain the state and location of the con-

nected OpenCache nodes, including the services running on them and their ca-

pabilities. This allows the controller to send messages to the correct location,

as well as facilitating the selection capability engrained in the expressions. For

example, if a call is destined towards all of the connected OpenCache nodes,

then the controller needs to be aware of all of these. Similarly, if the expression

is directed towards nodes with a particular attribute, such as contained within

a cluster of OpenCache nodes or with access to a given specialist resource, the

state module enables the command to be accurately sent, without the need to

first check each of the nodes.

The state module also includes up to date metrics derived from each of the

connected nodes. As noted in the design section, this is implemented to intention-

ally accelerate the response to requests for statistics made on the north-bound

interface module, which is discussed later. As with the state module found in the

OpenCache node, this module facilitates the storage of this information using a

3https://github.com/opencache-project/opencache-controller

110

https://github.com/opencache-project/opencache-controller

connected database; the module itself only acts as a compatibility layer to ensure

that different databases and the location of such, can be used to best effect given

the scenario that OpenCache is deployed in.

Rather than the approach to configuration found in the OpenCache node, the

implementation does not require the same level of flexibility in the controller.

As a result, the configuration module in the controller only supports loading a

configuration file from a locally attached disk. This is because the behaviour

of the controller is not likely to change during operation. The format of this

configuration file is much the same as the basic outline discussed in the previous

section, following the conf format also described. The content of this configu-

ration file will likely contain much the same information, such as the ports on

which it will operate. However, the configuration will differ in that it will also

contain information as to the location of the various additional controllers it will

communicate with. It will also define the hard time-out used to determine when

a node has moved from a connected to a disconnected state.

The controller contains a number of interface modules; one facing towards

the user, and another used for communication with the connected nodes. The

north-bound interface, used by developers and users to interact with the Open-

Cache deployment, offers a number of possibilities for controlling and modifying

connected OpenCache nodes. As with the sole interface module found in the

nodes, calls made to this interface are parsed and checked for correctness using

the shared library described in Section 4.1.1. Once this has been deemed valid,

a call is made from the interface module to the core module. The core will then

perform the required functions in order to execute this command, including con-

sulting the state module to retrieve statistics, creating a message sent to a specific

set of connected nodes, modifying the forwarding plane via the software-defined

networking controller or creating a new instance of a node using the compute

controller.

Once the core module has determined the correct set of nodes to which com-

mands will be sent to, they will be delivered using the south-bound interface

module. This module again uses the shared library for parsing and validating

JSON-RPC calls, as well as forming them. Importantly, this module will also

receive as well as transmit; heartbeat requests will be sent from each of the con-

nected nodes and received on this interface. This allows the controller to maintain

the most up-to-date list of available nodes and thus resources.

111

The discovery module preforms an important function by receiving the mes-

sages broadcast from new nodes. If this behaviour is enabled, the will request

that a modifications are made the forwarding plane to enable broadcast messages

to be received at this interface. Once this is complete, the discovery module will

listen on a given port, ready to receive messages from these new nodes. Once

a message is received, this module will then alert the core module that a new

node has been discovered. The core module will then move further communica-

tion over to the south-bound interface module, which will attempt to contact the

node. There is an important difference in behaviour in this case, as this module

is omitted, then the controller will rely on the node making initial contact with

the controller. However, if a node is discovered instead, the controller will initiate

this communication.

The other two modules that are part of the controller implementation are the

redirection and compute modules. These are interfaces used to communicate with

third-party controllers used to modify network and computer resources, respec-

tively. In both of these cases, there is no standardised way to communicate with

them. As such, the modular design of OpenCache enables developers to create

modules suitable to whichever controllers, and subsequently use the interfaces

that they offer. Although there are initiatives to move towards standardised in-

terfaces, especially in the software-defined networking field [49], as of yet none

has come to the fore nor seen implementation. Concepts such as network intents

show promise, in that OpenCache would simply notify the controller the function-

ality that is desired from the network (the redirection and discovery mechanisms),

without specifically defining the actions that need to take place. In this imple-

mentation of OpenCache, this is exactly what we have to do in both cases.

4.1.3.1 Redirection

As mentioned in the design section, the modularity of OpenCache is designed

to enable different redirection techniques to be used. To demonstrate this, the

implementation includes two modules for use with different software-defined net-

working controllers. Due to the lack of availability of alternative technologies,

these controllers are designed to work with the OpenFlow technology discussed

in Section 2.2.2.1. For v1.0 compatibility, the Floodlight [11] controller was used

whereas for v1.3 compatibility, the Ryu [38] controller was used instead. This

112

change was necessary due to lack of support for the updated protocol in Flood-

light.

3.

Playback
Client

OpenCache
Node

Origin Server

request

OpenFlow
Switch

rewriteHeader

forward

forward

request

rewriteHeader

1.

2.

Figure 4.1: Request Redirection Process

When an application instructs the OpenCache controller to start a new service

on a node, the controller will send a command to the node to do just that. Match-

ing that, a modification is made to the underlying network. More specifically, a

number of OpenFlow rules are added to the network. In the case of Floodlight,

this is achieved using the Static Flow Pusher API [40]. This API allows flows

to be installed directly into the network, and is essentially a thin compatibility

layer offering direct access to many of the functions offered by OpenFlow itself.

More specifically, OpenCache will install three OpenFlow rules for every service

that is started. These rules are demonstrated in Figure 4.1, which shows how a

client request is handled when a redirect is in affect.

Rule 1 redirects requests towards the cache by changing the destination IP

address and port to that of the node and service, respectively. This is achieved

by rewriting the packet header using the OpenFlow action command. It is then

forwarded throughout the rest of the network as normal.

Rule 3 does the opposite when a response traverses the switch: it changes the

port and IP address back to that of the origin server. Again, this uses OpenFlow’s

header rewriting functionality to modify the packet accordingly.

113

Rule 2 is used to allow the service to request content from the origin server.

Depending on the location of the user, node and forwarding element on which the

rule is placed, this may or may not be an issue. However, in the case where they

are located nearby, and the node’s request has to traverse the same forwarding

device, rule 2 is necessary to ensure that the node’s outgoing request does not

match on rule 1 (which will incorrectly forward the request back to the node).

To combat this, rule 2 provides an explicit match with a higher priority than the

other rules. When a packet matches this, it will be forwarded normally, ensuring

that the node can retrieve content as intended.

Together, these rules provide the base redirection facility required by Open-

Cache. This is achieved transparently; the client has no knowledge that a cached

item has been delivered to them, as the process has been completed at a network

layer.

A similar process is also applied when using the Ryu controller to ensure

v1.3 OpenFlow capability. In this case, no external API was available to use, so a

simple module was implemented in Ryu that provided the necessary functionality,

achieving the same as provided by Floodlight.

4.1.3.2 Virtualised Compute

The OpenCache controller will also communicate with a compute controller via

the compute module. This will be used to create and destroy OpenCache nodes in

a virtualised environment. Again, this will use a third-party controller to do so.

In the case of this implementation, experimental functionality was built around

OpenStack; an open-source cloud platform. This contains a number of APIs

for interacting with various elements that make up an OpenStack deployment.

OpenCache uses these to complete a number of functions, the first of which is to

install a templates image in OpenStack. This is a pre-built operating system that

is based upon the CoreOS [6]. This is an operating systems created specifically

for hosting containers.

Containers provide a way to logically separate items of function into smaller

manageable instances. Multiple containers will then reside on the same CoreOS

instance, which also feature some orchestration features. The features are used to

bring up a number of containers when an instance is created. To do this, we used

the popular Docker [8] format. This allows containers to be defined by a simple

114

text configuration file (a dockerfile), which states the process of how a container

should be built, including the software that needs to be installed, the order of

such, where configuration should be fetched from also any companion container

dependencies.

In the case of an OpenCache node, an instance will contain a number of Docker

containers, one of which contains the running OpenCache node. Other containers

will contain an instance of MongoDB, the NoSQL database to support the state

module. It may optionally contain docker containers to support other services,

such as alternative storage methods supported by new storage implementations.

Importantly, this method also gives fine-grained control over the services running

on the operating system; for example, multiple OpenCache nodes could be run

in the same instance.

Other features of the OpenStack API includes the ability to define the internal

network of instances, so they can be connected together in a particular arrange-

ment. In the initial implementation, these instance are simply connected to an

external network, providing them connectivity with the outside world. OpenStack

is also developing support for software switches for this internal networking, us-

ing tools such as OVS [22] which also support OpenFlow. This provides some

potential for further granularity on the forwarding plane in the scope of the redi-

rection used in OpenCache, although this is not explored in this thesis due to the

immaturity of the implementation at present.

4.1.4 API

The OpenCache application program interface (API) is one of the most important

elements of the OpenCache design. It not only provides the internal mechanisms

for control, monitoring and reporting, but also enables the flexible configuration

and instruction of a cache deployment by an application or user. As discussed in

the design section, both the OpenCache controller and node have interface mod-

ules, which are responsible for both receiving and sending JSON-RPC messages.

In the case of the controller, multiple modules are used to provide communi-

cation in two distinct directions. The basic format of these messages was outlined

at the beginning of this chapter; this section highlights the specific method and

params that are compatible and valid in the context of the OpenCache API. The

OpenCache API is split into an external and an internal API. Although these

115

are described individually, they are nonetheless similar. It is this commonality

that enables the hierarchical control of OpenCache that is proposed in the design

chapter.

Following the JSON-RPC specification, a call made to the OpenCache API

will contain a method field and a set of params. The method field is a string

containing the name of the function to be called, whilst params is the values

passed to that call. The content of the params follows the JSON object format,

defined through encapsulation braces. Within this object, a number of pairs

will be passed. These key/value pairs are indicated through the use of a colon

separator. For the majority of calls, these will be selection criteria; a method

for the caller to define explicitly the nodes and services on which they want

an operation to be run. For example, passing a single value in the expr field

associates your call with the given expression (analogous to a single instantiated

service), potentially running on a variety of OpenCache nodes.

Declaring a set of node-id values can also be used to indicate that an operation

should be preformed on a number of nodes simultaneously. In this case, multiple

IDs can be given through the use of a JSON array; a comma separated list defined

within a set of brackets. This nomenclature is used in both the description of the

external API in Table 4.1.4.1 and the internal API in Table 4.2.

In addition to the standard JSON notation, the use of parentheses in these

tables denotes an optional value. These are almost always exclusively used in

cases of selection, and the omission of such indicates that the field should be

wild-carded. In some cases, at least one of these fields should be provided (if the

params contains multiple option fields); this is defined in the detailed description

of the methods below. When wild-carding functionality is used, any value is

acceptable in this field, providing flexibility to the programmer to address a vast

array of potential nodes without specifically defining them.

Finally, chevrons are also used throughout the two tables to indicate the

location of values that will be substituted in during actual calls; these are simply

place-holders for the sake of readability, although they hint towards the type

or format of the variable. Tables 4.1 and 4.2 also outline the expected return

values once a call is made. This value will be part of the JSON-RPC response

object, and will include this value in the response field. If a function fails, the

response will contain an error message, also in the JSON-RPC format, indicating

the relevant error code along with a description of the issue.

116

Method Params Result Direction
start { "expr" : [<expr>], ("node-id" : [<node>]), ("tag" : [<tag>]), <boolean> A → C

("storage" : <storage>) }
stop { ("expr" : [<expr>]), ("node-id" : [<node>]), ("tag" : [<tag>]) } <boolean> A → C
pause { ("expr" : [<expr>]), ("node-id" : [<node>]), ("tag" : [<tag>]) } <boolean> A → C
move { "expr" : <expr>, "from" : <node>, "to" : <node>, } <boolean> A → C

("storage" : <storage>) }
fetch {("expr" : [<expr>]), ("node-id" : [<node>]), "target" : [<url>], <boolean> A → C

("tag" : [<tag>]) }
seed { "expr" : [<expr>], ("node-id" : [<node>]), ("tag" : [<tag>]) } <boolean> A → C
refresh { ("expr" : [<expr>]), ("node-id" : [<node>]), ("tag" : [<tag>]) } <boolean> A → C
stat { ("expr" : [<expr>]), ("node-id" : [<node>]), ("tag" : [<tag>]) } { "cache-hit" : <cache-hit>, A → C

"cache-miss" : <cache-miss>... }
register { ("expr" : [<expr>]), ("node-id" : [<node>]), ("tag" : [<tag>]), <boolean> A → C

"metric" : <metric>, "threshold" : <threshold>, "ip" : <ip>,

"port" : <port> }
alert { "expr" : <expr>, "node-id" : <node>, <boolean> C → A

"metric" : <metric>, "value" : <threshold> }
describe { ("node-id" : <node>)} { "storage" : [{ "type": <type>, A → C

"capacity": <capacity> }] ... }
tag { "node-id" : [<node>], "tag" : [<tag>] } <boolean> A → C
create { "expr" : [<expr>] } { "node-id" : <node> } A → C
destroy { "node-id" : <node> } <boolean> A → C

Table 4.1: External API Specification

4.1.4.1 External

The external API is implemented in the north-bound interface module within the

OpenCache controller. It is through this interface that users and applications will

interact with OpenCache. In the following section, we describe in more detail the

methods and parameters identified in Table 4.1.

The start method is used to instantiate a service module on a particular node

or set of nodes. This service will handle requests matching the expression (expr)

given during its creation. Under normal circumstances, a new service will start

with no content stored in the cache; each initial request would likely produce a

cache-miss. When using a software-defined networking controller to provide the

required redirection, there should be no need to check if a request is valid for

a given expression. This is because the matching is done at a lower layer (the

network) and will only be forwarded if a request successfully matches. From the

perspective of the OpenCache controller, once a start command is issued, the

internal API will be used to start the service on the required set nodes. The

expr parameter is not optional in this method, as it is required to start a service.

However, this is not the case in the accompanying service control methods, where

it can be either included and omitted.

Importantly for OpenCache, during the execution of the start operation, the

controller will also communicate with the network control element to ensure that

the forwarding layer is modified appropriately. This will ensure synchrony be-

tween the redirection of requests and the availability of running services ready to

117

handle them. This function also contains an optional storage parameter. This

allows the application to determine the underlying storage module used for this

service. The availability and choice of storage will be determined with the de-

scribe command, outlined later. If this parameter is omitted, then the default

storage module will be used. This method will return a boolean value (true or

false) depending on the success of the operation. If the method has failed, the

JSON-RPC error object will be included with details of the failure. As part of

the external API, this method will always be called in the direction of application

to controller.

The stop method achieves the opposite effect to the start method: it will

stop the services (selected through their respective expressions) on the nodes

specified. In this case, the service is stopped and will no longer respond to user

requests. Clearly, the redirects need to be removed to match this change in state,

as otherwise requests may go unanswered. The content that was once associated

with the stopped service is removed and permanently deleted. If the service was

to be started again at a later date, it would do so afresh without any content

stored. Similarly, the compute, thread and network resources that were once

associated with this services will be relinquished for use by other services. As

with start, the controller will use the internal API to enact the changes on the

specified nodes and services. The stop method also has a similar response format

to start, and follows the same call direction.

The pause method is very similar to the stop method. However, the main

difference between the two methods is that in the case of pause, the content

objects used to serve user requests still remain on the underlying storage, ready

to be served once more. When a service is paused, the compute, thread and

network resources will be freed, but the storage usage remains. In this case,

the OpenCache controller will also remove the request forwarding rules from the

network, as the service will not respond to requests whilst paused. A service

can be brought out of a paused state by issuing a start command with matching

parameters. When the service restarts, it will have access to all of the previous

fetched content, reducing the likelihood of cache-miss events that may occur

when a new service is started. The pause method shares the same response and

direction as both start and stop methods.

The move method is a composite function with an interesting mix of func-

tionality; it combines specific usage of start and stop commands as well as a

118

unique modification of the redirection rules used in the forwarding plane. It is

used primarily to migrate services between nodes. It achieves this by starting a

new service on the destination node (the to field), modifying the redirection to

now send requests towards this new service, and then removing the old service

which is no longer required (the from field). In this case, the move command is

intentionally explicit; only one service is moved at a time. This is because the or-

der and speed of the required operations is important to ensure that a consistent

service is provided when handling user requests. For instance, the redirection

should not be modified until the service is running, ready to handle requests.

This method enables the user or application to interact with the service offered

without requiring knowledge of the specifics of doing so.

The move command also optionally defines a type of storage to be used when

the service is migrated; if this is not given, the default storage method on the

destination node will be used. The response from a call utilising this method will

only be returned once the whole process has been completed. This ensures that

additional actions are not taken without knowledge that the method has been

successfully completed (or otherwise). As with the previous methods, this is in-

dicated with a boolean value. Naturally, this request is made from the application

towards the controller.

The fetch method is another interesting piece of behaviour possible through

the API. It allows a service to pro-actively fetch content and store it in the

cache, ready to be served in response to a client request. Importantly, this is

done without it ever being requested by a client. This prevents a cache-miss and

ensures that even the initial request results in a cache-hit.

This functionality can be used in situations where advanced knowledge is

used to identify objects that are requested frequently. By placing the object in

the cache beforehand, a node can serve the content immediately without having

to request the content from the origin server. This is particularly important for

large objects that will take a considerable amount of time to fetch, thus reducing

the potential latency observed by a client. This method will also produce a

response indicating the success of the operation. However, it will not wait until

the content has been downloaded before determining the result, as this could a

significant delay in the case of large objects. As before, this is a call made from

the application to the controller.

The seed method is used primarily in cases where identical content is located at

119

multiple locations. By defining a list of equivalent expressions in the method call

parameters, requests for content matching any of the expressions will result in the

same content being served. The seed function can significantly reduce instances

of duplication in the cache object store, thus maximising the storage efficiency.

This method too is called from an application to the OpenCache controller, with

a suitable response provided once the information has been disseminated to the

nodes and services defined in the method parameters.

Statistical reporting is a core part of OpenCache. Two calls are concerned

with this: stat and refresh. In most cases, stat will be used to retrieve statistics

of the nodes and services defined in the selection criteria. Due to the fine-grained

nature of this, statistics can be retrieved in a number of different scopes, ranging

from the entire deployment to an individual service. Such a method will be

answered using the most recent copy of statistics stored in the state module of

the controller. This can include such information as the amount of cache-hits

and misses, the size and count of the object in the cache, as well as the usage

of disk resources and uptime of the node and/or service. Calls made using the

stat function will be sent from the application towards the controller, with the

response invariably containing the full set of statistics for the selected set of nodes

and services.

To accompany this functionality, a helper method is used in the form of re-

fresh. This simply requests that the selected nodes respond with the latest set

of statistics, which will instantly update the local copy stored in the controller.

This bypasses the piggybacking of statistics in the heartbeat messages, and forces

the node to send a response. This is useful if the resolution and period of the

heartbeat message is set to a large time-interval, and for whatever reason, the

application requires the most recent statistics possible. Evidently, this call will

originate at the application and be sent towards the controller. The response

will be a boolean value, indicating that the message has been sent to the chosen

OpenCache nodes.

In some cases, a poll mechanism is not sufficient nor efficient for the applica-

tion. As a result, the OpenCache API contains an alert subsystem. An applica-

tion can subscribe to events using the register command, indicating the metric

and threshold for which they want to be alerted to. As with the majority of the

other OpenCache commands, they can select the nodes and services from which

these alerts should be received from. When one of these thresholds is exceeded,

120

the service will alert the controller, which in turn will send an alert message to

the application. This will only occur if the application has registered for an alert

previously, and will be sent to the IP address and port number as given in the

register command.

Applications may wish to discover the underlying composition and capabili-

ties of a given OpenCache deployment. This can be achieved using the describe

command. This will return the configured resources of a given OpenCache node,

including the availability of storage, the type of this storage, connectivity, hyper-

visor etc. In the present implementation, this information is manually described

in the configuration of a node, and will not change during the lifetime of the node.

Evidently, it would be more appropriate if the node discovered its own capabili-

ties, and monitored them for changes. This command will also relay information

about the possible storage modules that a node has access to, and that can be

given in the start and move commands.

An application may also want to refer to a particular subset of nodes and/or

services without referring to them each individually. To do this, the tag command

can be used to annotate individual nodes and services with arbitrary labels. These

labels can then be used in the aforementioned methods as part of the selection

criteria. These tags are stored and maintained on the controller; the individual

nodes and services have no knowledge of what values they have been tagged with.

Potential applications include clustering nodes together based upon location or

specific hardware resource. The information used to annotate a node may be

derived from external information not accessible to OpenCache itself.

The create function can only be used when an OpenCache controller has con-

nectivity to a compute controller. This method will instantiate a single virtual

machine, running as an OpenCache node, and start each of the services optionally

defined in the method parameters. Similarly, the destroy method will remove

this virtual machine instance, and all of the services running upon it. Evidently,

destroy can only be called on nodes that are instantiated through the Open-

Cache controller and API. Note that the create module does not take a storage

value as a parameter; this is because it is not currently possible in the API for

the application to discover the potential capabilities of a new node when using a

compute controller. As a result, services started this way will use the default stor-

age module loaded when OpenCache starts (in most cases, using the underlying

filesystem).

121

Method Params Result Direction
start { "expr" : [<expr>] } <port> C → N
stop { ("expr" : [<expr>]) } <boolean> C → N
pause { ("expr" : [<expr>]) } <boolean> C → N
fetch { "url" : [<url>] } <boolean> C → N
seed { "expr" : [<expr>] } <boolean> C → N
refresh { ("expr" : [<expr>]) } { "cache-hit" : <cache-hit>, C → N

"cache-miss" : <cache-miss>... }
register { ("expr" : [<expr>]), "metric" : <metric>, <boolean> C → N

"threshold" : <threshold> }
alert { "expr" : [<expr>], "node-id" : <node>, <boolean> N → C

"metric" : <metric>, "value" : <threshold> }
describe { "node-id" : [<node>] } { "storage" : [{ "type": <type>, A → C

"capacity": <capacity> }] ... }
broadcast { "host" : <host>, "port" : <port> } <boolean> N → C
hello { "host" : <host>, "port" : <port>, <boolean> C → N

"node-id" : <node> }
hello { "host" : <host>, "port" : <port> } "node-id" : <node> N → C
goodbye { "node-id" : <node-id> } <boolean> N → C
keep-alive { "expr" : [<expr>], "node-id" : <node>, <boolean> N → C

"stat" : { "cache-miss": <cache-miss>... } }

Table 4.2: Internal API Specification

4.1.4.2 Internal

To compliment the external API offered to applications, an internal API is used

for controller to node communications. Many of the methods contained within

the internal API, outlined in Table 4.2, are shared between the external interface.

This is because in most cases, when a call is made by an application towards

an OpenCache controller, the controller will simply disseminate this method to

required nodes using the internal API; the nodes does not need to know the other

nodes to which the command has been sent. This is due to centralised design of

OpenCache, whereby nodes communicate solely with the controller doing their

entire lifecycle.

The controller is therefore responsible for maintaining the location and avail-

ability of the nodes, as well as maintaining any arbitrary labels applied to them.

This enables the controller to send the calls to the correct nodes given the se-

lection criteria present in the method parameters. As a result of this, the calls

made from the controller to the node are more specific; the node will only receive

commands destined for itself. The methods that are completely omitted from the

internal API are those that either rely on communication with an external con-

troller (and are thus the OpenCache controllers responsibility) or depend upon

state stored in the controller (such as the tagging functionality). However, the

internal API calls do contain selection criteria for sending specific messages to

individual services running on the node. In this case, they are addressed using

122

the expr that they were started with. If this field is optional and omitted in a

call, all running services will have the method applied to them.

In the previous section, we described the effect that each of these methods

will have when executed. For example, the start method will start a set of

service instances on the node, matching the expressions given. Similarly, the

controller can also pause and completely stop these services using the pause and

stop commands, respectively. Importantly, the returns from the commands will

indicate the success of starting such a service. If an error occurs, the controller will

understand that an operation has failed on that node. This information can then

be relayed back to the application, which will receive an error response indicating

which nodes are failed along with some debug information on the matter. In the

case of start, the node will relay back the port number that the service has been

started on. This allows the controller to add the relevant rules to forwarding

layer to offer the required redirection. As these port numbers are taken from

(and subsequently replaced back into) a pool, the port chosen can differ between

nodes, depending on what has been run prior to the application of this process.

The same process applies to the fetch and seed functions, as these are entirely

implemented in the node. In fact, the pre-fetching offered by the fetch method

is realised in the service itself, as it will go ahead and fetch the content from

the given URL without the need for it first to be requested by a client. The

seed function will contain a set of expressions that are mutually equivalent. As

a result, the value of the expr parameter will also be in the format of a JSON

list, of which each element defines a set of content that should be served as one.

This will overwrite the URL checking element in the service implementation by

allowing multiple values to be correct, and thus, objects to be served from each

of the locations defined.

The refresh method in the internal API forces the node to send a fresh set

of statistics to the controller. In this case, this information is sent back in the

response field. This temporarily overrides the usual process of reporting statis-

tics, which is to piggyback them onto the keep-alive message. The keep-alive

messages primary use is to ensure that communication can still be made between

the controller and the node. Once the controller receives such a message, it will

refresh the timeout back to pre-defined maximum. However, if the node fails to

send this message for whatever reason, the controller will eventually disconnect

the node, and prevent requests from being sent to it.

123

Before a node moves to sending periodic keep-alive messages, it must make

an initial connection with the controller. As mentioned previously, this can be

initiated in two separate ways. If the broadcast functionality is being used in an

OpenCache node, it will send out regular broadcast messages on a fixed port. This

port number is always the same in an OpenCache deployment, and is not con-

figurable in the OpenCache controller. The broadcast message contains sufficient

details for the controller to move onto the alternative communication channel,

handled by the south-bound interface module, rather than the broadcast mod-

ule. Once a broadcast message has been received by the controller, a controller-

initiated hello message will be sent to the node. This will contain details of how

the node can communicate with the controller, as well as an allocated identifica-

tion number. Communication will then continue as normal once this process is

complete, including the regular transmission of keep-alive messages.

Alternatively, a node may be configured with the controller’s details before

it starts. If this is the case, the node will initiate a connection to the controller,

rather than the opposite process in the above-mentioned case. The node will

therefore send a hello message, detailing the means by which the node should be

contacted. Once the controller has received this message, it will respond with

an identification number, used throughout the lifecycle of that node. As before,

the node will then migrate to sending regular keep-alive messages to ensure the

controller is both aware of its presence, and to update the local statistics stored on

such. To compliment this process, the goodbye method can be used to gracefully

leave the OpenCache deployment. Rather than a node timing out due to a lack

of keep-alive messages, the goodbye message can be used to gracefully disconnect

from the network. Example uses include when a device or hypervisor is going

offline for scheduled maintenance.

The internal API also contains the methods to support the alert subsystem

that is an important part of the OpenCache implementation. As with many of

the other methods, calls made from the application to the controller are then

translated into messages sent to the nodes themselves. The nodes then handle

the monitoring, as defined in the register method. Once a service or node exceeds

one of these thresholds, the node will send a warning to the controller using the

alert method, containing details of the threshold and its current value. Similarly

the describe method, when called by the controller, will return detailed informa-

tion about the OpenCache node back to the controller for use by the application.

124

As mentioned previously, in the current implementation, this is achieved by sim-

ply returning the details stored in the configuration file, rather than the node

discovering them itself.

4.1.5 Development and Deployment Aids

OpenCache is implemented in a modular way. This intentionally allows develop-

ers to build alternative modules designed to meet their own differing requirements.

To facilitate this, we provide a set of design guidelines, along with extensive doc-

umentation, which demonstrates how a module should be implemented. These

outline a minimum requirement for functions that should be implemented, and

the values that they should return once complete. This rigidity is necessary so

that the core module in both the OpenCache controller and node can interop-

erate with these alternative implementations. The core module enforces these

guidelines by checking whether or not the object has the required methods before

it is allowed to continue. Failure to implement these will result in the node or

controller refusing to run.

To encourage development, we have made available an OpenCache Vagrant-

based [42] virtual-machine image4. This is designed to provide developers with

a convenient development environment that can be used to build and test new

OpenCache modules as required. Within this environment, a full install of Open-

Cache is included. To compliment this, Mininet [17] is also bundled in the image:

Mininet allows virtual networks to be created and modified at will. This allows

developers to emulate networks and attach OpenCache nodes, controllers, hosts

and servers to them. Together, these can be used to create realistic networks and

generate genuine traffic, ideal for ensuring modules are operating as expected.

The same tool-chain was also used extensively during the development and im-

plementation as OpenCache. Providing this environment to other developers

ensures a level of parity amongst potential developers.

To aid the deployment of OpenCache in different scenarios, we take advantage

of Python’s native packaging tools. If the user is building from source, pip [34]

can be used to install the required libraries automatically. Each component is

also available on pypi [36], a global repository of open packages. Installing Open-

Cache is therefore as simple as running pip with the chosen package (opencache-

4https://github.com/opencache-project/opencache-vagrant

125

https://github.com/opencache-project/opencache-vagrant

controller or opencache-node). This install also includes an executable shell helper

script, which starts the given component from command line. From installation

to execution, the processes are made intentionally simple.

4.2 OpenCache Console

The external API presented in Section 4.1.4.1 facilitate numerous different in-

teraction techniques with an existing OpenCache deployment. Evidently, these

must all be based upon the usage of JSON-RPC, as required by the specification.

However, given this restriction, it is still possible to use the interface in a flexible

manner, including from a command line, an application or, as presented in this

section, a graphical user-interface5. Designed specifically for use with OpenCache,

the console is a web-based interface from which users can control and modify the

behaviour of OpenCache nodes and the services running upon them. However,

the most important feature of the console is the ability to visualise statistics over

time, enabling a user to better understand and rationalise the results that they

are seeing.

As with the rest of the OpenCache implementation, the console is imple-

mented using mainly Python. In particular, the Flask [145] framework was used.

Flask is a lightweight framework designed to enable web applications to be built

quickly whilst offering production-quality capabilities. It also includes templating

functionality, used extensively in the OpenCache console. This functionality, en-

abled by the Jinja2 [146] library, allows the console to replace values in a template

when it is rendered. It also features control logic, allowing different information

to be shown depending on the value of a variable.

The console features two main views, the first of which is the management

pane, shown in Figure 4.2. This allows the user to directly call any of the Open-

Cache commands present in the external API, and also define the parameters

that accompany the specific call. There is no conversion or manipulation of these

calls on the behalf of the console; it simply makes the request using a JSON-

RPC library to a connected OpenCache controller. The location and port of this

controller is defined in a simple configuration file, and loaded when the console

is initialised. Once a call is made, the console will report back the result to the

5https://github.com/opencache-project/opencache-console

126

https://github.com/opencache-project/opencache-console

Figure 4.2: OpenCache Console Management Pane

Figure 4.3: OpenCache Console Statistics Pane

user.

The second view is the statistics pane, shown in Figure 4.3. As with the

management pane, this allows the user to define the selection criteria for the

statistics that they are interested in. Once this has been determined, the console

will fetch an initial set from the controller. During this phase, the user can

also set an interval value. This is the time between each poll request to the

controller. This is necessary because the statistics view will render near-real-

time data retrieved from the controller. This will then be visualised on a line-

graph. As these are retrieved regularly, the graph uses asynchronous calls to

constantly update the values shown. This allows a user to monitor the OpenCache

deployment, and determine its behaviour over time. It provides a simple overview

to show that the deployment is functioning correctly, and the load it is under.

127

4.3 OpenCache Applications

More advanced applications can also be built semantically on-top of OpenCache.

These contain logic and processes defined by the programmer, and enable unique

functionality to be created. This includes tailoring the behaviour to a certain sce-

nario or set of circumstances, as well as using information not available to Open-

Cache to influence decisions. Determining the operation of OpenCache could also

be realised through implementing a module with the controller itself; the design

is created specifically to do this type of modification. Yet implementing such, es-

pecially when the module is specific to only a single use-case, reduces the general

applicability of OpenCache as a system. Therefore the external API is deemed

as the most appropriate way to achieve the same goals, especially in its current

form whereby it exposes all of the internal decisions made within OpenCache.

addForwarding

stat

register

Application
OpenCache
Controller

OpenCache
Node #1

SDN
Controller

OpenFlow
Switch

OpenCache
Node #2

describe

start
start

modifyForwarding modifyForwarding

startmove

register

alert

Origin Server

fetch
fetch request

storeObject

seed
seed

startService

startService

modifyDatabase

alert

addForwarding

pause
pause

stopService

stop
stop

stopService

removeObject

1.

3.

5.

7.

11.

13.

15.

17.

19.

2.

4.

6.

8.

9.

10.

12.

14.

16.

18.

20.

Figure 4.4: Example Application Message Flow

128

No. JSON-RPC Call
1. {"jsonrpc": "2.0", "method": "describe", "params": {"node-id": 1}, "id": 1}
2. {"jsonrpc": "2.0", "result": [{"storage": "ssd, "capacity": "100GB"}] "id": 1}
3. {"jsonrpc": "2.0", "method": "start", "params": {"node-id": 1, "expr": "64.15.119.99"}, "id": 2}
4. {"jsonrpc": "2.0", "result": True, "id": 2}
5. {"jsonrpc": "2.0", "method": "stat", "params": {"node-id": 1, "expr": "64.15.119.99"}, "id": 3}
6. {"jsonrpc": "2.0", "result": {"cache-hit" : 9263, "cache-miss": 806}, "id": 3}
7. {"jsonrpc": "2.0", "method": "register", "params": {"node-id": 1, "expr": "64.15.119.99",

"metric": "cache-hit", "threshold": 10000, "ip": "10.32.110.134", "port": 50001}, "id": 4}
8. {"jsonrpc": "2.0", "result":True, "id": 4}
9. {"jsonrpc": "2.0", "method": "alert", "params": {"node-id": 1, "expr": "64.15.119.99",

"metric": "cache-hit", "value": 11083}, "id": 5}
10. {"jsonrpc": "2.0", "result": True, "id": 5}
11. {"jsonrpc": "2.0", "method": "move", "params": {"expr": "64.15.119.99", "from": 1, "to": 2},

"id": 6}
12. {"jsonrpc": "2.0", "result": True, "id": 6}
13. {"jsonrpc": "2.0", "method": "fetch", "params": {"node-id": 2, "expr": "64.15.119.99",

"target": "64.15.119.99/content/bigbuckbunny.mp4"}, "id": 7}
14. {"jsonrpc": "2.0", "result": True, "id": 7}
15. {"jsonrpc": "2.0", "method": "seed", "params": {"node-id": 2,

"expr": ["64.15.119.99", "64.15.119.114", "64.15.119.98"]}, "id": 8}
16. {"jsonrpc": "2.0", "result": True, "id": 8}
17. {"jsonrpc": "2.0", "method": "pause", "params": {"node-id": 2, "expr": "64.15.119.99"}, "id": 9}
18. {"jsonrpc": "2.0", "result": True, "id": 9}
19. {"jsonrpc": "2.0", "method": "stop", "params": {"node-id": 2, "expr": "64.15.119.99"}, "id": 10}
20. {"jsonrpc": "2.0", "result": True, "id": 10}

Table 4.3: Example Application JSON-RPC Calls

This section will describe a typical workflow for an application that wishes to

use the OpenCache interface, presented in the form of a hypothetical use-case.

This example is illustrated in Figure 4.4. This describes the message flow between

the different entities within this scenario. In this diagram, methods shown in

italics indicate calls made using the OpenCache API. The numbers allocated to

these calls also correspond to rows in Table 4.3. Each of these entries represents

a single call, and demonstrates the format and parameters passed in each case.

Most applications will start by discovering the capabilities and size of an

OpenCache deployment. This is achieved with a call to the describe method,

leaving the selection criteria empty. This will return a list of all of the nodes

and their inherent capabilities. An application may then also label these using

its own semantics. The application will then use whatever internal logic that it

contains to start services on any number of these nodes. This will be achieved

using the start command alongside the appropriate selection criteria. At this

point, OpenCache will start serving the content defined in the expression.

After a while, the application may wish to check the state of this service, and

will send a stat request to retrieve the operational metrics for the newly started

service. If the application notices that one of the variables is moving towards

the extremities of what is permissible, it can use the register command to mon-

129

itor this, without having to continuously poll the controller. In this example,

an alert is triggered sometime after because one of these metrics has been ex-

ceeded, such as the amount of cache-hits or the number of objects stored. This

may be approaching the limit for the capabilities of this node. As a result, the

application decides to migrate the service to a different, previously unused node

using the move command. The changes to the necessary redirections are made

automatically, and the new service begins serving content, taking the load off of

the original service.

Over time, the application begins to analyse the patterns of the user requests,

and realises that there are potential efficiency gains by pre-caching this content.

As the node has a high-capacity link and is well within its capacity limits, the

application uses the fetch command to pre-emptively instruct the cache to fetch

content that it predicts will be requested at a later date. It also receives informa-

tion from its upstream content delivery network that the data is now located in

a number of different locations due to the popularity of user requests. To avoid

object duplication, the application uses the seed command to define the location

of these copies, furthering the performance of the cache.

Eventually, the number of requests for this content abates, and the application

decides that it needs to scale back its resource allocation to allow them to be used

by other functions running on the same hardware. On some nodes, it uses the

pause function to relinquish the compute and network resources, whereas on some

nodes it uses the stop function to remove all of the resources once consumed by

the running services. In the cases where the services were paused, they can be

immediately restarted if the amount of requests returns to the previous level.

To better demonstrate the effectiveness and flexibility offered by the Open-

Cache API, an number of example applications were implemented6. These took

the form of a service load-balancer and failover monitor, which leverage both the

application and network layer control offered by OpenCache. These are discussed

further in the following evaluation chapter, specifically in Sections 5.3.1 and 5.3.2,

including detailed information on message flows and application logic.

6https://github.com/opencache-project/opencache-applications

130

https://github.com/opencache-project/opencache-applications

4.4 Scootplayer

In order to evaluate certain aspects of OpenCache, realistic user traffic had to

be generated. As the initial implementation of OpenCache centres around the

delivery of HTTP content, and in particular the use of adaptive streaming tech-

nologies, a suitable client was required. Through an initial exploration of clients

at the time, none was deemed suitable for our purposes. Requirements included

the availability of fine-grained output, as well as control over the behaviour and

algorithms used during the request process.

It was found that the behaviour of existing players often changed between

revisions, presumably due to the relatively new nature of the chosen streaming

standard, MPEG-DASH. Some of the candidates also featured proprietary code,

which could not be modified to our needs. Given the situation, the decision was

taken to develop a new MPEG-DASH compliant player, designed specifically for

our needs. This player could also be used at various stages of our evaluation,

without the risk of the underlying behaviour changing due to a code-revision.

This enables a fair comparison, and makes the evaluation results directly compa-

rable between our own experiments and others. This is furthered by the release

of Scootplayer as a free and open-source tool, which can be used by other exper-

imenters in their work.

Scootplayer was implemented not as a player, but as a request engine. This

difference is due to the nature of our evaluation, which is concerned with func-

tionality and performance of a cache, and subsequently its impact on the network.

As a result, Scootplayer was designed without the need to render video or display

this to a user. However, metrics derived from the simulated playback, such as the

quality requested and latency received, are still important to the overall result.

The player therefore replicates the behaviour of the alternative clients, including

the logic behind quality selection, startup procedures and the actual download-

ing of content. Importantly, all of this information is logged and documented in

Scootplayer, allowing the user to directly compare different evaluation runs and

observe the effect of changes in both the network and the delivery of content from

whichever source is used.

As with OpenCache, Scootplayer is built using the Python programming lan-

guage. This allows the client to run on a number of different architectures and

operating systems, without the need to recompile the code: important in an eval-

131

uation scenario. It uses a modular style, which promotes separation between the

different entities that make up a player. This includes the ability to change how

the download and playback queues work, as well as the procedure at start-up.

The states of each of these queues, as well as general information, are all out-

put to log files during the operation of Scootplayer. These are presented in a

comma-separated format, making them easy to parse and graph by a vast array

of applications. Basic system information is also bundled alongside this output,

to ensure that comparisons are as fair as possible.

Scootplayer also contains a remote control element, allowing numerous Scoot-

player instances to be started, paused and stopped at will. This ensures basic

consistency in experimentation where necessary. The player is primarily a com-

mand line tool, as it does not render nor present video. However, to compliment

this, a graphical user interface was developed for Scootplayer. Much like the

OpenCache console, this is built using the Python-based Flask framework. How-

ever, this interface does not provide control of a player, it merely presents the

current state of various playback elements in near real-time. This allows a user

to check that playback is occurring, as well as providing a visual tool for demon-

stration purposes.

Finally, Scootplayer is also released open source, and available for others to

freely use and modify. In addition to providing a stable implementation that

is compliant with the MPEG-DASH specification, it also enables the scientific

scrutiny of a tool used in evaluation. Furthermore, it aids experimental repeata-

bility and transparency.

4.5 Summary

In this section, we presented the implementation of OpenCache. In particular, we

explored how the core components of the prior design are realised in working code.

Together, these components facilitate the distributed content caching and control

necessary for OpenCache to meet its aims. We also describe a number of tools

used to evaluate OpenCache, including an example of an application that utilises

the OpenCache API to control and configure a content delivery network. In

the following section, we take this implementation and evaluate it in a number of

scenarios, each of which exercises a particular functionality or design requirement.

132

Chapter 5

Evaluation

In this chapter, we aim to comprehensively evaluate the OpenCache design and

implementation. In the first instance, we evaluate the suitability of SDN technol-

ogy to provide the necessary redirection functionality required for OpenCache.

This is presented in Section 5.1. Further to this, we examine the benefits of de-

ploying OpenCache, with a particular focus on evaluating a number of recognised

Quality-of-Experience metrics. These results reflect the direct benefit to end users

and are described in Section 5.2. Finally, we demonstrate the OpenCache API

by building and evaluating two sample applications. These exploit advances in

infrastructure capability to dynamically adapt to changes in service availability

and load. The outcome of this evaluation is explored in Section 5.3.

5.1 Redirection

The main goal of this evaluation is to investigate the feasibility of using Software-

defined Networking (SDN) as a redirection technique. To this end, the OFE-

LIA [24] facility was used for experimentation. OFELIA contained resources

located in a number of physically-diverse universities and research institutions,

spread throughout Europe. The scale of the facility is illustrated in Figure 5.1.

Each of these locations consisted of a set of network switches and virtual machine

hypervisors. Within each of these, resources were connected together to enable

virtual machine instances created on different hypervisors to communicate with

each other. Importantly, this network was OpenFlow-capable, facilitating un-

precedented experimentation in network behaviour and providing the necessary

133

Other

CREATE-NET

i2CAT

ETH Zürich

iMinds

Figure 5.1: OFELIA Experimental Facility

functionality for our own experimentation. As the first OpenFlow-based testbed

in Europe, OFELIA is based around the OpenFlow v1.0 specification [25].

Each of these locations (known as islands) could be connected together. En-

abled through network connectivity to a central location, resources could be pro-

visioned in a number of these islands, and then used and connected together in a

single cohesive experiment. This process enabled the rapid set up of experiments

without the need to host, run and maintain our own equipment. It granted a level

of realism and scale not possible with simulation nor lab-based experimentation,

important when we are considering the viability of OpenCache as a distributed

Content Distribution Network (CDN).

To compliment this connectivity, OFELIA also utilised a common method of

reserving resources, regardless of location or owner. This was achieved using a

tool called OFELIA Control Framework [20] (OCF). A derivative of work de-

veloped for the GENI testbed, the OCF allowed experimenters to define their

own experimental slice. This slice would contain a set of resources that belonged

to the experimenter for the duration of their experiment. This includes virtual

machine hosts and network switches.

An experimenter designs an experiment by defining a set of resources that

they wish to include. These can be located in any of the encompassing OFELIA

facilities. Once they are satisfied by this design, resources can be reserved and

provisioned, thus creating their own slice for the duration of their experimen-

134

tation. These slices are also used to realise experimental isolation; a key facet

of any scientific research. This allows multiple experiments to run concurrently,

without the state of one impacting the result of another.

This isolation is realised in different ways dependent on which layer is con-

cerned (compute or network). In the case of compute, this is achieved through

the use of virtualisation technologies such as Xen [45]. Once an experiment is

executed, a set of virtual machines will be created on the chosen hypervisors.

These are under the full control of the experimenter, and can be used to run

whatever application or tool that is desired. In OFELIA, each of these virtual

machines runs a base Debian 6.0 Linux operating system [7].

Network isolation is facilitated through the same technology that underpins

the experimentation on the testbed. By making use of software-defined network-

ing, tools such as Flowvisor [154] can be used to ensure that experiments are

granted their own unique flowspace which prevents traffic from crossing from one

network domain into another. This can be realised in the testbed a number of

different ways, but in the case of OFELIA, each experiment is defined by a unique

VLAN tag. This allows modification or matching to be completed on any of the

other IP headers, but means that VLAN-based experimentation is not possible.

Flowvisor acts as an intermediary controller, rewriting requests to match the

allocation defined in the experiment’s design.

The experimental topology consists of 6 virtual machines, each with a unique

purpose. Firstly, a video client was located in the ETH Zürich island, and con-

sisted of a base operating system with the VLC [44] media-player client installed.

VLC’s MPEG-DASH HTTP adaptive streaming features were used in this exper-

imentation. This client was then provided with one of two manifest files. These

files describe the location, format and importantly, the quality levels available

for playback. The two variants of this manifest file are different only in the lo-

cation at which the content is stored. This can be at one of two islands: either

CREATE-NET or i2CAT. The content used in this case is consistent through-

out experimentation, and is reference material derived from Big Buck Bunny, a

public domain motion picture [33]. The duration of the playback offered by this

material is 9 minutes and 56 seconds.

At the beginning of each experiment, the client will start playback with one of

these manifest files, and is allowed to run until playback is complete. Once this has

occurred, the experimental run is finished. During this run, two important metrics

135

ETH Zürich

CREATE-NET

Client

Origin Server

OC

OpenCache
Node

OpenCache
Controller

OpenFlow
Controller

OC

i2CAT

Origin Server

iMinds

Figure 5.2: OFELIA Evaluation Topology

are recorded. Firstly, the startup delay is measured. This indicates the amount

of time necessary for a client to start playback once initialised. Secondly, the

external link utilisation is also observed. This is the amount of bytes transmitted

over the link connecting the client’s island with the other facilities. Together,

these metrics indicate the impact of caching, and in particular, the use of software-

defined networking to achieve such.

The experiment also contains two virtual machines that are responsible for

hosting the content in the first instance. These origin servers utilise the Sim-

pleHTTPServer module, part of Python’s core libraries [39], to serve content

requested by the client over HTTP. Each of these holds the full set of content,

including all possible quality levels available. In each of the experimental runs,

we use one of these two instances; that is, content will be retrieve from one of the

two servers, each of which is located in a different geographical island.

Adding to this topology, we also create an OpenCache node, which is also

located within the ETH Zürich island. This will be used in experimental runs

where a cache is required. To control this cache, we also deploy an OpenCache

controller in the same island. This will have responsibility for aforementioned

node for the duration of the experiment. Through this controller, three different

scenarios are realised (these are discussed later in this section).

136

Finally, we also locate an OpenFlow controller within the same island. Dur-

ing the experiment definition, we indicate that this virtual machine is responsible

for the behaviour of the network. The OpenFlow controller is responsible for

the behaviour of all of the switches in the topology, regardless of where they are

located. To ensure reliability, this communication is made over a separate man-

agement channel. This ensures connectivity between the switches and controller,

regardless of experimental conditions, granting the stability required in the ex-

perimentation. The OpenFlow controller used for this experiment was Floodlight

v0.90 [11]. This controller supports v1.0 of OpenFlow, in line with the capability

of the switches in the OFELIA testbed.

Also included in the topology are 4 OpenFlow-capable switches: one located

in each island, plus a central switch which connects each facility together. In

order to supply basic forwarding functionality in the network, regardless of the

presence of experiments, a simple layer-2 forwarding module was loaded within

Floodlight. This enables basic end-to-end connectivity to be established, and

relies upon a simple MAC learning method.

Together, these elements combine together to make the evaluation environ-

ment. The overall topology is visualised in Figure 5.2, with each island repre-

sented by a coloured circle. This setup enables evaluation across three distinct

scenarios. By duplicating resources and content across two different islands, we

are able to provide six unique sets of results. This allows us to determine the

effect of the different link capabilities between each of these destination islands

and the central interconnect, whilst isolating the impact of caching.

The first of the three scenarios acts as a baseline for the remaining experi-

ments: a run consists of a client requesting content from an origin server. This is

shown in the no-cache case in Figure 5.3. No caching is involved in this interac-

tion, and the full set of content is retrieved from the server without interference

from any modifications made in the network. The second scenario introduces the

cache into the experimentation. In this case, modifications are made to network

flows to redirect them to the cache. As these will be initial requests, at least

from the perspective of the cache, the node will not hold any of the content. As

a result, it will have to retrieve this content from the origin server, and deliver

it to the client. This is the cache-miss case in Figure 5.3. The third scenario is

similar to the first, with the modification that the node already has the content

cached. That is, it will not have to fetch the content from the origin server, and

137

Playback
Client

OpenCache
Node

Origin Server

no-cache

request

request

request

cache-miss

request

cache-hit

storeObject

Figure 5.3: Request Message Flow

can deliver it straight from its own copy of the content. This is illustrated in the

cache-hit case in Figure 5.3.

These three scenarios cover all of the iterations facilitated by the start, stop

and fetch OpenCache commands. These are issued to the OpenCache controller

present within the experiment. When the latter experiments were initialised, the

start command was issued to the single node present in the OpenCache deploy-

ment. As mentioned before, this was located in one of the two islands, depending

on the experimental run. In the scenario where no content exists on the cache,

this would be all the required setup. Once the experiment had completed, the

service could be cleaned-up using the stop command, which would remove any

content that had been stored in the process of the evaluation.

The same process was repeated for the final experiment, where content is

served from the cache. To ensure that content is always delivered from the cache

without the need to fetch it from the origin server, the seed command is used.

This will pre-emptively force the cache to retrieve and store the content, and is run

before the client commences playback. As the client is requesting content based

upon their current observed bandwidth, combined with the realistic nature of the

links used (which vary in latency and throughput over time), the full dataset is

retrieved by the node. This ensures the necessary cache behaviour.

138

No Cache Cache-miss Cache-hit
Average Startup Delay (s) 2.484 2.088 1.639
Improvement over Baseline (%) 16.02 34.02
Standard Deviation (σ) 0.208 0.225 0.226
External Link Usage (Bytes) 105,734,144 105,827,872 0

(a) CREATE-NET

No Cache Cache-miss Cache-hit
Average Startup Delay (s) 2.212 1.982 1.441
Improvement over Baseline (%) 10.40 34.85
Standard Deviation () 0.145 0.138 0.226
External Link Usage (Bytes) 105,734,144 105,827,872 0

(b) i2CAT

Table 5.1: OFELIA Evaluation Results

5.1.1 Results

As mentioned previously, the most import aspect of this initial evaluation was

to demonstrate that OpenFlow could be used to achieve the required redirection

techniques. This required significant development, testing and subsequently eval-

uation. Through the latter, we determined that it was possible to achieve the

desired behaviour using the network itself.

The experimental results are presented in Table 5.1, and are averaged over 20

experimental runs. Table 5.1a represents results gathered when using CREATE-

NET as a destination island, whilst Table 5.1b represents observations made

when using i2CAT to locate our origin server. They show that using OpenFlow

for redirection is a feasible and viable method of doing so. There is no noticeable

impairments introduced in this process, with users still receiving a service, even

with the addition of OpenCache into the delivery chain.

Startup delay is often used a key differentiator in Quality-of-Experience mea-

surements. In the initial experimentation OpenCache reduces the startup delay

by minimising the amount of time a user has to wait before the content can start

playing. Compared to the baseline, handling the request from an OpenCache

node offers a 34% improvement. This is a best-case scenario, where the cache

already holds the content and can deliver it without having to fetch it first. This

result is consistent across the two destination islands, and also exhibits a low

amount of standard deviation.

139

The evaluation also demonstrated the potential network efficiency gains that

can be made by serving the content locally. As the origin servers in this case are

located close to the OpenCache nodes, the traffic did not have to traverse any

metered connections. However, in circumstances where this would be the case,

the network provider would have been charged for each request that traversed

that link.

To observe the amount of traffic in all scenarios, we monitored and recorded

the size and count of packets travelling towards the origin server. As expected,

in cases where content had to be fetched from the origin server, the amount of

traffic observed was equivalent to the size of the video. This is approximately the

same regardless of whether it is the client or the OpenCache node (in the case

of cache-miss) requesting the video. In scenarios where the content is delivered

entirely from the cache, the traffic heading towards this origin server is reduced to

nil. This shows the reduction in load on both the server and the network possible

through the use of localised caching.

It is important to note that neither the origin server nor the client have not

been modified to achieve this evaluation. This satisfied our requirement that

OpenCache be transparent in operation, and work seamlessly with existing de-

livery technologies.

5.1.2 Discussion

During the evaluation, it was observed that the modifications made in the network

in order to provide this redirection have an impact on performance. Although

the client received sufficient throughput to download and consume the video, this

maximised the processing resource on the switch providing the modification. As

OpenFlow was a relatively new technology at the time of the evaluation, these

early implementations could not realise some of the more advanced functionality

offered by the protocol (particularly in the fast-path of switch hardware). This

meant that operations were performed in software instead, which is considerably

slower as it contains no hardware-acceleration. The header rewriting operations

necessary for the redirection used in OpenCache is included in the functionality.

Nonetheless, a single-client evaluation was still possible, and this limitation did

not hamper or degrade the rest of our experimentation.

OpenCache also manages to reduces startup delay in cases where it has to

140

Amsterdam

Frankfurt

Vienna

London

Zagreb

Figure 5.4: GOFF Experimental Facility

fetch the content from the origin server first. In this case, the improvement

shows more variance over the two islands, likely due to the differences in the

underlying resources found in each location. Although this behaviour seems un-

expected, it is still statistically significant, and can be attributed to the aggressive

nature exhibited by the service in OpenCache when fetching content. As Open-

Cache is multi-threaded, the process for retrieving content will spawn a number

of threads, each of which will begin to download a specific part of the requested

file. This parallel download process is much faster than that used in VLC, hence

the reduction in startup delay, even when the content has to be fetched. Obvi-

ously, this behaviour may not be appropriate in all circumstances, as it places a

larger amount of load on the origin server. However, the initial fetch of content

can often be a bottleneck in the caching process, particularly if it has not been

prefetched. This helps to resolve this, at the cost of more instantaneous network

utilisation and resource consumption on the origin server.

5.2 Quality-of-Experience

The second evaluation focuses on evaluating the impact that an OpenCache de-

ployment may have on client Quality-of-Experience (QoE). For this purpose, we

used Scootplayer to provide evaluation beyond the startup time observed in the

previous experimentation. As described in Section 4.4, Scootplayer is a fully in-

141

ZagrebFrankfurtLondon

Vienna Amsterdam

Origin Server

OpenCache
Controller

OpenFlow
Controller

Client 1 Client 2

OpenCache
Node

OC

OC

Client 3

Figure 5.5: GOFF Evaluation Topology

strumented, MPEG-DASH-compliant player designed specifically to monitor and

record a number of recognised QoE metrics. This evaluation again takes places

in a real-world environment and considers a multi-user scenario. This consists of

a number clients requesting content at the same time. This realism was furthered

with the inclusion of link emulation, used to modify the characteristics to more

closely resemble a congested network.

Figure 5.5 illustrates the topology used during our evaluation. We use the

full resources of a large-scale pan-European testbed: the GÉANT OpenFlow

Facility (GOFF) [12]. The location of each facility is outlined in Figure 5.4. The

composition and tools used to realise this evaluation are similar to those used

in the OFELIA experimentation described in Section 5.1. Resources are located

across a number of separate physical locations, or islands. These are located

in various cities throughout Europe and are connected together using GÉANT’s

network. This ensures high capacity and throughput between sites.

As with OFELIA, sites are based around virtual machine resources under a

Xen hypervisor [45]. These can be dynamically provisioned using the control

142

framework, which is again a derivative of that used in OFELIA. Using this, we

provision a number of virtual machines to act as network controllers, OpenCache

controllers and OpenCache nodes. Similarly, clients are also provisioned in this

way, each running an instance of Scootplayer. These request content from an

origin server also provisioned using the same interface. These origin servers serve

the same Big Buck Bunny dataset as used in the previous experimentation. The

virtual machines also run using the same Debian image used in the OFELIA

testbed, with the same SimpleHTTPServer used to serve content. The specific

locations of each of these elements is as follows: the OpenFlow controller and

OpenCache controller were located in the Frankfurt facility, whilst the origin

server is located in Vienna. The remaining elements (multiple video clients and

the OpenCache node) were located in Amsterdam. The GOFF testbed provides

connectivity in a full-mesh configuration, with each location connected to every

other.

To interconnect these clients, OpenFlow switches are used in each location.

In comparison to the OFELIA testbed, which consisted solely of hardware-based

switches, GOFF contains software-based switches. These too support OpenFlow,

and are based around Open vSwitch [22]. These switches run using commodity

servers co-located with virtual machined resources. Much like OFELIA, exper-

imental separation is realised using slicing. This grants each experiment a logi-

cal topology within the network and prevents experiments from interacting with

other. Similarly, each switch connects to the OpenFlow controller using a sepa-

rate management channel. As with the previous experimentation, the OpenFlow

controller used was the same version of Floodlight. This controller also acted as a

basic layer-2 forwarding switch, ensuring packets could be switched between the

constituent locations included in the topology.

This experimentation uses the same basic subset of OpenCache commands,

namely: start, stop and fetch. These are necessary to ensure that the evaluation

environment is initialised correctly, as well as cleaned up appropriately. As before,

the fetch command is used to pre-fetch content and ensure that is always available

when a cache-hit is desired.

This evaluation contains a more diverse set of experimentation, designed to

evaluate OpenCache under different circumstances. Firstly, we introduce varia-

tion in the links between each of the locations. The first scenario in this case is

the baseline: we do not modify the links in any way. The characteristics expe-

143

rienced by the client are those inherent in the link; the average latency between

two of the islands was 30ms, with no packet loss.

To create a more realistic scenario, in which clients experience packet loss

and latency similar to that of the Internet, impairments were emulated using the

dummynet [70] tool. The characteristics of the link are set so that each packet

can fall into one the following three probabilistic categories at each point in time:

45% probability to encounter default link characteristics, 45% probability that

an additional 50ms of round-trip time and 0.1% packet loss is experienced, and

10% probability that an additional 150ms of round-trip time and 0.1% packet

loss is observed. This creates random packet drop and can simulate the impact

of congestion over multiple paths leading to out-of-order packet delivery.

To further the situation, we consider an evaluation scenario whereby multiple

users are accessing the same set of content over a small period of time. The

baseline in this scenario is a single-user environment, where only one client is

accessing the content. In the multi-user scenario, we scale the amount of users up

to three. These users will start accessing the content over a set interval: one client

will start at the beginning of the experiment, the next at 30 seconds from the

start, and the last at 90 seconds. This scenario should demonstrate the possible

advantages, especially when multiple clients are accessing the same content. This

is the likely situation when a cache is deployed to serve many clients at once.

In total, we have 4 individual experiments, with all possible link and user com-

binations explored. Each of these experiments contains three experimental runs.

In the case of single-user experiments, we examine the three cases discussed in

the previous evaluation (Section 5.1). In the multi-user experiments, we compare

the results between the three different clients, each beginning playback at their

allocated times (client 1 at the start of the experiment, client 2 at 30 seconds

from the start and client 3 at 90 seconds from the start).

Building on the previous measurements of startup delay, we expand the eval-

uation with three more metrics, namely: a count of video bitrate changes, a

weighted average video bitrate and the minimum video bitrate. These are met-

rics derived from contemporary literature [117, 85, 119] and recorded with the

use of Scootplayer; instrumented specifically for this purpose.

144

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

Origin Miss Hit

W
e
ig

h
te

d
 A

v
g
.
B

it
ra

te
 (

M
b
it
/s

)

Default
Emulated

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

Origin Miss Hit

V
id

e
o
 B

it
ra

te
 C

h
a
n
g
e
s

Default
Emulated

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Origin Miss Hit

M
in

im
u
m

 B
it
ra

te
 (

k
b
it
/s

)

Default
Emulated

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

Origin Miss Hit

S
ta

rt
u
p
 T

im
e
 (

s
e
c
o
n
d
s
)

Default
Emulated

(d)

Figure 5.6: GOFF Single-user Results

5.2.1 Results

Through our evaluation, we demonstrate the benefits of OpenCache in multiple

environments. These are illustrated through the use of recognised Quality-of-

Experience metrics, which show a notable improvement across every measure-

ment. More specifically, we examine the single-user results in Section 5.2.1.1,

and the multi-user results in Section 5.2.1.2.

5.2.1.1 Single-user

Figure 5.2.1.1 shows the results for a single-user environment. Each subfigure

represents one of the 4 QoE experience metrics used in our evaluation. These

are derived over 20 experimental runs. The three scenarios in each subfigure are

those previously described: Origin is content fetched straight from the remote

origin server, Miss is content delivered from the OpenCache node that first has to

145

be fetched from the remote origin server, whilst Hit is content delivered straight

from the OpenCache node with no need to fetch it first. The scenarios are all

orchestrated by issuing the appropriate commands to the OpenCache API which

will clear the cache content, as well as pre-fetching it as required. Each scenario

is then shown in two different circumstances: the blue histogram uses the default

link characteristics, whilst the red histogram represents link emulation with the

aforementioned defects.

The first metric analysed is the weighted average video bitrate, shown in

Figure 5.6a. In cases where the default link characteristics are used (the blue

histogram), there are little to no difference in the average bitrate between each

of the three cases. This can be attributed to the high capacity and low latency

link used in the Default case. It is likely that the player quickly rose from the

initial bitrate towards the maximum bitrate available in the representations. Once

there, playback did not deviate from the maximum because of the stability and

quality of the links traversed. With the use of emulated links (shown in the red

histograms), a significant reduction in the average bitrate is observed in the cases

where requests have to traverse the effected links (Origin and Miss). As the

capacity and stability of these links is now reduced, the clients receive an overall

worse quality level throughout playback. In this case, we observe over three times

higher weighted average bitrate when the content is delivered from the cache.

The second metric considered in this evaluation is a count of video bitrate

changes, shown in Figure 5.6b. As with Figure 5.6a, the default link character-

istics provide consistent results regardless of where the content is fetched from.

This is shown in the small number of bit rate changes, which is again accounted

to the fact that the player simply moves from the initial bitrate to the maximum

bitrate, and stays there for the duration of playback. In the case of the emulated

link, we see similarities between the Origin and Miss cases, where the amount

of changes is high (23 in total). This is due to the latency and packet-loss in-

troduced in the path. Since both cases have to traverse the external link, they

share a similar level of impairment, which naturally impacts QoE significantly.

By delivering the content from the OpenCache node, we offer the same amount

of low variability observed when the default link characteristics are used, which

results in a more stable playback for the user.

The third metric recorded by Scootplayer is the minimum bitrate, illustrated

in Figure 5.6c. This metric records the smallest playback bitrate observed during

146

playback; typically at the beginning of playback. It would also capture circum-

stances where link capacity dropped drastically, but this was not observed during

our experimentation. As a result, the minimum bitrate in our experimentation is

a good indicator of the estimated throughput calculated by the Scootplayer in the

first instance. This is demonstrated in the Default link results, as both the Origin

and Miss case have to fetch content from a remote location. The links necessary

to do so do not have the same throughput as two devices connected together us-

ing the same physical switch. This is why the Hit result offers a higher minimum

bitrate. These results are mirrored across the emulated link experiments, albeit

with the intentional impairments causing an even lower bitrate to be experienced

in the cases of Origin and Miss. The Hit results remains the same regardless

of the link, as would be expected. This provides a minimum bitrate four times

higher than having to fetch the content remotely.

The final metric captured in our experimentation is the startup time or delay.

This is shown in Figure 5.6d. In the single-user results, this is a repeat of the

experimentation conducted earlier on the OFELIA testbed. In the case of default

link characteristics, we observe similar results, with the Origin and Miss cases

proving slower at startup compared to when the content is delivered straight from

the cache. This situation worsens when the emulated links are introduced, which

causes the Origin and Miss cases to produce even slower startup times, whilst

the Hit cases remains consistently smaller. In this scenario, delivering content

from OpenCache provides a 4-fold improvement when compared to traversing the

external link.

Across each of these metrics, we demonstrate the QoE benefits of using Open-

Cache. These benefits come from the ability to redirect requests for content close

to the user. By delivering content nearby, we avoid the necessity to traverse exter-

nal links which are susceptible to various network impairments which negatively

impact the quality received by end clients. These improvements are particularly

evident when the link characteristics are changed to better reflect conditions

found in access networks.

5.2.1.2 Multi-user

The same four metrics are used in our second set of evaluations, which involve

multiple clients rather than a single client. The results from this evaluation are

147

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

Client 1 Client 2 Client 3

W
e
ig

h
te

d
 A

v
g
.
B

it
ra

te
 (

M
b
it
/s

)

Default
Emulated

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

Client 1 Client 2 Client 3

V
id

e
o
 B

it
ra

te
 C

h
a
n
g
e
s

Default
Emulated

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Client 1 Client 2 Client 3

M
in

im
u
m

 B
it
ra

te
 (

k
b
it
/s

)

Default
Emulated

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Client 1 Client 2 Client 3

S
ta

rt
u
p
 T

im
e
 (

s
e
c
o
n
d
s
)

Default
Emulated

(d)

Figure 5.7: GOFF Multi-user Results

shown in Figure 5.7. As before, each of the subfigures represent the results from

one of the Quality-of-Experience metrics identified as important. Experiments

were repeated 20 times for each case. In each case, no content was pre-cached on

the OpenCache node, and cache-hits and cache-misses were allowed to happened

naturally. The three clients are setup in an identical fashion with each running the

same software and connected to the same switch. The same link characteristics

are employed as before, with Default shown in the blue histogram (indicating an

unmodified link) and Emulated illustrated in the red histogram (indicating a link

with intentional impediments). The clients start at predefined times: Client 1

starts at the beginning of the experiment, Client 2 starts 30 seconds afterwards,

whereas Client 3 starts at 90 seconds from the beginning.

As with the single-user experimentation, we first look at the weighted average

bitrate, which is shown in Figure 5.7a. In the case of the Default link setup,

the average bitrate is consistently high, regardless of the state of the cache or

148

when the client starts; the client will move to the maximum bitrate present in

the representations very quickly and sit there for the remainder of the playback,

resulting in a high average bitrate. However, when the emulated link is intro-

duced, the average bitrate is no longer consistent amongst the clients. The Client

1 is impacted the most, as it starts first and will request content from the cache

when it is empty. As a result, all of its requests will be cache-misses. When Client

2 starts 30 seconds later, a number of the initial requests will be cache-hits, as

Client 1 will have already requested the content. However, the speed in which

these requests are delivered will alter the throughput observed by the client. As

Scootplayer believes it has increased resources, it will eventually adjust its es-

timation to request higher bitrate video. This will result in more cache-misses,

as the cache does not hold these higher quality representations; time equivalent

segments are available, but only in lower quality variations. These cache-misses

mean that the client reverts back to receiving a lower average bitrate, albeit

higher than Client 1. The same situation is repeated for Client 3, although it

benefits from an extended period of cache-hits and thus receives a higher average

bitrate. In all cases, the average bitrate is lower than that received under the

Default link conditions.

With the count of bitrate changes (shown in Figure 5.7b), the standard link

characteristics again ensure that a client experiences minimal changes. These are

attributed to a rapid switch to the maximum bitrate, which it then remains at for

the duration of playback. When the emulated link is used, the client experiences

a large amount of changes, as it is now subjected to the latency and random

packet-loss found on the link. This situation is not bettered when subsequent

clients begin playback, as even with a limited amount of content stored in the

cache, the prevalence of cache-misses ensures that requests are still subject to the

link impairments and variability.

The minimum bitrate shows a significant improvement after the initial client

has already requested content in both Default and Emulated cases. This is illus-

trated in Figure 5.7c. As described in the previous section, the minimum bitrate

received by the client is often observed at the beginning, unless the link degrades

significantly at some point during playback. The initial estimation of bandwidth

is therefore determined during initialisation. As the files requested during this

phase will be cached regardless of quality levels, the estimation will be consis-

tently higher for subsequent requests as the content is delivered from the cache.

149

This is reflected in the fact that Client 2 and 3 both have similar minimum bi-

trates, having both benefited from the delivery of cached files after Client 1’s

initial startup.

Finally, we analyse the startup times of each client in Figure 5.7d. These

results are closely related to the minimum bitrates observed in Figure 5.7c. Client

1 requests the content as normal, including the initialisation files necessary. All

of these fetches result in cache-misses at the OpenCache node. When Client 2

starts playback, it receives these initialisations from the cache. As mentioned

previously, this results in an increased throughput estimation by the player. As a

result of this estimation, the client starts to request higher bitrate chunks (hence

the increased minimum bitrate). However, retrieving these chunks takes more

time, especially as they will produce cache-misses. This results in an increased

startup delay in Client 2. Client 3 follows the same principle, estimating higher

throughput from the outset. Yet, in this case, when it goes to retrieve the initial

higher quality chunks, these will already be stored on the cache. Thus, Client 3

has the smallest startup delay whilst also receiving a higher minimum bitrate.

These results show how the potential QoE benefits increase as more users

request the content. As this number grows, so do the potential QoE and efficiency

gains. These gains are intertwined with the availability of content on the cache:

more clients increases the chance of a cache hit for subsequent client requests.

However, in cases where adaptive streaming is used, the interaction between cache

availability and the throughput estimation can lead to unpredictable behaviour.

This is observed in our experimentation and discussed in further detail in the

following discussion section.

5.2.2 Discussion

This evaluation revealed the efficiency of OpenCache in the case of a cache-miss.

For example, in Section 5.2.1.1, OpenCache only presents a 15% overhead in

startup times when compared to the client directly fetching the content from the

origin server. This is despite the fact that an additional hop is introduced in

the network topology. Yet the case of 100% cache-hit ratio is also unrealistic.

In a real-world, a cache would likely hold only parts of the entire set of content,

especially if the content available is only that has previously been requested by

a client.

150

In Section 5.2.1.2, we see a magnified version of this problem, as clients are

requesting the same set of content, but at different quality levels. This causes

inefficiencies in the cache storage, as multiple copies of the same content exist.

Although these are at different quality levels, they still represent the same segment

of playback time-wise. To avoid this mismatch, which can ultimately lead to

unpredictable user experience, it is necessary to in some way manipulate the

cache.

This problem is somewhat unique to adaptive streaming techniques, but as

these are becoming the norm, it requires careful and due consideration. All

of the evaluation presented in this section uses the same player, developed for

the purpose of revealing key QoE metrics. However, different players will likely

have slightly different bandwidth estimation techniques, different sizes of queues,

etc. This makes predicting which content that a client will request an extremely

computationally expensive process, especially without cooperation between the

cache and player.

The situation is exacerbated in cases where there are many different quality

levels: the higher the count, the more likely that this mismatch will occur. In-

telligently pre-caching content or manipulating the objects served (regardless of

request) are two methods that can avoid this situation. If executed correctly,

they can still provide similar performance to a fully populated cache, whilst re-

ducing storage requirements. The success of this would largely be dependent on

the applied technique and logic, but as mentioned previously, made difficult by

variation in client behaviour.

However interfacing with the cache is a simple process when using the API.

Realising this behaviour would be possible with the use of commands such as seed

and fetch, primitives in OpenCache. As the required logic would likely be based

in software too, developers can experiment and adapt to find a beneficial solution

that works best with the content, deployment and clients. In the following section,

we evaluate this API more closely, including exercising some of the more advanced

features present in the specification.

151

5.3 Application Programming Interface

This third evaluation aims to demonstrate the applicability of the OpenCache

API, described previously in Section 4.1.4. As discussed in Section 4.3, this

API can be used to implemented applications which are placed semantically on-

top of the cache infrastructure. For this evaluation, we use this to implement

novel cache behaviours through the development of two distinct applications.

These highlights the benefits of control and service plane integration, showing

how the dynamic nature of both can be used to achieve rapid response to changing

conditions.

The applications chosen for this evaluation are based around resiliency in a

cache deployment. As well as evaluating the suitability of the API, they also

require multiple OpenCache nodes to be orchestrated together to provide a con-

sistent service. In the first application, we implement a load balancing applica-

tion, described in Section 5.3.1. This is concerned with pre-emptive avoidance of

failure, achieved through effectively managing the load on different OpenCache

nodes. The second application is a failover monitor, described in Section 5.3.2.

The behaviour differs in that it is designed to detect unscheduled and unpre-

dictable downtime in a deployment.

Both applications have their own distinct logic, which operates independently

to OpenCache itself, and relies on the API for interaction. It is important to note

that load balancing and failover behaviours would often be individual hardware

appliances in their own right. As these applications are built entirely in software,

there is the possibility for detailed customisation and optimisation, dependent

on the deployment requirements. This could include utilising input from other

sources, such as Network Management Systems (NMSs) or Quality of Experience

(QoE) measurement frameworks. This evaluation demonstrates only one example

of how to implement each; alternatives would be equally feasible.

This evaluation utilised a subset of the resources within the Fed4FIRE [10]

testbed. This testbed relies on a different set of supporting tools when compared

to the two previously used. Although similar in function, the testbed enables more

fine-grained resource allocation, defined through a specification format rather

than a graphical user interface.

This evaluation involves facilities located in multiple physical locations, inter-

connected together to create a large-scale pan-European topology. The arrange-

152

i2CATBristol iMinds

Origin Server

OpenCache
Node

OpenCache
Node

OC

Client

Client

Client

OpenCache
Controller

OpenFlow
Controller

OC

OC

Figure 5.8: Fed4FIRE Evaluation Topology

ment of resources is shown in Figure 5.8. The Bristol facility hosted the clients;

each running an instance of Scootplayer. These requested the same Big Buck

Bunny content as used previously.

Serving these clients was an origin server located in the iMinds testbed. This

was again running Python’s SimpleHTTPServer module to handle HTTP re-

quests. For requests to reach this server, they traverse a connecting link over the

i2CAT testbed. The OpenCache nodes are also deployed alongside the server. For

this experiment, we deployed two individual nodes, each running on a separate

virtual machine. As before, the testbed provided the necessary SDN capabilities

required for OpenCache to operate.

Different to the previous experiments is the prevalence of OpenFlow v1.3-

compatible hardware and software switches in the topology. The previously used

Floodlight controller did not have compatibility with this new OpenFlow specifi-

cation. As a result, this evaluation uses the Ryu controller [38]. Previously, the

OpenCache controller utilised an API in Floodlight to push specific flow rules

into the network. However, Ryu does not contain such an interface by default.

As such, we developed an interoperable API as a Ryu module and exposed this

this to OpenCache. This requires no changes to OpenCache. This process also

confirms the need for a consistent north-bound API; rather than developing a sep-

arate module for each controller, a standard interface and API would insure that

OpenCache could communicate with any controller, regardless of the underlying

technology and forwarding used in the network.

153

Load
Balancer

OpenCache
Controller

OpenCache
Node #1

SDN
Controller

OpenFlow
Switch

OpenCache
Node #2

stat

checkOverloaded

create

Virtualisation
Controller

create

hello

move
start

identifyCandidate

assignID

startService

stop
stop

stopService

modifyForwarding

createNewInstance

modifyForwarding

Figure 5.9: Load Balancing Message Flow

5.3.1 Load Balancer

This application effectively load balances requests for content between different

OpenCache nodes. We will use the information ascertained from the statistics

provided through the OpenCache API to determine when a node or individ-

ual service is deemed to be overloaded. This is only one potential method to

determine the load on a service, and could also be supplemented with metrics

ascertained through other means, such as information from the virtualisation or

network controllers.

The process and message flow followed by our load balancer is described in

Figure 5.9. The method calls shown in italics are part of the OpenCache API,

whereas the other calls are outside of the scope of this evaluation (and thus differ

dependent on the controller or application used). In the first instance, the load

154

balancer will request information about specific nodes it is monitoring (using the

stat command). These statistics are returned back to the application, which will

then analyse them to determine if any nodes are overloaded.

If any nodes are deemed to be currently consuming resources over the config-

ured threshold, the application will seek to find a suitable candidate to move the

load to. In this scenario, Node 1 is designated as overloaded. As this is the only

node present in the OpenCache deployment, there will be no suitable candidate

found as the target for migration. As a result of this, the application will create

a new node on which the service will be migrate to. This will be achieved by

the application sending a create command to the OpenCache controller, which

will negotiate with the virtual infrastructure manager to bring a new OpenCache

node online.

Once this process is complete, the load balancer will use the move command

to start migration of the service. In the first instance, this will start an identical

service running on the new node, Node 2. Once the service is started and ready

to handle requests, the OpenCache controller will modify the forwarding plane

and change the destination of the redirected requests for content.

At the completion of this process, Node 2 will handle all the requests that were

previously destined for the Node 1. Consequently, the application will stop the

existing service on Node 1, and thus free up the resources previously consumed.

5.3.2 Failover Monitor

The unavailability of content will undoubtedly negatively impact the Quality of

Experience for a user requesting from the cache. When it is considered that

content delivery networks are often provided as a paid service, an interruption

will typically constitute a breach of a Service Level Agreement (SLA). As such, we

demonstrate the ability of an application using the OpenCache API, to not only

detect failure, but also react and remedy the situation quickly and effectively.

The message flow for this process is similar to that of load balancing. However,

the application logic is slightly altered, as illustrated in Figure 5.10. Instead

of detecting capacity (and consumption thereof), we are rather detecting the

availability and uptime of a node. This is achieved by periodically polling the

service in order to elicit a response. If the service does not respond, the service

is deemed failed and offline.

155

Failover
Monitor

OpenCache
Controller

OpenCache
Node #1

SDN
Controller

OpenFlow
Switch

OpenCache
Node #2

request

create

Virtualisation
Controller

create

hello

move

start

assignID

startService

modifyForwarding

createNewInstance

modifyForwarding

timeout

Figure 5.10: Failover Monitor Message Flow

Once failure is detected, the same flow (as with the load balancer) continues:

the failover monitor will seek to migrate this offline service to an alternative node.

If no existing nodes are available, a new virtualised node will be created. In the

same way as the load balancer, the forwarding layer will be modified to match

the current location and availability of services.

5.3.3 Results

The experimentation examined the impact of the two applications on Quality-of-

Experience from the perspective of the client. In the case of the load balancer,

we wanted to ensure that the load balancing process, and thus the migration of

a service between two nodes, had minimal impact on the client. Five experimen-

tal runs where performed, each using a Scootplayer client to request content as

required.

Scootplayer monitored the same set of QoE metrics as defined in previous

experimentation. However, they showed no deviation during a load balancing

operation, and are thus are not illustrated. However, an important metric was

156

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

T
im

e
 B

u
ff
e
r

(p
la

y
b
a
c
k
/s

)

Time elapsed (seconds)

With Load Balancer
Baseline

Load Balance

Figure 5.11: Client Buffer During Load Balancing

added for the sake of this evaluation: buffer occupancy. This clearly demonstrates

the impact of load balancing, as shown in Figure 5.11, where the vertical line

denotes the load balancing operation at approximately 13 seconds into playback.

At this point in time, a reduction in the amount of content buffered on the

client is observed. The buffer, which holds a maximum of 60 seconds worth of

playback, temporarily reduces in size to hold 58 seconds of playback. As we used

2 second segment lengths in our playback, this is equivalent to one chunk in the

buffer.

This reduction, and the subsequent recovery, can attributed to the modifica-

tion of the forwarding plane during a request. More specifically, the modification

to the forwarding plane (necessary to implement the load balancing) will break

the existing connection between the client and the cache. This will cause an

application-layer request retry in Scootplayer. As the player is still consuming

content (playing back), the fill of the buffer will be reduced momentarily. How-

ever, once the client re-establishes the connection, it will download the necessary

content and refill the buffer back to the maximum 60 seconds.

As the load balancing has already taken place, it will now be downloading the

content from the new cache node, rather than the overloaded one. It is important

to note that although we only show buffer occupancy in this figure, other metrics

157

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

T
im

e
 B

u
ff
e
r

(p
la

y
b
a
c
k
/s

)

Time elapsed (seconds)

With Failover Monitor
Baseline

Failure
Recovery

Figure 5.12: Client Buffer During Failover with 1s Resolution

were otherwise unaffected. We ascertained this fact from a baseline experiment

(also shown), without the load balancing application present.

In the case of the failover monitor, we wanted to observe the impact of the time

taken to respond to a failure, and how this may effect the client in a similar way

to the load balancer. It became clear through our experimentation that the time

taken to respond to a node failure is dependent on the resolution of detection.

In the case of our example application, failure is identified through periodically

polling the service to detect reachability. If the service does not respond, it can

be assumed that the service is offline.

In our experimentation, we examine a number of different polling frequencies

at 1, 5 and 10 second intervals. These are shown in Figures 5.12, 5.13 and 5.14

respectively. As before, 5 experimental runs were performed. This was repeated

for each of the three polling frequencies. Similarly, a baseline experiment was

undertaken for each resolution to ensure that the application had no impact on

either the buffer occupancy or other QoE metrics.

In these figures, the first vertical line dictates when the initial node fails.

The second vertical line indicates when the application detects the failure and

remedies the situation by moving the requests across to a functioning cache node.

It is evident that once failure occurs, the client continues to consume content from

158

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

T
im

e
 B

u
ff
e
r

(p
la

y
b
a
c
k
/s

)

Time elapsed (seconds)

With Failover Monitor
Baseline

Failure
Recovery

Figure 5.13: Client Buffer During Failover with 5s Resolution

the buffer, reducing its size. However, as new content cannot be retrieved, the

buffer becomes significantly depleted.

The greater this depletion becomes, the longer it will take for the client to

recover back to a fully-buffered state, as evidenced in Figure 5.14. During this

period of time, the cache node itself will be under heavier load (more requests

per second) and the client more susceptible to further interruptions. This buffer

depletion continues to occur until detection takes places and appropriate actions

are taken by the fail-over monitor.

5.3.4 Discussion

The amount of buffer depletion a client encounters is strongly linked to the de-

tection resolution; a larger polling interval will result in the service remaining in

a failed state for longer. The impact on the client is that it cannot retrieve new

content, and moves closer to the buffer becoming empty. At this point playback

will stop. An operator must therefore consider client requirements and resources

before establishing a suitable value for polling.

This interval will be driven by the amount of buffer their customer’s playback

clients can accommodate. Although this thesis focuses on the delivery of video,

many applications running over the Internet do not necessarily have a buffer at all.

159

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

T
im

e
 B

u
ff
e
r

(p
la

y
b
a
c
k
/s

)

Time elapsed (seconds)

With Failover Monitor
Baseline

Failure
Recovery

Figure 5.14: Client Buffer During Failover with 10s Resolution

As a result, such applications have no inherent ability to deal with unavailability

of a service. As latency and failure can be potentially crippling to a service [88], it

would be recommended that in these cases, a resolution interval should be set at

the highest possible frequency without incurring a significant messaging overhead

that would further impede the delivery of the service.

This evaluation considers the use of both software-defined networking and

service-layer programmability to counter potential failures. These failures are

constrained to the compute-side of the infrastructure, whilst relying upon the

availability of the network to modify request handling. However, in some cases, a

simultaneous failure in the network may also occur, especially if the root cause is

shared (a catastrophic power failure for example). In these worst-case scenarios,

the techniques demonstrated in this evaluation can be combined with network-

based restoration techniques [60] to ensure that service is resumed as quickly as

possible.

5.4 Summary

In this chapter, we evaluated OpenCache in a number of different ways. Each of

these evaluations is designed to examine a specific aspect of OpenCache, particu-

160

larly in respect to the originally envisaged design goals (summarised in Table 3.1).

The success and extent to which these have been evaluated is discussed in the

following section.

For OpenCache to be a viable alternative to current content delivery tech-

niques, it must first meet the core requirements sought from any such content

delivery platform. In the first evaluation (outlined in Section 5.1), we examined

the impact that OpenCache has on the content delivery process, and noted that

it had negligible impact on the user’s experience. In fact, OpenCache improved

the situation in all circumstances, particularly when the content was available

from the cache. When this occurred, content could be delivered directly to the

user and network efficiency increased significantly.

This first evaluation was also vital in ascertaining the effectiveness of Software

Define Networking in the context of content delivery, and specifically, as a tool to

redirect requests for content. By completing this evaluation, we observed some

performance limitations in the current generations of switch hardware supporting

OpenFlow. This is likely to be overcome as technology evolves and support for

these technologies becomes the norm.

The second evaluation (presented in Section 5.2) was used to further exam-

ine OpenCache’s behaviour. To highlight any potential impacts, we identified

the effect that OpenCache had across an extensive set of recognised Quality-

of-Experience metrics. Through this experimentation, we showed again that

OpenCache actually improves the overall experience. To further the results of

the initial evaluation we scaled our experimentation in a way that encompassed

multiple simultaneous clients and their respective requests. This evaluation was

also used to demonstrate the distributed nature of OpenCache, with constituent

elements placed in a number of different locations.

This evaluation also highlighted complexity introduced in the process of caching

when adaptive streaming technology is used. Without sufficient knowledge of

quality levels and equivalences in content, cache object duplication can occur.

Although this has no impact over the worst-case scenario, it can lead to wastage

in storage capacity. Furthermore, it can prevent content from being stored and

delivered from the cache, as would otherwise be the case in a non-adaptive sce-

nario.

In our final evaluation (described Section 5.3), we examine the suitability of

the OpenCache API. In particular, we looked to demonstrate the flexibility and

161

power offered by the interface. To do this we built two applications that utilise

the API with their own custom logic to provide different resiliency features: one

pro-active and one reactive.

This experimentation demonstrated that the API provided sufficient levels of

control to achieve advanced levels of functionality. This includes unprecedented

levels of configurability and control, highlighted through tight coordination be-

tween multiple OpenCache elements and the platform’s interaction with the un-

derlying infrastructure provision.

In this case, application-layer runtime information was combined with direct

control over network behaviour, and used to remedy failure and excessive load.

These changes can be applied near instantaneously with minimal impact on the

client’s experience. This evaluation highlights the potential benefits as we move

towards the full softwarisation of both the network and its constituent services.

Together, these evaluations demonstrate the feasibility of moving content de-

livery functionality entirely into software. Not only does this meet core func-

tionality requirements, it has also highlighted additional benefits. Chief amongst

these is the flexibility and agility of infrastructure-assisted applications; the ca-

pability to not only efficiently use resources, but adapt their provision as such.

This is an important step towards understanding the future of content delivery

networks.

162

Chapter 6

Conclusions

In this thesis, we acknowledge the importance of the Internet, and its perva-

siveness in many peoples lives. As usage patterns have changed over time, the

Internet has become the predominant method used to deliver video to a world-

wide user-base. To meet this change in demand, the ways in which content is

delivered have also evolved.

This thesis examines how the latest wave of technologies may influence the

future of this process. These advances can be found in the network, where

new paradigms and products are allowing unprecedented control over networking

equipment. This work investigates the usage of novel technologies, not just as a

replacement for conventional functionality, but also as a tool to create behaviour

not often realised within the network.

Developments have also been made in the field of virtualisation: the avail-

ability of platforms capable of effectively scaling resource allocation in a dynamic

manner have become widely and freely available. This has enabled a new gener-

ation of flexible software functions to be created. These replace existing network

functions and offer a realistic alternative to the hardware variants that already

exist in today’s networks.

Content delivery can be considered as one of these functions, and is an im-

portant example of such. The process of softwarisation creates the possibility

of replacing large-scale content delivery networks with flexible alternatives that

can adapt to both resource availability and consumer demand. They can also

share their infrastructure with other functions, releasing or increasing their own

reservation when necessary.

163

Advances in content delivery techniques have also made video playback adapt-

able; clients now automatically adjust dependent on both their own capabilities

and those of the connected network. As mobile devices become more prevalent,

the ability to modify quality dependent on throughput has never been more im-

portant.

6.1 Thesis Contributions

This thesis lays down a specific set of motivations and aims that can be used

to influence the design and implementation of next-generation content delivery

platforms. These are based on an understanding of existing designs, as well as

a forward-facing look towards the potential benefits that the utilisation of new

technologies can bring to this area.

Taking these considerations forward, we provide a comprehensive design of

such a platform. This is segmented into a number of layers, each of which is

responsible for achieving a specific set of functions or behaviours. Importantly, it

offers a logical separation of the caching functionality from the control plane, with

each existing in a different layer of the architecture. This allows the behaviour

of a number of content caches to be determined from a central location, thus

providing the desired cache programmability.

Building on this design, we implement a prototype content delivery platform,

built specifically to explore and evaluate a subset of the design requirements laid

out in the earlier sections. This is released free and open-source1 for others to

examine and use.

The prototype is used in the first instance to understand and examine the

feasibility of utilising software defined networking in the process of content deliv-

ery. Through this work, we have determined that this technology can be used to

effectively redirect requests for content towards a particular content cache.

Although this proof of concept showed that this functionality was possible

with existing technologies, we encountered a number of performance degrada-

tions that would ultimately prevent its use in existing production environments.

However, these have been attributed to the relative immaturity of current imple-

mentations, and future iterations will likely not impose any such limitations.

1https://github.com/opencache-project

164

https://github.com/opencache-project

This evaluation, as with the others presented in this thesis, utilised a large-

scale experimental testbed spanning a number of countries within Europe. From

this topology, we created a realistic environment in which the design (through

use of the resultant prototype) could be evaluated using realistic traffic traversing

real networks.

We continued this evaluation by scaling up the experimental environment and

using this to measure the impact of caching on a number of recognised quality

of experience metrics. This is an important process considering that content

distribution networks are now deployed, at least partially, to ensure that these

measures are maintained at a reasonable level.

Through this evaluation, a number of issues were identified that impact the

efficiency of caching content in scenarios where adaptive content delivery tech-

niques are used. This includes potential cache duplication, and also the increased

probability of cache-misses. This phenomenon is even present when clients are

connected using identical links and in the same network segment; the interaction

of cache-hits in this process also complicates the matter further.

Clearly, due consideration needs to be taken to overcome these issues and

ensure that experience can be maintained at a satisfactory level. The design of

this platform provides the necessary tools to achieve this, without dictating the

method and logic by which it is to be achieved. These choices are left to the

operator or application to decide on which best fits their own content, customers

and infrastructure.

Another contribution of this thesis is the realisation of a novel control layer,

which allows a distributed content delivery platform to be controlled and main-

tained as-per user requirements. This functionality is achieved through the im-

plementation of a well documented and fine-grained API, which gives the owner

full control over the content delivery nodes connected in their deployment.

This functionality allows a new type of application to be built semantically

on top of a content delivery platform, and facilitates unprecedented levels of flex-

ibility and scalability. Through the use of this interface, an application can dy-

namically alter the behaviour, content and provision of a set of distributed caches

using whatever logic that the operator requires. This might include information

derived from internal systems or analytics, that would otherwise be difficult to in-

tegrate into existing content delivery decisions. This control includes the fetching

of content from remote locations prior to it becoming popular, potentially alle-

165

viating the demand otherwise placed on the infrastructure when many hundreds

or even thousands of users begin to request the content.

This API also explores novel functionalities in content delivery, particularly

the use of external compute platforms to provision new content delivery nodes in

response to current or even expected demand, enabling new cache nodes to be

created in response to load, network conditions or cost constraints. Given the

drive behind the virtualisation of network functions, it was imperative that we

explored the use of cutting-edge technologies to ascertain their suitability to host

and deploy the required functionality; in our case, a content delivery platform.

Through this work, we have demonstrated both the advantages and potential

pitfalls in doing so.

In the final evaluation, we demonstrated the suitability and flexibility of the

API by implementing a number of behaviours. These would usually require the

deployment of dedicated hardware middleboxes, but is instead realised using the

commodity switching equipment already located within the network. This is

only possible with the tight integration of compute and network resources, which

by working together, can provide a seamless transition of services between two

different cache nodes; whether this be due to excessive load or in response to

hardware failure.

Together, these evaluations exercise a number of features, both fundamen-

tal and novel, and explore the form of future content delivery platforms. They

also raise a number of limitations and drawbacks of using some of these cutting

edge-technologies, which allows us to better understand the steps necessary for

deployment into the real world.

6.1.1 Commercial and Research Impacts

This design also creates the potential for new business models to be realised. As

well as utilising disruptive technologies in the network and computing space, a

flexible and responsive software-based design also creates new opportunities to

offer content distribution as a commodity service.

As the design relies on the use of off-the-shelf hardware rather than a pro-

prietary platform, it removes a significant barrier to entry and allows competing

companies to offer alternative services that may even be located on the same

physical substrate. This should force business to innovate in the technical solu-

166

tion they offer, rather than a dependency on the infrastructure (and its location)

that they currently rely upon.

The design also enables cache deployments in different locations, especially in

places where cache are not traditionally present. It creates new opportunities for

operators of all different sizes to host their own cache. They can then auction

and/or sell the capacity contained within this deployment to interested parties.

Clients could include existing content distribution networks looking to store con-

tent in new, previously inaccessible, locations, or content creators looking for a

cost effective way to distribute their own content even closer to the user.

The monetisation of independently-hosted cache resources should help to sub-

sidise the acquisition and running of the necessary equipment, as well as contribut-

ing towards costs incurred by both the network operator and client in order to

deliver the content.

The thesis also contributes a platform that can be used by researchers and aca-

demics to develop novel and interesting techniques for delivering content. Rather

than having to develop and build the underlying cache implementation, this work

provides a common solution in which a researcher can build and modify the be-

haviour of a cache without the burden of extensive development. This enables

new areas to be explored around content placement, replacement and delivery

techniques in an age where content is being consumed in ever greater amounts.

6.1.2 Summary

In summary, this thesis has made the following contributions:

• Proposed a set of guidelines and desired features to be used in the creation

of future content delivery platforms.

• Realised the aforementioned design goals by building a free and open-source

prototype implementation. This encompasses many of these features, and

serves as a platform for experimentation.

• Conducted extensive evaluation using this prototype. These realistic exer-

cises were possible through the use of multiple international testbed facili-

ties.

167

• Highlighted the need for a standardised and open way of interacting with

content delivery networks. This includes an exploratory implementation

which was demonstrated as part of the aforementioned evaluation.

Throughout this process, we have had to overcome a number of challenges.

The lessons learnt include:

• Identification of deficiencies in the performance of current software-defined

tools and technologies, which are still relatively immature.

• Unexpected interactions when adaptive streaming technologies are used;

these are likely to have substantial impacts as the technology sees greater

adoption.

The capability to not only work alongside these technologies, but exploit their

inherent behaviour to the advantage of the content delivery network, is vital if

content consumption continues to increase.

6.2 Future Work

In this thesis, we presented a comprehensive design for a future content deliv-

ery platform. We then realised this through a prototype implementation, which

explored a number of the proposed features. Further development continues on

OpenCache, which serves as a platform to identify, implement and evaluate new

techniques for content delivery.

An important goal for OpenCache is the fostering of a community of devel-

opers and users. Progress in this respect is ongoing due to the recency of the

work. In the future, this community will be vital in ensuring transparency and

oversight in OpenCache. It will also serve as a platform to share additions and

modifications that feedback directly into future iterations of the platform.

Future work also includes the proposition of the OpenCache API as a candi-

date for standardising the method through which applications can communicate

with (and subsequently control) CDNs. This can be achieved without the need

to understand the specific details of the underlying resources or how to address

its components.

168

There is also the opportunity to expand this API, including the provision of

access control and tailored views. This allows different users and applications to

not only have different representations of an OpenCache deployment, but also ac-

cess to a different set of functions consummate to their role in the organisation or

purpose as an application. This is a key step towards achieving the collaborative

approach to content distribution outlined in the OpenCache design.

An important facet of using software defined networking technology is the

ability to go beyond its use as a redirection technique. We explored this in

the evaluation by implementing load-balancing and traffic steering behaviour.

However, this can be taken even further. For example, replication could also

be introduced, with little or no requirement to change the underlying code-base

to support this. Instead, this functionality can be realised using a combination

of flow modifications, and replicating the requests amongst a collection of cache

nodes.

In order to give users and applications even more control over the caches

in their deployment, it would be interesting to facilitate finer granularity over

what content is stored on the cache. Although out of scope for this initial im-

plementation, possibilities include determining the cache replacement policy on

a per-object level. As this requires almost instantaneous decisions, it may be ap-

propriate to have a compilable decision list or set of logic, which is then pushed

to the cache node. As this is performance sensitive, this would avoid the need

for a node to request information from the controller before making a decision on

whether or not a content object should remain in the cache or be evicted.

There is also a clear need to investigate how resources of all types are de-

scribed, provisioned and shared. Although OpenFlow makes progress towards

achieving this in the field of networking, it is clearly not designed, nor intended

to, consider all of these aspects in detail. However, there are wider concerns in

other areas of softwarisation. For example, the OpenCache prototype is built

around a proprietary interface necessary to provision resources in a compute en-

vironment. Although there is a clear trend towards the format and style of these

interfaces, harmonising these and ascertaining consensus amongst interested par-

ties would clearly be beneficial to all interested parties.

Further research directions include the identification and realisation of addi-

tional services and platforms that can be brought into software. This has been

attempted in some areas, but many aspects have gone unexplored as of yet. This

169

process involves not only replicating basic functionality in software, but also ex-

ploring how programmable infrastructure can by exploited to go beyond existing

service provision and delivery.

Other directions include an investigation into how the commoditisation of

compute and network resources impacts business models and user communities.

This is particularly interesting in light of current trends towards the use of ho-

mogenised hardware and networking platforms, which remove some of the market

leverage that many of the current organisations and business hold. This is likely to

be furthered by the widespread availability of flexible and configurable hardware

platforms. These will be capable of operating as either compute or networking

elements, without performance limitations, and seamlessly transitioning between

each function.

With the flexibility offered by programmable platforms, there is a necessity

to consider how the applications can best use the dynamic environment. In this

case, resources are fluid, and functions can be migrated and moved without user

intervention. In such an environment, it is important to define the requirements of

a function (or set of such). For example, in the case of content delivery networks,

it is vital to specify the performance and latency requirements, which are key

to the success of the platform. Currently, there is no standard way of achieving

such.

These requirements may also need to be matched and resolved against grander

goals, such as reduced operating cost or more sustainable provisioning. Consider-

ing that all of these metrics can change over time, there are unsolved challenges

around the design and implementation of such an orchestration platform. This

includes designing a common the method for gathering information from all the

different potential inputs, and furthers the desire for greater coordination in such

environments.

6.3 Concluding Remarks

In this thesis we have provided contributions towards the future of content de-

livery design. This includes a framework in which future deployments can be

built. We have shown through extensive evaluation the benefits of some of these

design decisions. There is a clear advantage to utilising next-generation technolo-

170

gies, and ensuring that they are integrated into platform designs will be key to

realising increased efficiency, control and programmability.

Many of these functionalities rely somewhat on software defined networking,

and in the case of this thesis, OpenFlow technology. However, there are no guar-

antees that this technology will see continued adoption, especially in production

environments. Although early signs are encouraging, the future in this respect is

unclear.

Nonetheless, there is no reason why the techniques demonstrated in this thesis

cannot be replicated using other technologies labelled under the same software

defined umbrella. Although the thesis does not consider these, the modular na-

ture of the implementation makes their integration and evaluation a relatively

simple process. Mirroring this, work in the network controller space [23] shows

a concerted effort towards the simultaneous support of technologies other than

OpenFlow.

Before this technology ever sees production use, there are still a number of

challenges to be met. One of OpenFlow’s major advantages is that the net-

work controller can work with networking hardware from multiple vendors. Yet

recent developments are threatening this situation, with a trend towards vendor-

specific extensions. Currently, the ability to configure switches, especially to

create tunnels and bridges, requires knowledge of the underlying hardware and

the capabilities it supports. There is no common way to interact with them at

the moment, and there is a real risk that this will segment the market and negate

the interoperability that has so far been the key to success.

Although many of the virtualised compute platforms are now used in large-

scale commercial deployments, the same cannot be said for their network coun-

terparts. This is likely in part due to the scale and performance of the software

controllers, which at the moment lack the robustness required in a production

environment. There are currently efforts which are showing genuine progress

towards solving this problem [62].

171

172

Bibliography

[1] About Python. http://www.python.org/about. Accessed: 16/10/2015.

[2] Akamai Technologies. http://www.akamai.com/. Accessed: 18/06/2015.

[3] Apple HTTP Live Streaming. https://developer.apple.com/streaming/.

Accessed: 18/06/2015.

[4] Ceph: a distributed object store and file system designed to provide excel-

lent performance, reliability and scalability. http://ceph.com/. Accessed:

16/10/2015.

[5] ConfigParser Configuration file parser. http://docs.python.org/2/

library/configparser.html. Accessed: 16/10/2015.

[6] CoreOS is Linux for Massive Server Deployments. http://coreos.com/. Ac-

cessed: 21/10/2015.

[7] Debian: The Universal Operating System. http://www.debian.org/. Ac-

cessed: 15/10/2015.

[8] Docker - Build, Ship, and Run Any App, Anywhere. https://www.docker.

com/. Accessed: 21/10/2015.

[9] ETSI Network Functions Virtualisation: An Introduction, Benefits, Enablers,

Challenges and Call for Action. http://portal.etsi.org/NFV/NFV_White_

Paper.pdf. Accessed: 29/09/2015.

[10] Fed4FIRE: Federation for Future Internet Research and Experimentation.

http://www.fed4fire.eu/. Accessed: 16/10/2015.

173

http://www.python.org/about
http://www.akamai.com/
https://developer.apple.com/streaming/
http://ceph.com/
http://docs.python.org/2/library/configparser.html
http://docs.python.org/2/library/configparser.html
http://coreos.com/
http://www.debian.org/
https://www.docker.com/
https://www.docker.com/
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.fed4fire.eu/

[11] Floodlight OpenFlow Controller: Open Source Software for Build-

ing Software-defined Networks. http://www.projectfloodlight.org/

floodlight/. Accessed: 21/10/2015.

[12] GÉANT Project GN3plus Open Call: Technical Annex B - GÉANT

OpenFlow Facility. http://geant3.archive.geant.net/opencalls/

Overview/Documents/Open%20Call%20Technical%20Annex%20B%20GEANT%

20Openflow%20Testbed%20Facility%20FINAL.pdf. Accessed: 16/10/2015.

[13] Gluster: Storage for your Cloud. http://www.gluster.org/. Accessed:

16/10/2015.

[14] Limelight Networks. http://www.limelight.com/. Accessed: 18/06/2015.

[15] logging - Logging facility for Python. http://docs.python.org/2/

library/logging.html. Accessed: 16/10/2015.

[16] Microsoft Smooth Streaming. http://www.iis.net/downloads/

microsoft/smooth-streaming. Accessed: 18/06/2015.

[17] Mininet - An Instant Virtual Network on your Laptop (or other PC). http:

//mininet.org/. Accessed: 21/10/2015.

[18] MongoDB: Launch your GIANT idea. http://www.mongodb.org/. Ac-

cessed: 16/10/2015.

[19] Netflix Open Connect. http://openconnect.netflix.com/. Accessed:

18/06/2015.

[20] OFELIA Control Framework (OCF): a set of software tools for testbed man-

agement. http://github.com/fp7-ofelia/ocf. Accessed: 15/10/2015.

[21] Open Networking Foundation. https://www.opennetworking.org/. Ac-

cessed: 19/06/2015.

[22] Open vSwitch: Production Quality, Multilayer Open Virtual Switch. http:

//openvswitch.org/. Accessed: 19/06/2015.

[23] OpenDaylight Consortium. http://www.opendaylight.org/. Accessed:

19/06/2015.

174

http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://geant3.archive.geant.net/opencalls/Overview/Documents/Open%20Call%20Technical%20Annex%20B%20GEANT%20Openflow%20Testbed%20Facility%20FINAL.pdf
http://geant3.archive.geant.net/opencalls/Overview/Documents/Open%20Call%20Technical%20Annex%20B%20GEANT%20Openflow%20Testbed%20Facility%20FINAL.pdf
http://geant3.archive.geant.net/opencalls/Overview/Documents/Open%20Call%20Technical%20Annex%20B%20GEANT%20Openflow%20Testbed%20Facility%20FINAL.pdf
http://www.gluster.org/
http://www.limelight.com/
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
http://mininet.org/
http://mininet.org/
http://www.mongodb.org/
http://openconnect.netflix.com/
http://github.com/fp7-ofelia/ocf
https://www.opennetworking.org/
http://openvswitch.org/
http://openvswitch.org/
http://www.opendaylight.org/

[24] OpenFlow in Europe: Linking Infrastructure and Applications. http://

www.fp7-ofelia.eu/. Accessed: 15/10/2015.

[25] OpenFlow Switch Specification: Version 1.0.0. https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.0.0.pdf. Accessed:

19/06/2015.

[26] OpenFlow Switch Specification: Version 1.1.0. https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.1.0.pdf. Accessed:

19/06/2015.

[27] OpenFlow Switch Specification: Version 1.2. https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.2.pdf. Accessed:

19/06/2015.

[28] OpenFlow Switch Specification: Version 1.3.0. https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.3.0.pdf. Accessed:

19/06/2015.

[29] OpenFlow Switch Specification: Version 1.4.0. https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-spec-v1.4.0.pdf. Accessed:

19/06/2015.

[30] OpenFlow Switch Specification: Version 1.5.0. https://www.

opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf.

Accessed: 19/06/2015.

[31] OpenStack: Open source software for creating private and public clouds.

http://www.openstack.org/. Accessed: 21/06/2015.

[32] OPNFV: An Open Platform for Accelerating NFV. http://www.opnfv.

org/sites/opnfv/files/pages/files/opnfv_whitepaper_103014.pdf.

Accessed: 29/09/2015.

175

http://www.fp7-ofelia.eu/
http://www.fp7-ofelia.eu/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
http://www.openstack.org/
http://www.opnfv.org/sites/opnfv/files/pages/files/opnfv_whitepaper_103014.pdf
http://www.opnfv.org/sites/opnfv/files/pages/files/opnfv_whitepaper_103014.pdf

[33] Peach Open Movie Project Big Buck Bunny. http://peach.blender.org/.

Accessed: 16/10/2015.

[34] pip - The PyPA recommended tool for installing Python packages. https:

//pypi.python.org/pypi/pip. Accessed: 21/10/2015.

[35] Project CCNx: Content-Centric Networking CCNx Reference Implementa-

tion. http://github.com/ProjectCCNx/ccnx. Accessed: 10/06/2015.

[36] PyPI - the Python Package Index. https://pypi.python.org/pypi. Ac-

cessed: 21/10/2015.

[37] Regular Expression Syntax. http://docs.python.org/2/library/re.

html#regular-expression-syntax. Accessed: 16/10/2015.

[38] Ryu: Component-based Software Defined Networking Framework. https:

//osrg.github.io/ryu/. Accessed: 19/06/2015.

[39] SimpleHTTPServer - Simple HTTP request handler. http://docs.python.

org/2/library/simplehttpserver.html. Accessed: 16/10/2015.

[40] Static Flow Pusher API (New). http://floodlight.atlassian.net/

wiki/display/floodlightcontroller/Static+Flow+Pusher+API+(New).

Accessed: 21/10/2015.

[41] Using etcd with CoreOS. https://coreos.com/etcd/. Accessed:

21/10/2015.

[42] Vagrant - Development environments made easy. https://www.vagrantup.

com/. Accessed: 21/10/2015.

[43] Varnish Cache. https://www.varnish-cache.org/. Accessed: 04/10/2015.

[44] VideoLAN VLC Media Player. http://www.videolan.org/vlc/. Accessed:

16/10/2015.

[45] Xen Project Hypervisor. http://www.xenproject.org/. Accessed:

15/10/2015.

[46] Cisco VNI: Global mobile data traffic forecast update, 2010-2015. White

Paper, February, 2011.

176

http://peach.blender.org/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
http://github.com/ProjectCCNx/ccnx
https://pypi.python.org/pypi
http://docs.python.org/2/library/re.html#regular-expression-syntax
http://docs.python.org/2/library/re.html#regular-expression-syntax
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
http://docs.python.org/2/library/simplehttpserver.html
http://docs.python.org/2/library/simplehttpserver.html
http://floodlight.atlassian.net/wiki/display/floodlightcontroller/Static+Flow+Pusher+API+(New)
http://floodlight.atlassian.net/wiki/display/floodlightcontroller/Static+Flow+Pusher+API+(New)
https://coreos.com/etcd/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.varnish-cache.org/
http://www.videolan.org/vlc/
http://www.xenproject.org/

[47] ETSI GS NFV 001 Network Functions Virtualization (NFV); Use Cases,

2013.

[48] ETSI GS NFV 004 Network Functions Virtualization (NFV); Virtualization

Requirements, 2013.

[49] Open Networking Foundation North Bound Interface Working Group (NBI-

WG) Charter, 2013.

[50] V. Adhikari, Y. Guo, F. Hao, V. Hilt, Z.-L. Zhang, M. Varvello, and

M. Steiner. Measurement Study of Netflix, Hulu, and a Tale of Three CDNs.

Networking, IEEE/ACM Transactions on, PP(99):1–1, 2014.

[51] V. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-L.

Zhang. Unreeling netflix: Understanding and improving multi-CDN movie

delivery. In INFOCOM, 2012 Proceedings IEEE, pages 1620–1628, March

2012.

[52] V. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting YouTube: An

active measurement study. In INFOCOM, 2012 Proceedings IEEE, pages

2521–2525, March 2012.

[53] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig. Comparing DNS

Resolvers in the Wild. In Proceedings of the 10th ACM SIGCOMM Conference

on Internet Measurement, IMC ’10, pages 15–21, New York, NY, USA, 2010.

ACM.

[54] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig. Web Content Car-

tography. In Proceedings of the 2011 ACM SIGCOMM Conference on Inter-

net Measurement Conference, IMC ’11, pages 585–600, New York, NY, USA,

2011. ACM.

[55] V. Aggarwal, A. Feldmann, C. Scheideler, and M. Faloutsos. Can ISPs and

P2P users cooperate for improved performance. ACM SIGCOMM Computer

Communication Review, 37:29–40, 2007.

[56] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A

survey of information-centric networking. Communications Magazine, IEEE,

50(7):26–36, 2012.

177

[57] S. Androutsellis-Theotokis and D. Spinellis. A Survey of Peer-to-peer Con-

tent Distribution Technologies. ACM Comput. Surv., 36(4):335–371, Decem-

ber 2004.

[58] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. R. Ro-

driguez. Is High-quality VoD Feasible Using P2P Swarming? In Proceedings

of the 16th International Conference on World Wide Web, WWW ’07, pages

903–912, New York, NY, USA, 2007. ACM.

[59] M. Arlitt, R. Friedrich, and T. Jin. Performance Evaluation of Web Proxy

Cache Replacement Policies. Perform. Eval., 39(1-4):149–164, February 2000.

[60] S. Astaneh and S. Heydari. Multi-failure restoration with minimal flow op-

erations in software defined networks. In Design of Reliable Communication

Networks (DRCN), 2015 11th International Conference on the, pages 263–

266, March 2015.

[61] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,

B. O’Connor, P. Radoslavov, W. Snow, et al. ONOS: towards an open, dis-

tributed SDN OS. In Proceedings of the third workshop on Hot topics in

software defined networking, pages 1–6. ACM, 2014.

[62] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,

B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar. ONOS: Towards an

Open, Distributed SDN OS. In Proceedings of the Third Workshop on Hot

Topics in Software Defined Networking, HotSDN ’14, pages 1–6, New York,

NY, USA, 2014. ACM.

[63] T. Berners-Lee, R. T. Fielding, and H. F. Nielsen. Hypertext Trans-

fer Protocol – HTTP/1.0. RFC 1945, RFC Editor, May 1996. http:

//www.rfc-editor.org/rfc/rfc1945.txt.

[64] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:

Programming Protocol-independent Packet Processors. SIGCOMM Comput.

Commun. Rev., 44(3):87–95, July 2014.

[65] B. Boughzala, R. Ben Ali, M. Lemay, Y. Lemieux, and O. Cherkaoui. Open-

Flow supporting inter-domain virtual machine migration. In Wireless and

178

http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc1945.txt

Optical Communications Networks (WOCN), 2011 Eighth International Con-

ference on, pages 1–7. IEEE, 2011.

[66] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe. Design and Implementation of a Routing Control Platform. In Pro-

ceedings of the 2Nd Conference on Symposium on Networked Systems Design

& Implementation - Volume 2, NSDI’05, pages 15–28, Berkeley, CA, USA,

2005. USENIX Association.

[67] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea. Implementing

dynamic chaining of Virtual Network Functions in OpenStack platform. In

Transparent Optical Networks (ICTON), 2015 17th International Conference

on, pages 1–4, July 2015.

[68] M. Canini, D. Kostic, J. Rexford, and D. Venzano. Automating the Testing

of OpenFlow Applications. In Proceedings of the 1st International Workshop

on Rigorous Protocol Engineering (WRiPE), 2011.

[69] M. Canini, D. Venzano, P. Peresini, D. Kostic, J. Rexford, et al. A NICE

Way to Test OpenFlow Applications. In NSDI, volume 12, pages 127–140,

2012.

[70] M. Carbone and L. Rizzo. Dummynet Revisited. SIGCOMM Comput. Com-

mun. Rev., 40(2):12–20, April 2010.

[71] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Mckeown, and S. Shenker.

ETHANE: Taking Control of the Enterprise. In SIGCOMM Computer Comm.

Rev, 2007.

[72] J. D. Case, M. Fedor, M. L. Schoffstall, and J. R. Davin. Simple Network

Management Protocol (SNMP). STD 15, RFC Editor, May 1990. http:

//www.rfc-editor.org/rfc/rfc1157.txt.

[73] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J.

Worrell. A hierarchical internet object cache. Technical report, DTIC Docu-

ment, 1995.

[74] X. Chen, Q. Fan, and H. Yin. Caching in Information-Centric Networking:

From a content delivery path perspective. In Innovations in Information

179

http://www.rfc-editor.org/rfc/rfc1157.txt
http://www.rfc-editor.org/rfc/rfc1157.txt

Technology (IIT), 2013 9th International Conference on, pages 48–53, March

2013.

[75] B. Cheng, X. Liu, Z. Zhang, and H. Jin. A Measurement Study of a Peer-

to-Peer Video-on-Demand System. In IPTPS, 2007.

[76] J. Choi, A. Reaz, and B. Mukherjee. A Survey of User Behavior in VoD Ser-

vice and Bandwidth-Saving Multicast Streaming Schemes. Communications

Surveys Tutorials, IEEE, 14(1):156–169, First 2012.

[77] E. Cohen, B. Krishnamurthy, and J. Rexford. Evaluating Server-Assisted

Cache Replacement in the Web. In Proceedings of the 6th European Sympo-

sium on Algorithms, pages 307–319. Springer-Verlag, 1998.

[78] C. P. Costa, I. S. Cunha, A. Borges, C. V. Ramos, M. M. Rocha, J. M.

Almeida, and B. Ribeiro-Neto. Analyzing Client Interactivity in Streaming

Media. In Proceedings of the 13th International Conference on World Wide

Web, WWW ’04, pages 534–543, New York, NY, USA, 2004. ACM.

[79] J. Costa-Requena, M. Kimmerlin, J. Manner, and R. Kantola. SDN opti-

mized caching in LTE mobile networks. In Information and Communication

Technology Convergence (ICTC), 2014 International Conference on, pages

128–132, Oct 2014.

[80] L. D’Acunto, M. Meulpolder, R. Rahman, J. Pouwelse, and H. Sips. Model-

ing and analyzing the effects of firewalls and NATs in P2P swarming systems.

In Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW),

2010 IEEE International Symposium on, pages 1–8, April 2010.

[81] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling Policies for an On-

Demand Video Server with Batching. In Proc. of ACM Multimedia, pages

15–23, 1994.

[82] S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh, D. Getachew,

and P. Desai. Application-aware aggregation and traffic engineering in a con-

verged packet-circuit network. In Optical Fiber Communication Conference

and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers

Conference, pages 1–3, March 2011.

180

[83] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[84] T. Do, K. Hua, and M. Tantaoui. P2VoD: providing fault tolerant video-

on-demand streaming in peer-to-peer environment. In Communications, 2004

IEEE International Conference on, volume 3, pages 1467–1472 Vol.3, June

2004.

[85] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and

H. Zhang. Understanding the Impact of Video Quality on User Engagement.

In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,

pages 362–373, New York, NY, USA, 2011. ACM.

[86] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal,

and J. Halpern. Forwarding and Control Element Separation (ForCES) Pro-

tocol Specification. RFC 5810, RFC Editor, March 2010. http://www.

rfc-editor.org/rfc/rfc5810.txt.

[87] D. Eager, M. Vernon, and J. Zahorjan. Optimal and Efficient Merging Sched-

ules for Video-on-Demand Servers. In Proc. ACM Multimedia, pages 199–202,

1999.

[88] S. Egger, T. Hossfeld, R. Schatz, and M. Fiedler. Waiting times in quality

of experience for web based services. In Quality of Multimedia Experience

(QoMEX), 2012 Fourth International Workshop on, pages 86–96, July 2012.

[89] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Network

Configuration Protocol (NETCONF). RFC 6241, RFC Editor, June 2011.

http://www.rfc-editor.org/rfc/rfc6241.txt.

[90] D. Erickson. The Beacon Openflow Controller. In Proceedings of the Second

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,

HotSDN ’13, pages 13–18, New York, NY, USA, 2013. ACM.

[91] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi.

Participatory networking: An API for application control of SDNs. In ACM

SIGCOMM Computer Communication Review, volume 43, pages 327–338.

ACM, 2013.

181

http://www.rfc-editor.org/rfc/rfc5810.txt
http://www.rfc-editor.org/rfc/rfc5810.txt
http://www.rfc-editor.org/rfc/rfc6241.txt

[92] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J. Leach,

and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,

RFC Editor, June 1999. http://www.rfc-editor.org/rfc/rfc2616.txt.

[93] N. Foster, A. Guha, M. Reitblatt, A. Story, M. Freedman, N. Katta, C. Mon-

santo, J. Reich, J. Rexford, C. Schlesinger, D. Walker, and R. Harrison.

Languages for Software-defined Networks. Communications Magazine, IEEE,

51(2):128–134, February 2013.

[94] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,

and D. Walker. Frenetic: A Network Programming Language. SIGPLAN

Not., 46(9):279–291, September 2011.

[95] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and M. Zhang.

Duet: Cloud scale load balancing with hardware and software. In Proceedings

of the 2014 ACM conference on SIGCOMM, pages 27–38. ACM, 2014.

[96] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube Traffic Characterization:

A View From the Edge, IMC. In In: Proc. of IMC, 2007.

[97] L. Guo, S. Chen, Z. Xiao, and X. Zhang. Analysis of Multimedia Workloads

with Implications for Internet Streaming. In Proc. of WWW, 2005.

[98] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N. Feam-

ster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett. SDX: A Software

Defined Internet Exchange. In Proceedings of the 2014 ACM conference on

SIGCOMM, pages 551–562. ACM, 2014.

[99] G. Háılinger and F. Hartleb. Content Delivery and Caching from a Network

Provider’s Perspective. Comput. Netw., 55(18):3991–4006, December 2011.

[100] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualiza-

tion: Challenges and opportunities for innovations. Communications Maga-

zine, IEEE, 53(2):90–97, Feb 2015.

[101] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari.

Plug-n-Serve: Load-balancing web traffic using OpenFlow. ACM SIGCOMM

Demo, 4(5):6, 2009.

182

http://www.rfc-editor.org/rfc/rfc2616.txt

[102] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross. A Measurement Study

of a Large-Scale P2P IPTV System. Multimedia, IEEE Transactions on,

9(8):1672–1687, Dec 2007.

[103] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

S. Banerjee, and N. McKeown. ElasticTree: Saving Energy in Data Center

Networks. In NSDI, volume 10, pages 249–264, 2010.

[104] A. Hu. Video-on-Demand Broadcasting Protocols: A Comprehensive Study.

In Proceedings of IEEE INFOCOM, pages 508–517, 2001.

[105] K. A. Hua, Y. Cai, and S. Sheu. Patching: A Multicast Technique for True

Video-on-demand Services. In Proceedings of the Sixth ACM International

Conference on Multimedia, MULTIMEDIA ’98, pages 191–200, New York,

NY, USA, 1998. ACM.

[106] C. Huang, J. Li, and K. W. Ross. Peer-Assisted VoD: Making Internet

Video Distribution Cheap. In Peer-to-Peer Systems, 2007.

[107] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-

free Coordination for Internet-scale Systems. In USENIX Annual Technical

Conference, volume 8, page 9, 2010.

[108] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM: High Performance

and Flexible Networking Using Virtualization on Commodity Platforms. In

11th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 14), pages 445–458, Seattle, WA, April 2014. USENIX Association.

[109] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and

R. L. Braynard. Networking Named Content. In Proceedings of the 5th Inter-

national Conference on Emerging Networking Experiments and Technologies,

CoNEXT ’09, pages 1–12, New York, NY, USA, 2009. ACM.

[110] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat.

B4: Experience with a Globally-deployed Software Defined WAN. SIGCOMM

Comput. Commun. Rev., 43(4):3–14, August 2013.

183

[111] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia. SDN-Based

Application-Aware Networking on the Example of YouTube Video Streaming.

In Software Defined Networks (EWSDN), 2013 Second European Workshop

on, pages 87–92, Oct 2013.

[112] J. Kangasharju, K. W. Ross, and J. W. Roberts. Performance Evalua-

tion of Redirection Schemes in Content Distribution Networks. In Computer

Communications, pages 207–214, 2000.

[113] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should Internet Ser-

vice Providers Fear Peer-assisted Content Distribution? In Proceedings of the

5th ACM SIGCOMM Conference on Internet Measurement, IMC ’05, pages

6–6, Berkeley, CA, USA, 2005. USENIX Association.

[114] K. Katsalis, V. Sourlas, T. Korakis, and L. Tassiulas. A cloud-based content

replication framework over multi-domain environments. In Communications

(ICC), 2014 IEEE International Conference on, pages 2926–2931, June 2014.

[115] M. Koerner and O. Kao. Multiple service load-balancing with OpenFlow.

In High Performance Switching and Routing (HPSR), 2012 IEEE 13th Inter-

national Conference on, pages 210–214. IEEE, 2012.

[116] B. Krishnamurthy, C. Wills, and Y. Zhang. On the Use and Performance

of Content Distribution Networks. In Proceedings of the 1st ACM SIGCOMM

Workshop on Internet Measurement, IMW ’01, pages 169–182, New York,

NY, USA, 2001. ACM.

[117] S. S. Krishnan and R. K. Sitaraman. Video Stream Quality Impacts Viewer

Behavior: Inferring Causality Using Quasi-experimental Designs. In Proceed-

ings of the 2012 ACM Conference on Internet Measurement Conference, IMC

’12, pages 211–224, New York, NY, USA, 2012. ACM.

[118] S. Lederer, C. Mueller, B. Rainer, C. Timmerer, and H. Hellwagner. An

experimental analysis of Dynamic Adaptive Streaming over HTTP in Content

Centric Networks. In Multimedia and Expo (ICME), 2013 IEEE International

Conference on, pages 1–6, July 2013.

[119] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang.

A Case for a Coordinated Internet Video Control Plane. In Proceedings of

184

the ACM SIGCOMM 2012 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communication, SIGCOMM ’12, pages

359–370, New York, NY, USA, 2012. ACM.

[120] Z. Liu, Y. Shen, K. Ross, S. Panwar, and Y. Wang. LayerP2P: Using Lay-

ered Video Chunks in P2P Live Streaming. Multimedia, IEEE Transactions

on, 11(7):1340–1352, Nov 2009.

[121] H. Long, Y. Shen, M. Guo, and F. Tang. LABERIO: Dynamic load-

balanced routing in OpenFlow-enabled networks. In Advanced Information

Networking and Applications (AINA), 2013 IEEE 27th International Confer-

ence on, pages 290–297. IEEE, 2013.

[122] M. Luizelli, L. Bays, L. Buriol, M. Barcellos, and L. Gaspary. Piecing

together the NFV provisioning puzzle: Efficient placement and chaining of

virtual network functions. In Integrated Network Management (IM), 2015

IFIP/IEEE International Symposium on, pages 98–106, May 2015.

[123] Q. Lv, S. Ratnasamy, and S. Shenker. Can Heterogeneity Make Gnutella

Scalable? In Proceedings of the first International Workshop on Peer-to-Peer

Systems, pages 94–103, 2002.

[124] N. Magharei and R. Rejaie. PRIME: Peer-to-Peer Receiver-drIven MEsh-

Based Streaming. In INFOCOM 2007. 26th IEEE International Conference

on Computer Communications. IEEE, pages 1415–1423, May 2007.

[125] N. Magharei, R. Rejaie, and Y. Guo. Mesh or Multiple-Tree: A Compar-

ative Study of Live P2P Streaming Approaches. In IEEE INFOCOM 2007

- 26th IEEE International Conference on Computer Communications, pages

1424–1432, May 2007.

[126] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On Dominant Charac-

teristics of Residential Broadband Internet Traffic. In Proceedings of the 9th

ACM SIGCOMM Conference on Internet Measurement Conference, IMC ’09,

pages 90–102, New York, NY, USA, 2009. ACM.

[127] V. Mann, A. Vishnoi, K. Kannan, and S. Kalyanaraman. CrossRoads:

Seamless VM mobility across data centers through software defined network-

185

ing. In Network Operations and Management Symposium (NOMS), 2012

IEEE, pages 88–96. IEEE, 2012.

[128] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,

and F. Huici. ClickOS and the Art of Network Function Virtualization. In

11th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 14), pages 459–473, Seattle, WA, April 2014. USENIX Association.

[129] F. Mattos, D. Menezez, and O. C. Muniz Bandeira Duarte. XenFlow:

Seamless migration primitive and quality of service for virtual networks. In

Global Communications Conference (GLOBECOM), 2014 IEEE, pages 2326–

2331. IEEE, 2014.

[130] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in

Campus Networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March

2008.

[131] S. Mehraghdam, M. Keller, and H. Karl. Specifying and placing chains of

virtual network functions. In Cloud Networking (CloudNet), 2014 IEEE 3rd

International Conference on, pages 7–13, Oct 2014.

[132] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and S. Davy.

Design and evaluation of algorithms for mapping and scheduling of virtual

network functions. In Network Softwarization (NetSoft), 2015 1st IEEE Con-

ference on, pages 1–9, April 2015.

[133] H. Moens and F. De Turck. VNF-P: A model for efficient placement of

virtualized network functions. In Network and Service Management (CNSM),

2014 10th International Conference on, pages 418–423, Nov 2014.

[134] J. T. Moore and S. M. Nettles. Towards Practical Programmable Packets.

In Proceedings of the 20th Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM 2001, pages 41–50, 2001.

[135] H. Nam, D. Calin, and H. Schulzrinne. Intelligent content delivery over

wireless via SDN. In Wireless Communications and Networking Conference

(WCNC), 2015 IEEE, pages 2185–2190, March 2015.

186

[136] C. Papagianni, A. Leivadeas, and S. Papavassiliou. A Cloud-Oriented Con-

tent Delivery Network Paradigm: Modeling and Assessment. Dependable and

Secure Computing, IEEE Transactions on, 10(5):287–300, Sept 2013.

[137] M. Pathan and R. Buyya. A Taxonomy of CDNs. In R. Buyya, M. Pathan,

and A. Vakali, editors, Content Delivery Networks, volume 9 of Lecture Notes

Electrical Engineering, pages 33–77. Springer Berlin Heidelberg, 2008.

[138] P. Pereš́ıni and M. Canini. Is Your OpenFlow Application Correct? In

Proceedings of The ACM CoNEXT Student Workshop, CoNEXT ’11 Student,

pages 18:1–18:2, New York, NY, USA, 2011. ACM.

[139] D. Perino and M. Varvello. A reality check for content centric network-

ing. In Proceedings of the ACM SIGCOMM workshop on Information-centric

networking, pages 44–49. ACM, 2011.

[140] S. Podlipnig and L. Böszörmenyi. A survey of web cache replacement strate-

gies. ACM Computing Surveys (CSUR), 35(4):374–398, 2003.

[141] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and A. Feldmann. Improving

Content Delivery Using Provider-aided Distance Information. In Proceedings

of the 10th ACM SIGCOMM Conference on Internet Measurement, IMC ’10,

pages 22–34, New York, NY, USA, 2010. ACM.

[142] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A

Security Enforcement Kernel for OpenFlow Networks. In Proceedings of the

First Workshop on Hot Topics in Software Defined Networks, HotSDN ’12,

pages 121–126, New York, NY, USA, 2012. ACM.

[143] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir. Application-

awareness in SDN. In Proceedings of the ACM SIGCOMM 2013 Conference

on SIGCOMM, SIGCOMM ’13, pages 487–488, New York, NY, USA, 2013.

ACM.

[144] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker. Modular

SDN Programming with Pyretic. USENIX ;login, 38(5):128–134, Oct. 2013.

[145] A. Ronacher. Flask is a microframework for Python based on Werkzeug,

Jinja 2 and good intentions. http://flask.pocoo.org/. Accessed:

21/10/2015.

187

http://flask.pocoo.org/

[146] A. Ronacher. Jinja2 is a modern and designer-friendly templating language

for Python, modelled after Djangos templates. http://jinja.pocoo.org/

docs/dev/. Accessed: 21/10/2015.

[147] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa,

S. Cunha de Lucena, and R. Raszuk. Revisiting Routing Control Platforms

with the Eyes and Muscles of Software-defined Networking. In Proceedings

of the First Workshop on Hot Topics in Software Defined Networks, HotSDN

’12, pages 13–18, New York, NY, USA, 2012. ACM.

[148] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri. In-

formation centric networking over SDN and OpenFlow: Architectural aspects

and experiments on the OFELIA testbed. Computer Networks, 57(16):3207

– 3221, 2013. Information Centric Networking.

[149] S. Salsano, P. Ventre, L. Prete, G. Siracusano, M. Gerola, and E. Sal-

vadori. OSHI - Open Source Hybrid IP/SDN Networking (and its Emulation

on Mininet and on Distributed SDN Testbeds). In Software Defined Networks

(EWSDN), 2014 Third European Workshop on, pages 13–18, Sept 2014.

[150] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Trans-

port Protocol for Real-Time Applications. STD 64, RFC Editor, July 2003.

http://www.rfc-editor.org/rfc/rfc3550.txt.

[151] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol

(RTSP). RFC 2326, RFC Editor, April 1998. http://www.rfc-editor.org/

rfc/rfc2326.txt.

[152] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of DNS-based

server selection. In INFOCOM 2001. Twentieth Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings. IEEE,

volume 3, pages 1801–1810 vol.3, 2001.

[153] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester. Enabling

fast failure recovery in OpenFlow networks. In Design of Reliable Commu-

nication Networks (DRCN), 2011 8th International Workshop on the, pages

164–171, Oct 2011.

188

http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/
http://www.rfc-editor.org/rfc/rfc3550.txt
http://www.rfc-editor.org/rfc/rfc2326.txt
http://www.rfc-editor.org/rfc/rfc2326.txt

[154] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKe-

own, and G. Parulkar. Flowvisor: A network virtualization layer. OpenFlow

Switch Consortium, Tech. Rep, 2009.

[155] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson.

FRESCO: Modular Composable Security Services for Software-Defined Net-

works. Internet Society NDSS, 2013.

[156] S. Shin and G. Gu. CloudWatcher: Network security monitoring using

OpenFlow in dynamic cloud networks (or: How to provide security monitor-

ing as a service in clouds?). In Network Protocols (ICNP), 2012 20th IEEE

International Conference on, pages 1–6. IEEE, 2012.

[157] S. Shirali-Shahreza and Y. Ganjali. Flexam: Flexible sampling extension

for monitoring and security applications in openflow. In Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined network-

ing, pages 167–168. ACM, 2013.

[158] S. Sivasubramanian, D. R. Richardson, C. L. Scofield, and B. E. Marshall.

Request routing using network computing components, April 12 2011. US

Patent 7,925,782.

[159] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming over

the Internet. IEEE MultiMedia, (4):62–67, 2011.

[160] D. Starobinski and D. Tse. Probabilistic methods for web caching. Perfor-

mance Evaluation, 46(23):125 – 137, 2001. Advanced Performance Modeling.

[161] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications. In

SIGCOMM’01, pages 149–160, 2001.

[162] A.-J. Su, D. Choffnes, A. Kuzmanovic, and F. Bustamante. Drafting Be-

hind Akamai: Inferring Network Conditions Based on CDN Redirections.

Networking, IEEE/ACM Transactions on, 17(6):1752–1765, Dec 2009.

[163] G. Szabo and B. A. Huberman. Predicting the Popularity of Online Con-

tent. Commun. ACM, 53(8):80–88, August 2010.

189

[164] D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network Ar-

chitecture. Computer Communication Review, 26:5–18, 1996.

[165] D. Thaler and C. Hopps. Multipath Issues in Unicast and Multicast

Next-Hop Selection. RFC 2991, RFC Editor, November 2000. http:

//www.rfc-editor.org/rfc/rfc2991.txt.

[166] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. Munafo, and S. Rao. Dis-

secting Video Server Selection Strategies in the YouTube CDN. In Distributed

Computing Systems (ICDCS), 2011 31st International Conference on, pages

248–257, June 2011.

[167] C. VNI. Cisco Visual Networking Index: Global Mobile Data Traffic Fore-

cast Update, 2013–2018. 2014.

[168] A. Voellmy and P. Hudak. Nettle: Taking the sting out of programming

network routers. In Practical Aspects of Declarative Languages, pages 235–

249. Springer, 2011.

[169] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based Server Load Bal-

ancing Gone Wild. In Proceedings of the 11th USENIX Conference on Hot

Topics in Management of Internet, Cloud, and Enterprise Networks and Ser-

vices, Hot-ICE’11, pages 12–12, Berkeley, CA, USA, 2011. USENIX Associa-

tion.

[170] Z. Wang, T. Tsou, J. Huang, X. Shi, and X. Yin. Analy-

sis of Comparisons between OpenFlow and ForCES. Internet-

Draft draft-wang-forces-compare-openflow-forces-01, IETF Secre-

tariat, March 2012. http://www.ietf.org/internet-drafts/

draft-wang-forces-compare-openflow-forces-01.txt.

[171] D. Wessels and K. Claffy. ICP and the Squid web cache. Selected Areas in

Communications, IEEE Journal on, 16(3):345–357, Apr 1998.

[172] M. Wichtlhuber, R. Reinecke, and D. Hausheer. An SDN-Based CDN/ISP

Collaboration Architecture for Managing High-Volume Flows. Network and

Service Management, IEEE Transactions on, 12(1):48–60, March 2015.

190

http://www.rfc-editor.org/rfc/rfc2991.txt
http://www.rfc-editor.org/rfc/rfc2991.txt
http://www.ietf.org/internet-drafts/draft-wang-forces-compare-openflow-forces-01.txt
http://www.ietf.org/internet-drafts/draft-wang-forces-compare-openflow-forces-01.txt

[173] J. Zander and R. Forchheimer. The SOFTNET project: a retrospect. In

Electrotechnics, 1988. Conference Proceedings on Area Communication, EU-

ROCON 88., 8th European Conference on, pages 343–345, Jun 1988.

[174] Q. Zhang, S. Q. Zhang, J. Lin, H. Bannazadeh, and A. Leon-Garcia. Kalei-

doscope: Real-time content delivery in software defined infrastructures. In

Integrated Network Management (IM), 2015 IFIP/IEEE International Sym-

posium on, pages 686–692, May 2015.

191

	Introduction
	Content Delivery in the Modern Internet
	The Move Towards Programmability
	Motivation
	Thesis Aims and Contributions
	Thesis Structure

	Background and Related Work
	The Growth of the Internet
	Network Softwarisation
	Programmable Networks
	Software Defined Networking
	OpenFlow
	ForCES

	Network Functions Virtualisation

	Video as an Emerging Application
	Protocols for Video Delivery
	Real Time Transfer Protocol
	Real Time Messaging Protocol
	Multicast
	Peer-to-Peer
	HTTP Progressive Downloads
	HTTP Adaptive Streaming
	Information-centric Networking

	Infrastructures for Video Delivery
	Web Caches
	Content Delivery Networks
	Redirection Techniques

	Infrastructure-assisted Applications
	Switching and Routing
	Security
	Resiliency
	Data Centre
	Application Development
	Content Delivery
	Moving Forward

	Summary

	Design
	Motivation and Aims
	Content Delivery Fundamentals
	Programmable Control
	Open Processes and Interfaces
	Flexible Deployment
	Summary

	Architecture and Design
	Service Layer
	Control Layer
	Redirection Layer
	Application Layer

	Discussion

	Implementation
	OpenCache Core
	Shared Library
	Node
	Services
	Storage

	Controller
	Redirection
	Virtualised Compute

	API
	External
	Internal

	Development and Deployment Aids

	OpenCache Console
	OpenCache Applications
	Scootplayer
	Summary

	Evaluation
	Redirection
	Results
	Discussion

	Quality-of-Experience
	Results
	Single-user
	Multi-user

	Discussion

	Application Programming Interface
	Load Balancer
	Failover Monitor
	Results
	Discussion

	Summary

	Conclusions
	Thesis Contributions
	Commercial and Research Impacts
	Summary

	Future Work
	Concluding Remarks

	Bibliography

