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Abstract

This thesis considers the application of locally stationary wavelet-based stochastic models

to the analysis of image texture. In the first part we propose a test of stationarity for spatial

data on a regular grid. This test is then incorporated into a segmentation framework in

order to determine the number of textures contained within an image, a key feature to many

texture segmentation approaches. These novel methods are subsequently applied to various

texture analysis problems arising from work with an industrial collaborator. The second

part of this thesis considers the modelling of the spectral structure of a non-stationary

multivariate image, i.e. an image containing different colour channels. We propose a mul-

tivariate locally stationary wavelet-based modelling framework which permits a measure of

dependence between pairs of channels. The performance of this modelling approach is then

assessed using various colour texture examples encountered by an industrial collaborator.
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Chapter 1

Introduction

Since their inception wavelets have proven popular in a number of statistical applications,

such as signal denoising, nonparametric curve estimation and the modelling, analysis and

forecasting of time series. Wavelets offer locality in both time and scale, a property which

traditional Fourier or time domain methods do not. This proves to be a significant advantage

when analysing data with locally changing behaviour (Dahlhaus, 2012).

In particular, in recent years wavelets have been used to develop models for the locally

stationary covariance structure of both time series and spatial data defined on a regular

lattice. The seminal paper of Nason et al. (2000) introduces a model for locally stationary

wavelet processes (LSW) applicable in a time series setting. This modelling paradigm was

then extended to two dimensions by Eckley et al. (2010), introducing 2D locally stationary

wavelet processes (LS2W) on a regular grid. This has proved useful for analysing textured

images. Both the LSW and LS2W models permit a location-scale decomposition of the

covariance structure of a process, allowing stationarity within local regions. This has sig-

nificant advantages over traditional Fourier-based spatial models which assume stationarity

over the entire data. A review of the key properties of wavelets and their associated trans-

forms is given in Chapter 2, together with a brief introduction to the main application focus

of this thesis: texture analysis.

The first part of the thesis focuses on problems arising with univariate, (i.e.) greyscale

texture images. In many problems within texture analysis it is useful to be able to detect

non-stationary structure, for example to identify whether there is an area of uneven wear

1



within a sample of material. This can be challenging especially if the changes are visually

subtle. To avoid the subjectivity of human inspection of materials it is thus desirable to

develop an automatic detection method for uneven wear. Chapter 3 addresses this problem

by proposing a test of stationarity for random fields on a regular lattice.

Existing approaches to texture analysis often require the number of distinct textures in

an image to be known a priori. In practice this information is rarely available and has to be

estimated along with the stationary regions. Chapter 4 embeds the stationarity test within a

quadtree framework in order to distinguish the number of textures in an image and highlight

areas of subtle local texture change. We conclude the above chapters by demonstrating the

proposed methodology on both simulated and real examples. In particular, showing how

the proposed approach in Chapter 4 can be used (unsupervised) to identify the number of

textures in a multi-texture image. The software that implements the methods from Chapters

3 and 4 is available in the R package LS2Wstat, details of which are contained in Appendix

B.

The second part of the thesis considers a problem arising from colour texture analy-

sis. Chapter 5 develops a novel framework for the modelling of non-stationary multivariate

images, together with an associated estimation scheme. In particular, an extension to

multivariate images requires consideration of the additional cross-covariance structure (de-

pendency measure) between image channels which we denote coherence. The theoretical

properties of the model estimates are also considered in Chapter 5, whilst a case study

exploring the applicability of the approach to the discrimination and classification of colour

texture images is presented in Chapter 6.
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Chapter 2

Literature Review

Over recent years there has been an increase in wavelet techniques in the scientific litera-

ture across various fields such as engineering, geology, medicine and signal processing. This

explosion in the literature is due to wavelets offering specific advantages over Fourier ap-

proaches, such as their multiscale nature and ability to decompose a signal in both the time

and scale domain simultaneously.

The first part of this chapter provides a brief introduction to wavelets and their vari-

ous transforms. We begin by giving a short summary of Fourier theory, highlighting the

shortcomings of this approach with respect to key features which we encounter in every-

day signals and images. Following this, Section 2.1 provides a detailed description of the

fundamental properties of wavelets by considering multiresolution analysis. In Section 2.2

the discrete wavelet transform is introduced. Section 2.3 then provides accounts of other

wavelet transforms including the non-decimated wavelet transform. The use of wavelets in

statistics is introduced in Section 2.4, paying particular attention to locally stationary (1D)

wavelet processes. Having reviewed the use of wavelets in one-dimension, the final part of

the chapter is devoted to two-dimensional wavelets and their transforms (Section 2.5). We

conclude in Section 2.6 by briefly reviewing statistical approaches to texture analysis, which

provides the main application area for the novel methodology developed in this thesis.
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2.1 Introduction to wavelets and their transforms

2.1.1 Fourier Analysis

We begin our review of the literature pertinent to this thesis by revisiting some basic results

from Fourier theory. This will be useful for some of the work we will discuss later in this

chapter, namely the Fourier domain properties of wavelets.

Let f ∈ L1(R) be an absolutely integrable function. The Fourier transform can be used

to analyse f for its frequency properties.

Definition 1 Let f(x) be a function such that
∫∞
−∞ |f(x)|dx < ∞, then its Fourier trans-

form exists and is given by

F (ω) =

∫ ∞

−∞
f(x) exp(−iωx)dx. (2.1)

We can also invert the transform to recover the original function using the inverse Fourier

transform:

f (x) =
1

2π

∫ ∞

−∞
F (ω) exp(iωx)dω. (2.2)

For periodic square integrable functions, i.e f ∈ L2([−π, π]), there exists the related function

representation, Fourier series. The function f can be represented in terms of the Fourier

basis {exp (inx)}∞n=−∞ as follows

f (x) =
∞∑

n=−∞

cnexp(inx), (2.3)

where the Fourier coefficients are given by

cn = (2π)−1
∫ π

−π
f (x) exp(inx)dx. (2.4)

Since exp(inx) = cos(nx)+ i sin(nx), the Fourier series in equation (2.3) can be regarded as

an expansion of f in terms of sine and cosine functions. In particular, the Fourier expansion

is equivalent to using the basis function set {1, cos(nx), sin(nx)}n∈Z.
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The main shortcoming of the Fourier series is that it cannot represent jump discontinu-

ities efficiently (i.e. a large number of terms are required). Even then the representation

can be poor and Gibbs effects can occur near the discontinuities. This is essentially because

sines and cosines are smooth so cannot adapt to discontinuities in the signal. An example of

this phenomenon can be seen in Figure 2.1, where the approximation has large oscillations

near the jump.
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Figure 2.1: Example of the Gibbs effects which can be seen at the estimate of the disconti-
nuity of the true function (shown in red).

A second drawback of the Fourier approach is it is not possible to obtain information on

the local frequency behaviour of a signal. To obtain information about a particular period,

we have to integrate over the whole domain of f . This is due to the fact that basis functions

are localized in frequency but not in time. A more detailed discussion of Fourier series and

their properties is contained within Walker (1986).

These drawbacks motivate a more efficient representation of a series for certain function

types such as those with discontinuities or sharp spikes. In order to represent such local

structure efficiently we require basis functions which have compact support in time. In the

next section, we introduce wavelets, which possess these desired properties. Another possi-

bility is the windowed Fourier transform, however there are certain constraints to consider

such as the window size and the overlap between windows.
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2.1.2 What is a wavelet?

Wavelets are functions that oscillate but decay quickly to zero. They are capable of both

efficiently modelling frequency components for a range of signals, including those that con-

tain discontinuities, and also capturing the smooth structure of a given signal or series.

Unlike Fourier analysis which only has one basis shape (sinusoidal) to represent all func-

tions, wavelets have many different forms. Examples of some wavelets can be seen in Figure

2.2, including the well-known Haar wavelet and Daubechies wavelets.
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Figure 2.2: Examples of Mother wavelets. (a) Haar Wavelet (Daub ExPhase N=1), (b)
Daubechies Extremal Phase wavelet (N=2) and (c) Daubechies Least Asymmetric wavelet
(N=7).
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Daubechies (1988) proposes two commonly used wavelet families. These families are

frequently referred to as “extremal phase” and “least asymmetric”. Throughout this thesis

we consider Haar and Daubechies wavelets, although a number of other wavelet families

exist. See Daubechies (1992), Vidakovic (1999), Percival and Walden (2006) and Nason

(2008) for an introduction to these wavelets.

Our starting point to analyse signals using wavelet theory is a basic function called the

mother wavelet, ψ. A wavelet basis is constructed by translating and dilating the mother

wavelet. Following Meyer (1992) we formally define a mother wavelet as follows:

Definition 2 Let N ∈ N. Then for x ∈ R, a function ψ (x) is called a mother wavelet of

order N if the following properties hold:

W1 If N = 0, ψ (x) ∈ L∞ (R) . If N > 1, then ψ (x) and all its derivatives up to order N

belong to L∞ (R).

W2 ψ (x) and all its derivatives up to order N decrease rapidly as x→ ±∞.

W3 For each k ∈ {0, ..., N}, ∫ ∞

−∞
xkψ(x)dx = 0. (2.5)

W4 The collection {ψj,k}j,k∈Z forms an orthonormal basis of L2(R), the ψj,k being con-

structed from the mother wavelet using the identity

ψj,k(x) = 2j/2ψ(2jx− k). (2.6)

Here j relates to the dilation, known as the scale, whilst k relates to the translation,

known as location.

The first three conditions describe smoothness and localisation of the wavelet ψ. W3 is often

referred to as the vanishing moments property. This important property is used so wavelets

can produce sparse representations of functions. In other words the wavelet coefficients (see

equation 2.8) of any polynomial up to order N will be zero. A mother wavelet is said to be of

order N if equation (2.5) holds true for k = 0, 1, . . . , N . As Figure 2.2 shows as N increases
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the wavelets are smoother in nature. Condition W4 generates orthonormal wavelet bases

by dilation and translation operations, where the index j dilates the function by a factor of

2j and k translates the wavelet along the axis by 2−jk for all j, k ∈ Z.

A function f ∈ L2 (R) can be represented as a linear combination of wavelet bases using

condition W4, i.e.

f(x) =
∞∑

j=−∞

∞∑

k=−∞

dj,kψj,k(x). (2.7)

Due to the orthogonality of wavelets, the wavelet (detail) coefficients are then given by

dj,k =

∫ ∞

−∞
f(x)ψj,k(x)dx =< f, ψj,k > for all j, k ∈ Z, (2.8)

where < ·, · > denotes the inner product. Note in particular that the function consists of

localised scale information where j represents scale and k represents the location. Hence the

detail dj,k coefficients tell us about the local oscillatory behaviour. In the next section we

introduce multiresolution analysis (MRA), which plays an important role in the construction

of wavelets and wavelet bases.

2.1.3 Multiresolution Analysis

Multiresolution analysis (MRA) was introduced by Meyer (1985) and Mallat (1989a). The

aim of multiresolution analysis (MRA) is to examine a function f ∈ L2(R) at a particular

resolution j ∈ Z. This is achieved by a (linear) projection of f onto an approximation

subspace Vj ⊂ L2(R). Following Mallat (1989a) we define a multiresolution analysis as

follows:

Definition 3 A multiresolution analysis (MRA) is a nested sequence of closed subspaces,

Vj ⊂ L2(R) for j ∈ Z,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . (2.9)

such that the following conditions hold:
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1. The spaces have a trivial intersection and the union is dense in L2(R):

⋂

j∈Z

Vj = {0} ,
⋃

j∈Z
Vj = L2(R). (2.10)

2. The following two-scale relation exists:

f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1, ∀j ∈ Z. (2.11)

3. The V-spaces are self similar in time:

f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0, ∀k ∈ Z. (2.12)

4. And, finally, there exists a scaling function, φ ∈ V0, whose integer translations

{φ0,k : k ∈ Z} constitute an orthonormal basis of V0.

Equation (2.9) shows that the spaces {Vj}j∈Z form a ladder or hierarchy. As Nason (2008)

explains this means each space of functions Vj contains detail up to some finest scale resolu-

tion. In other words MRA provides a framework for examining functions at different scales:

zooming in to see the fine detail and moving out to obtain a broader view. We note that

equations (2.11) and (2.12) imply that {φj,k : k ∈ Z}, constitutes an orthonormal basis of

Vj . If {Vj}j∈Z and φ ∈ V0 satisfy the above definition they are said to form a multiresolution

approximation of L2(R).

With Definition 3 in place we introduce the concept of a multiresolution projection

operator (Daubechies, 1988). Put simply, we denote by Pj the orthogonal projection oper-

ator which projects a function onto the space Vj described above. Since {φj,k(x)}k∈Z is an

orthonormal basis for Vj , the projection can be written as

fj(x) =
∑

k∈Z

cj,kφj,k(x) = Pjf. (2.13)

The {cj,k} are denoted father wavelet coefficients and the orthogonality of the basis {φj,k(x)}

means that they can be computed in a similar way to the details coefficients in equation
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(2.8):

cj,k =

∫ ∞

−∞
f(x)φj,k(x)dx =< f, φj,k > . (2.14)

Since V0 is a subspace of V1, {φ1,k(x)} is a orthonormal basis for V1. Given φ(x) ∈ V0, we

can write

φ(x) =
∑

k∈Z

hkφ1,k(x) =
√
2
∑

k∈Z

hkφ(2x− k), (2.15)

where h = {hk}k∈Z is referred to as a low-pass (averaging) filter and is given by hk =<

φ, φ1,k >. Equation (2.15) is called the dilation equation or scaling function equation. It

controls how the scaling functions φj(x) relate to each other for two consecutive scales. Thus

it is a very important result in wavelet theory as its solution enables one to begin building

a general MRA.

As we shall see in Section 2.1.4 the coefficients {hk}k∈Z play an extremely important

role in the construction of wavelets. Using the orthonormality of φ0,k, Daubechies (1988)

identified some important properties of the wavelet filters, h, associated with an orthogonal

MRA, namely:

1.
∑

n | hn |2 = 1;

2.
∑

n hn =
√
2;

3.
∑

n hnhn−2j = δj , ∀j 6= 0.

For proofs of these results refer to Vidakovic (1999).

As we move from one approximation space Vj+1 to another Vj we lose some information.

As Mallat (1989a) notes, the representation of this information loss is a key feature in

wavelet transforms (see Section 2.2). We capture this lost information in the difference

space, which we denote Wj .

Definition 4 Let Wj be a subspace containing the ‘detail’ at level j. We have,

Vj+1 = Vj ⊕Wj . (2.16)

In other words, Wj is the orthogonal complement of Vj in Vj+1. When the sequence of

subspaces Vj satisfy the properties of a multiresolution analysis then there exists a wavelet
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ψ(x), where {ψ(x− k)}k∈Z is an orthonormal basis for W0 and orthogonal to all functions

in Vj . This enables information at scale j + 1 to be split into detail Wj and coarse Vj

information at scale j. Moreover because of the MRA relations, each Wj is a scaled version

of W0 in that

f(x) ∈W0 ⇐⇒ f(2jx) ∈Wj , (2.17)

consequently ψj,k is an orthonormal basis for Wj .

From the construction in Definition 4 we know that Wj ⊂ Vj+1 and therefore we have

ψj,k(x) ∈ Vj+1. Hence ψj,k(x) can be represented by a linear combination of the basis

functions for Vj+1. We can consequently construct a wavelet function from a given scaling

function as follows:

ψ(x) =
∑

k∈Z

gkφ1,k(x), (2.18)

where g = {gk}k∈Z is the high-pass filter associated to ψ.

2.1.4 Fourier properties of wavelets

Having introduced the wavelet function ψ(x) and scaling function φ(x), we now introduce

Fourier domain representations of these functions. These are useful since they allow us to

further explore the properties of multiresolution analysis.

Following Vidakovic (1999), the Fourier transform of the scaling equation φ(x) as defined

in equation (2.15) is given by

Φ̂(ω) = m0(ω/2)Φ̂(ω/2), (2.19)

where m0(ω) = 2−1/2
∑

k hkexp(−iωk). Similarly the Fourier transform of the wavelet func-

tion given in equation (2.18) is given by,

Ψ̂(ω) = m1(ω/2)Φ̂(ω/2), (2.20)

where m1(ω) = 2−1/2
∑

k gkexp(−iωk).
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Daubechies (1992, Chapter 5) shows that the orthonormality of the scaling functions

leads to the condition that

|m0(ω)|2 + |m0(ω + π)|2 = 1. (2.21)

From Mallat (1989a) we also have that |m0(0)| = 1 and therefore from equation (2.21),

|m0(π)| = 0. It can also be shown that |m1(ω)| = |m0(ω + π)| and hence equation (2.21)

can be written as,

|m0(ω)|2 + |m1(ω)|2 = 1. (2.22)

See Vidakovic (1999, pg 58–59) for further details of the derivation.

Using equation (2.22) and the representation of m1(ω), the coefficients g and h can be

related as follows:

gn = (−1)n h1−n. (2.23)

This relationship between g and h is referred to as the quadrature mirror filter relation

and means that we have the mutual orthogonality relation
∑

n hngn+2j = 0, ∀j ∈ Z. The

quadrature mirror relation in equation (2.23) gives us the ability to take any scaling function

φj,k(x) which satisfies the MRA properties from Definition 3 and use it to derive a wavelet

function using equation (2.18).

Having established representations for elements of both Vj and Wj we can now rewrite

equation (2.13) as a wavelet representation of a function f(x). Specifically given a wavelet

basis, the representation of a function, f , is given by the sum of the detail coefficients and

an approximation at the coarser level. We have:

f(x) =
∑

k∈Z

cj0,kφj0,k(x) +
∞∑

j=j0

∑

k∈Z

dj,kψj,k(x), (2.24)

where the coefficients cj0,k and dj,k can be found efficiently using Mallat’s cascade algorithm

which we introduce in the next section.
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2.2 Wavelet transforms for discrete data

In data analysis, instead of the continuous setting described above in equation (2.24), we

typically need to make inference on a set of observations recorded at a finite number of

discrete time points. We now consider various wavelet transforms for discrete data starting

with the discrete wavelet transform, discussing practical issues such as different basis choices

and boundary conditions.

2.2.1 Discrete wavelet transform (DWT)

The discrete wavelet transform (DWT), proposed by Mallat (1989a,b), provides an efficient

method for performing a wavelet-based transformation of discrete data. It consists of split-

ting a sequence of data of length 2J for some J ∈ N into several “smooth” {cj,k}j,k∈Z and

“detail” {dj,k}j,k∈Z series. Prior to describing the algorithm we first introduce some basic

theory.

Recall from the previous section that by a subsitution of indices in equations (2.15) and

(2.18) we obtain:

φj−1,k(x) =
∑

l∈Z

hl−2kφj,k(x) (2.25)

ψj−1,k(x) =
∑

l∈Z

gl−2kφj,k(x). (2.26)

We assume there exist functions vj ∈ Vj and wj ∈Wj , such that,

vj(x) =
∑

k

cj,kφj,k(x) (2.27)

wj(x) =
∑

k

dj,kψj,k(x), (2.28)

where the {cj,k} are the smooth coefficients and the detail coefficients {dj,k} provide infor-

mation about a local variation on a given scale of the original series. These are the key

theoretical properties used in the discrete wavelet transform algorithm.

Consider the father wavelet, φ(x). If this satisfies the attributes of MRA, then the above

properties can be used to efficiently calculate cj−1,k and dj−1,k from cj,k, where cj−1,k and
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dj−1,k represent the coefficients at the next coarsest scale. More precisely,

cj−1,l = < vj , φj−1,l >

= < vj ,
∑

k

hk−2lφj,k > by (2.25)

=
∑

k

hk−2l < vj , φj,k > by additivity of inner products

=
∑

k

hk−2lcj,k by (2.27). (2.29)

Similarly,

dj−1,l =
∑

k

gk−2lcj,k. (2.30)

Now we have provided the constituent parts to the DWT we consider its implementation.

Performing the DWT: Consider a sequence cJ of length 2J where cJ is the original

data. This is filtered using the equations (2.29) and (2.30) where h and g are the filters from

equations (2.15) and (2.18) respectively. A set of both smooth (cJ−1,k) and detail (dJ−1,k)

coefficients are obtained for the finest scale by this filtering process. The set of ‘smooth’

coefficients are then filtered again using the equations (2.29) and (2.30) and coefficients at

the next coarsest scale are obtained. This process is continually repeated until the coarsest

scale is reached. Note that due to the filtering in equations (2.29) and (2.30) at each level

only even filtered coefficients are retained, so there are half as many coefficients as at the

previous scale. The final set of coefficients are then given by (c0,d0,d1, . . . ,dJ−1) where

c0 is the coarsest father coefficient and the dj = {dj,k} represent the detail coefficients.

This scheme is commonly referred to as Mallat’s pyramid algorithm. Figure 2.3 shows a

schematic diagram of the algorithm.

Inverse DWT: Due to the orthogonality of the ψj,k, the DWT algorithm is invertible.

Mallat (1989b) shows that the inversion is given by

cj,k =
∑

l

hk−2lcj−1,l +
∑

l

gk−2ldj−1,l (2.31)
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Figure 2.3: The discrete wavelet transform of a data sequence into smooth and detail com-
ponents using quadrature mirror filters, h and g.

where h and g are the filters as defined previously. Specifically, from the detail and smooth

coefficients at the current scale, j−1, it is possible to obtain the smooth coefficients at level

j. The original sequence can then be obtained from repeated applications of this inversion

step. For further details of the DWT please refer to Vidakovic (1999), Percival and Walden

(2006) and Nason (2008).

2.2.2 An operator description of the DWT

An alternative way of describing the DWT is to consider the transform in terms of opera-

tors. Following Nason and Silverman (1995), let H and G represent the low and high-pass

convolution operators such that,

(Hx)k =
∑

n

hn−kxn (2.32)

(Gx)k =
∑

n

gn−kxn (2.33)

where {xn}n∈Z is some series. As discussed previously we subsample (or dyadically deci-

mate) the data at each step to maintain orthogonality of the transform. This step can be
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represented in operator notation by the dyadic decimation operator, D0, given by,

(D0x)l = x2l, ∀j ∈ Z, (2.34)

i.e. D0 picks out the even indexed elements.

With the above notation established we can perform a DWT on a data series {cJ,k}k=0,...,2J−1

of length 2J using the equations (2.29) and (2.30), which can also be written as,

cj−1 = D0Hcj (2.35)

dj−1 = D0Gcj , (2.36)

assuming the original data is defined to be cJ and j = J, . . . , 1.

We can represent the inverse discrete wavelet transform in this notation as follows:

cj = HD−1
0 cj−1 + GD−1

0 dj−1 (2.37)

where we let the inverse of D0 be denoted by D−1
0 where this operator has the effect of

inputting a zero between each sample.

From Nason and Silverman (1995) the whole set of DWT detail and father wavelet

coefficients at level j (in terms of the original data) can be expressed as

dj = D0G(D0H)J−j−1cJ (2.38)

cj = (D0H)J−jcJ (2.39)

for j = 0, . . . , J − 1.

2.2.3 ǫ− decimated wavelet transform

The established convention is to use D0 and perform an even decimation in the DWT.

However as Nason and Silverman (1995) suggest, replacingD0 byD1 in the wavelet transform

where (D1x)k = x2k+1 (i.e. choose every odd member of a sequence) is merely a selection

of a different orthogonal basis. In other words, it doesn’t matter whether we use an odd
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or even decimation we still end up with an orthogonal transform. Furthermore, we could

switch between odd and even decimations at each stage. So a particular orthogonal basis

can be represented by the J- digit binary number ǫ = ǫJ−1ǫJ−2 . . . ǫ0 where ǫj is one if

D1 is used to produce level j and zero if D0 is used. Such a transform is termed the

ǫ− decimated wavelet transform by Nason and Silverman (1995). As the orthogonality of

the transform is retained we can perform the inverse transform of the decomposition in

order to obtain the original signal. The choice of odd or even decimation is important for

the understanding of the non-decimated wavelet transform discussed in Section 2.3.1.

2.2.4 Boundary conditions

When analysing data using equations (2.29) and (2.30) the filters can sometimes extend

beyond the range of the data, creating boundary issues. A fortunate feature of Haar wavelets

is that computing coefficients near ‘boundaries’ is straight forward as no boundary conditions

are needed. The Haar transform filters the dyadic series in pairs to produce another dyadic

series, which can then be processed in the same way. For more general Daubechies wavelets,

boundaries have to be treated with much more care as the filters are not dyadic in length,

i.e. 2J .

As Nason (2008) describes, an obvious way to practically resolve this potential boundary

problem is to artificially extend the boundary in some way and then convolve the filter with

the extended data in the usual manner. Two types of boundary extension are commonly

used in practice: periodic and symmetric. With a periodic boundary condition the sequence

wraps around itself, so after the last term in the sequence we begin the sequence again.

For a symmetric case we reflect the sequence in its boundary so after the last term of the

sequence, we begin the sequence again in reverse. Another possibility is to modify the

wavelet so that it always remains on the domain of the original data. Such a modification

is the basis of the procedure known as ‘wavelets on the interval’ proposed by Cohen et al.

(1993). Wavelet coefficients are produced at coarser scales but no information is borrowed

from periodisation or reflection. The lifting scheme, which we review in Section 2.3.4, can

also be used to overcome this practical issue. In this thesis we focus on Haar wavelets so

there are no boundary conditions to consider.
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2.2.5 Weakness of the DWT

We now turn to consider one of the main weaknesses of the DWT: its lack of translation

invariance. One small shift in the data can change the wavelet coefficients completely. To

explore this further we consider an example.
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Figure 2.4: Example of the DWT and the DWT on shifted data. (a) shows the original
data with (c) being the corresponding DWT; (b) shows the data shifted along by one with
(d) being the corresponding DWT.

Figure 2.4 displays a test data set x along with the corresponding wavelet coefficients

obtained from the DWT. It also shows a shifted version of x and applying the DWT to this

series. In this case the data has been rotated by one, with the first observation now being

the last. The coefficients dj,k are plotted with the finest-scale coefficients at the bottom of

the plot and coarsest at the top. In this case we have 8 points in each series and it can be
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seen that at each stage of the transform the number of coefficients halves. The magnitude

of the coefficients is represented by the length of the vertical mark.

In Figure 2.4 we can clearly see how the sharp spike causes larger wavelet coefficients.

This example highlights how the discrete wavelet transform is not translation invariant

and shifting the data has changed the wavelet coefficients completely. This example was

performed using the R package wavethresh (Nason, 2013). It would be desirable that a

shift in the data results in a shift of the coefficients otherwise our interpretation of the

data alters radically. In the next section we introduce the non-decimated wavelet transform

which overcomes this.

2.3 Alternative wavelet transforms

The DWT is only one possible (discrete) wavelet transform in the literature. In this section

we briefly review other transforms, including the non-decimated wavelet transform highlight-

ing its translation invariance properties. We then consider the wavelet packet transform,

complex wavelet transform and lifting schemes which are included for completeness although

will not be used in the remainder of the thesis.

2.3.1 Non-decimated wavelet transform (NDWT)

We now introduce the non-decimated wavelet transform (NDWT). This transform was pro-

posed by Nason and Silverman (1995) to overcome the translation invariance issues of the

DWT highlighted in Section 2.2.5.

The basic form of the NDWT is to apply high and low pass filters, g and h respectively,

to the data at each level to produce two series at the next level. The two new series each

have the same length as the original series as no decimation step occurs. Instead, the filters

are modified at each level by padding them out with an appropriate number of zeros, in

other words adding zeros between each element of the filter.

An alternative view of the NDWT is to perform the ǫ− decimated wavelet transform

with every choice of ǫ as defined in Section 2.2.3 (i.e. every combination of D0 and D1).

This is equivalent to the set of DWT coefficients from all shifts of the data.
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Whilst the NDWT provides more information than the DWT at any given scale, using

both odd and even decimated coefficents destroys the orthogonal structure. However, one

of the distinct advantages of the NDWT, is its translation equivariance, i.e. a systematic

rotation in the data results in a shift in the coefficients. As an example of this, consider

Figure 2.5, which plots the NDWT of the original and shifted data used for the example

in Section 2.2.5. Unlike the results for the DWT in Figure 2.4, here we have the same

coefficients obtained for (a) and (c), but (c) has been shifted along one as in the data itself.
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Figure 2.5: Example of the NDWT and the NDWT on shifted data. (a) shows the original
data with (c) being the corresponding NDWT, (b) shows the data shifted along by one with
(d) being the corresponding NDWT.

A related transform to the NDWT is the Maximal Overlap Discrete Wavelet Transform
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(MODWT). This provides the same advantages as the NDWT but allows a time series to

be of any length. See Percival and Walden (2006) for a full description of the MODWT.

2.3.2 Wavelet packet transforms

One particular aspect of the DWT and NDWT is that the features focus on decomposing the

low frequency structure in a sequence. In other words the DWT and NDWT only carry the

‘smooth’ coefficients c forward to the next level. One might equivalently focus on the high

frequency content. This is the main idea behind the wavelet packet transform (WPT). Both

the ‘smooth’ c and ‘detail’ d coefficients are carried forward to the next level and then filtered

to produce coarser level coefficients. In this way the wavelet packet transform analyses a

series using a diverse collection of wavelet packets (frequency objects) at different scales

and locations. If a complete decomposition of smooths and details is used then this leads

to a redundant transform, however an orthogonal basis can be obtained by careful packet

selection. See Coifman and Wickerhauser (1992) for an introduction to best basis selection

for choosing packets to form an orthogonal transform. For a more detailed treatment of this

transform, see Vidakovic (1999).
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2.3.3 Complex wavelets

Although the DWT provides us with a computationally efficient and sparse representation

of real-world signals, it suffers from some fundamental disadvantages. In particular, these

include shift sensitivity (see Section 2.2.5), poor directionality (in a two-dimensional setting)

and lack of phase information. However, as Kingsbury (1999) note, the Fourier transform

does not suffer from the above shortcomings as it is based on complex-valued oscillating si-

nusoids. It has therefore been suggested that the above problems can be solved by effectively

computing a complex wavelet transform (CWT) (Kingsbury, 1999).

The initial versions of complex wavelet transforms were introduced by Lawton (1993) and

Lina (1997). Lina and Mayrand (1995) and Barber and Nason (2004) also discuss complex

valued wavelets. The structure of the CWT is similar to that of the DWT, except that

the CWT filters have complex coefficients and generate complex output samples. However

this extension of the DWT to a complex setting does not allow for perfect reconstruction of

signals and exhibits 2d redundancy compared to the DWT, where d is the dimension of the

signal being transformed. This motivated the work of Kingsbury et al. (2005) who developed

the m-dimensional dual tree discrete wavelet transform (DT-DWT), which allows for perfect

reconstruction as well as mitgating the disadvantages highlighted previously. However the

design of the quadrature wavelet filters pairs can be quite complicated. See Selesnick (2001,

2002); Kingsbury et al. (2005) for further details on complex wavelets and the dual tree

complex wavelet transform. Complex wavelet transforms have been used in various areas of

statistics, see for example Whitcher and Craigmile (2004) and Whitcher et al. (2005).

2.3.4 The lifting scheme

Lifting schemes were introduced by Sweldens (1996, 1997) to provide a way of decompos-

ing signals with data arising from non-standard situations such as signals observed on an

irregular grid or with missing data.

With the lifting scheme we can build wavelet-like basis functions ψj,k(x) with desirable

properties. These properties, such as smoothness, can be chosen to be dependent on the

signal under analysis. Possible applications of lifting schemes in statistics include non-
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parametric regression, using adaptive lifting (Nunes et al., 2006; Knight and Nason, 2009)

and time series analysis (Knight et al., 2012).

The lifting scheme can be broken down into 3 steps. Let {xi} be the points at which

the data {fi} is observed. Initially, we partition the range of {xi} into intervals associated

to each xi. The scheme then proceeds:

1. Split: Split the data {fi} into two subsets fI and fJ .

2. Predict: Use fJ to predict fI (using e.g. linear regression). The lifted coefficients are

the regression residuals: dI = fI − f̂I , in other words the difference between function

values and predictions. The coefficients dI represent local signal changes, in a similar

manner to detail coefficients produced from traditional wavelet transforms.

3. Update: Remove xI and redistribute lost signal content to the values fJ using the

lifted coefficients dI . Repeat 1-3 until one gridpoint xi is left.

This flexibility to handle non-standard data comes at a cost: lifting schemes are non-

orthogonal which complicates issues such as thresholding (see Section 2.4.1) and inference

in the wavelet domain since norms of coefficient sequences are not preserved during the

transform. In other words it is difficult to carry out efficient analysis of variance and

covariance properties in the wavelet domain. See Jansen and Oonincx (2005) for more

details on lifting transforms.

2.4 Wavelets in Statistics

Whilst the focus of this thesis is on modelling the locally stationary covariance structure

of 2D (image) data, there has been considerable work on using wavelets more generally in

statistics during the last 20 years. This section provides a brief introduction to this area, for

further more comprehensive reviews we refer the reader to Vidakovic (1999), Abramovich

et al. (2000), Percival and Walden (2006) or Nason (2008).
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2.4.1 Wavelet Smoothing

One of the original applications of wavelets in statistics was in signal denoising, commonly

known as smoothing or non-parametric regression. In this setting we have a signal corrupted

by noise and we wish to remove the noise from the data. More formally we consider the

setting where the aim is to estimate the unknown vector g = (g(x1), . . . , g(xn)) using the

data {yi}i=1,...,n where {yi} is a collection of observed data points. We model the data as,

yi = g (xi) + ei, (2.40)

where ei ∼ N(0, σ2) is independent noise. The general wavelet method for estimating g is

to, (i) apply a wavelet transform to the data, (ii) modify the wavelet coefficients in some way

to reduce the noise and then (iii) apply the inverse of the transform to the new coefficients

to obtain an estimate of g (Donoho and Johnstone, 1994).

The motivation for this procedure is as follows. Since the DWT is orthogonal, the

wavelet coefficients of {yi} can be written as:

d∗ = d+ ǫ. (2.41)

where d∗ denotes the wavelet coefficients from the noisy {yi}, d represents the true (un-

corrupted) wavelet coefficients and the ǫ are independent Gaussian noise obtained from the

DWT of ei. They all are a vectors of length n. By performing the DWT, the detail coeffi-

cient sequence is sparse due to the orthogonality property of the DWT. Thus to obtain an

estimate of d a shrinkage rule is applied, where coefficients d∗ that are smaller than some

threshold are removed as they are assumed to be insignificant signal information (i.e. noise).

Two of the most commonly used shrinkage rules were proposed by Donoho and Johnstone

(1994): hard and soft thresholding. These are defined as follows:

• Hard - The coefficients are compared to a threshold(s). If the coefficient is smaller in

magnitude than the threshold it is removed, otherwise it is kept unaltered. i.e.

d̂ = ηH (d∗, λ) = d∗I {|d∗| > λ} . (2.42)
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• Soft - All coefficients are modified by the formula below. In other words all coefficients

greater than the threshold are shrunk towards zero. i.e.

d̂ = ηS (d
∗, λ) = sgn (d∗) (|d∗| − λ) I {|d∗| > λ} . (2.43)

In equations (2.42) and (2.43), I is the indicator function, λ is the threshold value to be

chosen and d∗ are the empirical coefficients (i.e. noise corrupted) to be thresholded. Natu-

rally a key question for these thresholding methods is, how best to choose such thresholds.

Assuming Gaussian noise Donoho and Johnstone (1994) introduced the universal threshold

which can be estimated from the data and achieves almost ideal risk. It can be expressed

as

λu = σ
√
2logn, (2.44)

where n is the number of data points and σ is the noise level. In real problems we estimate

σ by σ̂, some estimate of the common standard deviation of the noise ǫi. Donoho and

Johnstone (1994) suggest estimating σ by computing the median absolute deviation (MAD)

of the finest-scale wavelet coefficients.

A number of other threshold choices exist. Donoho and Johnstone (1995) introduced the

SureShrink approach. This is based on the minimization of Stein’s unbiased risk estimator

(SURE). It uses both the universal and SURE thresholds and selection of the threshold

is dependent on the sparsity of the wavelet representation at a given level. Specifically if

the wavelet representation is sparse, then the universal threshold is selected, otherwise the

level-dependent SURE threshold is used.

Johnstone and Silverman (2004) and Johnstone and Silverman (2005) proposed another

threshold, based on an empirical Bayes approach to modelling wavelet coefficients. This

method places a prior distribution on the true wavelet coefficients from which, given the

observed coefficients, the posterior distribution may be determined. The suggested prior

takes the form

d∗j,k ∼ (1− π)δ0 + πγ, (2.45)

where γ is the density of the wavelet coefficient, conditional on it being non-zero. Hence π
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represents the (prior) probability of the wavelet coefficient being non-zero. Many choices for

γ have been proposed in the literature, see Chipman et al. (1997), Abramovich et al. (1998),

Clyde et al. (1998) and Reményi and Vidakovic (2013). There are many other threshold

policies, an overview of which can be found in Vidakovic (1999, Chapter 6).

2.4.2 Locally stationary wavelet processes in time series

We now turn to consider the application of wavelets to modelling locally stationary time

series. To this end we assume a time series {Xt}t∈Z is observed at evenly spaced time

points with a unit sampling interval. However, prior to this we provide a brief reminder of

established time series theory.

Traditional approaches to time series analysis assume (second-order) stationarity, i.e.

that the autocovariance properties remain constant over time. Such series can also have a

spectral representation. In particular, Priestley (1965) defines the second-order stationary

stochastic processes Xt for t ∈ Z as

Xt =

∫ π

−π
A(ω)exp(iωt)dζ(ω), (2.46)

where dζ(ω) is an orthonormal increment process. This model can be used in the estimation

of the Fourier spectrum, which provides a frequency decomposition of the process variance.

See Priestley (1981), Brillinger (2001) and Chatfield (2004) for more details on spectral

analysis.

Most time series encountered in practice have an autocovariance structure which changes

over time, i.e. they exhibit some time-varying second-order structure. Hence the focus of

recent research has been on modelling non-stationary time series, specifically time series

that can be considered locally stationary. The locally stationary approach is one method to

dealing with non-stationarity. Locally stationary time series have a second-order structure

that is approximately stationary around a local point but which is non-stationary across

the entire series. For an overview of locally stationary processes, see Dahlhaus (2012).

A locally stationary extension to the stationary process representation considered in
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equation (2.46) was introduced by Dahlhaus (1997). This takes the form:

Xt,T =

∫ π

π
exp(iωt)At,T (ω)dξ(ω), (2.47)

where At,T (ω) is a transfer function which varies smoothly over time, allowing a locally

stationary representation. An alternative, proposed by Nason et al. (2000), is to concentrate

on processes whose second-order structure changes slowly over time by replacing the set

of harmonics {exp(iωt)|ω ∈ [−π, π]} in equation (2.47) by a set of discrete non-decimated

wavelets. In particular they introduce a novel process representation, given in Definition 5

below, which permits a location-scale decomposition of the covariance structure of a time

series.

Definition 5 A locally stationary wavelet process (LSW) is a stochastic process {Xt;T }t=1,...,T

for T = 2J represented as,

Xt;T =
∞∑

j=1

∞∑

k=−∞

wj,k;Tψj,k(t)ξj,k, (2.48)

where ξj,k is a random orthonormal increment sequence, {ψj,k(t)} is a discrete non-decimated

family of wavelets based on the mother wavelet ψ and wj,k;T is a set of amplitudes for

j = 1, 2, . . . , k = 0, . . . , n− 1.

In order to estimate the covariance structure of an LSW process, there are various assump-

tions which must be satisfied, these can be found in Nason et al. (2000). Briefly they assume

each LSW process has zero mean and the amplitudes wj,k;T are slowly varying. Full details

of the assumptions can be found in Chapter 3 in a two-dimensional setting.

The LSW model permits a time series to be stationary within localized regions, although

its structure may evolve from one region to another. Various estimates of statistical prop-

erties may be obtained by collecting sufficient information in a locally stationary region.

Nason et al. (2000) define the evolutionary wavelet spectrum (EWS) which quantifies how

the power of a process varies locally over time and scale. Furthermore they show how

this quantity can be estimated by a smoothed mean-corrected wavelet periodogram which

can, in turn, be used to provide an estimable time-localized autocovariance. The process
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of estimating the wavelet spectrum will be explained in more detail in Chapter 3 in the

two-dimensional setting, which is the focus of this thesis.

In recent years the LSW framework has been applied in a number of different areas.

For example, Fryźlewicz et al. (2003) use the framework to forecast locally stationary time

series whilst Fryźlewicz and Ombao (2009) consider classification of time series using LSW

processes. Cho and Fryźlewicz (2012) and Killick et al. (2013) use the approach to detect

changepoints within piecewise second-order stationary time series and Knight et al. (2012)

consider spectral estimation of non-stationary time series with missing observations and

provide an extension to the LSW model.

In other work Nason and Cardinali (2010) introduce a method using the LSW model

where given two (or more) locally stationary time series as defined in Definition 5, a time-

varying, linear combination of them that are stationary (costationary series) can be obtained.

Chapter 3 develops methodology for testing for stationarity within 2D data based on theory

in Nason and Cardinali (2010), which we extend to 2D. In addition Nason and Cardinali

(2010) develop a measure for the cross-periodogram and cross-covariance of locally station-

ary wavelet processes using similar methods to that in Nason et al. (2000). In Chapter 5

we consider an extension of these quantities to a multivariate two-dimensional setting.

Finally, Eckley et al. (2010) extend the LSW modelling framework to two dimensions.

This extension is discussed in detail in Chapter 3 since it forms the basis of the test of

stationarity we develop.

2.5 Extension to two dimensions

Recall that the focus of this thesis is the analysis of spatial data, specifically data on a regu-

lar lattice such as an image. For this we need to consider two-dimensional wavelets and their

transforms. Several different approaches to the two-dimensional transform exist. In this the-

sis we focus our attention on the widely adopted separable multiresolution approximations of

L2
(
R
2
)
considered by Daubechies (1988) and Mallat (1989b). However other non-separable

approaches exist, see for example Daubechies (1992). Whilst 2D non-separable wavelet ap-

proaches are more flexible, for the application under consideration, developing a rigorous
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estimation scheme would prove challenging as extensions to basic wavelet theory would be

required. We begin this section by extending multiresolution analysis to a 2D setting before

giving a detailed overview of the separable 2D wavelet transform in Section 2.5.2.

2.5.1 Multiresolution Analysis in two dimensions

Recall that the multiresolution analysis framework described previously in Section 2.1.3 is

suitable for functions on the real line. We now consider a two-dimensional setting by consid-

ering the wavelet ψ ∈ L2(R2). In this case, as Mallat (1989b) demonstrated, we construct

a multidimensional MRA by using the tensor product of one-dimensional multiresolution

analyses. Essentially through the properties of tensor products, the two-dimensional space

inherits the orthogonal structure of the original MRA. Following Vidakovic (1999) we for-

mally define a two-dimensional multiresolution analysis as follows:

Definition 6 A two-dimensional multiresolution analysis (MRA) can be defined as a se-

quence of subspaces, Vj ⊂ L2(R2) for j ∈ Z,

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . (2.49)

where Vj = Vj,(1) ⊗ Vj,(2) and each Vj represents a one-dimensional subspace. These sub-

spaces satisfy
⋂
j∈ZVj = {0} and

⋃
j∈ZVj = L2(R2).

As in the one dimensional setting we can associate a scaling function with this two-dimensional

multiresolution analysis. Specifically we have,

φ(x, y) = φ(x)φ(y), (2.50)

where the φ(x) and φ(y) correspond to one dimensional scaling functions. Dilated and

translated versions of this scaling function are obtained, as follows:

φj,k(x) = φj,k1(x)φj,k2(y), (2.51)

= 2jφ(2jx− k1)φ(2
jy − k2), (2.52)
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where k = (k1, k2) with k1, k2 ∈ Z and x = (x, y) ∈ Z
2. It follows that {φj,k(x)} constitutes

an orthonormal basis of Vj. Recalling the multiresolution analysis construction in one

dimension, for each j ∈ Z let Wj be the orthogonal (difference) complement of Vj in Vj+1.

Following Mallat (1999, Section 7.7) we obtain,

Vj+1 = (Vj,(1) ⊕Wj,(1))⊗ (Vj,(2) ⊕Wj,(2)) (2.53)

= (Vj,(1) ⊗ Vj,(2))⊕ (Vj,(1) ⊗Wj,(2))⊕ (Vj,(1) ⊗ Vj,(2))⊕ (Wj,(1) ⊗Wj,(2))(2.54)

= Vj ⊕W
(h)
j ⊕W

(v)
j ⊕W

(d)
j . (2.55)

The superscripts {h, v, d} in the above stand for horizontal, vertical and diagonal directions,

since the coefficients in these spaces describe the horizontal, vertical and diagonal features

of the image. The spaces Wl
j where l corresponds to the direction are spanned by wavelets

functions as follows:

ψhj,k(x, y) = φj,k1(x)ψj,k2(y)

ψvj,k(x, y) = ψj,k1(x)φj,k2(y)

ψdj,k(x, y) = ψj,k1(x)ψj,k2(y).

Hence an image, f(x, y), defined in the space L2(R2) can be expressed as follows;

f(x, y) =
∑

k

cj0,kφj0,k(x, y) +
∑

l

∑

j

∑

k

d
(l)
j,kψ

(l)
j,k(x, y), (2.56)

where the sum over l is the sum over the three directions (horizontal, vertical and diagonal),

k = (k1, k2) for k1, k2 ∈ Z and j relates to scale. In order to obtain the coefficients cj0,k and

d
(l)
j,k we introduce the two-dimensional discrete wavelet transform using an extension of the

cascade algorithm introduced in Section 2.2.1.

2.5.2 The two-dimensional discrete wavelet transform

Recall the one-dimensional DWT from Section 2.2.1. In a similar fashion the two-dimensional

discrete wavelet transform proceeds as follows, under the assumption an image has a dyadic
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dimensions. Suppose one has an n x n matrix cJ where n = 2J for J ∈ Z. The formulae for

calculating the smooth cj0,u and detail d
(l)
j,u coefficients for j = J, ..., 1 at a given location

u = (u, v) in the image are given by,

cj−1,u =
∑

m

∑

n

hm−2uhn−2vcj,(m,n), (2.57)

dhj−1,u =
∑

m

∑

n

gm−2uhn−2vcj,(m,n), (2.58)

dvj−1,u =
∑

m

∑

n

hm−2ugn−2vcj,(m,n), (2.59)

ddj−1,u =
∑

m

∑

n

gm−2ugn−2vcj,(m,n). (2.60)

A full wavelet decomposition is achieved by decomposing cJ using the above equations at

each scale. The final set of coefficients are (c0,d
h
0 ,d

v
0,d

d
0, . . . ,d

h
J−1,d

v
J−1,d

d
J−1) where c0 is

the coarsest father coefficient and the dlj = {dlj,k}.

The filtering equations (2.56)− (2.59) can be written in terms of the operator notation

introduced in Section 2.2.2. In particular they can be described as follows. Firstly, both

the D0H and D0G operators are applied to the rows of cJ . This results in two n x (n/2)

matrices which can be labelled as H and G. Both operators are subsequently applied to the

columns of H and G. This results in four matrices which we label HH,GH,HG,GG, each

of dimension (n/2) x (n/2). The matrix HH is the result of applying the ‘low-pass’ operator

D0H to both the rows and columns of cJ . The other matrices GH,HG and GG create the

finest-scale wavelet detail in the horizontal, vertical and diagonal directions respectively.

This algorithmic step is then repeated by applying the same filtering operations to HH,

generating new matrices of dimension (n/4) x (n/4). These new matrices are HH,GH,HG

and GG at the next finest scale and then the step is repeated by application to the new HH

and so on. A schematic diagram of this can be seen in Figure 2.6. As one might expect the

2D-DWT is orthogonal and so we can invert the above algorithm. The inversion process

is similar to the one dimensional case discussed previously. See Mallat (1989b) and Nason

and Silverman (1994) for further details.

Figure 2.7 shows an example image and its two-dimensional DWT decomposition. With

the exception of the lower left quadrant, the outer level represents the finest resolution level
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columns

g 1 ↓ 2 ddj−1
rows

g 2 ↓ 1

h 1 ↓ 2 dvj−1

cj

g 1 ↓ 2 dhj−1

h 2 ↓ 1

h 1 ↓ 2 cj−1

2 ↓ 1 keep one column

out of two

1 ↓ 2 keep one row

out of two

X convolve with

filter X

Figure 2.6: 2D DWT: decomposition of an image into smooth and detail components using
quadrature mirror filters, h and g.

for each direction. The lower quadrant is segmented into four, where with the exception of

the lower left again the others represent the detail of each direction at the next finest reso-

lution level. This process repeats itself until we reach the coarsest scale smooth coefficient

represented by S. The smooth coefficients appear as a coarser representation of the original

image.

Recall in Section 2.3.1 we introduced the NDWT. This also has a natural extension to

two dimensions in that we use zero-padded filters to convolve with the rows and columns of

our data. This results in detail images at each level/direction which are the same dimension

as the original.

2.6 Texture analysis

The main application area in this thesis is texture analysis, considering both greyscale

and colour images. Here we give a very brief introduction to the area though further

review material will be provided in Chapters 3 and 4, with a review of colour texture

analysis postponed until Chapter 6. Specifically in this section we introduce a definition of

texture and discuss various approaches to the three main texture analysis activities, namely
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Figure 2.7: (a) Original image, (b) DWT of image and (c) DWT hierarchy.

discrimination, classification and segmentation.

Whilst there is no formal mathematical definition of texture we adopt the definition of

Petrou and Sevilla (2006) who state that texture is the variation of data at scales smaller

than the scales of interest. In addition, we can consider that a region in an image has a

constant texture if a set of local statistics or other local properties of the image function are

constant, slowly varying or approximately periodic (Tuceryan and Jain, 1998). In particular

in subsequent chapters we focus on the variance and covariance properties of an image.

Figure 2.8 provides examples of textured images taken on a standard digital camera. The

images in Figure 2.8 are visually very different and easy to distinguish. Such patterns are
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(a) (b) (c)

Figure 2.8: (a) Brick Wall, (b) Grass, (c) Pebbles. All images were provided by A. Gott.

induced by physical properties, for example roughness and edges.

One of the most important properties of texture is its scale dependence as structure in

an image frequently exists on many different scales. For example, Figure 2.8(a) shows an

image of a brick wall displaying different textured elements at the coarsest scale. We can see

longer bricks in the middle and smaller bricks around the edges. Texture analysis involves

using summary approaches to extract features in order to characterise texture. Such features

could include:

i) Edges - these are discontinuities, for example the edge of each brick in Figure 2.8(a).

ii) Non-stationary structure, for example:

1. Changes in mean, e.g. the change in shade between pebbles in Figure 2.8(c).

2. Changes in covariance structure, e.g. the grass as a whole rather than looking at

each blade individually in Figure 2.8(b).

iii) Scale structure, for example, in Figure 2.8(a) if we are interested in the wall as a whole,

then each brick is considered as a texture. However if we are interested in identifying

an individual brick, each brick is a non-textured object at this scale of interest, as

there are hardly any details inside it.

The above examples are reasonably straightforward to differentiate. However the exam-

ples encountered by our industrial collaborator such as the images in Figure 2.9 are more

challenging for the eye to identify differences, as they exhibit complex and subtle structure.

For example Figure 2.9 shows images of hair which are similar so it takes longer to identify
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(a) (b)

Figure 2.9: Hair images obtained from an industrial collaborator.

dissimilarities, such as shade and caliber. By eye we can see how the image on the right of

Figure 2.9 appears to show more of a wave in the central part of the image.

From a statistical perspective Petrou and Sevilla (2006) argue that there are two key

classes of textured images: stationary and non-stationary. A texture is said to be stationary

if it contains a single type of texture, i.e. the same texture fills up the whole image and so

its local statistical properties are the same everywhere. It is classified as non-stationary if

it contains more than one type of texture.

We now briefly outline various texture analysis approaches. As we shall see these are

predominantly based on statistical thinking rather than formal modelling. For a more

comprehensive review of this area we refer the reader to Arivazhagan and Ganesan (2003).

Traditional statistical approaches to texture analysis include: co-occurence matrices

(Chen and Pavlidis (1979)), second-order statistics (Haralick (1979)), Gaussian Markov

random fields (Cross and Jain (1983)) and local linear transforms (Unser (1986)). However

these methods are restricted to the analysis of spatial interactions over small neighbourhoods

viewed on a single scale. This is not ideal for texture-based applications as textures possess

structure on many different scales. In addition several researchers have highlighted that the

human and mammalian visual systems process images in a multiscale manner, preserving

both local and global information (Field, 1999). The multiscale behaviour of texture (Jolion

and Rosenfeld, 1994; Petrou and Sevilla, 2006) would then suggest that a multiscale approach

would perform better than traditional single resolution techniques and a number of wavelet-

based approaches have been considered.

Comprehensive reviews of wavelet-based statistical approaches to texture analysis are
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given by Scheunders et al. (1998) and Sonka et al. (1999). We give a brief discussion here of

some of the existing wavelet methods. Briefly, wavelet-based approaches to image segmen-

tation include Mao and Jain (1992); Lu et al. (1997); Zhang and Oe (1998); Arivazhagan

and Ganesan (2003). These methods take a wavelet decomposition of the original image and

texture features are calculated from the wavelet coefficients. Such features include energy

measures at different scales and the mean and variance detection for each filtered image.

Unser (1995) demonstrated the advantage of using the wavelet transform within a seg-

mentation framework due to its many properties such as multiresolution representation and

orthogonality. Unser (1995) concluded that second-order statistics such as the variance and

covariance may be best for segmentation of microtextures due to their ability to represent

the inherent structure of texture efficiently.

Possible wavelet approaches to texture classification include Chang and Kuo (1993)

which is based on the wavelet packet transform and Unser (1995), based on a form of non-

decimated wavelet. In both cases, statistical thinking rather than formal modelling is used

to create a feature set for classification purposes. Eckley et al. (2010) also use a NDWT, but

embed the wavelet transform within a statistical modelling framework, reviewed in Chapter

3. The advantages of this framework are shown in their results, with the modelling approach

showing higher classification successes than using the DWT or NDWT.

Throughout the remainder of this thesis we consider texture and its properties in further

detail. An automatic detection method to establish stationarity properties is discussed in

Chapter 3. Chapter 4 proposes a statistical-based approach to count the number of unique

texture regions within an image. This can then be used to segment an image. Chapter 5

introduces a multivariate extension of the two-dimensional locally stationary wavelet model

and we conclude in Chapter 6 by applying this to a discrimination and classification problem

relating to colour texture images.
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Chapter 3

A test of stationarity for textured

images

Abstract

This article proposes a test of stationarity for random fields on a regular lattice motivated by

a problem arising from texture analysis. Our approach is founded on the locally stationary

two-dimensional wavelet (LS2W) process model for lattice processes which has previously

been used for standard texture analysis tasks such as texture discrimination and classifica-

tion. The proposed test can be performed on a single realisation – a feature of particular

practical importance within texture analysis. We illustrate our approach with pilled fab-

ric data, demonstrating that the test is capable of identifying visually-subtle changes in

stationarity.

3.1 Introduction

This article is motivated by an application emerging from the analysis of textured images.

When one thinks about texture, a typical example that comes to mind is that of a woven

material, straw or a brick wall. More formally, image texture is the visual property of an

image region with some degree of regularity or pattern: it describes the variation in the data

at smaller scales than the current perspective (Petrou and Sevilla, 2006). Texture structure

can be thus considered to exist on several different scales of an image. Moreover it is well-
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documented that image processing within the mammalian visual system is performed in such

a manner to preserve local and global information, see for example Daugman (1990), Jolion

and Rosenfeld (1994) or Field (1999). It is therefore desirable that texture analysis tools

reflect these two important properties of texture, namely that (i) it has a location-dependent

structure and (ii) it is multiscale in nature.

The image set which we consider (Figure 3.1) arises from work with an industrial collab-

orator. It comprises six fabrics buffed to varying degrees in an attempt to simulate different

levels of garment wear. The effect of this abrasive process is to induce pilling – a build up

of fibrous clusters on the surface of the material. By its very nature pill is a localised (short

memory) phenomenon with the amount of pill in any region dependent on the amount of

wear in that particular area (see Chan and Pang (2000) and Palmer et al. (2011) for further

details). Pilling can therefore induce non-stationary behaviour across the fabric. Assessing

the level of pilling is useful for product evaluation. For example highlighting the efficiency

of fabric detergents in order to improve the wear of the material, e.g. by slowing the rate

of pilling. Incorrectly judging the non-stationary behaviour of a texture can lead to a false

perception of wear and efficiency of a product.

Within the field of texture analysis researchers are typically interested in three broad

activities, namely texture discrimination, classification and segmentation. As such, appro-

priate and efficient modelling of the second-order properties of an image can often be an

important consideration. Many established techniques for texture analysis have an underly-

ing assumption of (second-order) stationarity, see for example Gonzalez and Woods (2001).

In other words, the process has a constant mean, but the covariance between two spatial

locations is a function of the vector difference between them: Cov(Xr1 , Xr2) = γ(r1 − r2).

Conversely, to account for the inherent multiscale structure of such images, others have

proposed the use of wavelet-based approaches, see for example Laine and Fan (1993); Unser

(1995); Eckley et al. (2010) or Mondal and Percival (2012). In particular the approach

proposed by Eckley et al. (2010) provides a mechanism for modelling and estimating the

non-stationary structure of textured images.

Wavelets are a form of localised basis function which provide a scale based decomposition

of an image’s structure (Vidakovic, 1999; Nason, 2008). Recent research by Eckley et al.
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(2010) indicated that when a textured image appeared visually to be stationary then, as

one might anticipate, Fourier-based classification approaches provide improved classification

performance when compared against their wavelet counterparts. Conversely when an image

is non-stationary, a wavelet based approach is more appropriate, due to their multiscale

nature and location dependent decomposition.

In practice one will not generally know a priori whether or not the images being anal-

ysed are (second-order) stationary. It is therefore difficult to identify whether a multiscale

or stationary approach should be adopted to analyse a given set of images. One way of

resolving this issue would be to develop a test of (second-order) stationarity for such short

memory processes based on a single realisation of each image. This is the question which we

address in this paper, developing a new test of stationarity for random fields, highlighting

its application with textured images.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: A sequence of six pilled fabric images. The amount of pilling increases across
the images from (a) (lowest pill) to (f) (highest pill). The first five images clearly show
a high degree of stationarity across the pills; due to the increased pilling, the sixth image
shows small areas of uneven bobbling.
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Existing tests of spatial stationarity. Several tests of stationarity for spatial processes

have been proposed in the literature in recent years, with contributions coming from statis-

tics, geology and the environmental sciences. We now consider the suitability of these to

the texture analysis application described above. In particular we seek to identify an ap-

proach capable of using single process realisations and, ideally, which takes into account the

scale-based nature of images.

Ephraty and collaborators have suggested a number of tests of spatial stationarity. Initial

work, described in Ephraty et al. (1996), proposed a test statistic for stationarity calculated

using the l2 norm of the off-diagonal elements of the second-order cumulant spectrum (the

Fourier transform of the image cross-correlation function). Under the null hypothesis of sta-

tionarity, only the diagonal elements of the matrix should be zero. A relatively large sample

size is needed to ensure the accuracy of the method. Further work introduced by Ephraty

et al. (2001) introduced a likelihood-based test and also a test using spectral estimation

methods under the assumption of a low degree of stationarity. However, unfortunately this

approach also requires multiple realisations of the process – a requirement that is often not

possible in texture analysis and remote sensing settings.

Bose and Steinhardt (1996) formulate a hypothesis test using the generalised likelihood

ratio statistic under the assumption of a centrosymmetric form of the spatial covariance.

The covariance of stationary processes is known to have this property. This in turn means

that subspaces spanned by particular eigenvectors can be inspected for orthogonality under

the null hypothesis. However, the test also assumes multiple realisations of the spatial

process and, as noted by Fuentes (2005), the proposed test is likely to be sensitive to the

form of covariance.

A hierarchical Bayesian approach is proposed by Fuentes (2005) who models the contin-

uous spatial process using a parametric form for the covariance structure and estimating the

spectral density of a process via weight functions evaluated on windows. The author tests for

stationarity by extending the ‘analysis of variance’ approach of Priestley and Rao (1969) to

spatial processes. The dependence of the approach on the choice of window (weight function

bandwidth) is an obvious computational drawback. Additionally we seek a discrete-spatial

approach which can encapsulate the scale-based nature inherent within textured images.
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Finally, Blanc et al. (2008) investigate the large sample behaviour of the empirical mean

and variance statistics over a class of spatial processes for which the theoretical asymptotic

behaviour is known. The rates of convergence of the statistics for an observed spatial process

are estimated by image subsampling and then fitting a nonparametric estimator. Non-

stationarity of the mean or variance is detected by looking for ‘anomalies’ in the behaviour

of the empirical statistics compared with theoretical rates. Evaluating the large sample trend

of the statistics is obviously computationally intensive. In addition, there is no clear measure

of a sufficiently convergent trend and thus automatic implementation of the method is not

considered. Hence, detection of non-stationarity is achieved through visual inspection. This

approach is therefore not suitable for use with textured images where typically one may

have a large number of candidate textures which need to be (automatically) analysed to

identify whether they are stationary.

A wavelet-based approach? Each of the above methods suffer various disadvantages for

the application under consideration. The test of stationarity which we propose in Section 3.3

adopts the recently proposed wavelet-based model of Eckley et al. (2010). Specifically, the

locally stationary framework of Eckley et al. (2010) provides the flexibility to accommodate

realistic non-stationary behaviour whilst also being able to model the inherent multiscale

structure of texture. It is therefore natural to consider whether this framework can be used

to develop a test of stationarity for short memory random fields, such as the pill images,

particularly since the wavelet-based framework permits estimation of the local spectrum

with a single realisation of the spatial process. As such our proposed test does not suffer

from the limitation of requiring multiple process realisations. Moreover we find that it

is able to detect quite subtle locally non-stationary behaviour of the spatial process and

demonstrate how this can be applied in the texture context.

The article is organised as follows. We begin, in Section 3.2, by providing a brief in-

troduction to wavelets and two-dimensional locally stationary wavelet process. We then

propose our test of stationarity in Section 3.3, providing assessments of the performance of

the test through simulation in Section 3.4. Our approach is then applied to several texture

examples provided by an industrial collaborator (Sections 3.4.2 and 3.4.3).
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3.2 Wavelets and 2D locally stationary wavelet (LS2W) pro-

cesses

Briefly, wavelets are oscillatory basis functions which provide efficient (sparse) multiscale

representations of signals. For example, for a function f ∈ L2(R), we have the expression

f(x) =
∑

k∈Z c0,kφ0,k(x)+
∑

j≤J

∑
k∈Z dj,kψj,k(x), where the wavelet ψj,k(x) = 2−j/2ψ(2−jx−

k) is a dilated and translated version of a (mother) wavelet ψ and similarly for the father

wavelet φ. The coefficients dj,k at location k and scale j represent the oscillatory behaviour

of the signal f at a particular frequency, whereas the coefficients cj,k give information about

the mean behaviour of the signal at different scales j.

Note: In the remainder of this thesis we consider j to be positive.

Wavelets have received considerable attention within the statistics community during

the last 20 years, not least because of their ability to provide an efficient location-scale

decomposition of signals (see Vidakovic (1999), Percival and Walden (2006) or Nason (2008)

for accessible introductions to this area). Below we provide a brief overview of the pertinent

theory associated with locally stationary two-dimensional wavelet processes.

3.2.1 Discrete wavelets

We begin by providing a formal definition of the key building blocks within the LS2W

framework, namely discrete wavelets.

Let ψ be a (compactly supported) wavelet, such as those introduced by Daubechies

(1992), and denote by {hk, gk} the low- / high-pass filter pair associated with ψ. Fur-

thermore, let Nh denote the number of non-zero coefficients of {hk}, and define Lj =

(2j − 1)(Nh − 1) + 1, where Lj represents the discrete wavelet length.

As we are following the separable approach and considering the tensor products of two

one dimensional filters. We begin by introducing one-dimensional discrete wavelets. The

one-dimensional discrete wavelets at a given scale j ∈ Z
+ as introduced by Nason et al.

(2000) are defined to be the vectors ψj =
(
ψj,0, . . . , ψj,Lj−1

)
, with ψ−1n =

∑
k gn−2kδ0k = gn

and ψ(j−1)n =
∑

k hn−2kψjk for n = 0, . . . , Lj−1 − 1, where δ0k is the Kronecker delta. The

discrete father wavelet is defined similarly using the associated low-pass filter {hk}. As
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Eckley et al. (2010) note, this construction can easily be extended to two dimensions as

follows:

Definition 7 Let k = (k1, k2) where k1, k2 ∈ Z. The 2D discrete wavelet filters, {ψlj}, are

defined as the finite square matrices (of dimension Lj × Lj):

ψlj =




ψlj,(0,0) · · · ψlj,(0,Lj−1)

...
...

...

ψlj,(Lj−1,0)
· · · ψlj,(Lj−1,Lj−1)



,

for directions l = h, v or d, i.e. horizontal, vertical and diagonal, where the elements of the

wavelets are the tensor products of the corresponding 1D discrete wavelets: ψhj,k = φj,k1ψj,k2;

ψvj,k = ψj,k1φj,k2 and ψdj,k = ψj,k1ψj,k2.

Discrete father wavelets φj,k can be defined similarly in two dimensions by taking the tensor

product of 1D discrete father wavelets.

Finally, a family of nondecimated discrete wavelets is formed via translations in Z
2 as

ψlj,u (r) = ψlj,u−r for every scale j, direction l and locations u, r ∈ Z
2. It is these which we

use in the spatial process model introduced in the next section.

3.2.2 The LS2W spatial model

The test of stationarity which we introduce in Section 3.3 extends ideas presented in a time

series context by Cardinali and Nason (2011) to a spatial setting. To achieve this, we adopt

the locally stationary spatial modelling framework introduced by Eckley et al. (2010). This

introduced a new class of multiscale lattice processes with a location-dependent second-

order structure. Instead of assuming a stationary process behaviour, these processes are

assumed to have a locally stationary character. In other words, the covariance is assumed

to vary across (pixel) locations of an image, as typically seen in many everyday examples of

texture, e.g. wear on a garment made from woven fabric. Eckley et al. (2010) refer to spatial

processes constructed under such a model as locally stationary wavelet fields (LS2W). We

now provide an introduction to the main elements of the LS2W modelling approach.

The locally stationary two-dimensional wavelet process model introduced by Eckley et al.
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(2010) is defined as

Xr;R =
∑

l

∞∑

j=1

∑

u

wlj,u;Rψ
l
j,u(r)ξ

l
j,u, (3.1)

for directions l = h, v or d and spatial locations r = (r, s) ∈ {0, . . . , R−1}×{0, . . . , S−1} =

R, where R = 2m, S = 2n ≥ 1, with n,m ∈ N. We denote the lowest common scale as

J(R,S) ≡ log2{min(R,S)}. In equation (3.1),

(i) {ξlj,u} is a zero-mean random orthonormal increment sequence;

(ii) {ψlj,u} are a set of discrete nondecimated wavelets (see Definition 7);

(iii) {wlj,u} are a collection of amplitudes which quantify the contribution made to the

process at location u.

The LS2W model requires the following assumptions:

1. E[ξlj,u] = 0 hence E(Xr) = 0 for all l, j and u.

2. The increment sequence should be uncorrelated, E
(
ξlj,kξ

p
m,n

)
= δj,mδk,nδl,p.

3. For each decomposition directions, l and scale j ≥ 1, there exists a Lipschitz continuous

function, W l
j(z) such that:

(i)
∑

l

∑∞
j=1 |W l

j(z)|2 <∞ uniformly in z ∈ (0, 1)2.

(ii) The Lipschitz constants Llj of W
l
j are uniformly bounded in j, l and

∑

l

∞∑

j=1

22jLlj <∞.

(iii) Also there exists a sequence of constants C lj such that for each lattice R

supu|wlj,u;R −W l
j

( u
R

)
| 6

C lj
max{R,S} (3.2)

where {C lj} fulfills
∑

l

∑∞
j=1C

l
j <∞.

Note that the locally stationary wavelet process has a dependence on the dimension of the

image, R = (R,S). However, for notational convenience we drop this explicit dependence

and denote such a process as Xr, though the dependence is always assumed.
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3.2.2.1 Example of an LS2W process

We now introduce an example of an LS2W process, namely a unit variance diagonal 2D

Haar MA process of order 2. We assess the stationarity of this process for various image

sizes (See S3 in Section 3.4.1) in order to show the reliability of our testing procedure (see

Section 3.3). A Haar MA field of order 2, in direction d, is defined to be the LS2W process

X2,d
r generated by Haar 2D nondecimated discrete wavelets with the following amplitudes:

wlj,u =





1 for j = 2, l = d

0 otherwise,
(3.3)

and assuming an orthonormal increment sequence. Substituting these conditions into the

representation of the model in equation (3.1) gives

Xr =
∑

u

wd2,uψ
d
2,u(r)ξ

d
2,u.

3.2.3 The local wavelet spectrum

Analogous to Fourier-based spectral theory, one can define the local wavelet spectrum (LWS)

associated with an LS2W process.

Definition 8 The LWS for a given location z ∈ (0, 1)2, at scale j in direction l of a LS2W

process {Xr} is

Slj(z) = |W l
j(z)|2 (3.4)

where W l
j(z) can be defined loosely as

W l
j(z) ≈ wlj,u, (3.5)

due to equation (3.2).

As such the LWS quantifies the contribution to the process variance at rescaled spatial

locations z ∈ (0, 1)2, decomposition directions l, and scales, j. It should be noted that we

use rescaled time, i.e. z = (u/R) where u/R := (u/R, v/S) since this allows us to obtain

more information about the local structure of W l
j(z) as R,S tends to ∞.
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The LWS also inherits Lipschitz properties. Following Eckley et al. (2009), if we set

z = (z1, z2) and τ = (τ1, τ2), then

∣∣∣∣S
l
j

(
z1 + τ1
R

,
z2 + τ2
S

)
− Slj(z1, z2)

∣∣∣∣ = O

(
Llj

( |τ1|
R

+
|τ2|
S

))
. (3.6)

Thus,

Slj

(
z1 + τ1
R

,
z2 + τ2
S

)
= Slj(z1, z2) +O

(
Llj

( |τ1|+ |τ2|
min{R,S}

))
. (3.7)

This is useful in proving the asymptotic properties of the spectrum estimator which is

discussed below.

To assess the stationarity, or otherwise, of a textured image, the approach proposed in

Section 3.3 uses an estimate of the LWS. Drawing parallels with estimation theory associated

with the Fourier spectral density, Eckley et al. (2010) propose the following estimator for

the LWS:

I lj,u = |dlj,u|2 =
(
∑

r

Xrψ
l
j,u(r)

)2

, (3.8)

where dlj,u =
∑

r
Xrψ

l
j,u(r) denotes the empirical wavelet coefficients of the LS2W process,

Xr, at a particular location, scale and direction. Defining z = u/R as above, the array

I(z) = {I lj,u} for j = 1, . . . , J , l ∈ {h, v, d}, and locations u ∈ R in equation (3.8) is

referred to as the raw local wavelet periodogram (LWP). As in Fourier theory, the raw LWP

is biased as an estimator for the LWS. However Eckley et al. (2010) established that the

periodogram estimator can be bias-corrected using the inverse of the inner product matrix

of two-dimensional discrete autocorrelation wavelets (AJ), i.e.

Ŝ(z) = L(z) = A−1
J I(z), (3.9)

(see Section 3.2.4 for further details). It is this bias-corrected version of the LWP which we

incorporate within our test of stationarity, introduced in Section 3.3.
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3.2.4 Autocorrelation wavelets and local covariance

We begin by introducing the autocorrelation functions of discrete wavelets. These functions

are required to obtain a measure of the local autocovariance structure of LS2W processes.

Following Nason et al. (2000), in the one-dimensional setting autocorrelation wavelets are

defined as follows:

Ψj(τ) =
∑

k

ψj,k(0)ψj,k(τ), (3.10)

for j > 0, τ ∈ Z. The autocorrelation father wavelet Φj(τ) is defined analogously by

replacing ψ by φ in equation (3.10). The two-dimensional extension for 2D discrete wavelets

is defined as follows.

Definition 9 The 2D autocorrelation wavelet at scale j ∈ N, direction l ∈ {v, h, d} and lag

τ ∈ Z
2 is defined as,

Ψl
j(τ) =

∑

v∈Z2

ψlj,v(0)ψ
l
j,v(τ ). (3.11)

The 2D autocorrelation wavelets are separable in each direction and can be represented

in terms of the 1D autocorrelation wavelets given in equation (3.10). We have Ψh
j (τ ) =

Φj(τ1)Ψj(τ2),Ψ
v
j (τ ) = Ψj(τ1)Φj(τ2),Ψ

d
j (τ ) = Ψj(τ1)Ψj(τ2) where τ = (τ1, τ2). The 2D

discrete autocorrelation father wavelet can be expressed similarly.

Eckley et al. (2010) show that the LWS as defined in the previous section is unique

for a given LS2W process. In order to show this the inner product matrix of discrete

autocorrelation wavelets A = (Aη,ν)η,ν≥1 is required, where

(Aη,ν) = (< Ψη,Ψν >) =
∑

τ

Ψη (τ)Ψν (τ) . (3.12)

The matrix A can also be shown to be invertible (see Eckley et al. (2010) for details)

and is used in equation (3.9) to produce an unbiased estimator of the spectrum. Within

this definition we have introduced an alternative form of indexing. Instead of having two

separate indices representing scale and direction (i.e j and l), a combination of both provides

a single index, η, each value of which represents a particular decomposition scale in a given

direction. We have η(j, l) = j + g(l) for all j = 1, . . . , J where g(l) = 0, J, 2J and l = v, h, d
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respectively. Hence the first J entries of η correspond to vertical wavelets, the next J to

horizontal and the last J to diagonal. To simplify this notation we will omit the dependency

on j and l and simply refer to η.

Recall from classical time series analysis that the covariance of a stationary process may

be defined in terms of its spectral representation. With a spectral representation of the

LS2W process established it is perhaps not surprising that in the same way the covariance

of a LS2W process can be expressed in terms of its spectrum. Given Definition 9 we may

now define the local autocovariance function for a given LS2W process.

Definition 10 The local autocovariance (LCV), C(z, τ ), of a LS2W process with LWS

{Sη(z)}, is defined as

C(z, τ ) =
∑

η

Sη(z)Ψη(τ ), (3.13)

where τ ∈ Z
2 and z ∈ (0, 1)2.

In addition we can represent the spectrum in terms of the local autocovariance.

In the next section we use the LS2Wmodelling framework in order to design a hypothesis-

based test of stationarity.

3.3 Testing for stationarity in LS2W processes

We now introduce our test of stationarity for textured images. Our approach extends earlier

work by Cardinali and Nason (2011) from a time series to a two-dimensional setting. The

test takes the form of a hypothesis test for which a particular statistic is used to measure

the degree of non-stationarity under the null hypothesis of stationarity.

To formalise the hypothesis test we note that a (spatial) process is stationary if and only

if its spectrum is constant across locations for all scale-direction pairs. In other words, we can

test a process spectrum for constancy in order to determine whether the process is station-

ary. Thus given an observed process, Xr, with associated wavelet spectrum S = {Slj(z)}j,l,

our hypothesis test is

H0: S
l
j(z) is a constant function of z for all j > 0 and l ∈ {h, v, d}

48



HA: S
l
j(z) is not a constant function of z for some scale j and direction l.

In view of the above observation, the null hypothesis corresponds to an assumption of

stationarity of a spatial process. We therefore look for departures from constancy within

each scale and direction of the local wavelet spectrum to indicate non-stationarity. This

variation in the wavelet spectrum can be quantified using the following measure (one of

many which could be adopted):

T{Slj(z)} = (3J)−1
∑

l

J∑

j=1

∫
{Slj(z)− S̄lj}2 dz with z ∈ (0, 1)2. (3.14)

Here S̄lj =
∫
Slj(z) dz for a particular direction l ∈ {h, v, d} and scale level j = 1, . . . , J .

Note that the quantity in (3.14) is zero if, and only if, the spectrum Slj(z) is constant across

locations for each scale-direction pair.

Since the spectrum S(z) is unknown, in practice it is replaced by an estimator, Ŝ(z),

for example the corrected LWS L(z) described in Section 3.2.3. Note that, for a given

realisation, Ŝlj(z) can be denoted Ŝlj,u. In addition, the integral S̄lj can be estimated by

S̃lj = (RS)−1
∑

u∈R

Ŝlj,u. (3.15)

Taking Ŝlj,u = Llj,u (the corrected LWP) in (3.15) results in a consistent estimator for

the spectrum under the assumption of stationarity (see Appendix 3.6 for a proof which

establishes this property). In a similar fashion, we can estimate the integral in equation

(3.14) using the empirical variance (across locations) for a fixed scale-direction spectrum

pair. Hence our test statistic can be calculated as follows

T{Ŝlj(z)} = (3J)−1
∑

l

J∑

j=1

Varu(Ŝ
l
j,u), (3.16)

where the variance is taken over the lattice R. The test statistic in equation (3.16) can be

seen as the mean empirical variance of the spectrum estimate, where the average is taken

over all scale-direction pairs.
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3.3.1 The test procedure

To perform the above hypothesis test we require knowledge of the distribution of the test

statistic T{Ŝlj(z)}, under the null hypothesis. Unfortunately, in most practical cases this dis-

tribution will in general be unknown. However, the spectrum S determines the distribution

of the test statistic (assuming stationarity). We therefore perform (parametric) bootstrap

resampling on the model innovations {ξlj,u} together with the assumed stationary spectral

structure to establish the distribution of the test statistic under H0.

As noted in Cardinali and Nason (2011), the estimator Ŝlj(z) in Section 3.3 needs to

be a consistent estimator for the stationary spectrum (under the null hypothesis) for the

parametric bootstrap implementation to be valid. To this end, we establish the consistency

of our estimator L̄ = (RS)−1
∑

u∈RLu in Appendix 3.6.

The bootstrap test works by first computing the spectral estimate L for the observed

image and then calculating the test statistic T obs (equation (3.16)). We then obtain simu-

lated realisations by the following procedure (Algorithm 3.1). In essence we simply simulate

the underlying innovations {ξlj,u} (see Remark 1) and feed these into our process model

under the null hypothesis, inverting to obtain a realisation in the spatial domain. For each

simulated stationary process, we compute the test statistic (3.16). The significance of the

test statistic for the observed image can then be assessed by appealing to Monte Carlo ar-

guments (see Davison et al. (1999) for more details). Our bootstrap approach, which we

call BootstatLS2W, is summarised in Algorithm 3.1.

The BootstatLS2W test can be interpreted as evaluating how unlikely the value of T obs

is compared to realistic (bootstrap) values of T assuming a stationary spectral structure

based on the observed process. Thus the p-value of the test can be seen as a measure of

how non-stationary the observed process is.

Remark 1. Within the bootstrap procedure described above, the realisations of the LS2W

process under the null hypothesis are simulated by assuming the innovations of the process

take a given distributional form. In particular we have assumed that the innovations are

Gaussian; however, other distributions can be used in the model representation (3.1).
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BootstatLS2W:

1. Compute the estimate of the LWS for the observed image, Ŝlj(z).

2. Evaluate T (equation (3.16)) on the observed image, call this value T obs.

3. Compute the pixel average stationary spectrum S̃lj by taking the average of spectrum values for each
scale and direction.

4. Iterate for i in 1 to B bootstraps

(a) Simulate X
(i)
r from the stationary LS2W model using squared amplitudes given by S̃lj and

Gaussian process innovations.

(b) Compute the test statistic T on the simulated realisation, call this value T (i).

5. Compute the p-value for the test as p =
1+#{Tobs ≤T (i) }

B+1
.

Algorithm 3.1: The bootstrap algorithm for testing the stationarity of locally stationary
images.

3.4 Examples

We now consider the performance of the BootstatLS2W test of stationarity proposed in Sec-

tion 3.3.1, focussing in particular on data generated from an industrial application. The

analyses were performed using the LS2W spectral estimation implementation in the R add-

on package LS2W (Eckley and Nason, 2011a). For simulating the Gaussian random fields

in the study below, we used the RandomFields R package (Schlather, 2012); the spatial

moving average processes were simulated with the R package spdep (Bivand et al., 2011)

using modifications to code featured in Anselin (2005).

3.4.1 Simulated performance of the LS2W stationarity test

In order to investigate the performance of our test of stationarity from Section 3.3.1, we

performed a simulation experiment focussing in particular on the size and power properties

of the test.

Size assessment. To explore the empirical size of the test, we chose a number of different

process types. Each process represents a different form of second-order stationary structure.

S1 is a two-dimensional white noise process, i.e Xr ∼ N(0, 1). S2 is a spatial moving average
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process with parameter ρ = 0.9, i.e.

X(u) = 0.9Wε+ ε,

where ε is a random component with variance σ2, W is a spatial weight matrix associated

to a chosen neighbour structure. A realisation of this process is shown in Figure 3.2(b).

We also consider a unit variance diagonal 2D Haar MA process of order 2 (as discussed

in Section 3.2.2.1). We denote this process by S3 (see Figure 3.2(c)). The fourth stationary

process, S4, is an exponential covariance with range parameter φ = 2 :

C(u,v) = σ2 exp

{−‖u− v‖
2

}
. (3.17)

This process is similar to that considered for continuous spatial processes in Fuentes (2005).

A realisation of this process is shown in Figure 3.2(d).

For the processes considered, we simulated K = 1000 spatial realisations for different

square image sizes R = S = 2J , with J = 6, . . . , 9. We then examined each realisation

with the test of stationarity as follows. We evaluated the Monte Carlo significance test in

Section 3.3.1 using B = 250 bootstrap simulations, each time treating the realisation as

observed. In other words, we perform the BootstatLS2W hypothesis test and record whether

the realisation is stationary or not at a 5% significance level. For each process, we then

note the number of simulated realisations which resulted in rejecting the null hypothesis of

stationarity. We then compare the proportion of those rejecting the null with the nominal

size.

Table 3.1 explores the size properties of the BootstatLS2W test on the stationary specifi-

cations expressed as a percentage of the K = 1000 images rejecting stationarity. For all four

stationary processes, the percentage of images rejecting the null hypothesis of stationarity

(i.e. judged as non-stationary) was below the nominal size of 5%. These results mirror those

obtained by Cardinali and Nason (2011) for the time series setting – namely that this test

approach is conservative.
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(a) (b)

(c) (d)

Figure 3.2: Process realisations from the stationary models for the simulations in Section
3.4.1 with R = 29 × 29. (a) S1. A two-dimensional Gaussian field; (b) S2. A moving
average process; (c) S3. The process spectrum has power at a fixed coarse scale (level 2) in
the diagonal detail direction; (d) S4. An exponential Gaussian random field with covariance
(3.17).

Next we explore the power of our test to identify whether power is lost or maintained

as a result of this conservativeness.

Power assessment. To evaluate the power of the LS2W stationarity test, we consider

three contrasting processes which exhibit different non-stationary behaviour. In particular,

we consider the following forms. NS1 describes a piecewise white noise spatial process, in

which the left half-plane has unit variance, whereas the second (vertical) half-plane has

variance σ2. In other words, we simulate K images, each constructed from 2(n−1) × 2n

i.i.d. N(0, 1) samples for z ∈ (0, 1/2)× (0, 1) concatenated with 2(n−1) × 2n values sampled

independently from N(0, σ2) for z ∈ (1/2, 1)× (0, 1). Similarly we also consider a process in

which the left half-plane is a unit variance white noise process, with the second half being
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Table 3.1: Results from a simulation experiment to assess the empirical size of the LS2W
test of stationarity. The table indicates the size (rounded to the nearest 1%) using a 2D
white noise stationary process (S1); a spatial moving average process (S2); a diagonal 2D
Haar MA process of order 2 (S3); an exponential Gaussian random field (S4). See text for
details of the process used.

S1 S2 S3 S4
Image dimension Image dimension Image dimension Image dimension

σ 64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512

0.50 0 0 0 0 0 1 0 2 0 0 0 0 1 0 2 0
1.0 0 0 0 0 1 1 0 2 0 0 0 0 0 0 0 0
1.4 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1.8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0
2.4 0 0 0 0 2 1 0 1 0 0 0 0 1 0 0 2

an isotropic Gaussian random Field with a Matérn covariance (Matérn, 1960) with shape

parameter ν = 1 (NS2). NS3 represents an image which is a montage of four stationary

processes in the four quadrants of the image (see Figure 3.3(b)); this is an LS2W process

with spectral structure given by

wdj,[2Jz] =





σ if j = 1 and z ∈ (0, 1/2) x (0, 1/2);

σ if j = 2 and z ∈ (1/2, 1) x (0, 1/2);

σ if j = 3 and z ∈ (0, 1/2) x (1/2, 1);

σ if j = 4 and z ∈ (1/2, 1) x (1/2, 1);

0 otherwise.

(3.18)

In particular, the process is a montage of four diagonal Haar moving average processes with

different orders (Eckley et al., 2010).

The specification of σ in realisations of NS1 and NS3 controls the degree of non-

stationarity in the simulated images: for low values of σ, the processes describe behaviour

which is approximately stationary (i.e. the values are closer to unit variance across the whole

image); for higher variance values the boundaries are more marked. For this study, we inves-

tigate the performance of the stationarity test with values in the range σ = {1.2, . . . , 1.6}.
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(a) (b)

0.0
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1.0

0.0
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1.0

1.2

1.4

z2

z1

(c) (d)

Figure 3.3: Process realisations from the non-stationary models for the simulations in Section
3.4.1 with R = 29 × 29. (a) NS1. The image consists of two Gaussian half planes; (b) NS3
(equation (3.18)). Each quadrant of the image is a 28×28 subimage sampled from a different
diagonal Haar MA process. The texture ranges from finest detail (bottom-left) to coarsest
(top-right); (c) A two-dimensional representation of the second order structure of the process
NS4 specified in the spatial domain; (d) A realisation of the model NS4 (see equation (3.19)).
The power displayed in the image varies smoothly across the horizontal plane according to
Figure 3.3(c).

To investigate more subtle changes in second order structure, we also define a process

specified in the spatial domain by Xr(z) ∼ N(0, σ2a;τ ;δ(z)), where σa;τ ;δ(z) is constructed

such that it varies spatially across an image. For the simulations below we use a particular

choice of the standard deviation function which changes across the horizontal coordinate of

the image according to the parameters a, τ and δ in the following way:

σa;τ ;δ(z) = τ +
δ − τ

1 + exp(−10a(2z1 − 1))
for z1 ∈ (0, 1). (3.19)

In other words, the standard deviation of the stochastic process varies smoothly from τ to
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δ (see Figure 3.3(c)). Changing the parameter a has the effect of changing the shape of

the deviation curve with lower values of a giving a more subtle behaviour across the x-axis.

We note that if τ = 1 in equation (3.19), as a increases the second order structure of NS4

process realisations will resemble that of realisations from model NS1. A realisation of NS4

can be seen in Figure 3.3(d).

A similar analysis to the size assessment was performed using 1000 realisations from the

non-stationary processes NS1 – NS4 described above. In each case, the 1000 realisations

were assessed for stationarity and the number which rejected the null recorded.

Table 3.2 shows the statistical power results (expressed as a percentage) for the test

when applied to simulated images from processes NS1 – NS3. The results illustrate that

the test is unable to distinguish between the two noise variances in NS1 for the lowest

values of σ when the image dimension is small. However the results improve dramatically

for larger image sizes. This is not particularly surprising since, for low values of σ, the

non-stationary behaviour is more difficult to detect because the boundary in the simulated

images will appear blurred. However, for intermediate and high values of σ and moderate

image sizes, the test has good performance, rejecting the null hypothesis of stationarity for

the majority of K = 1000 images (Table 3.2). The uniformity across σ values for processes

NS2 and NS3 is reassuring, indicating that the test is insensitive to the severity of boundary

non-stationarities, even for small variances.

For the smallest image dimension, the power results for NS4 indicate that the test fails

to detect the non-stationary behaviour of the images. However, as observed for NS1, the

percentage of correctly classified images improves dramatically as the size of the image

under analysis increases for all scenarios, even for the quite subtle change in structure for

NS4 described by low a values in σa;τ ;δ(z) (see Table 3.3). These results are consistent with

the findings of Table 3.2 for NS1 and σ = 1.5, which can be seen as an extreme case of the

process NS4.

These simulations suggest that for the non-stationary processes considered, the BootstatLS2W

test achieves good statistical power for image dimensions greater than n = 128. It is re-

assuring that power is maintained despite the conservative nature of the test observed in

our exploration of empirical size. These results are consistent with those of other recently
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Table 3.2: Results from a simulation experiment to assess the empirical power of the LS2W
test of stationarity. The table indicates the power (rounded to the nearest 1%) under
different non-stationary spectral specifications: piecewise Normal plane (NS1); Gaussian-
Matérn process (NS2); Haar Montage (NS3). See text for details of the processes used.

Image dimension
Model 64 128 256 512

NS1 σ=1.2 1 24 99 100
σ=1.3 20 98 100 100
σ=1.5 97 100 100 100
σ=1.6 100 100 100 100

NS2 σ=1.2 50 100 100 100
σ=1.3 100 100 100 100
σ=1.5 100 100 100 100
σ=1.6 100 100 100 100

NS3 σ=1.2 100 100 100 100
σ=1.5 100 100 100 100

Table 3.3: Empirical power assessment of the LS2W test of stationarity for process NS4. The
table indicates the power (rounded to the nearest 1%) under different location-dependent
variance structures given by equation (3.19).

Image dimension
(a, τ, δ) 64 128 256 512

(0.25,1,1.5) 8 77 100 100
(0.5,1,1.5) 58 100 100 100
(1,1,1.5) 86 100 100 100

published tests of stationarity in the time series literature. In particular the recent contri-

butions by Cardinali and Nason (2011) and Dwivedi and Subba Rao (2011) each report a

similarly conservative nature, yet retain power. In other words, for a stationary process,

each of these procedures (including our own) will not reject the null hypothesis rather than

report a false positive (reject for non-stationarity). However for a non-stationary process

they would reject in favour of the alternative.

3.4.2 Analysis of pilled fabric images

We now apply the test of stationarity proposed in Section 3.3.1 to a number of real examples

of textured images. In particular, we use our test of stationarity on a series of images of

garment material which have been artificially buffed until the fabric displayed increasing

degrees of pilling (build up of clumped fibres). A similar set of images, taken under slightly
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different lighting conditions, were previously analysed by Eckley et al. (2010) in the context

of texture classification. The fabrics are illustrated in Figure 3.1. Note that visually, all

the images appear to be spatially stationary. However, it is arguable that the most heavily-

pilled image (Figure 3.1(f)) displays a degree of non-stationarity due to more increased and

irregular “bobbling” of the fabric.

As described in Section 3.1, our interest is to examine whether the images are indeed

assessed as stationary by the test introduced in Section 3.3.1. Prior to performing the

test, as outlined in Section 3.3, the six images were examined to verify that their spatial

structure did not have a significant amount of long-range dependence. In addition, a median

polish (Tukey, 1977) was applied to each image to remove any non-zero trend (so that the

images met the zero-mean assumption of an LS2W process). The BootstatLS2W stationarity

test was then applied to each of the six individual images. In each case B = 250 bootstrap

simulations were made. The p-value associated with each (bootstrap) test was then recorded

for each fabric image. Note that the size of images analysed in this industrial application is

typically large, and so we expect the test to be reliable in view of Section 3.4.1.

As one would perhaps anticipate, the BootstatLS2W test judges the first five images as

stationary (with p-values in the range (0.21,0.95)). This concurs with our visual perception

of the images. The sixth image is judged as non-stationary, with a p-value of 0.03. This

reflects what we might visually assess, namely that the sixth fabric has less regular texture

structure than the other fabrics. Indeed, one could argue that this image contains regions

of heavier and lighter pill.

The test has also been applied to other textured images, such as a sequence of images

of differing hair types and examples taken from reference texture libraries. In all cases we

obtained similar statistical results – namely that mono-textures appear to be stationary.

For reasons of brevity we do not report these results here.

3.4.3 Analysis of texture mosaics

We now turn to consider the application of our test of stationarity for a more realistic

situation in fabric analysis. In many settings it is useful to be able to detect differing fabric

structure, for example to identify whether there is an area of uneven wear within a sample
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of material. To avoid the subjectivity of human inspection of materials it is thus desirable

to develop an automatic detection method for uneven wear.

We begin by noting that regions which contain uneven wear consist of multiple texture

types – the majority of one pill level, with some patches of another pill level. In other words,

an image of a fabric which contains uneven wear could be considered to be non-stationary.

Consequently a test of stationarity could be used as an automated proxy to detect whether

such an area exists within a fabric sample. To examine how our proposed testing method

handles this type of textural non-stationarity, we performed an experiment to mimic the

situation described above. More specifically, we constructed some pilled fabric mosaics for

analysis with the bootstrap test. A texture mosaic comprises two or more different texture

subimages combined into one image for analysis. Two such mosaics were constructed by

inserting sections of a texture image from Section 3.4.2 into another texture. Firstly a

subimage of Pilled fabric 3 was inserted as the central part of Pilled fabric 1 (Mosaic A);

Mosaic B contains a section of Pilled fabric 2 as well as Pilled fabric 3 within the lightest

pilled fabric sample 1. The mosaics can be seen in Figure 3.4. The inserted subimages are

indicated within the figures.

(a) (b)

Figure 3.4: Examples of texture mosaics of different pilled fabrics. (a) Mosaic A: a portion
of Pill 3 inside Pill 1; (b) Mosaic B: a portion of Pills 2 and 3 inside Pill 1. The images
display localised changes in texture. They can therefore be considered to be non-stationary,
though this structure can be difficult to detect visually. On each image, the arrows show
the subimages which were inserted to create the multitextured mosaics.
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In both cases, application of the LS2W stationarity test on the texture mosaics indicated

non-stationarity. This is to be expected since the images display different textural properties

across the images, but is reassuring nevertheless since the texture boundaries are difficult

to pick out visually. We also note that test was also able to detect non-stationarity when

applied to examples of reference texture mosaics taken from several texture libraries.

3.5 Concluding remarks

As discussed in Section 3.1, recent work by Eckley et al. (2010) has indicated that, as a

precursor to conducting a texture analytic task such as classification, it advisable to verify

the stationarity (or otherwise) of candidate images. The work presented in this paper has

addressed this issue by developing a bootstrap-based test of stationarity using the LS2W

framework, extending the work of Cardinali and Nason (2011) to two dimensions. A benefit

of this approach is that it permits the testing of the hypothesis using a single realisation.

When analysing simulated images, the proposed approach demonstrated good size and

power performance, highlighting insensitivity of the test to image size and localised image

variance, including slowly-varying second order structure. We also applied the test proce-

dures to images encountered by an industrial collaborator. The results from these tests are

consistent with our visual assessment of the images, namely that these textures are sta-

tionary, with heavy pilling introducing non-stationarity. In addition when analysing quite

subtle texture mosaics, the test was correctly able to detect non-stationarity. As such, this

approach could be used to detect, for example, regions of uneven wear within a material.

It is perhaps a little surprising that no local Fourier equivalent of this spatial test cur-

rently exists. Hence, we note that the development of a spatial analogue of local Fourier

time series tests, such as Dwivedi and Subba Rao (2011) would be an interesting avenue for

future research. The implementation of such a test could be similar to the BootstatLS2W

test, using bootstrapping in the Fourier domain.
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3.6 Appendix: Properties of the estimator of the stationary

spectrum

In this section we establish the asymptotic consistency of our estimator of Slj(z) under the

null hypothesis of stationarity, to confirm the validity of the bootstrap approach to the

BootstatLS2W test. The estimator takes the form:

L̄ = (RS)−1
∑

u∈R

Lu = (RS)−1
∑

u∈R

A−1
J Iu. (3.20)

Our result extends that of Cardinali and Nason (2011) to a spatial setting.

Under the assumption of stationarity, the spectrum will be constant across all locations

for each scale-direction pair. We denote this spectrum by S, which is a length 3J vector

of coefficients. In what follows, we use the shorthand notation η = η(j, l) to represent an

index running over all scale-direction pairs.

Let β = {βη}3Jη=1 = AJS. From (3.20), we consider the “uncorrected” periodogram

estimator β̂ as an estimator of β, with β̂ := AJ L̄ = Ī and where Ī = 1
RS

∑
u∈R I

l
j,u

denotes the 3J-vector of average periodogram values. From Theorem 2 of Eckley et al.

(2010), we have that E(Iη,[zR]) = AJS(z) +O
(

1
min{R,S}

)
. Thus under the null hypothesis

of stationarity, E(Iu) = AJS +O
(

1
min{R,S}

)
for all u ∈ R. Hence E(β̂) = 1

RS

∑
u
E(Iu) =

AJS +O
(

1
min{R,S}

)
, i.e. β̂ is an (asymptotically) unbiased estimator for β.

For consistency, we need to show that Var(β̂η) → 0 as R,S → ∞ for each η. We first note

that under stationarity, equation (18) of Eckley et al. (2010) means that the periodogram

variance can be expressed as

Var(Iη,u) = 2

(
∑

η1

Aη1ηSη

)2

+O
(

2j(η)

min{R,S}

)
, (3.21)

for all locations u ∈ R. In other words, the variance is asymptotically constant, with the
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constant, κ(η), say, only dependent on η. For a fixed η,

Var(β̂η) = Var

(
1

RS

∑

u∈R

Iη,u

)
=

1

(RS)2

∑

u∈R

Var(Iη,u) +
2

(RS)2

∑

(u,v)∈A(R2)

Cov(Iη,u, Iη,v),

(3.22)

where Iη,u denotes the ηth element of Iu and the covariance sum is taken over the set A(R2)

of all unique pairs of points (u,v) in R×R.

Consider each term in (3.22) separately. The first term, using the asymptotically con-

stant expression from (3.21), can be written as

R · S
(RS)2

(
κ(η) +O

(
2j(η)

min{R,S}

))
≤ 1

min{R,S}2

(
κ(η) +O

(
2j(η)

min{R,S}

))
.

Hence the first quantity of (3.22) is asymptotically zero as min{R,S} → ∞ (or equivalently

as R,S → ∞).

Next we consider the second term in equation (3.22). Theorem 3 of Eckley et al. (2010)

establishes that

Cov(Iη,u, Iη,v) = 2

{
∑

η0

∑

u0

(wη0,u0)
2 αηη0(u,u0)αηη0(v,u0)

}2

= 2

{
∑

η0

∑

u0

(wη0,u0)
2

(
∑

r1

ψη,u(r1)ψη0,u0(r1)

)(
∑

r2

ψη,v(r2)ψη0,u0(r2)

)}2

,

where we abuse notation slightly and define αη1η2(u1,u2) =
∑

r
ψη1,u1(r)ψη2,u2(r). Using

the definition of the nondecimated wavelet vector ψη,u(r) and performing the substitutions

u0 = x+ u and s = r2 − r1, we write the covariance as

Cov(Iη,u, Iη,v) = 2

{
∑

η0

∑

u0

(wη0,u0
)
2

(
∑

r1

ψη,u−r1
ψη0,u0−r1

)(
∑

r2

ψη,v−r2
ψη0,u0−r2

)}2

= 2

{
∑

η0

∑

x

(wη0,x+u)
2

(
∑

r1

ψη,u−r1
ψη0,x+u−r1

)(
∑

s

ψη,u−k−s−r1
ψη0,x+u−s−r1

)}2

= 2

{
∑

η0

∑

x

(wη0,x+u)
2

(
∑

r1

ψη,−r1
ψη0,x−r1

)(
∑

s

ψη,−k−s−r1
ψη0,x−s−r1

)}2

, (3.23)

where k = u− v. The last simplification of the sums over r1 and s follow from treating u

as a constant with respect to r1 and s. From the definition of the spectrum, (wη0,x+u)
2 =
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Sη0
(
x+u

R

)
+ O

(
Cη0

max{R,S}

)
(see Eckley et al. (2009)). Substituting this expression within

(3.23), the right-hand side becomes

2

{
∑

η0

∑

x

(
Sη0

(
x+ u

R

)
+O

(
Cη0

max{R,S}

))(∑

r1

ψη,−r1
ψη0,x−r1

)(
∑

s

ψη,−k−s−r1
ψη0,x−s−r1

)}2

.

The two product sums in the expression above are finite and bounded for fixed η due

to the compact support of the discrete wavelets. In addition, the constants {Cη0} satisfy

∑
η0
Cη0 < ∞ due to the smoothness constraints on the spectrum given in Section 3.2.2.

Hence the order term can be taken outside the sums, so that the right-hand side of the

equation (3.23) above further becomes

2

{
∑

η0

∑

x

Sη0

(
x+ u

R

)(∑

r1

ψη,−r1ψη0,x−r1

)(
∑

s

ψη,−k−s−r1ψη0,x−s−r1

)
+O

(
Cη0

max{R,S}

)}2

.

Using the Lipschitz properties of the spectrum as given in equation (3.7) and using the

assumed stationary of the spectrum, the above equation simplifies to

2

{
∑

η0

Sη0
∑

x

(
∑

r1

ψη,−r1ψη0,x−r1

)(
∑

s

ψη,−k−s−r1ψη0,x−s−r1

)
+O

(
1

min{R,S}

)}2

.

Rearranging the summations, we have

Cov(Iη,u, Iη,v) = 2

{
∑

η0

Sη0

∑

r1

∑

s

ψη,−k−s−r1
ψη,−r1

∑

x

ψη0,x−r1
ψη0,x−s−r1

+O
(

1

min{R,S}

)}2

= 2

{
∑

η0

Sη0

∑

s

Ψη0
(s)Ψη(k + s)+O

(
1

min{R,S}

)}2

= 2

{
∑

s

C(s)Ψη(s+ k)

}2

+O
(

1

min{R,S}

)
. (3.24)

Here C(s) denotes the stationary local covariance (see Definition 10).

The autocorrelation wavelets Ψ are compactly supported and bounded by one (Eckley

and Nason, 2005). Hence
∑

τ C(τ ) <∞, and

0 ≤ 2

{
∑

s

C(s)Ψη(s+ k)

}2

≤ 2

{
∑

s

C(s)

}2

<∞. (3.25)
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This finite bound means that the covariance term Cov(Iη,u, Iη,v) in equation (3.24) is asymp-

totically constant due to the finite bound in (3.25).

Theorem 3 of Eckley et al. (2010) notes that the covariance between periodogram values

is zero when ‖k‖ = ‖u − v‖ exceeds the support of the wavelet ψη. Thus the covariance

sum in (3.22) can be written as

∑

(u,v)∈A(R2)

Cov(Iη,u, Iη,v) =
∑

{(u,v)∈A(R2)|k∈Aψη}

Cov(Iη,u, Iη,v),

for k in some finite subset Aψη ⊂ R, where the set Aψη is independent of R and S. Since

the expression is a finite sum of asymptotically constant terms, it is itself asymptotically

constant. Hence it follows that the limit of the second term in (3.22) is zero as R,S → ∞.

Since both terms of (3.22) are asymptotically zero, β̂η is a consistent estimator of βη

for all η. Finally, applying A−1
J to β̂ thus establishes that L̄ is an unbiased and consistent

estimator of S.
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Chapter 4

A multiscale approach to

determining the number of

textures within an image

Abstract

This article proposes a method to distinguish the number of distinct textures present within

a textured image. Our approach employs a recent test of stationarity for locally stationary

random fields which permits the comparison of candidate textures. By embedding this test

within a quadtree image segmentation procedure we are able to count the number of distinct

texture regions within an image. The application of this method is demonstrated on both

simulated examples and an example related to material pill.

4.1 Introduction

In this article we propose a method to count the number of textures within an image. The

ability to identify the number of textures in an unsupervised manner is useful in several

different areas. In particular, the feasibility and efficacy of many segmentation techniques

is reliant on the a priori knowledge of the number of textures in a given image (Pal and

Pal, 1993; Salari and Ling, 1995; He and Chen, 2000). In what follows, we motivate our
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technique using data which arises from work with an industrial collaborator. The textured

images we consider represent garment materials which may contain regions of different wear,

i.e. pilling (see Figure 4.1). In some cases there can be multi-pilling across an image. It

is of interest to automatically assess the number of different pilled textures present in a

given image, particularly since it can be challenging to achieve this by human inspection.

Applying this procedure within a segmentation framework allows isolation of regions of local

change which is useful for further analysis. It gives an indication of the appearance of the

material in question, indicating areas of damage, which is useful in quality control.

Figure 4.1: A pilled texture mosaic representing fabric of uneven wear, created from textures
arising from an industrial application.

We are by no means the first to consider finding the number of textures in an image.

Existing work in this area includes techniques based on iterative cluster validation (Coggins

and Jain, 1985; Lu et al., 1997); penalised image segmentation methods (Zhang and Modes-

tino, 1990; Bouman and Liu, 1991) and association rules between textures (Rushing et al.,

2001). Each of the above methods suffer disadvantages. In particular, the performance of

some techniques, such as Coggins and Jain (1985) or Rushing et al. (2001) depend on a

subjective threshold or parameter choices. Cost function minimisation methods (Zhang and

Modestino, 1990; Bouman and Liu, 1991) are known to be computationally intensive, and

can be difficult to minimise in practice due to undesired multiple local minima (Bouman
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and Liu, 1991).

The approach which we introduce in this paper uses a recently proposed hypothesis test

of image stationarity (spatial homogeneity), by Taylor et al. (2013). We apply this test

to montages of textures to assess whether two candidate textures are the same. In this

context we define a montage to be a concatenation of two images. If the montage is assessed

to be stationary, we conclude it comprises of a single texture type. Conversely if the test

assesses the montage as being non-stationary, we say that the two textures are distinct. By

embedding this test within an image segmentation implementation, our proposed technique

can be used to distinguish between textures as they are identified during the segmentation

process and thus count the number of textures in an image.

The novelty of our approach to the texture count question lies in the fact that we adopt

a formal hypothesis testing framework to distinguish between image textures. Furthermore,

it can be performed independently of, or during an image segmentation technique, without

affecting the resulting image decomposition.

This article is structured as follows. An overview of the bootstrap test of stationarity

of Taylor et al. (2013) is given in Section 4.2. We then discuss our proposed approach

to determining the number of textures within an image in Section 4.3. In particular, we

first describe how to employ the BootstatLS2W test to distinguish between textures. This is

followed by details of our procedure to produce distinct textures from an image by embedding

the BootstatLS2W test within a quadtree algorithm in Section 4.3.1. Simulated and real

examples from an industrial application are given in Section 4.4. Some concluding remarks

are made in Section 4.5.

4.2 Establishing stationarity of spatial processes

Before introducing our approach to counting textures within images (Section 4.3), we intro-

duce the test of second-order stationarity proposed by Taylor et al. (2013) which underpins

the method we introduce in this article.

We begin by providing a brief review of discrete non-decimated wavelets and locally

stationary two-dimensional wavelet processes. Those readers interested in further details
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are referred to Vidakovic (1999) or Nason (2008) for comprehensive introductions to wavelet

methods.

4.2.1 Discrete wavelets and the LS2W model

Definition 11 Let ψ be a compactly supported wavelet with corresponding scaling function

φ, and let k = (k1, k2) be a spatial location, with k1, k2 ∈ Z. Then the two-dimensional

discrete wavelets are defined as

ψℓj =




ψℓj,(0,0) · · · ψℓj,(0,Lj−1)

...
...

...

ψℓj,(Lj−1,0)
· · · ψℓj,(Lj−1,Lj−1)



, (4.1)

for scales j and ℓ = h, v or d corresponding to horizontal, vertical and diagonal wavelet

decomposition directions (Eckley et al., 2010). The elements of the matrices are formed

from the products:

ψhj,k = φj,k1ψj,k2

ψvj,k = ψj,k1φj,k2

ψdj,k = ψj,k1ψj,k2 ,

where the vectors ψj =
(
ψj,0 . . . , ψj,Lj−1

)
, comprise of entries ψ1,n =

∑
k gn−2kδ0k = gn and

ψ(j+1),n =
∑

k hn−2kψj,k for n = 0, . . . , Lj−1− 1. In this notation δ0k is the Kronecker delta

which takes the value 1 if k = 0 and 0 otherwise. The quantity Lj−1 is defined according

to the wavelet filter associated to ψ as Lj = (2j − 1)(Nh − 1) + 1, where Nh is the number

of non-zero coefficients. Similarly the discrete scaling function φj,k = φj,k1φj,k2 can also be

defined. See Eckley and Nason (2005) for more details on these vectors.

With the building blocks in place we now introduce Eckley et al. (2010)’s definition of a

locally stationary two-dimensional wavelet (LS2W) process.
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Definition 12 A locally stationary two-dimensional wavelet process, Xr,R, is defined to be

Xr,R =
∑

ℓ

∞∑

j=1

∑

u

wℓj,u;Rψ
ℓ
j,u(r)ξ

ℓ
j,u, (4.2)

for spatial locations r = (r, s) ∈ R = {0, . . . , R− 1} × {0, . . . , R− 1}. The two-dimensional

discrete non-decimated wavelets ψℓj,u(r) are defined for scales j, locations u and directions

ℓ = h, v or d. In equation (4.2), the random variables {ξℓj,u} are a collection of zero-mean

random orthonormal increments and {wℓj,u;R} are process amplitudes bounded by Lipschitz

continuous functions W ℓ
j , whose behaviour is constrained to vary slowly across locations r.

It is the control on the amplitudes which enables second-order non-stationary processes to be

modelled effectively. For notational convenience, for the remainder of this article we drop

the explicit dependence of the model parameters on the spatial lattice R.

In order to analyse the second-order structure of a LS2W process, Eckley et al. (2010)

introduced the local wavelet spectrum (LWS). The spectrum allows a scale-direction-location

decomposition of the variance of a LS2W process. The LWS for rescaled location z ∈ (0, 1)2,

at scale j in direction ℓ is given by Sℓj(z) = |W ℓ
j (z)|2.

Since the local wavelet spectrum is unknown, it has to be estimated. Eckley et al.

(2010) propose an estimator for the LWS using a bias-corrected periodogram. To assess

the stationarity, or otherwise, of a textured image, the approach proposed in Taylor et al.

(2013) uses this periodogram as we describe in the next section.

For more details on the LS2W model and the estimator of the wavelet spectrum, please

refer to Eckley et al. (2010).

4.2.2 Testing the hypothesis of stationarity for LS2W processes

With the notation of the LS2W model established we now summarise the BootstatLS2W test

of stationarity for textured images proposed by Taylor et al. (2013). The test forms the

basis of both the approach to texture comparison proposed in Section 4.3 and our suggested

image splitting technique in Section 4.3.1.

The motivation behind the BootstatLS2W test stems from the observation that the LS2W

process described in equation (4.2) will be second-order stationary if, and only if, its local
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wavelet spectrum is constant across all locations for each scale-direction pair. Hence the

test for stationarity is formed by inspecting the spectrum of a process for constancy.

More formally, suppose we have a LS2W process Xr, with associated wavelet spectrum,

S = {Sℓj(z)}j,ℓ for locations z ∈ (0, 1)2. Then the hypothesis for the test

H0 : Xr is stationary

HA : Xr is non-stationary

is equivalent to the test

H0 : S
ℓ
j(z) is constant across z for all j and ℓ

HA : Sℓj(z) is not constant across z for some j and ℓ.

This hypothesis motivates the use of a test statistic which measures departures from con-

stancy within each scale-direction pair of the local wavelet spectrum to signify evidence for

nonstationarity. Taylor et al. (2013) thus propose using the test statistic

T{Sℓj(z)} = (3J)−1
∑

ℓ

J∑

j=1

∫
{Sℓj(z)− S̄ℓj}2 dz,

with z ∈ (0, 1)2 where S̄ℓj =
∫
Sℓj(z) dz for a particular scale-direction pair. The test

statistic is zero if, and only if, the spectrum Sℓj(z) is constant. In practice, the measure

above is based on an estimate of the wavelet spectrum, Ŝ(z). Specifically Taylor et al.

(2013) compute

T{Ŝℓj(z)} = (3J)−1
∑

ℓ

J∑

j=1

Varu(Ŝ
ℓ
j,u), (4.3)

where Ŝℓj is given by the bias-corrected periodogram, an estimator of the LWS (see Taylor

et al. (2013)).

Typically the distribution of the test statistic (4.3) under the null hypothesis will be

unknown. However, since the spectrum characterises the stationarity properties of the

observed random field, Taylor et al. (2013) suggest determining the p-value of the hypothesis
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BootstatLS2W:

1. Compute the estimate of the LWS for the observed image, Ŝℓj(z).

2. Evaluate T (equation (4.3)) on the observed image, call this value T obs.

3. Compute the pixel average stationary spectrum S̃ℓj by taking the average of spectrum values for each
scale and direction.

4. Iterate for i in 1 to B bootstraps

(a) Simulate X
(i)
r from the stationary LS2W model using squared amplitudes given by S̃ℓj and

Gaussian process innovations.

(b) Compute the test statistic T on the simulated realisation, call this value T (i).

5. Compute the p-value for the test as p =
1+#{Tobs ≤T (i) }

B+1
.

Algorithm 4.1: The bootstrap algorithm for testing the stationarity of locally stationary
images.

test by using a parametric bootstrap test, a form of simulation-based testing. This equates

to sampling LS2W processes assuming stationarity under the null hypothesis, and comparing

the observed test statistic to that of the simulated LS2W processes under stationarity. The

stationarity test is called BootstatLS2W. For pseudo-code of the test see Algorithm 4.1.

In the next section, we will show how BootstatLS2W can be used to count the number of

textures within an image.

4.3 Determining the number of textures within an image

In this section we describe our approach to determine the number of textures within an

image. Segmentation methods, such as split-and-merge algorithms or the quadtree imple-

mentation described in Section 4.3.1, identify statistically homogeneous areas of an image

representing textures. Our approach involves using the BootstatLS2W testing framework on

such a set of textured regions to identify whether the regions are statistically different or

similar. More specifically, in order to decide whether two textures are similar or not, we

propose the following testing procedure:

1. Create a (square) montage of the two images.

2. Use the stationarity test of Taylor et al. (2013) to establish whether the montage is
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stationary.

3. If the montage is stationary, we then conclude that the two constituent parts represent

the same texture type; if the montage is non-stationary then the two textures are

considered of different types.

By recursively applying this hypothesis test on montages created from pairs of images

from a set of textures, we can partition the set into a number of groups representing distinct

textures. Note that it is not necessary to perform the texture discrimination test for all

possible kC2 pairs of images in the set; by only comparing an unclassified texture with one

candidate from each labelled texture group, all images can be classified with a texture label

in a “greedy” fashion. We denote this recursive labelling of textures as TextCountLS2W.

By embedding our proposed texture counting procedure TextCountLS2W within an image

segmentation method, we are able to progressively segment the image into textures whilst

simultaneously count the number of textures within an image. In the next section we give

further details of one such segmentation method based on the BootstatLS2W test.

4.3.1 A quadtree image segmentation implementation using the BootstatLS2W

test

We now outline how to use the BootstatLS2W test within a quadtree decomposition algorithm

in order to partition an image into regions of spatial stationarity (homogeneous second-order

structure). This approach is similar in spirit to methods described in Sonka et al. (1999,

Chapter 5) or Freixenet et al. (2002). Since texture is loosely defined as a region of an image

which is in some sense regular (Petrou and Sevilla, 2006), it is natural to employ statistical

measures of homogeneity in this way to capture textural information.

A quadtree algorithm iteratively splits an image into smaller regions based on some

statistical criterion. In our case this splitting decision is made according to the stationarity

properties of a subimage under analysis: at each stage, a subimage is further divided into

four quadrants if it is judged as non-stationary by the BootstatLS2W test. In practice, the

quadtree implementation proposed here continues until all subregions are considered to be

stationary, or until the subregions reach a particular minimal dimension. The motivation for
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QuadTreeLS2W:

For an input image X:

• Use the BootstatLS2W test to assess whether X is second-order stationary. If X is stationary, stop.

If not,

1. Divide the image into four quadrants.

2. For each quadrant, assess its stationarity with the BootstatLS2W test.

3. For each quadrant assessed as non-stationary, recursively repeat steps 1–2, until the minimum testing
region is reached or until all subimages are judged to be stationary.

Algorithm 4.2: The quadtree algorithm for segmenting an image into textured regions using
the stationarity test.

this stopping criterion is that the notion of a texture is not statistically or visually meaningful

for very small image regions (Chen and Pavlidis, 1979). The quadtree implementation we

use for the examples in Section 4.4, QuadTreeLS2W, is summarised in Algorithm 4.2.

Our technique for determining the number of textures within an image can thus be

summarised in two steps:

1. Perform the quadtree partitioning of the image using the test of stationarity described

in Section 4.3.1.

2. Use the recursive procedure proposed in Section 4.3 (TextCountLS2W) to separate the

textured subimages produced by step 1 into texture groups.

Note that Step 2 in the procedure above can be performed either after the quadtree

decomposition or as stationary regions are identified during the decomposition.

We stress here that the quadtree decomposition algorithm described in this section is not

the only decomposition approach one can use, but is included since using the BootstatLS2W

test in an image segmentation technique in this manner has a natural pairing with our

proposed TextCountLS2W method outlined in Section 4.3. Indeed, quadtree segmentation

methods are merely one example of an image subdivision scheme, and other more sophisti-

cated segmentation methods could be employed (with the BootstatLS2W stationarity test or

otherwise) in combination with our TextCountLS2W method for counting textures.
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4.4 Examples

In this section we apply our TextCountLS2W method outlined in Section 4.3 to simulated and

real examples displaying a number of different but visually subtle, textures.

4.4.1 Simulated performance of the texture count method

As our first simulated example of a spatial process, we take a LS2W Haar montage process

introduced in Eckley et al. (2010) and analysed in Taylor et al. (2013). The process can be

described as a LS2W process (equation 4.2) with amplitudes given by

wdj,[2Jz] =





σ if j = 1 and z ∈ (0, 1/2) x (0, 1/2);

σ if j = 2 and z ∈ (1/2, 1) x (0, 1/2);

σ if j = 3 and z ∈ (0, 1/2) x (1/2, 1);

σ if j = 4 and z ∈ (1/2, 1) x (1/2, 1);

0 otherwise.

In other words each quadrant of the image has structure only in the diagonal decomposition

direction, but with different coarseness in each of the four quadrants (see Figure 4.3(a)).

The second simulated process we consider is a white noise process with a subregion

containing another noise process with larger standard deviation. More specifically, the

middle portion of the top-left quadrant of the white noise process is assigned a different

standard deviation σ = σ1 > 1. We consider an image of dimension 512× 512 with σ1 = 1.6

in a subregion of dimension 128×128 (see Figure 4.4(a)). Note that the difference in texture

is visually difficult to identify in this example.

Figure 4.3(b) shows the partition of the Haar montage process from the quadtree imple-

mentation (Section 4.3.1) where each shade of the partitioning represents a different texture.

Our technique correctly identifies that the process has four distinct textures and separates

the texture regions exactly. For Process 2, the algorithm is also able to establish the true

number of textures present in the image (i.e. two textures represented by the two shades in

Figure 4.4(b)). The quadtree partition also locates the subtexture accurately despite being

difficult to identify by eye.
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(a) (b)

Figure 4.3: Left: a Haar montage LS2W process (Process 1) containing four different tex-
tures; right: the quadtree decomposition of the process. Different texture labels assigned to
each of the regions of the image are represented by different shades. The subtextures are
located and identified as four different textures correctly by our TextCountLS2W hypothesis
testing approach.

4.4.2 Fabric Pill example

Our algorithm is perhaps most useful in deciding the number of distinct textures within

images where the change is difficult to locate visually. An automatic procedure of this

kind is advantageous within industrial settings as it would be more reliable than a human

observer, whose image inspection decisions could be affected by variables such as fatigue

and lighting.

The example which we consider arises from fabric analysis. Fabric pilling occurs when

material fibres, through the repeated wearing of a garment, clump together to form “pills”

(see e.g. Palmer et al. (2011)). It is often of interest to analyse such fabric images displaying

pilling, for example for quality control purposes (Chan and Pang, 2000; Abouelela et al.,

2005). In order to show how our method would be useful in these practical settings, we

firstly apply our TextCountLS2W method to a collection of pilled fabric images. We then

apply the QuadTreeLS2W procedure to some fabric mosaics in order to find the number of

textured regions within an image.
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(a) (b)

Figure 4.4: A realisation of Process 2 of size 512 × 512 with a subregion of size 128 × 128
of standard deviation 1.6 (indicated by arrow), together with the decomposition of the
realisation with the quadtree implementation. Our TextCountLS2W procedure is able to
separate the two textures successfully.

To test our TextCountLS2W discrimination procedure, we consider three pilled images,

each of varying levels of degradation. These can be seen in Figure 4.5. The images are

visually difficult to discriminate between especially the latter two, but the TextCountLS2W

method was able to correctly distinguish the three textures using images of dimension n =

64, 128, 256, 512.

Next, we consider a more complex but industrially relevant task: identifying pill regions

in a multi-pill image. To this end, we construct texture mosaics. A texture mosaic comprises

of two or more different texture subimages superimposed into one textural image for analysis.

Our texture mosaics were constructed by inserting sections of a pilled fabric texture image

into another to represent material with uneven wear. Our goal is to identify the number of

textures present within these pilled fabric mosaics.

Our pilled fabric mosaics were constructed as follows. Firstly a subimage of medium pill

was inserted into an image of light pilled fabric, i.e. it contains two different textures (Mosaic

A, see Figure 4.6(a)). Mosaic B consists of three textures, namely sections of medium and

heavy pill in lightly pilled material (Figure 4.7(a)).
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(a) (b)

(c)

Figure 4.5: Real textured images tested using the TextCountLS2W texture discrimination
technique. The textures represent pilled fabric images of increasing degradation.

The QuadTreeLS2W and TextCountLS2W procedures were applied to both Mosaic A and

Mosaic B. In both cases, the TextCountLS2W procedure is able to judge the correct number of

pilled segments in the mosaics, indicated by the differing shades in Figure 4.6(b) and Figure

4.7(b). More specifically, two textures were identified in Mosaic A whereas Mosaic B was

judged to contain three different textures. The textured regions are located accurately by the

quadtree homogeneity implementation for Mosaic A; the segmentation of Mosaic B provides

a reasonable indication of regions of textural change within the image. The approximate

nature of the identified regions is attributed to the often simplistic image segmentations

provided by the quadtree embedding. Indeed, we reiterate that more complicated region-

based segmentation methods could better locate the visually-subtle textures. However, in

this article the quadtree method provides a simple and computationally efficient way to
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Figure 4.6: Left: Texture Mosaic A consisting of two pilled fabric textures; right: Cor-
responding quadtree decomposition of the texture mosaic in Figure 4.6(a). The textured
subregion is distinguished by the quadtree implementation. The TextCountLS2W procedure
correctly determines the two distinct pilling textures present in the mosaic.

Figure 4.7: Left: Texture Mosaic B, containing three fabric textures, namely light pill
with two subregions of medium and heavy pilling (indicated by arrows). Right: Quadtree
decomposition of texture Mosaic B. Shades represent different textures identified by our
technique. The number of textures is correctly determined; the quadtree algorithm also
approximately identifies the location of the textured subregions.
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decompose a textured image.

4.5 Concluding remarks

The work presented in this paper addresses the problem of counting the number of textures in

an image, considering the specific case where the textures present in the images are visually

difficult to differentiate. Our technique adopts a formal statistical modelling approach,

employing the stationarity test of Taylor et al. (2013) on montages of textures to judge

whether two textures are the same. This approach can then be applied recursively to

count the number of distinct textures in a set of images, such as regions from a quadtree

decomposition. The proposed discrimination technique has been shown to perform well for

both simulated and real examples.

We have also proposed using the stationarity test of Taylor et al. (2013) algorithm as a

homogeneity measure within region-based image segmentation methods, such as quadtree

implementations. Whilst this is not the focus of this article, an attractive by-product of

using our texture counting technique in this manner is that it can isolate areas of textural

change in images with visually subtle textured regions, such as the pilled texture mosaics

considered in this paper.
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Chapter 5

Multivariate locally stationary 2D

wavelet processes

In this chapter we introduce a statistical model for multivariate two-dimensional locally sta-

tionary processes on a regular grid of points. Our motivation for developing this framework

arises from a problem in colour texture analysis, specifically the discrimination and classifi-

cation of colour texture. In the colour texture setting data comes in the form of multivariate

images with three channels representing the red, green and blue colour planes. Tradition-

ally such images were analysed by experienced research scientists. However, as suggested

by Liang et al. (2012), manual methods of image inspection are subjectively dependent on

human vision. In particular they can be skill-orientated, unobjective and inconsistent. The

work presented in this chapter therefore provides an automatic mechanism for modelling

and estimating the non-stationary structure of multivariate images.

The image set which motivates this work arises from work with an industrial collaborator.

It comprises of various hair images with different colourants and preparation processes

applied, giving a variety of colour texture properties with subtle changes in structure. It

is of considerable interest to be able to accurately classify and discriminate between these

hair images.

The approach which we introduce extends the time series work of Sanderson et al.

(2010) and Cho and Fryźlewicz (2013) to a 2D locally stationary wavelet model which we
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call LS2Wmv. Each channel of this multivariate process takes the form of an LS2W process

(see Section 3.2.2), i.e. individual channels can have their own non-stationary behaviour.

Our LS2Wmv model seeks to not only represent individual channels as locally stationary,

but also represent the local coherence between them. Mathematically, coherence is defined

as the normalized cross-power spectrum, and it is computed between two simultaneously

recorded signals. In our approach the coherence will be decomposed into contributions from

different scales and directions for each pair of channels. This measure of dependence, known

as the LS2W coherence structure is discussed in detail in Section 5.2.

This chapter is structured as follows. We begin by giving an overview of existing multi-

variate spatial models in Section 5.1. Our proposed modelling framework and definition of

LS2W coherence (our measure of cross-channel dependency) is outlined in Section 5.2. A

local measure of power, called the local wavelet cross-spectrum, is introduced in Section 5.3.

The estimation scheme for the local wavelet cross-spectrum is discussed in Section 5.4. All

proofs of results stated in this chapter may be found in Appendix A. Later in Chapter 6,

we will apply our multivariate model to the analysis of problems related to images of hair.

5.1 Introduction

In this section we review existing multivariate two-dimensional models. An important sta-

tistical property to consider in a multivariate setting is the cross-covariance function. This

measures the similarity of two processes and can also be referred to as coherence. The mod-

elling approaches specific to colour texture are discussed in Chapter 6, so are not included

in this review. We give a brief consideration to approaches that create classes of stationary

spatial processes but our main focus is on current methods that allow for non-stationary

behaviour.

Early work in multivariate two-dimensional models focusses on an assumption of sta-

tionarity. This includes the work of Mardia (1988), Ver Hoef and Barry (1998), Gaspari and

Cohn (1999), Gelfand and Vounatsou (2003), Majumdar and Gelfand (2007) and Gneiting

et al. (2010). Whilst each of these approaches has its own merits, fundamentally they were

not designed to cope with the non-stationary structure which can exist in images such as
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those which occur in environmental science (Kleiber and Nychka, 2012) or texture analysis

(Petrou and Sevilla, 2006). Hence these stationary approaches will tend to overlook (or

rather average out) the local changes in structure.

Next we review some existing non-stationary multivariate approaches. Gelfand et al.

(2004) gave one of the first non-stationary multivariate models, extending the linear model

of coregionalization, which is defined in Wackermagel (2003) to a non-stationary setting.

Coregionalization is the mutual spatial behaviour between two or more variables within a

certain region. Although this is model-based, it only considers dependencies on each plane

individually, rather than seeking to describe cross-plane dependence. Also whilst the local

nature of spatial neighbourhoods captures the non-stationary behaviour, this model does

not give the multiscale decomposition so often required for textured images.

Majumdar et al. (2010) generalize the stationary convolution model for correlated Gaus-

sian processes proposed by Majumdar and Gelfand (2007) into a non-stationary setting.

This method is suggested to outperform Gelfand et al. (2004). However, it is computation-

ally expensive since it requires Monto Carlo simulation and the output can be difficult to

interpret as it is dependent on the prior. Also like Gelfand et al. (2004), Majumdar et al.

(2010) do not consider a multiscale approach.

An approach to modelling non-stationary multivariate processes using Matérn covari-

ances is considered by Kleiber and Nychka (2012). The model includes spatially varying

correlation coefficient functions, and allows the strength of between-channel relationships to

vary across space. However a restrictive assumption in this model is that the cross-covariance

model is symmetric, which is often unrealistic in practice.

Whilst the above papers provide multivariate modelling approaches allowing for non-

stationarity, they are all based on multivariate geostatistical data (i.e. data with continuous

spatial index). We note that the bulk of published work in this area deals with this general

spatial setting. See Wackernagel (2003) for a good overview of this literature.

In this Chapter we consider a multivariate modelling process which allows for changes

in covariance structure for data on a regular lattice. Literature on modelling multivariate

lattice data is sparse. In recent years Jin et al. (2005), Sain and Cressie (2007), Greco and

Trivisano (2009) and various others explored multivariate spatial models for lattice data,
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adopting a Bayesian framework for inference of process quantities. The main disadvantage

of this framework is in choosing the prior distribution for the model parameters. The

approaches above are based on subjective priors which can introduce bias in the estimation

procedure. Sain (2009) developed the maximum likelihood estimation procedure for the

multivariate Gaussian conditional autoregressive (CAR) model of Sain and Cressie (2007).

However, this method can be computationally intensive as the lattice models are embedded

in a multinomial model.

In the next section we consider a non-stationary multivariate spatial model with locally

varying parameters and consider the local wavelet coherence.

5.2 The multivariate locally stationary wavelet model

We now introduce the multivariate locally stationary wavelet process model; a multiscale

approach for modelling non-stationary images. This section extends the work of Eckley

et al. (2010) to a multivariate image setting, drawing on recent time series ideas presented

by Sanderson et al. (2010) and Cho and Fryźlewicz (2013). The work also introduces various

scale-direction-location measures which describe the spectral and cross-spectral behaviour

of non-stationary images.

In what follows we use the simplified notation η for a scale-direction pair as intro-

duced in Chapter 3. We start by considering a m-dimensional spatial process, Xr;R =

[X
(1)
r,R;X

(2)
r,R; . . . ;X

(m)
r,R ]′, where each element is an individual channel (i.e. spatial plane)

of the multivariate image. Each individual channel can be defined as a stochastic process

defined on a regular lattice. The definition of the LS2Wmv process model is given as follows.
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Definition 13 The multivariate two-dimensional locally stationary wavelet process model

(LS2Wmv) {Xr;R} , is defined as follows

X
(1)
r,R =

∑

η

∑

u

W (1)
η (u/R)ψη,u−rξ

(1)
η,u

...

X
(m)
r,R =

∑

η

∑

u

W (m)
η (u/R)ψη,u−rξ

(m)
η,u . (5.1)

Here r = (r, s) ∈ {0, . . . , R−1}×{0, . . . , R−1} and R = 2k for some k ∈ N. The {ψη,u} are a

collection of discrete, real valued, compactly supported, non-decimated 2D wavelets as defined

in Chapter 3. The {W (i)
η (u/R)} can be thought of as scale-direction-location dependent

transfer functions in rescaled space where the index i represents a particular channel of

the multivariate image. Furthermore the {ξ(i)η,u} are assumed to be zero mean unit-variance

random orthonormal increment sequences. To simplify notation in what follows the explicit

dependence on R will be dropped although it is still assumed.

Modelling assumptions for the LS2Wmv model: In order to develop a principled

estimation theory for LS2Wmv processes, we require the following modelling assumptions

which help control the degree of non-stationarity of the process. Specifically we assume

that each channel of an LS2Wmv process satisfies the assumptions of an LS2W process as

given in Chapter 3. Each channel has zero mean and we can adopt the rescaled location

approach similar to Dahlhaus (1997), which allows us to collect increasing information and

make inferences about the local structure of Xi as R → ∞. In addition we also assume

that:

1. For each channel i, the transfer functionW i
η(z), is Lipschitz continuous with constants

L
(i)
η which are uniformly bounded in η and

∑

η

22j(η)L(i)
η <∞. (5.2)
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2. In addition the {ξ(i)η,u} have the following properties,

Cov[ξiη,kξ
i
η1,m] = δη,η1δk,m, (5.3)

Cov[ξpη,kξ
q
η1,m] = δη,η1δk,mρ

p,q
η (k/R), (5.4)

where δη,η1 is the Kronecker delta.

As a consequence of extending to a multivariate setting, we also have to consider the

possible coherence structure between each pair (p, q), of image channels where we assume the

images are in-phase. We define this measure as the LS2W coherence (the spatial equivalent

of correlation) given by ρp,qη (u/R) (see Definition 14). The quantity ρp,qη (z) is a direct

measure of the linear dependence between the innovation sequences of two channels at

scale-direction η (as shown above in the second modelling assumption). In a colour setting

this quantity explores the relationship between the colour planes. The LS2W coherence of

a pair of channels p and q can be represented in terms of the locally stationary wavelet

cross-spectrum (LWCS) of two channels (see Section 5.3.1) from an LS2Wmv process. In

order to estimate this relationship between channels we use a pairwise approach, this is

discussed further in Section 5.4.

Definition 14 The local wavelet coherence (LWC) for two channels p and q of an LS2Wmv

process is defined to be:

ρp,qη (z) =
Sp,qη (z)√

S
(p)
η (z)S

(q)
η (z)

, (5.5)

where the individual local wavelet spectrum (LWS) of each channel S
(p)
η (z) (see Chapter

3) and the local wavelet cross-spectrum (LWCS) S
(p)
η (z)S

(q)
η (z) (see Section 5.3.1) together

provide a normalised measure of the relationship between two channels.

Modelling assumptions for the LS2W coherence:

1. The LS2W coherence of each scale-direction pair is also assumed to be Lipschitz con-

tinuous with Lipschitz constants, R
(p,q)
η satisfying

∑

η

22j(η)R(p,q)
η <∞. (5.6)
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2. The value of the coherence determines the level of dependence between two channels

with +1 and -1 indicating a postive and negative dependence respectively and a value

of zero showing no dependence at a given scale-direction η and rescaled location z.

5.3 Measuring local power

Recall from Section 3.2.3 that the spectral structure of a signal or image can be used to

describe its second-order structure. For the situation which we consider, with multiple

channels, this leads to the consideration of spatially localised wavelet spectra (i.e. the struc-

ture within a single channel) and cross-spectra (i.e. the structure across channels). The

local wavelet spectra (LWS) provides a measure of the local contribution to the variance of

each channel and the local wavelet cross-spectra the cross-covariance between channels at a

particular scale, direction and location. Below we formally define each of these quantities.

5.3.1 The local wavelet cross-spectrum

We begin by defining the local wavelet cross-spectrum which provides a measure of depen-

dence between two channels of a LS2Wmv process at a specific (rescaled) location z, and

scale-direction η.

Definition 15 Let X
(p)
r and X

(q)
r be two channels of a LS2Wmv process with amplitude

functions W
(p)
η (z) and W

(q)
η (z) respectively. Then the local wavelet cross-spectrum (LWCS)

of the two channels X
(p)
r and X

(q)
r is then given by

Sp,qη (z) =W (p)
η (z)W (q)

η (z)ρp,qη (z), (5.7)

for z ∈ (0, 1)2 and scale-direction η.

In other words, the LWCS is a scale-location-direction decomposition of the covariance

structure between channels p and q. In the case where p = q we obtain the auto-spectra as

defined in equation (5.8). Since ρp,pη (z) = 1 we have for all z ∈ (0, 1)2 and scale-direction η,

Sp,pη (z) = |W (p)
η (z)|2 . (5.8)
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Having considered the Lipschitz properties of W i
η(z) and ρ

p,q
η (z) in the previous section

we now introduce the following lemma which provides a result of the properties of products

of Lipschitz continuous variables. This is useful in establishing the asymptotic properties of

the LWCS estimator given in Section 5.4.

Lemma 1 Suppose W i
η(z) and ρp,qη (z) are Lipschitz with constants L

(i)
η and R

(p,q)
η respec-

tively. Furthermore, assume that there exists a positive constant, C∗, such that for all η

and z, |W i
η(z)| ≤ C∗. Then by the property of products of Lipschitz continuous variables,

denoting B
(p,q)
η = max(L

(p)
η , L

(q)
η , R

(p,q)
η ), we have

∣∣∣W (p)
η (u/R)W (q)

η (u/R)ρp,qη (u/R)−W (p)
η (r/R)W (q)

η (r/R)ρp,qη (r/R)
∣∣∣ ≤ (R−1)CB(p,q)

η ||u− r||.

(5.9)

In other words,

∣∣∣S(p,q)
η (u/R)− S(p,q)

η (r/R)
∣∣∣ ≤ (R−1)CB(p,q)

η ||u− r||, (5.10)

the difference in the cross-spectra between two spatial points is bounded by the distance

between the points.

Proof. See Appendix A.

As the LWCS for each pair of channels is based upon the redundant NDWT (see Section

2.3.1), it is important that we establish its uniqueness given the corresponding LS2Wmv

process.

Theorem 1 The LWCS for each p and q is uniquely defined given the corresponding LS2Wmv

process.

Proof. See Appendix A.

In the next section we introduce examples of LS2Wmv processes with given coherence and

spectral structure as defined in equations (5.5) and (5.8).
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5.3.2 Examples of LS2Wmv processes

To help demonstrate our multivariate model and LS2W coherence measure we present two

examples of data simulated using LS2Wmv processes which exhibit differing second-order

structure. We can construct stationary and non-stationary processes which possess features

at multiple scales and directions. Throughout this simulation study we use Haar wavelets

in the model (Definition 13) though other Daubechies wavelets can naturally be used. This

is an interesting avenue for future work.

Example 1

We begin by extending a bivariate time series example introduced by Sanderson et al.

(2010) to the image setting. The data is simulated from a multivariate image of dimension

29 x 29 with two channels and a known coherence structure (equation (5.5)), which varies

between the different scales. For even scales each channel has a stationary structure with

ρp,qη (u/R) = 0.5, however for odd scales we assume a non-stationary structure that forms

an “inverted v” along the horizontal axis as shown in Figure 5.1(a). More explicitly, the

coherence is described by the equation:

ρp,qη (u/R) =





τ + (δ−τ)
a u1 u1 ∈ (0, a)

δ − (δ−τ)
1−a (u1 − a) u1 ∈ (a, 1),

(5.11)

for u = (u1, u2) ∈ (0, 1)2. Here τ is the minimum value of the coherence, δ is the maximum

value and a describes the proportion of the u1 axis covered by the first (increasing) linear

function. Higher values of a mean a more gradual increase to the maximum value. In this

example we have τ = 0.2, δ = 0.8 and a = 0.5. Finally, using equation (5.8) the LWS is

set to be Sp,pη (u/R) = 2−j where j = 1, 2, . . . , J for all directions and locations for each

channel.

Example 2

Our second example demonstrates the potential of our method on a trivariate case, remini-

cent of the colour image setting. Suppose that for all three channels in this example the spec-
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Figure 5.1: True coherence for Example 1 (J=9). (a) Represents the true coherence for odd
scales, (b) even scales.

trum is constant at all scales and directions, i.e. S1,1
η (u/R) = S2,2

η (u/R) = S3,3
η (u/R) = 2.

Further assume that the coherence between the first and second channel is ρp,qη (u/R) = 0.2

and the coherence between the second and third channel increases linearly along the hori-

zontal axis as demonstrated in Figure 5.2. The equation below gives a mathematical repre-

sentation of this coherence:

ρp,qη (u/R) =

{
τ + (δ−τ)

1+exp(−10a(2u1−1)) u1 ∈ (0, 1), (5.12)

for u = (u1, u2) ∈ (0, 1)2. Equation (5.12) generates a non-stationary covariance structure

where τ is the minimum value of the coherence, δ is the maximum value and a changes

the shape of the u1 axis. In other words the coherence is constructed such that it varies

spatially across an image. In this example we have τ = 0, δ = 0.8 and a = 0.10. Again

we simulate each channel to be of dimension 29 x 29 and realisations of this process in the

RGB representation are given in Figure 5.3. In the next section we consider how, given a

set of channels like these, we can estimate the cross-spectrum and coherence for each pair.
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Figure 5.2: True coherence of Example 2 (same for all scales). (a) flat coherence between
channels 1 and 2, (b) coherence between channels 2 and 3.

(a) (b) (c)

Figure 5.3: Three realisations of a trivariate LS2Wmv process (in RGB colour space):
Example 2.

5.4 Estimation of spectral properties for LS2Wmv processes

Recall from Section 5.2 that in order to analyse the properties of a LS2Wmv process and

find the LS2W coherence for each pair of channels we must be able to estimate the auto- and

cross-spectra. The following sections consider the estimation and consistency of the cross-

spectra for each pair of channels p and q. We also consider how to estimate the coherence

together with practical problems that can occur in using this estimate. We then return to
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our simulated examples in order to show the accuracy in our estimation procedure.

5.4.1 Estimating the local wavelet cross-spectra

Recall from standard Fourier theory that the estimate of the spectrum is the square of the

transformed process coefficients. In a similar fashion we define the (raw) cross-spectra as

the product of empirical wavelet coefficients from individual channels. To formalise this the

following extends the definition of wavelet coefficients from Eckley et al. (2010) to LS2Wmv

processes.

Definition 16 For each channel X
(i)
r of a LS2Wmv process the empirical wavelet coeffi-

cients are defined to be

d
(i)
η,u =

∑

r

X
(i)
r ψη,u−r. (5.13)

Hence using these coefficients we can define an estimator of the cross-spectrum of each pair

of channels as the localized wavelet cross-periodogram, I
(p,q)
η,u .

Definition 17 The local (raw) wavelet cross-periodogram for two channels X
(p)
r and X

(q)
r

of a LS2Wmv process is given by I
(p,q)
η,u = d

(p)
η,ud

(q)
η,u.

Next we consider the statistical properties of the wavelet cross-periodogram, as an estima-

tor of the LWCS. To begin we consider the expectation and variance of the (raw) cross-

periodogram.

Theorem 2 Let X
(p)
r and X

(q)
r be two channels, p and q, of an LS2Wmv process. Then

asymptotically, the expectation of the (raw) cross-periodogram between these two channels,

I
(p,q)
η,s , is given by

E(I
(p,q)
η,s ) =

∑

η1

W (p)
η1 (s/R)W (q)

η1 (s/R)ρp,qη1 (s/R)Aη1,η +O

(
1

R

)
, (5.14)

=
∑

η1

Sp,qη1 (s/R)Aη1,η +O

(
1

R

)
, (5.15)
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where R = (R,R) and R = 2k for k ∈ N. Similarly, the variance is given by

V ar(I
(p,q)
η,s ) =

∑

η1

S(p)
η1 (s/R)Aη1,η

∑

η1

S(q)
η1 (s/R)Aη1,η+

(∑

η1

Sp,qη1 (s/R)Aη1,η

)2

+O

(
22j(η1)

R

)
.

(5.16)

Here j(η1) simply refers to scale for each direction.

Proof. See Appendix.

Remark. Note that if p = q we have the standard expectation and variance of an LS2W

periodogram (See Eckley et al. (2010)).

As demonstrated in Theorem 2, the local raw cross-periodogram of each pair of channels

is a biased estimator of the cross-spectrum. The bias is described by the inner product

matrix AJ as defined in equation (3.12). A transformation of the spectra by A−1
J results in

an asymptotically unbiased estimate of each wavelet cross-spectrum. However, as in other

settings the variance of the raw estimator does not decrease as the dimension of the channel

tends to infinity, i.e. it is not a consistent estimator. Therefore as with the other spectral

estimators we need to smooth to achieve consistency (Nason et al., 2000; Eckley et al., 2010).

We choose to use the the well-known Nadaraya-Watson kernel estimator (Nadaraya, 1964;

Watson, 1964) for smoothing the cross-spectra, which is given by the weighted average

Ĩ(p,q)η (s) =
∑

u∈R

wuI
(p,q)
η (u), (5.17)

where the lattice weights are given by wu = Kh(||s−u||∑
u
Kh(||s−u||) . In this expression Kh(·) is a (two-

dimensional) bounded kernel function on R
2 with bandwidth h. In other words, K : R2 → R

satisfies (i)
∫
K(x)dx <∞ and (ii) |K(x)| < KM <∞ ∀x.

In order to find the expectation of the smoothed-corrected estimator, we first provide

the intermediate result for the smoothed cross-periodogram. As discussed in Nason et al.

(2000) in the time series context and Eckley et al. (2010) in the spatial context, assuming the

innovations ξη,u are Gaussian, squaring each element of the wavelet periodogram gives a χ2-

distribution. In our case, finding the product between elements of each channel would also
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result in a χ2-distribution. However the bias correction of the cross-periodogram estimate

using A−1
J leads to a complex correlated distribution for the local wavelet cross-periodogram.

Consequently calculating the asymptotic variance behaviour is difficult. Thus we suggest

firstly smoothing the χ2-distributed variables prior to correction by A−1
J . The asymptotic

expectation of the resulting smoothed cross-periodogram, Ĩ is given by Theorem 3. The

result holds for any pair of channels p and q of the multivariate image.

Theorem 3 The (asymptotic) expectation of Ĩ
(p,q)
η,s is given by,

E(Ĩ
(p,q)
η,s ) =

∑

η1

Sp,qη1 (s/R)Aη1,η +

(
1

2⌊h⌋+ 1

)
O

(
1

R

)
. (5.18)

Proof. See Appendix A.

Defining the smoothed corrected cross-periodogram Î as follows:

Î(p,q)η (s) =
∑

η1

A−1
η,η1 Ĩ

(p,q)
η1 (s), (5.19)

we obtain an asymptotically unbiased estimator of the LWS:

E(Î
(p,q)
η,s ) = Sp,qη2 (s/R) +

(
1

2⌊h⌋+ 1

)
O

(
1

R

)
. (5.20)

This is a straightforward consequence of Proposition 4 of Nason et al. (2000). Now we have

an unbiased estimator we wish to show that its variance vanishes asymptotically.

Proposition 1 The variance of the smoothed cross-periodogram is asymptotically consis-

tent:

Var(Ĩ
(p,q)
η,s ) → 0, (5.21)

as h,R→ ∞ with (h/R) → 0.

Proof. See Appendix A.

The corrected and smoothed periodogram thus provides a consistent and asymptotically

unbiased estimator of the LWCS for each pair of channels.
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5.4.2 Estimation of the coherence

In order to estimate the coherence we consider the estimated spectral quantities as discussed

in detail in Section 5.4.1, namely the local wavelet cross-spectrum (LWCS), Ŝp,qη (s/R), and

local wavelet spectra LWS, Ŝ
(i)
η (s/R). We define the estimator of the locally stationary

wavelet coherence as:

ρ̂(p,q)η (s/R) =
Ŝ
(p,q)
η (s/R)

(Ŝ
(p)
η (s/R)Ŝ

(q)
η (s/R))1/2

. (5.22)

Using Slutsky’s theorem (Slutsky, 1925) it can be shown that this estimator converges in

probability to equation (5.5).

In practice one can encounter problems when estimating the LS2W coherence (equation

(5.22)) for each pair of channels, in that values of the auto-spectra and cross-spectra close to

or below zero, lead to instabilities in the estimator. This problem was also encountered by

Sanderson et al. (2010) in the bivariate time series setting. Below we propose an approach

to resolve this issue.

5.4.3 Practical considerations: Regularisation

On some occasions after smoothing and correcting the periodogram, the resulting spectral

array may contain negative elements. In practice this is due to the bias correction step,

which involves multiplying the estimator by A−1
J (equation (3.12)) which itself can contain

negative values. This can result in an estimated coherence structure which will not be valid

as some coherence values will not be in the interval [-1,1]. One approach to resolve this

is to regularise the spectral matrix to ensure it is positive semi-definite. Various different

regularisation approaches exist such as those proposed by Andrey Tikhonov (Tikhonov

and Arsenin, 1977; Tikhonov et al., 1987). Of these we adopt the method of Higham

(1988), which we outline briefly below. The advantage of this approach is that it only

modifies the spectral estimates if necessary, therefore making the regularisation procedure

computationally efficient.

In order to regularise a spectral estimate Îη(s) we take its eigendecomposition at fixed
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η and s. In other words we write,

Îη(s) = Cη,sMη,sC
′
η,s, (5.23)

where Cη,s is the matrix whose columns are the set of eigenvectors of Îη(s) and Mη,s is the

diagonal matrix whose elements are the set of eigenvalues of Îη(s). To ensure Îη(s) has no

negative eigenvalues we define the matrix M+
η,s which is the diagonal matrix Mη,s with any

negative eigenvalues set to zero. The regularised spectral matrix Î+η (s) is then calculated

as,

Î+η (s) = Cη,sM
+
η,sC

′
η,s. (5.24)

This procedure essentially finds a positive semi-definite spectral matrix closest to Îη(s) (in

Frobenius norm), see Higham (1988) for more details. To regularise the spectral array Î,

we repeat this process for all η and s.

We now return to the simulated examples in Section 5.3.2, applying the estimation

method discussed in this section to estimate the LS2W coherence for all pairs of channels.

5.5 Examples of LS2Wmv processes: Estimating the coher-

ence

Example 1

Recall that our first example of Section 5.3.2 considers a bivariate case of a LS2Wmv process

of lattice dimension 512×512, with a constant spectrum at each scale and direction. Further

we assumed a stationary coherence for the even scales of each channel and a non-stationary

coherence for the odd scales of each channel.

The estimated coherence structure from an average of 100 realisations of the process is

shown in Figure 5.4 at the finest scale (j = 1) in each direction. The “inverted” v shape is

clearly captured in all directions. However, in the vertical and diagonal cases the minimum

and maximum values of the coherence are more accurately estimated than in the horizontal

case. Figure 5.5 shows the average estimates at j = 2. Whilst these are, on the whole, very
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good there is some slight deviation from the true flat structure. This suggests that there

has been some power leakage despite the correction.

The mean square error (MSE) of the estimate across all scales, directions and locations

is only 0.0363.
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Figure 5.4: Example 1: Coherence at the finest scale (j=1), (a) represents the true coherence
whilst (b), (c) and (d) are the estimated coherences representing the mean of 100 simulations
in the vertical, horizontal and diagonal directions respectively.

Example 2

Our second example from Section 5.3.2 considers a trivariate case of lattice dimension 512×

512, with a constant spectrum for all scales and directions, a stationary coherence between
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Figure 5.5: Example 1: Coherence at the second finest scale (j=2), (a) represents the true
coherence whilst (b), (c) and (d) are the estimated coherences representing the mean of 100
simulations in the vertical, horizontal and diagonal directions respectively.

the first two channels and a non-stationary coherence between the second and third channels.

Again we consider the average estimated structure of 100 simulations. Figure 5.6 shows

the coherence at the finest scale in the vertical direction; we observe similar results for the

other directions. As we can see the estimate for the coherences between the first two channels

is very good. We also obtain a reasonable estimate for the more difficult coherence structure

between the second and third channel, the estimate capturing the general structure. The

MSE of the estimate for this example is 0.0748. In this example the flat coherence is more

accurately estimated. A reason for this could be that in this case the coherence for a fixed
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pair of channels is the same across all scales whereas in example 1 it varies between scales,

making it more difficult to estimate. Both these examples show that our method is able

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C
oherence

0.0

0.2

0.4

0.6

0.8

1.0

(a) TC between channel 1 and 2

0.0

0.2

0.4

0.6

0.8

1.0
0.0 0.2 0.4 0.6 0.8 1.0

E
stim

ated coherence

0.0

0.2

0.4

0.6

0.8

1.0
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(d) EC between channel 2 and 3

Figure 5.6: Results comparing the true (TC) and estimated (EC) coherence at the finest
scale: Subplot a) and b) corresponds to the coherence between the first and second channel,
c) and d) the second and third channel.

to reasonably capture the changes in coherence structure between multiple channels. We

note here that whilst we examine the average of 100 realisations, the behaviour of a single

realisation is consistent with the average.
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5.6 Capturing the cross-covariance structure

Previous work on locally stationary processes (Dahlhaus, 1997; Nason et al., 2000; Eckley

et al., 2010), has shown a link between the local spectrum and the local covariance. Therefore

we conclude the methodological development in this chapter by introducing the local cross-

covariance and consider whether there is a similar link between this and the local cross-

spectrum defined in Section 5.3.1.

We begin by introducing the local cross-covariance (LCCV) highlighting its various prop-

erties.

Definition 18 Let c(p,q)(z, τ ) denote the local cross-covariance between channels p and q

from a LS2Wmv process at lag τ ∈ Z
2. We define this function in terms of the local cross-

spectrum by,

c(p,q)(z, τ ) =
∑

η

Sp,qη (z)Ψη(τ ), (5.25)

for τ ∈ Z
2. Here Ψη(τ ) =

∑
v∈Z2 ψη,v(0)ψη,v(τ ) are the two-dimensional autocorrelation

wavelets as defined in Section 3.2.4.

In order to estimate this quantity we require the estimate of the LWCS. With the above

definition in place the result below demonstrates that the local cross-covariance of each pair

of channels asymptotically tends to the true LS2Wmv process cross-covariance given by

c
(p,q)
R (z, τ ) = Cov

(
X

(p)
[zR], X

(q)
[zR+τ ]

)
.

Proposition 2 Suppose we have two channels of an LS2Wmv process that satisfy Definition

18. We have that
∣∣∣c(p,q)R (z, τ )− c(p,q)(z, τ )

∣∣∣ = O
(
R−1

)
for τ ∈ Z

2 and z ∈ (0, 1)2 and as

R→ ∞.

Proof. See Appendix A.

As one might anticipate from previous work in the LS2W area, due to the invertibility

of the inner product matrix AJ we can also establish that the LWCS can be considered an

‘inverse transform’ of the local cross-covariance for each pair of channels. This results in

the following lemma.
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Lemma 2 The relationship between the LWCS and the local cross-covariance is invertible,

with the inverse relationship given by

Sp,qη (z, τ ) =
∑

η1

A−1
η,η1

∑

τ

c(p,q)(z, τ )Ψη1(τ ), (5.26)

where Aη,η1 is the autocorrelation wavelet inner product matrix defined in Section 3.2.4.

Proof. See Appendix A.

5.7 Concluding remarks

In this chapter we have introduced a multivariate locally stationary wavelet process model

and proposed an unbiased and consistent measure of the dependence between two locally

stationary channels, namely the locally stationary wavelet coherence. Following this we

discussed the local wavelet cross-spectrum highlighting its uniqueness and detailing a full

estimation procedure. Finally, we introduced a measure of the local cross-covariance struc-

ture and demonstrated that the local wavelet cross-spectra are a form of inverse transform

of the local cross-covariance.
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Chapter 6

Multivariate locally stationary 2D

wavelet processes: an application

to colour texture

In Chapter 5 we introduced a two-dimensional multivariate locally stationary wavelet model

(LS2Wmv) and associated estimation theory for the locally stationary wavelet coherence be-

tween pairs of channels. We now consider a practical application of this modelling approach,

in particular looking at an application related to the discrimination and classification of

colour texture in hair analysis.

The automatic classification of visually similar textured images has been considered for

many industrial product types including cereamic tiles, leather and fabric (Bianconi et al.,

2012). We consider a different and potentially more subtle image set, namely that of hair.

Historically there has been little work on this problem in the literature, especially for colour

texture analysis. Instead industrial researchers have tended to use human classification

via panellist trials. This motivates the need to develop an automated approach to the

discrimination and classification of colour texture. This is the problem which we consider

in this chapter.

The work presented is structured as follows. Section 6.1 considers the definition of

colour and colour texture. We then review both traditional and wavelet-based approaches
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to colour texture classification. Of these we select three methods with which to compare

our approach, and discuss them in detail in Section 6.1.1. Following this we then consider

forming a feature vector using the LS2Wmv approach and then applying these four methods

to two texture analysis problems: discrimination and classification of test texture datasets.

Finally in Section 6.5 we turn to the application of hair analysis.

6.1 Colour texture

Colour is commonly defined to be the by-product of the spectrum of light, reflected or

absorbed, as received by the human eye and processed by the human brain. As discussed

in Sengur (2008), the colour of a pixel is typically represented by the RGB tristimulus

values. These correspond to the red, green and blue frequency bands of the visible light

spectrum. When red, green and blue light are added together in equal quantities they

produce white, whilst the absence of these colours creates black. This is by no means

the only colour representation. Alternatives include HSV and Lab (Hunt, 1998). For our

modelling approach we need not distinguish between these representations but knowledge

of the colour framework is naturally useful for interpretation.

The visual perception of an image is a combination of colour, texture and scale where

the change in scales will lead to change in textural appearence, as well as change in colour

perception. Colour and texture are two of the most important properties, especially when

one is dealing with real world images (Van de Wouwer et al., 1999). A colour texture can

be regarded as a pattern described by the relationship between its chromatic and structural

distribution. Specifically as Drimbarean and Whelan (2001) note, two images consisting of

either (a) the same colour but different texture patterns or (b) the same texture pattern

but different colours are said to be two different colour textures.

Many texture descriptors, initially defined for greyscale images, have been extended to

colour spaces and used to classify colour textures. Such texture descriptors include statistics

derived from Markov random fields (Panjwani and Healey, 1995; Hernandez et al., 2005),

wavelet transforms (Van de Wouwer et al., 1999; Arivazhagan et al., 2005; Sengur, 2008),

co-occurence matrices (Palm, 2004; Akhloufi et al., 2007), colour histograms and moments
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(Pietikainen et al., 2002) and Gabor filtering (Drimbarean and Whelan, 2001). The conclu-

sion common to all of these papers is that the introduction of colour information significantly

improves colour texture classification. Since we consider cross-channel dependencies as fun-

damental to colour texture classificiation, below we restrict our review to those papers which

take into account the correlation of texture measures between the different colour channels.

In one of the earlier papers Paschos (1998) proposed using directional histograms in

order to obtain a set of discriminative chromatic correlation features. Akhloufi et al. (2007)

considered isotropic co-occurence matrices in a colour texture classification framework. The

co-occurence matrix was used as a feature extraction technique for each colour band. Al-

though co-occurrence matrices provide good results in practice, the approach is computa-

tionally expensive. In addition both the above approaches lack a stochastic model-based

justification and are based on heuristics, hence we do not consider them further.

Next we turn to consider spatially-based approaches in the literature. Panjwani and

Healey (1995) proposes a Gaussian Markov Random Field model, where texture is char-

acterized using pixel intensity on local spatial neighbourhoods. In addition Panjwani and

Healey (1995) consider the interactions across the different planes. A disadvantage to this

approach is the large number of coefficients in the model. Bennett and Khotanzad (1998)

propose a multi-spectral random field model to analyse colour texture using maximum like-

lihood methods for parameter estimation. They represent spatial interactions in multiband

images. Both Bennett and Khotanzad (1998) and Panjwani and Healey (1995) require a

method to select the neighbour sets that define the interactions which is difficult in practice.

Selecting these neighbouring sets is important as large numbers of parameters are used to

define the interactions between and within colour planes. This has the effect of increasing the

complexity of the approach. Finally, Suen and Healey (2000) introduce a spatial correlation

model. This measures the within- and cross-band correlations to determine basis textures

for each texture class. Whilst these types of models work well for certain applications, they

fail to capture the multiscale nature of texture.

Van Heel et al. (1982) and Saxton and Baumeister (1982) introduce a Fourier measure

namely the Fourier-ring correlation function. This calculates the correlation coefficients per

frequency component. See Section 6.1.1 for further details. The main disadvantage of global
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Fourier-based methods is they implicitly assume stationarity. This is unlikely in most real

world images.

The literature also contains several wavelet-based approaches to dealing with this prob-

lem. Early work in this area is proposed by Van de Wouwer et al. (1999) who use wavelet

‘energy-correlation signatures’ for colour texture classification. Wavelet correlation signa-

tures capture the characteristics of textures in terms of the energies of each colour plane,

together with the cross correlation between different planes. The authors build feature

vectors by linear transformation of these signatures to a different colour space. For each

different colour space transformation and corresponding feature set considered, a k-nearest

neighbour classifier is designed. This approach however, is highly dependent on the choice

of the transformation (i.e. RGB, HSV etc) and has no formal stochastic modelling frame-

work. Hence the potential to understand which features permit classification can be limited.

Furthermore, the approach is based on the discrete wavelet transform so there could be key

information missing, which would permit improved classification performance (see Eckley

et al. (2010) for more details on this subtle point).

Ding et al. (2005) use a wavelet domain hidden Markov model for colour texture analysis.

The proposed approach is used to model the dependencies between colour planes as well as

interactions across scales. The wavelet coefficients at the same location, scale and direction,

but different colour planes are grouped into one vector and a multivariate Gaussian mixture

model is employed. This is used to approximate the marginal distribution of the wavelet

coefficient vectors at a particular scale. A disadvantage to this approach is each texture

is represented by a corresponding wavelet hidden Markov tree (WHMT) model. Therefore

each WHMTmodel has to be trained with a single texture image. The training step in fitting

the model can be computationally intensive due to the large number of model parameters;

the model is often simplified drastically to cope with this computational cost, resulting in

potentially unrealistic image representation and inference.

More recently Sengur (2008) proposed a method using the wavelet transform followed by

an adaptive neuro-fuzzy inference system classifier. Wavelet entropies and wavelet energies

of each colour plane at different scales are used for forming the feature vector of each

colour texture since both quantities are widely used in the image processing literature. A
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disadvantage to using neural networks is that they are known to be computationally intensive

in the training step of the algorithm. More importantly for our application understanding,

the features which permit the classification is important, however such knowledge is not

possible from a neural set.

In order to show the full potential of our method we choose to compare it against three

approaches: Van de Wouwer et al. (1999), Sengur (2008) and a Fourier-based approach using

the ideas of Van Heel et al. (1982) and Saxton and Baumeister (1982). We choose to compare

against the method of Van de Wouwer et al. (1999) as it is a popular approach, using a

fast algorithm which specifically focusses on cross-correlation measures. Sengur (2008) is

included since the author reports better classification results than Van de Wouwer et al.

(1999) for their chosen examples. As Sengur (2008) is a measure which does not account

for the dependencies between channels, it will be interesting to see whether accounting for

the coherence improves classification performance. We also compare against an alternative

method based on the Fourier spectrum and coherence (Van Heel et al., 1982; Saxton and

Baumeister, 1982), due to practitioners continued familarity with Fourier methods.

In the following section we describe these three benchmark approaches and create the

feature vectors to be used in the discrimination and classification algorithm. Here on in we

shall refer to Sengur (2008) as ‘Sengur’, Van de Wouwer et al. (1999) as ‘VdW’ and the

Fourier approach as ‘Fourier’.

6.1.1 Existing multiscale colour texture methods

The basis on which much texture analysis is performed is to describe an image as a set of

summary statistics or features. In the context of wavelet-based texture analysis, the features

are generated from the wavelet coefficients of the decomposition subimages. We start by

considering the approach by Van de Wouwer et al. (1999) (VdW).

VdW use wavelet energy correlation signatures to form a feature vector of each colour

texture. These are given by:

C(p,q)
η =

1

R2

∑

u

d
(p)
η,ud

(q)
η,u. (6.1)

Here d
(i)
η,u is the wavelet coefficient at scale-direction η, location u and colour channel i
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where i ∈ {1, 2, 3}. The set {C(p,q)
η | p, q = 1, 2, 3; p ≤ q, ∀ η} are called the wavelet energy

signatures. For p = q these capture the energy distribution of the wavelet coefficients over

the scale-direction and colour space whereas the remainder (p 6= q) represent the covariance

between colour spaces. For example in the case j = 1, the finest scale, we have six energy

signatures for each of the horizontal, vertical and diagonal direction: i.e. C(1,1), C(2,2),

C(3,3), C(1,2), C(1,3) and C(2,3). In other words this gives a feature vector of length 18.

The second method, Sengur, uses wavelet entropies and wavelet energies to form a feature

vector of each colour texture. The energy vector is given as follows:

C(p,p)
η =

1

R2

∑

u

(d
(p)
η,u)

2. (6.2)

In set {C(p,p)
η |p = 1, 2, 3} gives the averaged l2-norm as a measure of energy contained in the

image. Following Sengur (2008) we take j = 1 considering only the finest scale, so we have

9 energy values, one for each scale-direction subimage for each of the three colours planes.

These energy values are then used to form the feature vector of each colour texture. In this

case we consider norm entropy with exponent 1.5 as suggested Sengur (2008). The entropy

vector is given by:

H(p)
η =

∑

u

|d(p)η,u|1.5. (6.3)

In other words, the set {H(p)
η |p = 1, 2, 3, ∀ η} gives the set of entropy values summed over

location for each colour plane and each scale-direction subimage within that plane. Thus in

the case of j = 1, we have 9 entropy values for each of the three colour planes. Combining

the energy and entropy vectors together gives a feature vector of length 18.

Finally, as discussed previously we consider a Fourier approach, using the auto-spectra

and Fourier coherence (as defined in Van Heel et al. (1982); Saxton and Baumeister (1982))

as a feature vector. The classical Fourier 2D coherence is given by

K(ω) =
|∑

τ
C

(p,q)
X (τ )e−pωτ |√∑

τ
CpX(τ )cos(ωτ )

√∑
τ
CqX(τ )cos(ωτ )

, (6.4)

and the auto- and cross-spectra are given by dp x d̄q where p, q = 1, 2, 3 and p ≤ q (similar
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to the cross-periodogram). Here p and q denote the multiple channels and dp represents

the Fourier coefficients at channel p.
∑

τ
C

(i,j)
X (τ )e−iωτ represents the cross-spectra and

∑
τ
CjX(τ )cos(ωτ ) give the auto-spectra over lags τ . We construct feature vectors using

the auto-spectra and coherences summed over all locations. Therefore we have 3 values for

the auto-spectra and 3 values for the coherence giving a feature vector of length 6. In the

following section we discuss how we construct a feature vector for the LS2Wmv modelling

approach discussed in Chapter 5.

6.2 The LS2Wmv modelling approach as a colour texture

analysis tool

In this section we introduce a feature vector based on the LS2Wmv model (Chapter 5).

The key to our approach is finding the coherence between the colour channels as we believe

the additional information provided by the coherence will allow more subtle differentiation

between visually similar images. The feature vector we suggest considers the average auto

and cross-spectral structure and the average local wavelet coherence at each scale-direction

pair.

Algorithm 6.1 below describes the method which we use to obtain the feature vector of

length 9× 3× J∗ (for some J∗ ≤ J) for an LS2Wmv process with three channels.

6.3 The discrimination and classification procedure

The first part of our analysis investigates the ability of the four feature-generating methods

Fourier, Sengur, VdW and LS2Wmv to discriminate between a set of images. These images

are discussed in detail in Sections 6.4 and 6.5. To discriminate we use Linear Discriminant

Analysis (LDA) (Fisher, 1936) which chooses a feature projection in order to maximise

the separability of the classes. This is a popular approach amongst practitioners as it is

parameter-free and computationally efficient. Whilst other discrimination techniques may

also be appropriate we apply LDA since the purpose of the this chapter is to assess the

reliability of the feature vector and not the choice of discrimination algorithm.
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LS2WmvFV:

1. Given a colour textured image we denote each colour channel to be X
(p)
u for p = 1, 2, 3.

2. Estimate the wavelet auto- and cross-spectra of the image using equation (5.19) and then regularise
these estimates (see Section 5.4.3) for scales j = 1, . . . , J , directions l = h, v, d and p, q = 1, 2, 3 where
p ≤ q.

3. Compute an estimate of the coherences ρ
(p,q)
η (equation (5.22)) for all directions, scales and unique

pairs of image channels (p, q).

4. Compute auto- and cross-spectral features using the location averages: S̄
(p,q)
η = 1

R2

∑
u
S

(p,q)
η,u for

p, q = 1, 2, 3 where p ≤ q, l ∈ {h, v, d} and scales j = 1, . . . , J∗. J∗ is the number of scale-direction
pairs we wish to use in the feature vector.

5. Compute the average coherence features for the chosen scales as: ρ̄
(p,q)
η = 1

R2

∑
u
ρp,qη,u for all scales,

directions and where p, q = 1, 2, 3 and p < q.

6. The feature vector is then the set of all spectral and coherence features: FLS2Wmv =

{S̄
(p,q)
η , ρ̄

(p,q)
η | j = 1, . . . , J∗, l ∈ {h, v, d} and p, q as defined above for each separate feature}.

Algorithm 6.1: Finding the feature vector for an LS2Wmv process with three channels.

We sample fifty sub-images of dimension m x m for each method from the upper half of

each image to form the set used for discrimination. A feature vector using each method is

then evaluated for each sub-image and this is the data we use within the LDA approach.

In the second part of our analysis we attempt to classify a test set of sub-images for the

colour texture images in question. We use the upper half plane subimages as our training

set, whilst the sub-images for testing are taken from the lower half of the image. The LDA

analysis is then used in our classification routine. This is but one of many classification

approaches which could be used. Specifically we assign a subimage candidate to a texture

class based on the following procedure:

1. Perform LDA on the training set of all texture classes.

2. For each test sub-image, calculate the LDA-transformed feature vector and assign each

sub-image to the class whose mean is closest in Euclidean distance.

We assess classification performance using an approach used by Van de Wouwer et al. (1999).

The mean error rate ǫ̂ is given as

ǫ̂ = Total number of correctly classified test samples/N, (6.5)
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where N is the total number of samples. This number estimates the percentage of test

samples classified correctly and is used as a measure of performance of the classifier.

Now that we have described the setup of our analysis, we consider the potential of each

feature set in the next sections. Section 6.4 focusses on a typical test set of images commonly

used in the literature whilst Section 6.5 considers an application to various texture analysis

problems encountered by an industrial collaborator.

6.4 Classifying typical textures

We begin by focussing on a set of four textures shown in Figure 6.2. This set of images were

chosen as they represent both stationary and non-stationary examples and also exhibit a

variety of different colours and thus represent a selection of colour texture features. Each

textured image we consider has dimension 1024 x 1024. To the eye, these textures are very

different so we would hope all methods are able to discriminate effectively. We follow the

discrimination and classification approach as outlined in Section 6.3, sampling fifty sub-

images from the upper half of an image as training data and sampling from the lower half

of an image as the test set.

Figure 6.3 shows that the three wavelet-based approaches discriminate the different

texture types quite easily, with each texture class being reasonably localised within the

discriminant plane. In contrast, the Fourier approach has less compact clusters. This is

perhaps to be expected as some of these images seem to exhibit a non-stationary structure.

We would therefore not expect a Fourier approach to discriminate as efficiently due to the

lack of spatial localisation. In particular, images (1) and (4) from Figure 6.2 appear to

be more stationary than images (2) and (3). This corresponds to what we see in Figure

6.3(a) where the stationary images correspond to the tighter clusters. Next we turn to the

classification performance of the four approaches with this image set. Table 6.1 shows the

classification rate of all the methods. All methods achieve very high classification results.

This is not surprising as these textures are easy to classify by eye. The next section considers

a more subtle texture classification problem.
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(1) (2) (3)

(4)

Figure 6.2: Typical textures: (1) Thick yellow cloth, (2) Grass, (3) Brick wall and (4) Blue
fabric. Images (2) and (3) were provided by A. Gott. Images (1) and (4) were downloaded
from an open source image database http://www.imageafter.com.

Method Fourier Sengur VdW LS2Wmv

% class correctly 94.5 100 100 99

Table 6.1: Percentage of textures classified correctly using the different methods for the four
textures displayed in Figure 6.2.

6.5 Analysis of hair images

The following texture analysis example arises from work with an industrial collaborator.

We have one original colour texture, a real hair sample, depicted in Figure 6.4. The original

hair type was 50% dark brown European and 50% white, with a base hair colour of mixed

brown and grey. Such hair swatches are used regularly for tests of new hair products.

In the following we consider the application of our modelling framework to three different

colour texture experiments using the hair sample above. In the first example, we analyse

a set of hair images showing a change in colour between the images but the same texture
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(d) LS2Wmv

Figure 6.3: Plots of the first two discriminant axes for each method based on sub-samples
of size 64 x 64 of the images in Figure 6.2. Each subplot represents the different methods:
(a) Fourier, (b) Sengur, (c) VdW and (d) LS2Wmv.

(Section 6.5.1). In this case three colourants have been applied to the original hair sample

in Figure 6.4. The second and third set of images are consistent in colour, but their textural

properties differ since the images represent hair that have had different preparation processes

applied (Section 6.5.2). In both settings we wish to discriminate and classify between the

111



Figure 6.4: Original hair sample.

textures in each of these examples using the method outlined in Section 6.3. In a practical

setting this is useful to determine features such as, for example, the state of a product by

giving an indication of it’s age or intensity of variation under different conditions. Such a

task can be challenging even to the human eye, thus it is of interest to see which of the four

methods performs well in these differing cases.

6.5.1 Hair treatments: Different colourants

In our first example we wish to distinguish between three different hair colourants A, B and

C as shown in Figure 6.5. Each image is 256 x 256 in size and the only difference in these

images is in the colour itself. In other words, each image has the same texture but different

colour.

(1) (2) (3)

Figure 6.5: The different colourants, A,B and C.

We again follow the discrimination and classification approach as outlined in Section 6.3,
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sampling fifty sub-images from the upper half of each image as training data and sampling

fifty sub-images from the lower half of each image as the test set. Although our original image

sizes are smaller than those in Section 6.4, we choose our sub-samples to have dimension

64 x 64 since spectral estimation methods can be less reliable for smaller image sizes due to

the asymptotics associated with the estimation theory.

Figure 6.6 displays plots of the first two discriminant variables based on the sub-samples

for each method. They are all reasonably well localised in the plane but the LS2Wmv

approach shows more compact clusters. Table 6.2 again shows all methods have high clas-

sification rates with LS2Wmv achieving the highest correct classification. In this case the

physical texture is the same across all images, however the colour changes. Hence, as we

would anticipate, the two methods which take coherence into consideration produced the

best results, namely Fourier and LS2Wmv.

Method Fourier Sengur VdW LS2Wmv

% class correctly 96 87.33 79.33 96.67

Table 6.2: Percentage of textures classified correctly using the different methods for the
three textures displayed in Figure 6.5.

6.5.2 Hair colourants: Different preparation processes

Our next example takes the original image from Figure 6.4 and applies colourant B to three

different physical texture processes (Figure 6.7). In other words, after colourant B has been

applied to the original image, three different processes are undergone independently. We

then repeat the experiment for colourant C as shown in Figure 6.8. As colourant A considers

an image of black hair, we decided not to test it as this particular study considers colour

texture images. From Figures 6.7 and 6.8 these samples are very difficult to discriminate

visually.

Similar to our previous examples, the first part of our analysis is to discriminate between

these images, for each colourant independently. We sample fifty sub-images from each

image of dimension 64 x 64. A feature vector is then evaluated for each sub-image. Figure

6.9 displays the first two discriminant variables for the different methods for colourant

113



−10 −5 0 5

−
4

−
3

−
2

−
1

0
1

2

First Linear Discriminant

S
ec

on
d 

Li
ne

ar
 D

is
cr

im
in

an
t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1 1

1

1

1

1

1 1

1

1
1

1

1

1

1

1

1

1

11

1

1

1
1

1

1

1

1

1
1

1 2

2

2

2

2

2

2

2

2

2

222

2

2

2

2

2

2
2

2

2

2

2

2

2

22

2

2

2
2

2

2

2
2

2

2

2
2

2 2

2

2
2

2
2

2

2

2

3
3

3
3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3

3

3

3

3

3
3

3
3

3

3

3

3

33

3

3
3

3

3

3

3

3
333

(a)

−5 0 5 10

−
4

−
2

0
2

4

First Linear Discriminant
S

ec
on

d 
Li

ne
ar

 D
is

cr
im

in
an

t

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1 1

1

1

1
1

1

1

1
1

1

1 1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2 2

2

2

2 2
2

2 2

2

22
2

2

2

2 2

2
2

2
2

2

2
2

2
2

2

2

2

2

2

22

2

2

2

2

2

2

22

2

2

22

2

2

3

3

3 3

3

3

3

3

3

3
3

3

3

3 3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3 3

3

3

3

3

3

3

33 3

33
3

3
3

3

3

3

3
3

(b)

−5 0 5 10

−
4

−
2

0
2

4

First Linear Discriminant

S
ec

on
d 

Li
ne

ar
 D

is
cr

im
in

an
t

1

1

1

1
1

1

1

1
11

1

1

1

1

1
1

1

1

11

1

1

1

1

1

1

1
1

1
1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

2

2
2

2

2

2

2

2

2
2

2
2
2

2
2

2
2

22

2

2

2

2

2

2

22 2

2

2

2
2

2

2

2
2

2

2

2
2

2

2

2

2

22

2

2

2
2

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3
3

3

3

3

3

3

3
3

3
3
3

3

3

3

3

3

3

33

3

3

3 3

3

3

3

3

3

3

3

3

3

3

(c)

−20 −10 0 10 20 30

−
10

−
5

0
5

10
15

First Linear Discriminant

S
ec

on
d 

Li
ne

ar
 D

is
cr

im
in

an
t

1
1

11
1
1

1

1

1 1
1

1
1

1

1
1

111

11

11
1

1

11

1

11
1

1
1

11

1

1
1 11

1

11

1

1

1
1

1
1

1

2
2

2

2 2

2

2

2

2

22

2

2
2

2

2 2

2
2

2
2

2

2 2

2

22
2
2
2 2

2
22

2

2 22 2

2
2

2
2

2

2

2
2

2

2

2

3

3

3

3

33

3
3

33 3

3
3

3
33

33
3

3

3

33

3
3
33

3 3
3
3

3
3

3
3

3

3

3

3 3

3
33 33

3 3

3

3
3

(d)

Figure 6.6: Plots of the first two discriminant axes for each method based on sub-samples
of size 64 x 64 of the images in Figure 6.5. Each subplot represents the different methods:
(a) Fourier, (b) Sengur, (c) VdW and (d) LS2Wmv.

B. The different texture types are still reasonably well localised for Fourier, Sengur and

VdW, but the LS2Wmv approach again gives more compact clusters. Table 6.3 shows the

classification results for colourant B where again the LS2Wmv method achieves the highest

classification rate. As expected VdW is comparable due to the feature vector containing
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(1) (2) (3)

Figure 6.7: Hair images of three preparation processes (i), (ii) and (iii) applied to a sample
of colourant B.

(1) (2) (3)

Figure 6.8: Hair images of three preparation processes (i), (ii) and (iii) applied to a sample
of colourant C.

wavelet correlation signatures taking into account the textural change across processes. As

all the images are for colourant B they have less variation across the colour planes so the

Fourier approach does not fare well as the images show change in their textural properties.

Method Fourier Sengur VdW LS2Wmv

% class correctly 77.33 68 90 91.33

Table 6.3: Percentage of textures classified correctly using the different methods for the
three textures displayed in Figure 6.7.

Figure 6.10 displays plots of the first two discriminant variables from textures displayed

in Figure 6.8 (Colourant C). The different texture types are well localised in the plane for

the LS2Wmv approach. However the other three methods struggle to disguish between
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them. Depending on the colour of the image, certain colour planes may be redundant

when it comes to LDA classification. This is highlighted in this second example where the

classification percentages are lower. Table 6.4 shows the classification results for colourant

C, highlighting LS2Wmv again gains the higher classification results.

Method Fourier Sengur VdW LS2Wmv

% class correctly 56.67 57.33 68.67 74.67

Table 6.4: Percentage of textures classified correctly using the different methods for the
three textures displayed in Figure 6.8.

6.6 Concluding remarks

In this chapter we have discussed an application of the LS2Wmv modelling approach ap-

plying LS2W coherence in a colour texture analysis setting. We draw similar conclusions

to Eckley et al. (2010) in that a wavelet approach produces higher correct classification

in non-stationary images. The examples show that if texture images differ in colour, then

Fourier and LS2Wmv are preferable, whereas if texture images differ on physical texture,

then VdW and LS2Wmv are more favourable. Fourier and Sengur were generally found to

be less robust methods in this case due to their inability to capture the multiscale nature of

texture and the subtle changes between the colour texture images. Hence, on this basis we

would generally prefer LS2Wmv over all other approaches since it can deal well with both

colour and texture feature changes. In this case the coherence contributes to the higher

classification rate and thus underlines the importance of coherence in a colour texture set-

ting. In conclusion, the results suggest that the LS2Wmv method is more robust to different

texture types.
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Figure 6.9: Plots of the first two discriminant axes for each method based on sub-samples
of size 64 x 64 of the images in Figure 6.7. Each subplot represents the different methods:
(a) Fourier, (b) Sengur, (c) VdW and (d) LS2Wmv.
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(d) LS2Wmv

Figure 6.10: Plots of the first two discriminant axes for each method based on sub-samples
of size 64 x 64 of the images in Figure 6.8. Each subplot represents the different methods:
(a) Fourier, (b) Sengur, (c) VdW and (d) LS2Wmv.
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Chapter 7

Conclusions and future directions

This thesis has focussed on developing statistical methodology for modelling image texture.

Prior to analysing an image it is useful to know its stationarity properties in order to

determine the most effective modelling approach to undertake. To this end, in Chapter 3

we developed a bootstrap-based test of stationarity, using the LS2W framework, extending

the work of Cardinali and Nason (2011) to two dimensions. This test of stationarity is then

used in Chapter 4 to address the problem of counting the number of textures in an image

set. The testing procedure is embedded within an image segmentation method using the

BootstatLS2W test of Taylor et al. (2013) algorithm as a homogeneity measure. This enables

us to not only obtain the number of textures in an image but also isolate areas of textural

change. Details of the software used to implement the above methodology can be found in

Appendix B.

In Chapter 5 we developed a rigorous wavelet-based modelling framework for non-

stationary multivariate images, namely the LS2Wmv approach. Each multivariate image

is assumed to have k channels and the local wavelet coherence between these channels was

defined and estimated. In order to calculate this estimate we considered the scale-direction-

location based spectral structure measure of both the individual channels and across chan-

nels. We provided a robust estimation procedure considering all asympotic properties, prov-

ing our measures to be unbiased, consistent and unique. Finally in Chapter 6 we explored

the use of this model in a colour texture analysis problem, namely the discrimination and

classification of hair images. Comparing our results with other approaches we found that
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the LS2Wmv approach gives the best result in both changing colour and changing texture

circumstances.

We conclude this thesis by considering a number of avenues for future research. As

suggested in Chapter 3 it is surprising that no local Fourier equivalent of our spatial test

currently exists. Hence, we note that the development of a spatial test for stationarity

using a Fourier approach could be considered. It would be natural to consider a SLEX

(Smooth Localised Complex Exponentials) based approach (Ombao et al., 2002, 2005) to

model texture and therefore perform a local spatial stationarity test. This could then be

applied as a homogeneity measure within an image segmentation framework as in Chapter

4.

Future work arising from Chapter 4 might include an investigation of other segmentation

techniques which could provide more efficient or accurate ways to detect texture region

boundaries. The limitation in our current work is due to the nature of the quad tree

segmentation approach. In order to determine more accurate boundaries of textured regions,

further segmentation is required.

Further, since the work from Chapters 3 and 4 focuses on univariate LS2W processes.

It would also be interesting to extend these to a multivariate setting, especially with the

additional coherence condition between channels to consider. Naturally, this would require

careful consideration of what stationarity means in a colour setting.

Finally, the LS2W and LS2Wmv models underpinning the work presented in this thesis

have assumed data on a regular grid of size 2nx2n. In practical applications this isn’t always

the case, for example in Chapter 4 we may have mosaics of different shapes. It would be

of interest to investigate the extension of these models to a more general structure, i.e.

non-regular grids. Lifting transforms can handle multidimensional irregularly spaced data

so would be a natural consideration in extending these approaches, drawing on ideas from

a recently proposed time series approach by Knight et al. (2012).
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Appendix A

Proofs for Chapter 5

Proof of Lemma 1: Properties of products of Lipschitz continuous vari-

ables.

We begin by proving the product of the transfer functions (W
(p)
η (u/R)W

(q)
η (u/R)) is Lips-

chitz. We have,

∣∣∣W (p)
η

( u

R

)
W (q)

η

( u

R

)
−W (p)

η

( r

R

)
W (q)

η

( r

R

)∣∣∣ ≤
∣∣∣W (p)

η

( u

R

)
W (q)

η

( u

R

)
−W (p)

η

( u

R

)
W (q)

η

( r

R

)∣∣∣

+
∣∣∣W (p)

η

( u

R

)
W (q)

η

( r

R

)
−W (p)

η

( r

R

)
W (q)

η

( r

R

)∣∣∣

=
∣∣∣W (p)

η

( u

R

)∣∣∣
∣∣∣W (q)

η

( u

R

)
−W (q)

η

( r

R

)∣∣∣

+
∣∣∣W (q)

η

( r

R

)∣∣∣
∣∣∣W (p)

η

( u

R

)
−W (p)

η

( r

R

)∣∣∣

≤ C∗

R
Lq
η||u− r||+ C∗

R
Lp
η||u− r||

=
C∗

R
(L(p)

η + L(q)
η )||u− r||,

since |W (p)
η (u/R)| ≤ C∗ and using the Lipschitz properties of W

(p)
η and W

(q)
η . Therefore

(W
(p)
η (u/R)W

(q)
η (u/R)) is Lipschitz with constant C∗(L

(p)
η + L

(q)
η ). By similar arguments,

the product of (W
(p)
η (u/R)W

(q)
η (u/R)) and ρ

(p,q)
η (u/R) is Lipschitz. Using equation (5.7)

we have,

∣∣∣S(p,q)
η

( u
R

)
− S(p,q)

η

( r

R

)∣∣∣ ≤ 1 ·
[
C∗

R
(L(p)

η + L(q)
η ) +

R
(p,q)
η

R

]
||u− r||

≤ CB
(p,q)
η

R
||u− r||,
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since |ρ(p,q)η (u/R)| ≤ 1 and defining C = max(C∗,1)
3 and B

(p,q)
η = max(L

(p)
η , L

(q)
η , R

(p,q)
η ). �

Proof of Theorem 1: Uniqueness of representation.

The structure of this proof is very similar to the two-dimensional case, considered by Eckley

et al. (2010). In order to prove the uniqueness of the multivariate spectral representation,

it suffices to consider the properties of the cross-spectrum, since the uniqueness of the auto-

spectra has been established in Eckley et al. (2010).

Suppose, by way of contradiction, that there exist two cross-spectral representations of

the same LS2Wmv process which also possess the same cross-covariance structure. In other

words

cp,q(z, τ ) =
∑

η

S(1)(p,q)
η (z)Ψη(τ ) =

∑

η

S(2)(p,q)
η (z)Ψη(τ )

where cp,q(z, τ ) is defined in equation (5.25) and S
(i)(p,q)
η (z) = W p

η (z)W
q
η (z)ρ

(p,q)
η (z) for

i = 1, 2 and p, q ∈ {1, . . .m} with p 6= q. Let ∆
(p,q)
η (z) ≡ S

(1)(p,q)
η (z) − S

(2)(p,q)
η (z) be the

difference between the two representations. To establish uniqueness we must show that

0 =
∑

η

∆(p,q)
η (z)Ψη(τ ), ∀ z ∈ (0, 1)2, ∀ τ ∈ Z

2

⇒ 0 = ∆(p,q)
η (z), ∀ η = 1, . . . , 3J, ∀ z ∈ (0, 1)2.

What we actually show is an equivalent implication:

0 =
∑

η

∆̃(p,q)
η (z)Ψη(τ ), ∀ z ∈ (0, 1)2, ∀ τ ∈ Z

2 (A.1)

⇒ 0 = ∆̃(p,q)
η (z), ∀ η = 1, . . . , 3J, ∀ z ∈ (0, 1)2, (A.2)

where ∆̃
(p,q)
η (z) = 2−2j(η)∆

(p,q)
η (z).We begin by recalling some key properties of the autocor-

relation wavelets established in Eckley et al. (2010). Specifically using Parseval’s relation,
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the discrete autocorrelation wavelet inner product matrix can be expressed as

Aη,ν =
∑

τ

Ψη(τ )Ψν(τ )

=

(
1

2π

)2 ∫ ∫
Ψ̂η(ω)Ψ̂ν(ω)dω, (A.3)

where Ψ̂η(ω) = |ψ̂η(ω)|2 and Ψ̂η(ω) represents the Fourier Transform of Ψ(τ ). Thus as-

suming (A.1), for a given pair of channels p and q, we find that

0 =

(
∑

η

∆̃(p,q)
η (z)Ψη(τ )

)(
∑

ν

∆̃(p,q)
ν (z)Ψν(τ )

)

=
∑

τ

(
∑

η

∆̃(p,q)
η (z)Ψη(τ )

)(
∑

ν

∆̃(p,q)
ν (z)Ψν(τ )

)

=
∑

η

∑

ν

∆̃(p,q)
η (z)∆̃(p,q)

ν (z)
∑

τ

Ψη(τ )Ψν(τ ).

Applying equation (A.3), this becomes,

0 =
∑

η

∑

ν

∆̃(p,q)
η (z)∆̃(p,q)

ν (z)

(
1

2π

)2 ∫ ∫
Ψ̂η(ω)Ψ̂ν(ω)dω,

=

∫ ∫
dω

(
∑

η

∆̃(p,q)
η (z)Ψ̂η(ω)

)2

. (A.4)

Since
∑

η S
(p,q)
η (z) <∞ uniformly in z, we have

∑
η |∆

(p,q)
η (z)| <∞ and hence

∑
η 2

2j(η)|∆̃(p,q)
η (z)| < ∞. For any channel pair (p, q), Ψ̂η(ω) is continuous on [−π, π]2 and

in turn
∑

η ∆̃
(p,q)
η Ψ̂η(ω) is continuous on [−π, π]2 as a function of ω. Hence equation (A.4)

implies that,

0 =
∑

η

∆̃(p,q)
η (z)Ψ̂η(ω), ∀ ω ∈ [−π, π]2, ∀ z ∈ (0, 1)2. (A.5)

In order to complete this proof we reconsider the Fourier properties of wavelets as
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discussed in Chapter 2. For ω = (ω1, ω2),

∣∣∣Ψ̂v
η(ω)

∣∣∣
2
= 22j

∣∣m1(2
j−1ω1)

2
∣∣ ∣∣m0(2

j−1ω2)
2
∣∣∏j−2

s=0 |m0(2
sω1)m0(2

sω2)|2
∣∣∣Ψ̂h

η(ω)
∣∣∣
2
= 22j

∣∣m0(2
j−1ω1)

2
∣∣ ∣∣m1(2

j−1ω2)
2
∣∣∏j−2

s=0 |m0(2
sω1)m0(2

sω2)|2
∣∣∣Ψ̂d

η(ω)
∣∣∣
2
= 22j

∣∣m1(2
j−1ω1)

2
∣∣ ∣∣m1(2

j−1ω2)
2
∣∣∏j−2

s=0 |m0(2
sω1)m0(2

sω2)|2 .





(A.6)

Let ∆̃
(p,q)
η = ∆̃

(p,q)
η (z) at some fixed point z ∈ (0, 1)2. Then using equation (A.6) we can

rewrite equation (A.5) as follows:

0 =
J∑

η=1

∆̃(p,q)
η 22j

∣∣m1(2
j−1ω1)

2
∣∣ ∣∣m0(2

j−1ω2)
2
∣∣
j−2∏

s=0

|m0(2
sω1)m0(2

sω2)|2

+
2J∑

η=J+1

∆̃(p,q)
η 22j

∣∣m0(2
j−1ω1)

2
∣∣ ∣∣m1(2

j−1ω2)
2
∣∣
j−2∏

s=0

|m0(2
sω1)m0(2

sω2)|2

+
3J∑

η=2J+1

∆̃(p,q)
η 22j

∣∣m1(2
j−1ω1)

2
∣∣ ∣∣m1(2

j−1ω2)
2
∣∣
j−2∏

s=0

|m0(2
sω1)m0(2

sω2)|2 .

(A.7)

The RHS of equation (A.7) is a continuous function of ω and so must vanish for all ω ∈

[−π, π]2. In order to show that ∆̃1 is zero, we insert ω = (π, 0) into equation (A.7). This

gives,

0 = ∆̃
(p,q)
1 4|m1(π)|2|m0(0)|2 + ∆̃

(p,q)
2J+14|m1(π)|2|m1(0)|2

= ∆̃
(p,q)
1 4 · 1 · 1 + ∆̃

(p,q)
2J+14 · 1 · 0 (A.8)

= ∆̃
(p,q)
1 , (A.9)

since |m1(π)|2=1, |m0(0)|2=1 and therefore |m1(2πn)|2=0 (recalling properties of m0 and

m1 from Section 2.1.4).

To show that ∆̃
(p,q)
2J+1 = 0 we reconsider equation (A.7). Taking ω = (π, π) and since

∆̃
(p,q)
1 = 0, we have,

0 = ∆̃
(p,q)
2J+14|m1(π)|2|m1(π)|2

= ∆̃
(p,q)
2J+14 · 1 · 1 (A.10)

= ∆̃
(p,q)
2J+1. (A.11)
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Finally we insert ω = (0, π) into equation (A.7). Given that ∆̃
(p,q)
1 = 0 and ∆̃

(p,q)
2J+1 = 0 we

can also derive that ∆̃
(p,q)
J+1 = 0.

We next show that ∆̃
(p,q)
2 = 0 by setting ω = (π/2, 0):

0 = ∆̃
(p,q)
2 16|m1(π)|2|m0(0)|2 + ∆̃

(p,q)
2J+216|m1(π)|2|m1(0)|2

= ∆̃
(p,q)
2 16 · 1 · 1 + ∆̃

(p,q)
2J+216 · 1 · 0 (A.12)

= ∆̃
(p,q)
2 . (A.13)

Similarly we can show that ∆̃
(p,q)
2J+2 = 0 and ∆̃

(p,q)
J+2 = 0. Continuing with this process

recursively setting ω = π/2(j−1) we can show that

∆̃(p,q)
η (z) = 0, ∀η, ∀z ∈ (0, 1)2. (A.14)

Hence as the difference between the two cross-spectra is zero, we assume they give the same

covariance structure and so the cross-spectral representations are uniquely defined given the

corresponding LS2Wmv process. �

Proof of Theorem 2: The expectation and variance of the raw cross-

periodogram between two channels, p and q of an LS2Wmv process.

Expectation: The expectation of the local wavelet raw cross-periodogram is given by,

E(I
(p,q)
η,s ) = E[(dpη,s)(d

q
η,s)],

= E

[
∑

r1

∑

r2

X
(p)
r1 X

(q)
r2 ψη,s(r1)ψη,s(r2)

]

= E

[
∑

r1,r2

∑

η1,η2

∑

u1,u2

W
(p)
η1,u1

ψη1,u1
(r1)ξ

(p)
η1,u1

×

W
(q)
η2,u2

ψη2,u2
(r2)ξ

(q)
η2,u2

ψη,s(r1)ψη,s(r2)

]
,
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using the LS2Wmv model Definition 13. Next we recall that by definition,

E

(
ξ
(p)
η1,u1

ξ
(q)
η2,u2

)
= δη1,η2δu1,u2

ρ
(p,q)
η1,u1

,

=





ρ
(p,q)
η1,u1

η1 = η2,u1 = u2

0 otherwise.

The expectation thus reduces as follows:

E(I
(p,q)
η,s ) =

∑

r1,r2

∑

η1

∑

u1

W
(p)
η1,u1

W
(q)
η1,u1

ρ
(p,q)
η1,u1

ψη1,u1
(r1)ψη1,u1

(r2)ψη,s(r1)ψη,s(r2)

=
∑

η1

∑

u1

S
(p,q)
η1,u1

∑

r1

ψη1,u1
(r1)ψη,s(r1)

∑

r2

ψη1,u1
(r2)ψη,s(r2). (A.15)

Substituting u1 = x+ s into the equation above we obtain,

E(I
(p,q)
η,s ) =

∑

η1

∑

x

S
(p,q)
η1,x+s

{
∑

r

ψη1,x+s(r)ψη,s(r)

}2

=
∑

η1

∑

x

S
(p,q)
η1,x+s

{
∑

r

ψη1,x+s−rψη,s−r

}2

=
∑

η1

∑

x

S
(p,q)
η1,x+s

{
∑

r

ψη1,x−rψη,−r

}2

.

(A.16)

By the assumptions of the model given in Definition 13,W p
η and ρp,qη are Lipschitz continuous

with constants L
(p)
η and R

(p,q)
η respectively. Therefore it follows from Lemma 1 that, Sp,qη is

also Lipschitz continuous with constant CB
(p,q)
η . Using this property it can be seen that,

∣∣∣∣S
(p,q)
η

(
x+ s

R

)
− S(p,q)

η

( s

R

)∣∣∣∣ ≤
CB

(p,q)
η ||x||
R

, (A.17)

for some constant C ∈ R. In other words,

S(p,q)
η

(
x+ s

R

)
= S(p,q)

η

( s

R

)
+O

(
B

(p,q)
η ||x||
R

)
. (A.18)
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Incorporating this Lipschitz property of the {S(p,q)
η } into equation (A.16), we obtain,

E(I
(p,q)
η,s ) =

∑

η1

∑

x

(
S(p,q)
η1

( s

R

)
+O

(
B

(p,q)
η1 ||x||
R

)){
∑

r

ψη1,x−rψη,−r

}2

=
∑

η1

∑

x

S(p,q)
η1

( s

R

){∑

r

ψη1,x−rψη,−r

}2

+O

(
1

R

)
,

since
∑

η 2
2j(η)B

(p,q)
η < ∞ and {∑r ψη1,x−rψη,−r}2 is finite. Expanding the square then

gives,

E(I
(p,q)
η,s ) =

∑

η1

S(p,q)
η1

( s

R

){∑

x

∑

r1

∑

r2

ψη1,x−r1ψη,−r1ψη1,x−r2ψη,−r2

}
+O

(
1

R

)
.

Substituting r0 = r2 − r1 gives,

E(I
(p,q)
η,s ) =

∑

η1

S(p,q)
η1

( s

R

)∑

x

{
∑

r1

ψη1,x−r1ψη,−r1

∑

r0

ψη1,x−r1−r0ψη,−r1−r0

}
+O

(
1

R

)

=
∑

η1

S(p,q)
η1

( s

R

){∑

r1

∑

r0

ψη,−r1ψη,−r1−r0

∑

x

ψη1,x−r1ψη1,x−r1−r0

}
+O

(
1

R

)
.

Finally we note that each of the summations within the brackets is simply an autocorrelation

wavelet (see equation (3.11)). Hence

E(I
(p,q)
η,s ) =

∑

η1

S(p,q)
η1

( s

R

)∑

r0

Ψη1(r0)Ψη(r0) +O

(
1

R

)

=
∑

η1

S(p,q)
η1

( s

R

)
Aη1,η +O

(
1

R

)
,

where A is the inner product matrix given in equation (3.12). Therefore by correcting the

cross-periodogram with the inverse of the A matrix it can be an unbiased estimator of the

spectrum.

Variance: We now consider the proof of the variance of the cross-periodogram. We begin

by recalling the standard definition of the variance, Var(X) = E[X2] − (E[X])2. We have
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already established the form of E[X]. Hence we begin by focussing on E[X2].

E

[(
I
(p,q)
η,s

)2]
= E

[((
d
(p)
η,s

)(
d
(q)
η,s

))2]
,

= E

[(
∑

r1

∑

η1

∑

u1

W
(p)
η1,u1

ψη1,u1
(r1)ξ

(p)
η1,u1

ψη,s(r1)×

∑

r′
1

∑

η′1

∑

u′
1

W
(q)
η′1,u

′
1

ψη′1,u′
1
(r′1)ξ

(q)
η′1,u

′
1

ψη,s(r
′
1)

)2]
,

=
4∏

i=1

∑

ηi

∑

ui

E

(
ξ
(p)
η1,u1

ξ
(p)
η2,u2

ξ
(q)
η3,u3

ξ
(q)
η4,u4

)
WMi
ηi (ui/R)

∑

ri

ψηi,ui
(ri)ψη,s(ri),

where Mi is the following indicator function:

Mi =





p if i=1,2;

q if i=3,4.

Next we consider the term E

(
ξ
(p)
η1,u1

ξ
(p)
η2,u2

ξ
(q)
η3,u3

ξ
(q)
η4,u4

)
. Using a result due to Isserlis (1918),

we have,

E

(
ξ(p)η1,u1

ξ(p)η2,u2
ξ(q)η3,u3

ξ(q)η4,u4

)
= E

(
ξ(p)η1,u1

ξ(p)η2,u2

)
E

(
ξ(q)η3,u3

ξ(q)η4,u4

)
+

E

(
ξ(p)η1,u1

ξ(q)η3,u3

)
E

(
ξ(p)η2,u2

ξ(q)η4,u4

)
+ E

(
ξ(p)η1,u1

ξ(q)η4,u4

)
E

(
ξ(p)η2,u2

ξ(q)η3,u3

)
.

Substituting this decomposition into our expression for E

[(
I
(p,q)
η,s

)2]
we obtain,

E

[(
I
(p,q)
η,s

)2]
=

4∏

i=1

∑

ri

∑

ηi

∑

ui

WMi
ηi (ui/R)ψηi,ui

(ri)ψη,s(ri)×
{
E

(
ξ
(p)
η1,u1

ξ
(p)
η2,u2

)
E

(
ξ
(q)
η3,u3

ξ
(q)
η4,u4

)
+ E

(
ξ
(p)
η1,u1

ξ
(q)
η3,u3

)
E

(
ξ
(p)
η2,u2

ξ
(q)
η4,u4

)
+

E

(
ξ
(p)
η1,u1

ξ
(q)
η4,u4

)
E

(
ξ
(p)
η2,u2

ξ
(q)
η3,u3

)}
,

= I1 + I2 + I3,
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where for example,

I1 =
4∏

i=1

∑

ri

∑

ηi

∑

ui

E

(
ξ
(p)
η1,u1

ξ
(p)
η2,u2

)
E

(
ξ
(q)
η3,u3

ξ
(q)
η4,u4

)
W

Iηi
ηi (ui/R)ψηi,ui

(ri)ψη,s(ri). (A.19)

Since, E

(
ξ
(p)
η1,u1

ξ
(p)
η2,u2

)
= δη1,η2δu1,u2

δp,p = 1 and E

(
ξ
(q)
η3,u3

ξ
(q)
η4,u4

)
= 1, (A.19) simplifies to,

I1 =

(
∑

η1

∑

u1

(
W (p)
η1

(
u1

R

))2∑

r1

ψη1,u1
(r1)ψη,s(r1)

∑

r2

ψη1,u1
(r2)ψη,s(r2)

)
×

(
∑

η3

∑

u3

(
W (q)
η3

(
u3

R

))2∑

r3

ψη3,u3
(r3)ψη,s(r3)

∑

r4

ψη3,u3
(r4)ψη,s(r4)

)
.

From the proof of the expectation of the cross-periodogram (equation(A.15)) in the case

where p = q this is simply equal to E

[
I
(p)
η,s

]
E

[
I
(q)
η,s

]
. Applying the same step with I2 we

obtain,

I2 =

(
∑

η1

∑

u1

(
S(p,q)
η1

(
u1

R

))∑

r1

ψη1,u1
(r1)ψη,s(r1)

∑

r3

ψη1,u1
(r3)ψη,s(r3)

)
×

(
∑

η2

∑

u2

(
S(p,q)
η2

(
u2

R

))∑

r2

ψη2,u2
(r2)ψη,s(r2)

∑

r4

ψη2,u2
(r4)ψη,s(r4)

)

= E

[
I
(p,q)
η,s

]2
.

I3 also gives this result. Putting this all together gives,

E

[(
I
(p,q)
η,s

)2]
= E

[
I
(p)
η,s

]
E

[
I
(q)
η,s

]
+ 2E

[
I
(p,q)
η,s

]2
.

From here we calculate the variance as follows,

Var(I
(p,q)
η,s ) = E

[
I
(p)
η,s

]
E

[
I
(q)
η,s

]
+ 2E

[
I
(p,q)
η,s

]2
− E

[
I
(p,q)
η,s

]2
,

= E

[
I
(p)
η,s

]
E

[
I
(q)
η,s

]
+ E

[
I
(p,q)
η,s

]2
,

=

(
∑

η1

S(p)
η1

(
s

R

)
Aη1,η +O

(
1

R

))(∑

η1

S(q)
η1

(
s

R

)
Aη1,η +O

(
1

R

))
+

(
∑

η1

S(p,q)
η1

(
s

R

)
Aη1,η +O

(
1

R

))2

.
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From the work of Nason et al. (2000), it is known that Ψη(τ ) = O(1) uniformly in τ . Hence

it follows that,

Aη1,η =
∑

τ

Ψη(τ )Ψη1(τ ) = O
(
22j(η1)

)
. (A.20)

Thus, expanding the square gives,

Var(I
(p,q)
η,s ) =

∑

η1

S(p)
η1

( s

R

)
Aη1,η

∑

η1

S(q)
η1

( s

R

)
Aη1,η+

(
∑

η1

S(p,q)
η1

( s

R

)
Aη1,η

)2

+O

(
22j(η1)

R

)
.

�

Proof of Theorem 3: The expectation of the smoothed cross-periodogram.

Recall that we are using a Nadaraya-Watson kernel smoother to smooth the (raw) cross-

periodogram. Hence we focus on the asymptotic properties of:

E(Ĩ
(p,q)
η,s ) = E

(
∑

u

wuI
(p,q)
η,u

)

=
∑

u

wuE(I
(p,q)
η,u ),

where wu = Kh(s−u)∑
u
Kh(s−u) and define Kh(s− u) = K( s−u

h ) for bandwidth h > 0. Defining

λ =
∑

uKh(s− u) and recalling Theorem 2, we find that

E(Ĩ
(p,q)
η,s ) =

1

λ

∑

u

Kh(s− u) E(I
(p,q)
η,u )

=
1

λ

∑

u

Kh(s− u)

[
∑

η1

S(p,q)
η1

( u
R

)
Aη1,η +O

(
1

R

)]
.

Setting u = s+ τ we obtain:

E(Ĩ
(p,q)
η,s ) =

1

λ

∑

τ

Kh(τ )

[
∑

η1

S(p,q)
η1

(
s+ τ

R

)
Aη1,η +O

(
1

R

)]
.
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As discussed in the proof of Theorem 2, S
(p,q)
η is Lipschitz continuous with respect to the L1

norm, with constant CB
(p,q)
η . Using this property, the cross-spectral term can be simplified

to obtain

S(p,q)
η

(
s+ τ

R

)
= S(p,q)

η

( s

R

)
+O

(
B

(p,q)
η ||τ ||
R

)
. (A.21)

Hence

E(Ĩ
(p,q)
η,s ) =

1

λ

∑

τ

Kh(τ )

[
∑

η1

(
S(p,q)
η1

( s

R

)
+O

(
B

(p,q)
η1 ||τ ||
R

))
Aη1,η +O

(
1

R

)]

=
1

λ

∑

τ

Kh(τ )

[
∑

η1

S(p,q)
η1

( s

R

)
Aη1,η +

∑

η1

B(p,q)
η1 22j(η1)O

( ||τ ||
R

)
+O

(
1

R

)]
,

where Aη1,η = O(22j(η1)). We then have,

E(Ĩ
(p,q)
η,s ) =

1

λ

∑

τ

Kh(τ )

[
∑

η1

S(p,q)
η1

( s

R

)
Aη1,η + ||τ ||O

(
1

R

)
+O

(
1

R

)]
,

since
∑

η1
B

(p,q)
η1 22j(η1) <∞. Therefore,

E(Ĩ
(p,q)
η,s ) =

1

λ

∑

τ

Kh(τ )

[
∑

η1

S(p,q)
η1

( s

R

)
Aη1,η + (||τ ||+ 1)O

(
1

R

)]

=
1

λ

∑

τ

Kh(τ )
(∑

η1

S(p,q)
η1

( s

R

)
Aη1,η

)
+

1

λ

∑

τ

Kh(τ )

(
(||τ ||+ 1)O

(
1

R

))

= Ĩ1 + Ĩ2,

(A.22)

where Ĩ1 = 1
λ

∑
τ
Kh(τ )

(∑
η1
S
(p,q)
η1

(
s
R

)
Aη1,η

)
and Ĩ2 = 1

λ

∑
τ
Kh(τ )

(
(||τ || + 1)O

(
1
R

))
.

First we focus on Ĩ1:

Ĩ1 =
1

λ

∑

τ

Kh(τ )
(∑

η1

S(p,q)
η1

( s

R

)
Aη1,η

)

=
∑

η1

S(p,q)
η1

( s

R

)
Aη1,η,

(A.23)
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since
∑

uwu = 1
λ

∑
τ
Kh(τ ) = 1. In order to evaluate the second term in equation (A.22),

we consider the maximum number of lattice points, (2⌊h⌋+ 1)2, in the support of a kernel

of bandwidth h. More specifically we divide both the numerator and denominator by this

quantity. In so doing we obtain

Ĩ2 =

(
1

(2⌊h⌋+ 1)2

∑

τ

Kh(τ )

[
(||τ ||+ 1)O

(
1

R

)])/(
λ

(2⌊h⌋+ 1)2

)
. (A.24)

We now analyse the numerator and denominator of Ĩ2 separately, denoting these by Ĩ2,N

and Ĩ2,D respectively. The numerator is given by,

Ĩ2,N =
1

(2⌊h⌋+ 1)2

∑

τ

Kh(τ )
(
(||τ ||+ 1)O

(
1

R

))

≤
∑

||τ ||1≤⌊h⌋Kh(τ )
(
(⌊h⌋+ 1)O

(
1
R

) )

(2⌊h⌋+ 1)2
since||τ ||1 = |τ1|+ |τ2| ≤ ⌊h⌋

=

(
(⌊h⌋+ 1)O

(
1
R

) )

(2⌊h⌋+ 1)2

=

(
1

2⌊h⌋+ 1

)
O

(
1

R

)
,

(A.25)

since

0 <
∑

||τ ||1≤⌊h⌋

Kh(τ ) <

∫

||x||2<h
Kh(x)dx = 1.

Remark: The kernel is non-zero only for ||τ ||1 ≤ ⌊h⌋, where h is the bandwidth of the

kernel discussed in Section 5.4.

The denominator of Ĩ2 is given by,

Ĩ2,D =
λ

(2⌊h⌋+ 1)2
,

where λ =
∑

τ
Kh(τ ). We have,

Ĩ2,D < 1
(2⌊h⌋+1)2

× (2⌊h⌋+ 1)2KM

= O(1), (A.26)
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since K(x) ≤ KM < ∞ where KM is the maximum point of the kernel. Therefore the

expectation of the smoothed cross-periodogram is

E(Ĩ
(p,q)
η,s ) =

∑

η1

S(p,q)
η1

( s

R

)
Aη1,η +

(
1

2⌊h⌋+ 1

)
O

(
1

R

)
. (A.27)

�

Proof of Proposition 1: The variance of the smoothed cross-periodogram

is asymptotically vanishing.

We begin by giving the following definition, which will be useful for the proof of this propo-

sition.

Definition 19 We define Aτ
η1,η =

∑
kΨη1,η(k)Ψη1,η(k+τ ), where Ψη1,η(k) =

∑
t ψη1,tψη,t+k

following the one-dimensional expression given by Fryźlewicz and Nason (2006).

The variance of the smoothed periodogram is given by:

Var(Ĩ
(p,q)
η,s ) = E

[
(Ĩ

(p,q)
η,s )2

]
−
[
E(Ĩ

(p,q)
η,s )

]2
. (A.28)

Since E(Ĩ
(p,q)
η,s ) was established in Theorem 3 and is given in equation (A.27), we will focus

on E

[
(Ĩ

(p,q)
η,s )2

]
.

E

[
(Ĩ

(p,q)
η,s )2

]
= E



[
1

λ

∑

u

Kh(s− u)I
(p,q)
η,u

]2


= E

(
1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)I
(p,q)
η,u I

(p,q)
η,v

)

=
1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)E
(
I
(p,q)
η,u I

(p,q)
η,v

)
.

Using the definition of the raw cross-periodogram and arguments based on Isserlis’ Theorem

similar to those in the proof of the variance of the raw cross-periodogram, this can be
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simplified as follows:

E

[
(Ĩ

(p,q)
η,s )2

]
=

1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)E
[
d
(p)
η,ud

(q)
η,ud

(p)
η,vd

(q)
η,v

]

=
1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)E
[
d
(p)
η,ud

(q)
η,u

]
E

[
d
(p)
η,vd

(q)
η,v

]
+

1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)E
[
d
(p)
η,ud

(p)
η,v

]
E

[
d
(q)
η,ud

(q)
η,v

]
+

1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)E
[
d
(p)
η,ud

(q)
η,v

]
E

[
d
(q)
η,ud

(p)
η,v

]
.

The first term is simply equal to E
[
Ĩ
(p,q)
η,s

]2
. Hence the variance of the smoothed periodogram

becomes,

Var(Ĩ
(p,q)
η,s ) =

1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)E
[
d
(p)
η,ud

(p)
η,v

]
E

[
d
(q)
η,ud

(q)
η,v

]
+

1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)E
[
d
(p)
η,ud

(q)
η,v

]
E

[
d
(q)
η,ud

(p)
η,v

]
.

Following the same method as for the expectation of the raw cross-periodogram the expec-

tations can be expressed as,

E

[
d
(p)
η,ud

(q)
η,v

]
=
∑

η1

S(p,q)
η1

( u
R

)
Aτ

η1,η +O

(
1

R

)
(A.29)

E

[
d
(p)
η,ud

(p)
η,v

]
=
∑

η1

S(p)
η1

( u
R

)
Aτ

η1,η +O

(
1

R

)
, (A.30)

where τ = u− v and Aτ
η1,η is as defined in Definition 19. We also note that using similar

arguments to Eckley et al. (2009), Aτ
η1,η = O

(
22j(η1)

)
.

Remark The terms in the expectations are very similar to the raw cross-periodogram

except that there is a lag between the terms.
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The variance can thus be expressed as

Var(Ĩ
(p,q)
η,s ) =

1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)

[(∑

η1

S(p)
η1

( u
R

)
Aτ

η1,η +O

(
1

R

))
×

(∑

η1

S(q)
η1

( u
R

)
Aτ

η1,η +O

(
1

R

))
+

(∑

η1

S(p,q)
η1

( u
R

)
Aτ

η1,η +O

(
1

R

))2
]

=
1

λ2

∑

u

∑

v

Kh(s− u)Kh(s− v)

[
∑

η1

S(p)
η1

( u
R

)
Aτ

η1,η

∑

η1

S(q)
η1

( u
R

)
Aτ

η1,η+

(∑

η1

S(p,q)
η1

( u
R

)
Aτ

η1,η

)2

+O

(
22j(η1)

R

)]
.

Now let u = s+ τ ′, v = s+ τ1 so τ = u− v = τ ′ − τ1. It therefore follows that

Var(Ĩ
(p,q)
η,s ) =

1

λ2

∑

τ ′

∑

τ1

Kh(τ
′)Kh(τ1)

[(∑

η1

S(p)
η1

(
s+ τ ′

R

)
Aτ

η1,η

)
×

(∑

η1

S(q)
η1

(
s+ τ ′

R

)
Aτ

η1,η

)
+

(∑

η1

S(p,q)
η1

(
s+ τ ′

R

)
Aτ

η1,η

)2

+O

(
22j(η1)

R

)]
.

Using the Lipschitz properties of S(p,q), we obtain,

Var(Ĩ
(p,q)
η,s ) =

1

λ2

∑

τ ′

∑

τ1

Kh(τ
′)Kh(τ1)

[(
∑

η1

(
S(p)
η1

( s

R

)
+O

(
L
(p)
η1 ||τ ′||
R

))
Aτ

η1,η

)
×

(
∑

η1

(
S(q)
η1

( s

R

)
+O

(
L
(q)
η1 ||τ ′||
R

))
Aτ

η1,η

)
+

(
∑

η1

(
S(p,q)
η1

( s

R

)
+O

(
B

(p,q)
η1 ||τ ′||
R

))
Aτ

η1,η

)2

+O

(
22j(η1)

R

)]

=
1

λ2

∑

τ ′

∑

τ1

Kh(τ
′)Kh(τ1)

[(
∑

η1

S(p)
η1

( s

R

)
Aτ

η1,η +O

( ||τ ′||
R

))
×

(
∑

η1

S(q)
η1

( s

R

)
Aτ

η1,η +O

( ||τ ′||
R

))
+

(
∑

η1

S(p,q)
η1

( s

R

)
Aτ

η1,η +O

( ||τ ′||
R

))2

+

O

(
22j(η1)

R

)]
,
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since
∑

η1
L
(p)
η1 2

2j(η1) <∞ and
∑

η1
B

(p,q)
η1 22j(η1) <∞. Expanding this equation we find that

Var(Ĩ
(p,q)
η,s ) =

1

λ2

∑

τ ′

∑

τ1

Kh(τ
′)Kh(τ1)

[
∑

η1

S(p)
η1

( s

R

)
Aτ

η1,η

∑

η1

S(q)
η1

( s

R

)
Aτ

η1,η+

(∑

η1

S(p,q)
η1

( s

R

)
Aτ

η1,η

)2

+O

(
22j(η1)||τ ′||

R

)
+O

( ||τ ′||2
R2

)
+O

(
22j(η1)

R

)]

=
1

λ2

∑

τ ′

∑

τ1

Kh(τ
′)Kh(τ1)

[
O

(
24j(η1)

)
+O

(
24j(η1)

)
+ (||τ ′||+ 1)O

(
22j(η1)

R

)
+

(||τ ′||2)O
(

1

R2

)]
,

since
∑

η1
S
(p)
η1 (s/R) < ∞ and

∑
η1
S
(p,q)
η1 (s/R) < ∞ and Aτ

η1,η = O(22j(η1)). In order to

show the variance is asympotically vanishing, similarly to the expectation we consider the

maximum number of lattice points in the support of the kernel product. We have,

Var(Ĩ
(p,q)
η,s ) =

(
1

(2⌊h⌋+ 1)4

∑

τ ′

∑

τ1

Kh(τ
′)Kh(τ1)

[
O

(
24j(η1)

)
+O

(
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)
+

(||τ ′||+ 1)O

(
22j(η1)

R

)
+ (||τ ′||2)O

(
1

R2

)])/(
λ2

(2⌊h⌋+ 1)4

)
.

In order to show consistency of Ĩ we consider the numerator and denominator separately

denoted as ĨN and ĨD respectively. The numerator is given by,

ĨN ≤ 1

(2⌊h⌋+ 1)4

∑

||τ ′||1≤⌊h⌋

∑

||τ1||1≤⌊h⌋

Kh(τ
′)Kh(τ1)

[
O

(
24j(η1)

)
+O

(
24j(η1)

)
+

(⌊h⌋+ 1)O

(
22j(η1)

R

)
+ (⌊h⌋2)O

(
1

R2

)])

=
1

(2⌊h⌋+ 1)4
· 1 · 1 ·

[
O

(
24j(η1)

)
+O

(
24j(η1)

)
+ (⌊h⌋+ 1)O

(
22j(η1)

R

)
+ (⌊h⌋2)O

(
1

R2

)])
,

since,

0 <
∑

||τ ||1≤⌊h⌋

Kh(τ ) <

∫

||x||2<h
Kh(x)dx = 1.

The denominator is given by,

ĨD =
λ2

(2⌊h⌋+ 1)4
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where λ2 =
∑

τ ′ Kh(τ
′)
∑

τ1
Kh(τ1). We thus find that:

ĨD < 1
(2⌊h⌋+1)4

× (2⌊h⌋+ 1)4KM

= KM (A.31)

= O(1), (A.32)

since K(x) ≤ KM <∞. Therefore the variance of the smoothed wavelet cross-periodogram

is given by

Var(Ĩ(p,q)η,s ) =
1

(2⌊h⌋+ 1)4
· 1 · 1 ·

[
O

(
24j(η1)

)
+O

(
24j(η1)

)
+ (⌊h⌋+ 1)O

(
22j(η1)

R

)
+ (⌊h⌋2)O

(
1

R2

)])

=
1

(2⌊h⌋+ 1)4

[
O

(
24j(η1)

)
+ (⌊h⌋+ 1)O

(
22j(η1)

R

)
+ (⌊h⌋2)O

(
1

R2

)])
.

Finally, as h → ∞, R → ∞ with h/R → 0, Var(Ĩ) → 0. Thus the smoothed wavelet

cross-periodogram is asympotically consistent. �

Proof of Proposition 2: Aymptotics of the local cross-covariance.

c
(p,q)
R (z, τ ) = Cov

(
X

(p)
r , X

(q)
r+τ

)
(A.33)

= E

((
X

(p)
r − µ

(p)
r

)(
X

(q)
r+τ − µ

(q)
r+τ

))
. (A.34)

By the modelling assumptions of LS2Wmv, E(Xr) = 0 for all r. Hence,

c
(p,q)
R (z, τ ) = E

(
X

(p)
r , X

(q)
r+τ

)
,

= E
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η
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.

From equation (5.4) we have,

E

(
ξ
(p)
η,uξ

(q)
η,u

)
= δη,ηδu,uρ

p,q
η

( u
R

)
,

= ρp,qη

( u
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)
.
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If p = q then ρp,qη (u/R) = 1 and so the proof follows as in Eckley et al. (2009). However for

the case where p 6= q we have,

c
(p,q)
R (z, τ ) =

∑

η

∑

u

W (p)
η

( u
R

)
W (q)
η

( u
R

)
ρp,qη

( u
R

)
ψη,u−rψη,u−r−τ ,

=
∑

η

∑

u

Sp,qη

( u
R

)
ψη,u−rψη,u−r−τ .

Finally we consider the absolute difference between the cross-covariance and the local cross-

covariance.

∣∣∣c(p,q)
R

(z1, τ )− c(p,q)(z2, τ )
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Using the result of Lemma 1 we obtain

∣∣∣c(p,q)R (z1, τ )− c(p,q)(z2, τ )
∣∣∣ ≤

∣∣∣∣∣

(
1

R

)∑

η

∑
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CBη||u− r||ψη,u−rψη,u−r−τ

∣∣∣∣∣ .

Since Ψη(τ ) = O(1) uniformly in τ and the support of Ψη(τ ) is bounded by K22j(η), the

distance ||u− r|| is bounded by this amount too. Finally we obtain

∣∣∣c(p,q)R (z1, τ )− c(p,q)(z2, τ )
∣∣∣ =
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(
1
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)
CK
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Bη2
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= O

(
1

R

)
,

since the Lipschitz constants Bη are uniformly bounded in η with
∑

η Bη2
2j(η) < ∞ (as

stated in Definition 13). �

Proof of Lemma 2: Invertibility of the local wavelet cross-spectrum.

This proof is identical to the two-dimensional case, considered in Eckley et al. (2010). We

begin by considering the term:
∑

η1
A−1
η,η1

∑
τ
c(p,q)(z, τ )Ψη1(τ ). By definition c(p,q)(z, τ ) =
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∑
ν S
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(A.35)

Since
∑

η S
p,q
η (z) <∞ ∀z and the sum of τ is finite, the order of the summations in equation

(A.35) may be rearranged. Hence,
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(A.36)
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Appendix B

LS2Wstat Software Suite

In many applications in the field of image processing, such as texture discrimination, classi-

fication and segmentation, assumptions are made relating to the second-order structure of

an image. Many methods require stationarity while those that allow non-stationarity do not

tend to perform as well on stationary images as traditional Fourier based methods (Eckley

et al., 2010). It is thus important to test this assumption of stationarity before performing

further image analysis.

In Chapter 3 a test of spatial stationarity was proposed based on the locally station-

ary two-dimensional wavelet model (LS2W) of Eckley et al. (2010). The test, denoted

BootstatLS2W employs bootstrap resampling under the null hypothesis assumption of sta-

tionarity to assess its significance. By performing the BootstatLS2W test on a montage of

two image textures, the test enables texture discrimination and it can be used to identify

regions in an image of spatial homogeneity by recursively applying the technique within a

quadtree image decomposition (Chapter 4). These two elements thus allow the number of

textures in an image to be determined even those which contain visually-subtle textures.

In this appendix we describe the package LS2Wstat which illustrates the software im-

plementation of work from Chapters 3 and 4, which can currently be downloaded from

http://www.maths.lancs.ac.uk/~taylors8/software.html.

The package has been developed in R and makes use of several functions within the LS2W

package (Eckley and Nason, 2011a,b). Below we provide brief descriptions of the main

functions within the LS2Wstat package.
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• Sim: Simulation function for LS2W processes.

• TOS2D.TS: A test statistic for spatial stationarity.

• TOS2D: Performs the bootstrap stationarity test for images.

• CompareIm: Assesses whether two textured images have the same covariance structure.

• TextCount: Groups a list of (stationary) images into texture classes based on their

covariance properties.

• imageQT: Performs an image quadtree decomposition.

• plot.imageQT: A plot function for the quadtree decomposition and optionally the

textured region classification output from TextCount.

Below we illustrate the use of the LS2Wstat package by way of a simulated example, based

on a non-stationary texture. This is generated by the simulation function Sim described in

Section B.1. Section B.2 describes the key functions used to test an image for stationarity

(Chapter 3), whilst Section B.3 describes the functions associated with finding the number

of textures in an image (Chapter 4).
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B.1 Simulating LS2W processes

Sim

Simulation function for LS2W processes.

Description

Several different spatially stationary and non-stationary random fields can be generated

with the Sim function.

The stationary processes which can be simulated are:

S1: a random normal process of specified standard deviation, sd;

S2: a spatial moving average process with parameter rho;

S3: an isotropic random field with a Matérn covariance with shape parameter nu;

S4: a Gaussian random field with exponential covariance, range parameter 2;

S5: a diagonal Haar moving average process of a specified order order and standard

deviation sd (see the Haar2MA.diag function in the LS2W package for more detail).

We can also generate several non-stationary processes:

NS1: a random process with unit standard deviation on the first half-plane, concatenated

with a random normal half-plane of standard deviation sd;

NS2: a white noise half-plane concatenated with a Matérn stationary process;

NS3: a Haar Montage of specified standard deviation sd (see the LS2W HaarMontage function

for more details);

NS4: a process with a slowly-varying covariance structure across the horizontal axis of the

image; this structure is specified by a function fn with arguments start, end, and a,

describing the start, end and “gradient” of the change from start to end. Current

variance functions included in the LS2Wstat package for the fn argument are scurve
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and lincurve representing an “s”-shaped curve and linear function respectively. See

Chapter 3 for examples of this covariance structure.

NS5: a white noise process with a central subregion of random Normal deviates with non-

unit standard deviation sd and subregion size n/prop;

NS6: a white noise process with a subregion (of size n/prop) of random Normal deviates

with non-unit standard deviation sd in the middle section of the top left quadrant;

NS7: a process similar to NS5, except that there is an additional texture in a subregion of

the image. In other words, the image is a montage of three two-dimensional Normal

processes with differing standard deviations. The base texture is again of unit variance,

whereas the other two textures have standard deviations sd and sd2. The sizes of the

subregions (expressed as a proportion of the original image dimension) can be specified

with the prop and prop2 arguments to the Sim function. Furthermore, the positions

of the two inserted textures can be given. Possible options are “a”, “b”, “c”, “d”, “e”

which corresponds to (a) top-right, (b) bottom-right, (c) top-left, (d) bottom-left and

(e) centred. A more exact location may be specified by inputting pos=c(x,y), which

represents the position in pixels from the top-left of the image (i.e. c(x,y) puts Image

A x pixels down and y pixels across from the top-left corner of Image B.)

Usage

Sim(n, sd = 1, K = 150, imtype = "S1", ...)

Required arguments

n

The dimension of the image to be generated.

sd

The standard deviation of base texture or of the increments of the LS2W process to be

generated (see Section 3.4.1).

K=150

The number of images to generate.
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imtype="S1"

The type of image(s) to create. Must be one of "S1", "S2", "S3", "S4", "S5", "NS1", "NS2",

"NS3", "NS4", "NS5", "NS6" or "NS7".

Optional arguments

The other optional arguments for Sim are as follows:

type

The type of neighbourhood dependence for the random field, either “queen” or “rook” (see

the cell2nb function documentation in the spdep package for more details).

rho

Moving average parameter for the process S2.

nu

Shape parameter for the Matérn covariance for process S3.

order

Haar moving average order for S5.

fn

scurve or lincurve for NS4.

start

Start value for NS4 (passed into scurve or lincurve).

end

End value for NS4 (passed into scurve or lincurve).

a

“Gradient” for NS4 (passed into scurve or lincurve).

prop

Proportion of inserted subimage for NS5, NS6 and the first subimage in NS7.

sd2

Standard deviation of second inserted subimage for NS7.

prop2

Proportion of second inserted subimage for NS7.

pos1
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Position of first inserted subimage for NS7.

pos2

Position of second inserted subimage for NS7.

Value

images

A list of length K, with each list entry being an image of dimension n x n with the chosen

spectral structure.

Examples

> X <- Sim(512, K=1, imtype="NS4", sd=1.6, prop=0.25)[[1]]

> image(plotmtx(X), col=grey(255:0/256))

The simulated image X is shown in Figure B.1. It displays a realisation of NS4: a white

noise process with a subregion of random Normal deviates in the center of the process with

a standard deviation of 1.6. In particular, we consider an image of dimension 512 × 512

with a subregion of dimension 128 × 128. Throughout the remainder of this appendix we

shall apply our methods to this image.

Figure B.1: An example of a textured image (NS4) simulated with the Sim function.
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B.2 Testing the spatial stationarity of images

In this section we describe the implementation of the BootstatLS2W test of stationarity.

Throughout this section let us assume that we have an image Xr we wish to test for spatial

stationarity. Since the model in equation (3.1) assumes the process is zero mean, if necessary

the image should be detrended, for example by estimating the spatial mean and retaining

the residual image for analysis. This can be achieved in R by using the core stats package

function medpolish, which implements Tukey’s median polish technique (Tukey, 1977).

In practice the test statistic for stationarity as introduced in equation (3.16) in Chapter

3 is computed on an (unbiased) estimate of the local wavelet spectrum, produced by the

LS2W function cddews. For a (square) image X, the test statistic is calculated using the

function TOS2D.TS.

TOS2D.TS

A test statistic for spatial stationarity.

Description

The test statistic given in equation (3.16) for a test of stationarity can be seen as the

mean empirical variance of the spectrum estimate, where the average is taken over all scale-

direction pairs. It is computed for use in the bootstrap testing procedure (TOS2D).

Usage

TOS2D.TS(spectrum)

Required arguments

spectrum

A local wavelet spectrum estimate, i.e. a cddews object.
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Value

statistic

The value of the test statistic for the given spectrum.

Examples

# Generate a cddews object of image X and find the value of the test statistic.

> TSvalue<-TOS2D.TS(cddews(X,smooth=FALSE))

> TSvalue

[1] 0.205782
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TOS2D

Performs the bootstrap stationarity test (BootstatLS2W) for images.

Description

This function first crops an image (if necessary) to have dyadic dimensions. The test statistic

(theTS), which should be based upon the local wavelet spectrum, is calculated for this

original image as shown in the example of TOS2D.TS. The local wavelet spectrum under the

null hypothesis of stationarity is calculated, so as to be able to simulate realisations under

the null hypothesis. bsims images are simulated and test statistics are found for each. The

function returns all the test statistic values, which may be passed to TOS2D.pval in order

to find a p-value for the test. For full details on this testing procedure, see Chapter 3.

Usage

TOS2D(image, bsims = 100, smooth = FALSE, verbose = TRUE, theTS = TOS2D.TS,

levels, zeromean = FALSE)

Required arguments

image

The image you want to analyse.

bsims

The number of bootstrap simulations to carry out. By default this takes the value 100.

smooth

Whether or not to carry out wavelet periodogram smoothing.

verbose

If TRUE, informative messages are printed.

theTS

This specifies the test statistic function to be used within the testing procedure to measure

non-stationarity. The test statistic should be based on the local wavelet spectrum and by

default is the function TOS2D.TS representing the statistic in equation (3.16) in Chapter 3.
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levels

This (optionally) specifies the wavelet transform levels which are smoothed when estimating

the wavelet spectrum of the image.

zeromean

This specifies whether to use Tukey’s median polish method (Tukey, 1977) to remove the

image trend.

Value

TOS2D

This is a vector of length bsims+1 containing each of the test statistics calculated in the

bootstrap test. The first entry is the value of the test statistic computed on the original

image while the remaining entries are test statistic values for the simulated images.

Examples

# Run test of stationarity on image X.

> Xbstest <- TOS2D(X, bsims=100, smooth=FALSE)

# The object Xbstest is thus a vector of length 101.

To compute a p-value using the outputted bootstrap test statistic values, we use the function

TOS2D.pval.
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TOS2D.pval

Computes a p-value for the output of the test for stationarity.

Description

This function returns the parametric bootstrap p-value for the test, from the test statistics

provided by counting those test statistic values less than the test statistic value for the

original image (see Davison et al. (1999) for more details).

Usage

TOS2D.pval(BS2D, alpha=0.05, verbose=TRUE)

Required arguments

BS2D

The vector of test statistics, such as the output from TOS2D. The first value must be the

value of the test statistic for the original image.

alpha

A size for the test, by default this is 0.05.

verbose

If TRUE then the p-value is printed and a sentence declaring “stationary” or “not station-

ary” is printed (default is TRUE).

Value

p

The p-value of the test (See Algorithm 3.1).

Examples

# We can find the p-value for the test relating to the image X using

# the object Xbstest created previously. We have

> pval <- TOS2D.pval(Xbstest)
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#Realized Bootstrap is 0.205782

#p-value is 0

#Image was NOT stationary

#

#In this case we print out the outcome of the test and use the default

#test size of alpha=0.05.

#The results of this test for X indicates that the image was assessed

#to be non-stationary as expected.

The function TOS2D.bin performs the test of stationarity as in TOS2D but outputs a binary

value indicating whether the image is stationary or not. This function is useful in finding

the number of textures in an image (Section B.3).
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TOS2D.bin

A function to assess the stationarity of an input image.

Description

The function performs the LS2W test of stationarity contained in the function TOS2D. A

binary value indicating the outcome of the test is returned.

Usage

TOS2D.bin(x, bs = 250, alpha = 0.05, ...)

Required arguments

x

The image to be tested for stationarity.

bs

The number of bootstrap samples to use in the TOS2D test.

alpha

The significance level of the hypothesis test.

...

Any other optional arguments to TOS2D.

Value

test.out

The outcome of the test: TRUE indicates stationary; FALSE indicates non-stationary.

Examples

# We perform the test of stationarity on image X.

> X.test<-TOS2D.bin(X, bs=100, smooth=FALSE)

> X.test

[1] FALSE

# This indicates the image is non-stationary as expected.
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B.3 Determining the number of textures in an image using

the bootstrap test of stationarity

In this section we describe a method for distinguishing unique textures in a number of

(stationary) images. This procedure, in combination with the quadtree algorithm discussed

below counts the number of textures within an image.

A quadtree algorithm implementation

In essence, a region splitting algorithm recursively subdivides an input image into smaller

regions, with the subdivision decisions being based on some statistical criterion. More

specifically in a quadtree representation, at each stage, a (sub)image is divided into its four

subquadrants if the criterion is not satisfied. In our case the statistical criterion we use

is (lack of) homogeneity, that is, a quadrant is further divided if it is considered as non-

stationary by the BootstatLS2W test using TOS2D.bin. This procedure segments an image

into regions of spatial stationarity.

For the first subdivison each subimage is of size n/2 x n/2. The sizes of the regions halve

in size at each progressive division but increase in number. The R function in LS2Wstat

which creates the quadtree structure is imageQT.

imageQT

Performs an image quadtree decomposition.

Description

This function works by assessing an image for spatial homogeneity. If it is not homogeneous,

the image is split into its four subquadrants. Each of these is then tested for homogeneity.

The heterogeneous subimages are then again subdivided and tested again. This procedure

is repeated until either all subimages are deemed stationary or until the minimum testing

size minsize is reached.

This particular way of splitting an image has a convenient indexing representation to identify
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the position of subregions within an image. If a subimage is subdivided into four quadrants,

we assign it a base 4 label as follows: 0 - top-left quadrant; 1 - bottom-left quadrant; 2 -

top-right quadrant; 3 - bottom-right quadrant. By continuing in this manner, we can assign

an index to each tested subregion, with the number of digits in the index indicating how

many times it has been subdivided from the “root” of the tree (the original image). This

indexing system is illustrated for a quadtree decomposition in Figure B.2.

00 02 20 22

01 23

10 32

11 13 31 33

121 123 301 303

120 122 300 302

031 033 211 213

030 032 210 212

Figure B.2: An example of a quadtree decomposition. The location of the subimages in the
decomposition are described by the indexing system described in the text.

Usage

imageQT(image, binfun = TOS2D.bin, minsize = 16, ...)

Required arguments

image

An image to be decomposed.
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binfun

A function to assess regions for spatial homogeneity, for example TOS2D.bin. This function

should return a boolean value.

minsize

The smallest region size to test for homogeneity.

...

Any other optional arguments to binfun.

Value

indl

The index representation of the non-stationary images in the quadtree decomposition.

resl

The results of the stationarity testing (from binfun) during the quadtree decomposition.

The results giving FALSE correspond to those contained in the indl component and the

results giving TRUE correspond to those contained in the indS component.

imsize

The original image dimension.

imS

The stationary subimages in the quadtree decomposition.

indS

The index representation of the stationary images in the quadtree decomposition.

Examples

# Consider the code below to decompose the (non-stationary) input image

# X given in Figure B.1:

> QTdecX<-imageQT(X,binfun=TOS2D.bin, smooth=FALSE, bs=100)

#This will implement a quadtree decomposition, stopping after

#testing regions of 16 x 16 pixels.

> QTdecX$indl

[[1]]
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[1] "0" "1" "2" "3"

[[2]]

[1] "03" "12" "21" "30"

[[3]]

character(0)

#These are the non-stationary sub-images.

> QTdecX$resl

[1] 0

[[2]]

[1] FALSE FALSE FALSE FALSE

[[3]]

[1] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE

[13] FALSE TRUE TRUE TRUE

[[4]]

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[16] TRUE

#The results giving FALSE correspond to the non-stationary sub-images

#and the results giving TRUE correspond to the stationary ones.

#The final output of this quadtree decomposition is illustrated in Figure B.2,

#which displays all the stationary sub-images.

Discrimination between textures

To assess the similarity between two textures using the LS2Wstat package, we can use the

CompareIm function.

156



CompareIm

Assesses whether two textured images are the same texture.

Description

An imagemontage of two images is created, and the (binary) homogeneity measure TOS2D.bin

is used to assess stationarity of the montage. If the image is assessed as stationary, the two

images are considered as the same texture.

Usage

CompareIm(Im1, Im2, testsize = min(nrow(Im1), nrow(Im2)), ...)

Required arguments

Im1

The first image to be compared.

Im2

The second image to be compared.

testsize

The size of the combined image montage to be tested for stationarity.

...

Any other optional arguments to TOS2D.bin.

Value

montageres A boolean value indicating whether the montage of Im1 and Im2 is stationary.

Example

# We simulate realisations of the two textures contained within Figure B.1:

> X1<-Sim(64,K=1,imtype="S1")[[1]]

> X2<-Sim(64,K=1,imtype="S1", sd=1.6)[[1]]

# Use the test to compare them:
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> test<-CompareIm(X1,X2,bs=100, smooth=FALSE)

> test

[1] FALSE

# They are considered different as expected.

By repeating this procedure for montages formed from sequential pairs of images in a set,

all images can be assigned a texture label. In order to assign texture labels to a number of

textures in an image list, the LS2Wstat package contains the function TextCount.
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TextCount

Groups a list of (stationary) images into texture classes.

Description

The function takes a list of images to which we wish to assign texture labels. The function

optionally detrends the input images (using the medpolish function from the stats package)

by specifying the medpol argument. Note that if the candidate textures were, for exam-

ple, output from the BootstatLS2W stationarity test within the quadtree algorithm, or had

initially been detrended, we would want to set medpol = FALSE. The procedure recursively

uses the function CompareIm to decide whether two images are of the same texture or not.

More specifically, the first image is sequentially tested with all others in the list, assigning

the images the label “1” if assessed as the same texture as the first image. All other (unclas-

sified) images are then similarly compared with candidates from different texture classes,

until all images have been assigned a group label. Testing recursively in this way, there are

at most choose(length(Imgs),2) comparisons performed, but in reality the number could

be a lot fewer.

Usage

TextCount(Imgs, medpol = TRUE, ...)

Required arguments

Imgs

A list of images to classify into textures.

medpol

A boolean value indicating whether to zero mean the images (with Tukey’s median polish)

prior to classification.

...

Any other optional arguments to the discrimination function CompareIm.
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Value

Iclass

A vector (of length length(Imgs)) of texture labels corresponding to each image in Imgs.

Example

# We now have a list of candidate textures from the Quad tree procedure

# which we wish to classify. To find out which images represent the same

# texture, one would use the code:

> texclass<-TextCount(QTdecX$imS, medpol = FALSE, smooth=FALSE)

> texclass

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1

#In this example, there were two textures to classify into texture groups.

#The TextCount function automatically determines that there are two unique

#textures in the list.
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Plotting image segmentation results

Suppose we have performed the quadtree decomposition and the texture discrimination

techniques described previously. The LS2Wstat package includes a function to plot quadtree

decompositions and optionally the textured region classification output from TextCount.

plot.imageQT

A plot function for quadtree decompositions.

Description

The function plots the chosen quadtree decomposition, and optionally the textured region

classification output from TextCount.

Usage

plot(x, cires, unclassval = 0, class = TRUE, QT = FALSE, return = FALSE, qtl

= 4, ...)

Required arguments

x

A quadtree decomposition object, such as output from imageQT.

cires

Results of TextCount for the classification of subimages produced by the quadtree decom-

position.

unclassval

A value for unclassified values in a quadtree decomposition.

class

A boolean value indicating whether to plot the results from TextCount. If the classification

output is plotted (class=TRUE), each textured region is uniquely coloured according to its

texture group.

QT

161



A boolean value indicating whether to overlay the full quadtree decomposition onto the

figure.

return

A boolean value indicating whether to return the matrix associated to the plotted image.

qtl

Colour specification for the lines drawn in the image segmentation (for QT=TRUE).

...

Any other arguments passed to the core R plotting function image.

Value

immat

The matrix associated to the plotted image. This only occurs if return=TRUE.

Examples

#The simulated textured image $X$ is shown in Figure B.1.

#The quadtree and texture classification techniques were then performed.

#The quadtree plotting function plot.imageQT can be used as follows:

>plot(QTdecX, texclass, class=T, QT=TRUE)

>plot(QTdecX, texclass, class=T, QT=FALSE)

The quadtree decomposition from this example is shown in Figure B.3; the same decompo-

sition is shown together with the texture classification from TextCount in Figure B.4.
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Figure B.3: An example of a quad-tree decomposition using imageQT.

Figure B.4: An example of a quad-tree decomposition with subimage texture classification
using TextCount.
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